An endomorphism $f:\mathbb{P}^k\rightarrow \mathbb{P}^k$ of degree $d\ge 2$ is said to be postcritically finite (or PCF) if its critical set $\mathrm{Crit}(f)$ is preperiodic, i.e. if there are integers $m>n\ge 0$ such that $f^m(\mathrm{Crit}(f))\subseteq f^n(\mathrm{Crit}(f))$. When $k\ge 2$, it was conjectured in [61] that, in the space $\mathrm{End}_d^k$ of all endomorphisms of degree $d$ of $\mathbb{P}^k$, such endomorphisms are not Zariski dense. We prove this conjecture. Further, in the space $\mathrm{Poly}_d^2$ of all regular polynomial endomorphisms of degree $d\ge 2$ of the affine plane $\mathbb{A}^2$, we construct a dense and Zariski open subset where we have a uniform bound on the number of preperiodic points lying in the critical set.
The key object in the article are the complex bifurcation measure and its properties. The proofs are a combination of the theory of heights in arithmetic dynamics and methods from real dynamics to produce open subsets with maximal bifurcation.
Revised:
Accepted:
Online First:
Keywords: regular plane polynomial automorphisms, canonical height, algebraic family of rational maps, arithmetic characterizations of stability
Thomas Gauthier  1 ; Johan Taflin  2 ; Gabriel Vigny  3
@unpublished{PMIHES_0__0__1_0,
author = {Thomas Gauthier and Johan Taflin and Gabriel Vigny},
title = {Sparsity of postcritically finite maps of $\mathbb{P}^k$ and beyond: {A} complex analytic approach},
journal = {Publications Math\'ematiques de l'IH\'ES},
year = {2026},
publisher = {IHES},
doi = {10.5802/pmihes.1},
language = {en},
note = {Online first},
}
TY - UNPB
AU - Thomas Gauthier
AU - Johan Taflin
AU - Gabriel Vigny
TI - Sparsity of postcritically finite maps of $\mathbb{P}^k$ and beyond: A complex analytic approach
JO - Publications Mathématiques de l'IHÉS
PY - 2026
PB - IHES
N1 - Online first
DO - 10.5802/pmihes.1
LA - en
ID - PMIHES_0__0__1_0
ER -
Thomas Gauthier; Johan Taflin; Gabriel Vigny. Sparsity of postcritically finite maps of $\mathbb{P}^k$ and beyond: A complex analytic approach. Publications Mathématiques de l'IHÉS, Online first, pp. 1-96
[1] Dynamics of post-critically finite maps in higher dimension, Ergodic Theory Dyn. Syst., Volume 40 (2020) no. 2, pp. 289-308 | DOI | Zbl | MR
[2] Higher bifurcations for polynomial skew products, J. Mod. Dyn., Volume 18 (2022), pp. 69-99 | Zbl | DOI | MR
[3] Collet, Eckmann and the bifurcation measure, Invent. Math., Volume 217 (2019) no. 3, pp. 749-797 | Zbl | DOI | MR
[4] Bifurcation currents in holomorphic dynamics on , J. Reine Angew. Math., Volume 608 (2007), pp. 201-235 | Zbl | MR
[5] Distribution of polynomials with cycles of a given multiplier, Nagoya Math. J., Volume 201 (2011), pp. 23-43 | Zbl | DOI | MR
[6] Dynamics of regular polynomial endomorphisms of , Am. J. Math., Volume 122 (2000) no. 1, pp. 153-212 | Zbl | MR | DOI
[7] The Dirichlet problem for a complex Monge-Ampère equation, Invent. Math., Volume 37 (1976), pp. 1-44 | Zbl | DOI | MR
[8] Generic family with robustly infinitely many sinks, Invent. Math., Volume 205 (2016) no. 1, pp. 121-172 correction in ibid. 218 (2) (2019), 649-656 | Zbl | DOI | MR
[9] Parametric linearization of skew products (2022) | arXiv | Zbl
[10] Dynamical stability and Lyapunov exponents for holomorphic endomorphisms of , Ann. Sci. Éc. Norm. Supér. (4), Volume 51 (2018) no. 1, pp. 215-262 | Zbl | DOI | MR
[11] Une caractérisation des endomorphismes de Lattès par leur mesure de Green, Comment. Math. Helv., Volume 80 (2005) no. 2, pp. 433-454 | Zbl | DOI | MR
[12] A distortion theorem for iterated inverse branches of holomorphic endomorphisms of , J. Lond. Math. Soc. (2), Volume 99 (2019) no. 1, pp. 153-172 | Zbl | DOI | MR
[13] Normalization of bundle holomorphic contractions and applications to dynamics, Ann. Inst. Fourier, Volume 58 (2008) no. 6, pp. 2137-2168 | Zbl | DOI | Numdam | MR
[14] Une caractérisation géométrique des exemples de Lattès de , Bull. Soc. Math. Fr., Volume 129 (2001) no. 2, pp. 175-188 | Zbl | DOI | MR
[15] Misiurewicz parameters and dynamical stability of polynomial-like maps of large topological degree, Math. Ann., Volume 373 (2019) no. 3-4, pp. 901-928 | Zbl | DOI | MR
[16] Bifurcations in the elementary Desboves family, Proc. Am. Math. Soc., Volume 145 (2017) no. 10, pp. 4337-4343 | Zbl | MR | DOI
[17] Lattès maps and the interior of the bifurcation locus, J. Mod. Dyn., Volume 15 (2019), pp. 95-130 | Zbl | DOI | MR
[18] Persistent nonhyperbolic transitive diffeomorphisms, Ann. Math. (2), Volume 143 (1996) no. 2, pp. 357-396 | Zbl | DOI | MR
[19] Robust heterodimensional cycles and -generic dynamics, J. Inst. Math. Jussieu, Volume 7 (2008) no. 3, pp. 469-525 | Zbl | DOI | MR
[20] Abundance of -robust homoclinic tangencies, Trans. Am. Math. Soc., Volume 364 (2012) no. 10, pp. 5111-5148 | Zbl | DOI | MR
[21] Exposants de Liapounoff et distribution des points périodiques d’un endomorphisme de , Acta Math., Volume 182 (1999) no. 2, pp. 143-157 | Zbl | DOI | MR
[22] From local to global analytic conjugacies, Ergodic Theory Dyn. Syst., Volume 27 (2007) no. 4, pp. 1073-1094 | Zbl | DOI | MR
[23] Bifurcation measure and postcritically finite rational maps, Complex dynamics : families and friends / edited by Dierk Schleicher, A K Peters, 2009, pp. 491-512 | Zbl | DOI
[24] Canonical heights on varieties with morphisms, Compos. Math., Volume 89 (1993) no. 2, pp. 163-205 | Zbl | Numdam | MR
[25] The geometric Bogomolov conjecture, Duke Math. J., Volume 170 (2021) no. 2, pp. 247-277 | Zbl | MR
[26] Mesures et équidistribution sur les espaces de Berkovich, J. Reine Angew. Math., Volume 595 (2006), pp. 215-235 | Zbl | MR
[27] Complex analytic sets, Mathematics and its Applications. Soviet Series, 46, Kluwer Academic Publishers, 1989 (translated from the Russian by R. A. M. Hoksbergen) | Zbl | DOI
[28] Introduction to Chow forms, Invariant methods in discrete and computational geometry (Curaçao, 1994), Kluwer Academic Publishers, 1994, pp. 37-58 | Zbl | MR
[29] Mesures de Monge–Ampère et caractérisation géométrique des variétés algébriques affines, Mémoires de la Société Mathématique de France. Nouvelle Série, 19, Société Mathématique de France, 1985, 124 pages | Zbl | Numdam
[30] Dynamics of rational maps: a current on the bifurcation locus, Math. Res. Lett., Volume 8 (2001) no. 1-2, pp. 57-66 | Zbl | DOI | MR
[31] Uniform Manin–Mumford for a family of genus 2 curves, Ann. Math. (2), Volume 191 (2020) no. 3, pp. 949-1001 | Zbl
[32] Common preperiodic points for quadratic polynomials, J. Mod. Dyn., Volume 18 (2022), pp. 363-413 | Zbl | MR | DOI
[33] Dynamics on : preperiodic points and pairwise stability, Compos. Math., Volume 160 (2024) no. 2, pp. 356-387 | Zbl | MR | DOI
[34] Equidistribution towards the Green current for holomorphic maps, Ann. Sci. Éc. Norm. Supér. (4), Volume 41 (2008) no. 2, pp. 307-336 | Zbl | Numdam | DOI | MR
[35] Super-potentials of positive closed currents, intersection theory and dynamics, Acta Math., Volume 203 (2009) no. 1, pp. 1-82 | Zbl | DOI | MR
[36] Dynamics in several complex variables: endomorphisms of projective spaces and polynomial-like mappings, Holomorphic dynamical systems (Lecture Notes in Mathematics), Volume 1998, Springer, 2010, pp. 165-294 | Zbl
[37] Moduli spaces for dynamical systems with portraits, Dyn. Syst., Volume 64 (2020) no. 3, pp. 375-465 | Zbl
[38] Non-density of stability for holomorphic mappings on , J. Éc. Polytech., Math., Volume 4 (2017), pp. 813-843 | Zbl | MR | DOI
[39] Distribution of rational maps with a preperiodic critical point, Am. J. Math., Volume 130 (2008) no. 4, pp. 979-1032 | Zbl | DOI | MR
[40] Dynamics of fibered endomorphisms of , Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5), Volume 22 (2021) no. 1, pp. 53-78 | Zbl | MR
[41] Questions on self maps of algebraic varieties, J. Ramanujan Math. Soc., Volume 18 (2003) no. 2, pp. 109-122 | Zbl | MR
[42] Distribution of postcritically finite polynomials, Isr. J. Math., Volume 209 (2015) no. 1, pp. 235-292 | Zbl | DOI | MR
[43] Brolin’s theorem for curves in two complex dimensions, Ann. Inst. Fourier, Volume 53 (2003) no. 5, pp. 1461-1501 | Zbl | Numdam | DOI | MR
[44] Critically finite rational maps on , The Madison symposium on complex analysis. Proceedings of the symposium, held June 2-7, 1991, at the University of Wisconsin-Madison, Madison, WI, USA (Contemporary Mathematics), Volume 137, American Mathematical Society, 1991, pp. 245-260 | Zbl | MR
[45] Complex dynamics in higher dimension. II, Modern methods in complex analysis (Princeton, NJ, 1992) (Annals of Mathematics Studies), Volume 137, Princeton University Press, 1992, pp. 135-182 | Zbl
[46] Uniformity in Mordell–Lang for curves, Ann. Math. (2), Volume 194 (2021) no. 1, pp. 237-298 | Zbl | MR
[47] The uniform mordell-lang conjecture (2021) | arXiv | Zbl
[48] Heights in families of abelian varieties and the geometric Bogomolov conjecture, Ann. Math. (2), Volume 189 (2019) no. 2, pp. 527-604 | Zbl
[49] Strong bifurcation loci of full Hausdorff dimension, Ann. Sci. Éc. Norm. Supér. (4), Volume 45 (2012) no. 6, pp. 947-984 | Zbl | Numdam | MR | DOI
[50] Dynamical pairs with an absolutely continuous bifurcation measure, Ann. Fac. Sci. Toulouse, Math., Volume 32 (2023) no. 2, pp. 203-230 | Zbl | DOI | Numdam | MR
[51] Good height functions on quasi-projective varieties: equidistribution and applications in dynamics, Ann. Fac. Sci. Toulouse, Math., Volume 35 (2026) no. 1, pp. 57-94 | Zbl | DOI
[52] Hyperbolic components of rational maps: quantitative equidistribution and counting, Comment. Math. Helv., Volume 94 (2019) no. 2, pp. 347-398 | Zbl | DOI | MR
[53] Approximation of non-archimedean Lyapunov exponents and applications over global fields, Trans. Am. Math. Soc., Volume 373 (2020) no. 12, pp. 8963-9011 | Zbl | DOI | MR
[54] The geometric dynamical Northcott and Bogomolov properties, Ann. Sci. Éc. Norm. Supér. (4), Volume 58 (2025) no. 1, pp. 231-273 | Zbl | MR
[55] Algebraic independence of multipliers of periodic orbits in the space of rational maps of the Riemann sphere, Mosc. Math. J., Volume 15 (2015) no. 1, pp. 73-87 | Zbl | DOI | MR
[56] Diophantine geometry. An introduction, Graduate Texts in Mathematics, 201, Springer, 2000 | Zbl | DOI | MR
[57] Good reduction and canonical heights of subvarieties, Math. Res. Lett., Volume 25 (2018) no. 6, pp. 1837-1863 | Zbl | DOI | MR
[58] The critical height is a moduli height, Duke Math. J., Volume 167 (2018) no. 7, pp. 1311-1346 | Zbl | MR
[59] Minimally critical endomorphisms of (2020) | arXiv | Zbl
[60] Minimally critical regular endomorphisms of , Ergodic Theory Dyn. Syst., Volume 43 (2023) no. 2, pp. 585-614 | Zbl | DOI | MR
[61] Post-critically finite maps on for are sparse, Trans. Am. Math. Soc., Volume 376 (2023) no. 5, pp. 3087-3109 | Zbl | DOI | MR
[62] Homoclinic orbits, multiplier spectrum and rigidity theorems in complex dynamics, Forum Math. Pi, Volume 11 (2023), e11, 37 pages | Zbl | MR
[63] Dynamics of polynomial skew products on , Math. Ann., Volume 314 (1999) no. 3, pp. 403-447 | Zbl | MR | DOI
[64] Teichmüller theory and critically finite endomorphisms, Adv. Math., Volume 248 (2013), pp. 573-617 | Zbl | DOI | MR
[65] Equidistribution in families of abelian varieties and uniformity (2021) | arXiv | Zbl
[66] Sur les formes réduites des transformations ponctuelles dans le domaine d’un point double, Bull. Soc. Math. Fr., Volume 39 (1911), pp. 309-345 | Zbl | Numdam | MR | DOI
[67] Positivity in algebraic geometry. I. Classical setting: line bundles and linear series, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 48, Springer, 2004, xviii+387 pages | Zbl | MR
[68] The space of morphisms on projective space, Acta Arith., Volume 146 (2011) no. 1, pp. 13-31 | Zbl | DOI | MR
[69] Some typical properties of the dynamics of rational mappings, Usp. Mat. Nauk, Volume 38 (1983) no. 5, pp. 197-198 | Zbl | MR
[70] On the dynamics of rational maps, Ann. Sci. Éc. Norm. Supér. (4), Volume 16 (1983) no. 2, pp. 193-217 | Zbl | Numdam | DOI | MR
[71] On the dynamical Bogomolov conjecture for families of split rational maps, Duke Math. J., Volume 174 (2025) no. 5, pp. 803-856 | Zbl | MR
[72] Families of rational maps and iterative root-finding algorithms, Ann. Math. (2), Volume 125 (1987), pp. 467-493 | Zbl | DOI
[73] On Lattès maps, Dynamics on the Riemann sphere, European Mathematical Society, 2006, pp. 9-43 | Zbl | DOI
[74] Isotriviality is equivalent to potential good reduction for endomorphisms of , J. Algebra, Volume 322 (2009) no. 9, pp. 3345-3365 | Zbl | DOI
[75] New criteria for ergodicity and nonuniform hyperbolicity, Duke Math. J., Volume 160 (2011) no. 3, pp. 599-629 | Zbl | MR
[76] The Fatou set for critically finite maps, Proc. Am. Math. Soc., Volume 136 (2008) no. 10, pp. 3621-3625 | Zbl | DOI | MR
[77] Smooth linearization near a fixed point, Am. J. Math., Volume 107 (1985), pp. 1035-1091 | Zbl | DOI | MR
[78] The space of rational maps on , Duke Math. J., Volume 94 (1998) no. 1, pp. 41-77 | Zbl | MR
[79] The arithmetic of dynamical systems, Graduate Texts in Mathematics, 241, Springer, 2007, ix+511 pages | DOI | Zbl | MR
[80] Maximal minors and their leading terms, Adv. Math., Volume 98 (1993) no. 1, pp. 65-112 | Zbl | DOI | MR
[81] Blenders near polynomial product maps of , J. Eur. Math. Soc., Volume 23 (2021) no. 11, pp. 3555-3589 | Zbl | DOI | MR
[82] Complex dynamics on and Kobayashi metric, RIMS Kokyuroku, Volume 988 (1997), pp. 188-191 | Zbl
[83] Critical orbits of holomorphic maps on projective spaces, J. Geom. Anal., Volume 8 (1998) no. 2, pp. 319-334 | Zbl | MR
[84] Positivité et discrétion des points algébriques des courbes, Ann. Math. (2), Volume 147 (1998) no. 1, pp. 167-179 | Zbl | DOI | MR
[85] Periodic points of post-critically algebraic holomorphic endomorphisms, Ergodic Theory Dyn. Syst., Volume 42 (2022) no. 7, pp. 2382-2414 | Zbl | MR
[86] Geometric Bogomolov conjecture in arbitrary characteristics, Invent. Math., Volume 229 (2022) no. 2, pp. 607-637 | Zbl | MR
[87] Arithmetic bigness and a uniform bogomolov-type result, Ann. Math. (2), Volume 203 (2026) no. 1, pp. 15-119 | DOI | Zbl | MR
[88] Adelic line bundles over quasi-projective varieties, Annals of Mathematics Studies, 221, Princeton University Press, 2026, 280 pages | DOI | Zbl
[89] Positive line bundles on arithmetic varieties, J. Am. Math. Soc., Volume 8 (1995) no. 1, pp. 187-221 | Zbl | DOI | MR
[90] Equidistribution of small points on abelian varieties, Ann. Math., Volume 147 (1998) no. 1, pp. 159-165 | Zbl | DOI
Cited by Sources: