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ABSTRACT

An endomorphism f : ℙk → ℙk of degree d ≥ 2 is said to be postcritically finite (or PCF) if its critical set Crit( f ) is
preperiodic, i.e. if there are integers m > n ≥ 0 such that f m (Crit( f ) ) ⊆ f n (Crit( f ) ). When k ≥ 2, it was conjectured in [61]
that, in the space Endkd of all endomorphisms of degree d of ℙk , such endomorphisms are not Zariski dense. We prove this
conjecture. Further, in the space Poly2

d of all regular polynomial endomorphisms of degree d ≥ 2 of the affine plane 𝔸2, we
construct a dense and Zariski open subset where we have a uniform bound on the number of preperiodic points lying in the
critical set.

The key object in the article are the complex bifurcation measure and its properties. The proofs are a combination of
the theory of heights in arithmetic dynamics and methods from real dynamics to produce open subsets with maximal bifurcation.
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Introduction

Let 𝜋 : X → S be a family of complex projective varieties, where S is a smooth
complex projective variety, and let L be a nef and relatively ample line bundle on
X. We let f : X d X be a rational map such that (X, f ,L) is a family of polarized
endomorphisms of degree d ≥ 2 over a Zariski open subset S 0 of S , i.e. for all t ∈ S 0(ℂ),
Xt := 𝜋−1{t } is normal, Lt := L|Xt is ample and f ∗t Lt ≃ L⊗d

t . We further assume that
the generic fiber is smooth. If X0 = 𝜋−1(S 0), the family X0 → S 0 is the regular part of
(X, f ,L). The purpose of the article is to study maximal instability phenomena in both
complex and arithmetic dynamics, each viewpoint giving deep insights into the other.
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From the arithmetic viewpoint, we are mainly interested in the notion of canonical
height of a subvariety. Such height is a function meant to measure the arithmetic
dynamical complexity of the orbit of the subvariety. Studying such objects in family,
we are particularly interested in two cases:

• the moduli space M k
d of degree d endomorphisms of the projective space ℙk ,

• the moduli space Pk
d of degree d regular endomorphisms of the affine space 𝔸k .

In both cases, we study a family which is finite to one over a Zariski open subset of the
moduli space, and the family of subvarieties we consider is the critical set, see Section 2.1
for more details. More precisely, we

• show that this height is in fact a moduli height on a Zariski open set U of M k
d .

• use that height to show that postcritically finite maps — PCF maps for short —
(see below) are not Zariski dense in M k

d nor in P2
d .

• prove a uniform bound on the number of preperiodic critical points for regular
polynomial endomorphisms whose conjugacy lies in a Zariski open set of P2

d .

The complex analytic viewpoint is essential in that process to

• show that the support of the bifurcation measure (see below) has non-empty
interior in both M k

d and P2
d .

• prove that the correspondence between an endomorphism in M k
d (or P2

d ) and
the collection of the multipliers of its periodic points is finite-to-one outside a
Zariski closed set.

We are strongly inspired by the recent results on families of abelian varieties
where similar type of results have been established, as well as by the recent uniform
bounds on the number of common preperiodic points for rational maps of ℙ1, initiated
by DeMarco, Krieger and Ye [31, 32] in the cases of flexible Lattès maps and quadratic
polynomials, and developed since then by Mavraki and Schmidt [71] and DeMarco
and Mavraki [33]. Concerning families of abelian varieties, they naturally fall in the
setting of family of polarized endomorphisms when taking the multiplication by [n]
morphism. In particular, we used ideas coming from the work of Gao–Habegger [48]
and Cantat–Gao–Habegger–Xie [25] where the Geometric Bogomolov conjecture is
proved in characteristic 0 (note that Xie and Yuan recently managed the tour de force of
proving it in arbitrary characteristic [86]). We also rely on the work of Dimitrov–Gao–
Habegger [46] where a uniform bound on the number of rational points of a curve C ,
defined over a number field, inside its Jacobian is established (Uniform Mordell–Lang)
and the works of Kühne [65], generalized by Yuan in arbitrary characteristic [87], and
Gao–Ge–Kühne [47] where the Uniform Mordell–Lang Conjecture is generalized to
arbitrary subvariety of an abelian variety.

A crucial point in our work is to link the notion of dynamical stability in complex
dynamics, which can be characterized by positive closed currents, with the notion
of dynamical height. In [54], relying on the theory of DSH functions of Dinh and
Sibony [36], the first and third authors established such link for the (1, 1) bifurcation
current of a family of subvarieties, here we need to deal with the bifurcation measure,
which measures higher bifurcation phenomena. Let us explain those terms.
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Let 𝜔 be a smooth positive form representing the first Chern class c1(L) on X. As
f ∗L ≃ L⊗d on X0, there is a smooth function g : X0 → ℝ such that d −1 f ∗𝜔 = 𝜔 + dd c g
as forms on X0. In particular, the following limit exists as a closed positive (1, 1)-current
with continuous potential on the quasi-projective variety X0(ℂ):

T̂f := lim
n→∞

1
dn

( f n)∗(𝜔),

and can be written as T̂f = 𝜔 + dd c g f , where g f is continuous on X0(ℂ). The current T̂f
is the fibered Green current of f (note that for abelian varieties, T̂f is the Betti form). Let
Y → S be a family of subvarieties of X, i.e. Y is a subvariety of X and 𝜋 |Y : Y → S of 𝜋
is flat over S 0. If q is the relative dimension of Y, for 1 ≤ m ≤ dimS , the m-bifurcation
current of (X, f ,L,Y) can be defined on S 0(ℂ) as

T (m )
f ,Y := (𝜋[m ])∗

(
T̂
m (dimY𝜂+1)
f [m ] ∧ [Y [m ]]

)
,

where Y𝜂 is the generic fiber of Y, 𝜋[m ] : X [m ] → S is the m-fiber product of X, and
f [m ] is the map induced by the fiberwise diagonal action of f . The bifurcation measure of
(X, f ,L,Y) is then

𝜇 f ,Y := T (dimS )
f ,Y .

We now focus on the case of a family of rational maps of ℙk (ℂ), parametrized
by a projective variety S . In this case, the regular part is X0 = ℙk × S 0, where S 0 is a
Zariski open subset of S . We then are interested in the bifurcation of the critical set
Crit( f ) :=

{
(z , t ) ∈ ℙk × S 0 : det(Dz ft ) = 0

}
. So, the bifurcation measure is

𝜇 f ,Crit := T (dimS )
f ,Crit( f ) = (𝜋[dimS ])∗

(
T̂ k (dimS )
f [dimS ] ∧

[
Crit( f ) [dimS ] ] ) ,

since Crit( f ) is a hypersurface of ℙk × S 0.
When k = 1, the bifurcation current has been introduced by DeMarco [30] and

the bifurcation measure by Bassanelli–Berteloot [4]. For families of endomorphisms
of ℙk , the bifurcation current has been introduced by Bassanelli–Berteloot [4]. In this
higher dimensional setting, Berteloot–Bianchi–Dupont showed it is the appropriate
tool for studying bifurcations in the important work [10] and the bifurcation measure
was first considered by Astorg and Bianchi [2] in the very particular case of families of
polynomial skew-product.

It is an important question in complex dynamics to understand what kind of
phenomena these currents (or this measure) actually characterize. One way to explore
this question is to prove that the measure 𝜇 f ,Crit equidistributes specific type of dynamical
behaviors ([5, 39, 42, 52]).

We now come to stating precise results. Define the critical height of a degree d
endomorphism f : ℙk → ℙk defined over a number field as the canonical height of f
evaluated at the critical set of f :

hcrit( f ) := ĥ f (Crit( f ))
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and remark that this quantity depends only on the conjugacy class. In particular, this
defines a function

hcrit : M k
d (ℚ) −→ ℝ+.

Our first result here is the following:

Theorem A (The critical height is a moduli height). — The critical height hcrit of the
moduli space M k

d of degree d of endomorphisms of ℙk is an ample height on a non-empty Zariski
open subsetU of M k

d , i.e. for any ample line bundle M on a projective model of M k
d , there are

constants C1,C2 > 0 and C3,C4 ∈ ℝ such that

C1 · hM ( [ f ]) +C3 ≤ hcrit( [ f ]) ≤ C2hM ( [ f ]) +C4,

for all [ f ] ∈ U (ℚ). Moreover, a subvariety Z is an irreducible component of M k
d \U if and

only if the bifurcation measure 𝜇 f ,Crit,Z of the family induced by Z vanishes.

In Theorem A, hM stands for a Weil height on a projective model of M k
d , associ-

ated with the ample line bundle M .
We want to stress the fact that Yuan and Zhang already showed Theorem A under

the hypothesis that 𝜇 f ,Crit ≠ 0 on M k
d (ℂ) ([88, Theorem 5.3.5(2) and Problem 6.3.9]).

Their approach is arithmetic in nature and allows an optimal control on the constant C3,
our approach has a more complex geometric flavor and permits instead a control of the
multiplicative constant C1.

For k = 1, Theorem A is due to Ingram [58] (see also [53]). For k ≥ 1, Ingram
also proved explicit versions of the above theorem for specific families using convenient
parametrizations (e.g. [59, 60]). In dimension 1, McMullen’s result [72] implies that
the algebraic subvariety M 1

d \U where we do not have the inequality in Theorem A is
exactly the flexible Lattès family. Characterizing that subvariety in higher dimension is
one of the main questions in bifurcation theory in higher dimension.

In order to prove Theorem A, we follow Gao and Habbeger and Dimitrov in
the abelian case [46, 48] to prove an estimate in a family with positive (suitable) height
which compares the height of a parameter with the heights of generic point in them-fiber
product of m-fiber product of Y. Our arguments are based on the early work [54] of the
first and third authors (see Theorem 5.4). We then use notably Zhang inequalities [89]
to conclude.

Let k ≥ 1. Let Endkd denote the set of endomorphisms f : ℙk (ℂ) → ℙk (ℂ) of
degree d (in homogeneous coordinates, f is the data of k +1 homogeneous polynomials
with no common factor and the same degree d ). Such f is postcritically finite (PCF for
short) if its postcritical set

PC( f ) :=
⋃
n≥1

f n (Crit( f ))

is an algebraic subvariety of ℙk , where Crit( f ) = {z ∈ ℙk (ℂ) : det(Dz f ) = 0} is its
critical set. In dimension 1, the critical set is a finite set of cardinality 2d − 2 so, for
all n, f n (Crit( f )) is again a finite set of cardinality 2d − 2 (counting the multiplicity),
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so PCF maps are not so hard to exhibit and it turns out that PCF maps are in fact
Zariski dense (e.g. [23, 39, 51, 52]). In higher dimension, the algebraic hypersurface
Crit( f ) has positive dimension, hence it is not finite, and this fact is responsible for
several new phenomena arising in complex dynamics in several variables. In particular,
only few examples of PCF maps which do not derive directly from 1-dimensional PCF
maps are known: the first examples were given by Fornaess and Sibony [44], interesting
examples were also produced by Rong [76] and by Koch [64] who used constructions
from Teichmüller theory. The dynamical study of such maps was notably developed by
Ueda [83] and latter by Astorg [1].

Furthermore, since being PCF is invariant by conjugacy, such maps define ele-
ments of M k

d since being PCF is invariant by conjugacy, and are of the utmost arithmetic
importance since they satisfy hcrit( f ) = 0 when they are defined over ℚ (in dimension 1,
it is known that the converse is true by Northcott’s property, for k > 1, this is an open
and important problem). This motivates the following theorem:

Theorem B (Sparsity of PCF maps). — Fix two integers k ,d ≥ 2. There exists a strict
subvarietyV k

d ⊊ Endkd such that any PCF endomorphism f is contained inV k
d .

Such a result was conjectured by Ingram, Ramadas and Silverman in [61], who
showed that { f ∈ Endkd , f

n (Crit( f )) = f m (Crit( f ))} is not Zariski dense for m ∈
{0, 1, 2} and d ≥ 3. Our approach is inspired by Kühne’s Relative Equidistribution [65]
on families of abelian varieties defined over a number field 𝕂 which we generalize to the
setting of families of polarized endomorphisms using the arithmetic equidistribution
theorem of the first author [51] and Theorem A (again, we stress that the arithmetic
equidistribution result that we need was already proved by Yuan and Zhang [88] using
the properties of metrics on the Deligne pairing on adelic line bundles). Thus, if PCF
maps were Zariski dense, they would equidistribute the bifurcation measure. In order
to get a contradiction, we inject the following crucial theorem working at the complex
place.

Theorem C (Robust strong bifurcations). — Fix two integers k ,d ≥ 2. There exists a
non-empty analytic open subset Ω ⊂ M k

d (ℂ) (resp. Ω ⊂ P2
d ) such that

• the open set Ω is contained in supp(𝜇 f ,Crit),
• the open set Ω contains no PCF conjugacy class.

Observe that we do not prove the theorem for the moduli space Pk
d when k ≥ 3.

This is a technical issue that comes from the fact that our proof of the generic finiteness
of the multiplier maps only works on M k

d and P2
d . The same result probably holds on

Pk
d in all dimensions but our main motivation for the polynomial case is Theorem D

whose counterpart (see Theorem 7.2) is weaker when k ≥ 3.
In dimension 1, the works of Lyubich [69] and Mañé–Sad–Sullivan [70] imply

that the bifurcation locus (i.e. the support of the bifurcation current) has empty interior.
In higher dimension, Bianchi and the second author first gave an example (the Desboves
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family) where this is not the case [16]. In general, the fact that the support of the
bifurcation current has non-empty interior is due to the seminal work of Dujardin [38],
whose ideas were expanded upon by the second author in [81] to produce open sets of
bifurcation in other situations. A different approach, due to Biebler, was to construct an
open set of bifurcations around Lattès maps [17]. Turning to the bifurcation measure,
the firsts to prove the non-emptiness of the support of the bifurcation measure were
Astorg and Bianchi [2] in the very particular case of the family of polynomial skew-
products (with given base dynamics satisfying certain additional assumptions) of ℂ2.

An important ingredient in the proof of Theorem C is a mechanism called blender
in smooth dynamics. It was introduced by Bonatti–Díaz in [18] to obtain new examples
of robustly transitive diffeomorphisms. Since then, it was used in a wide range of
contexts in real dynamics (see e.g. [8, 20, 75]). A remarkable feature about blenders is
that they are much easier to construct than other mechanisms given robust intersections
(like the Newhouse phenomenon). This characteristic is of particular importance in the
rigid setting of holomorphic dynamics, where they were first introduced by Dujardin
in [38].

Roughly speaking, in our context, a blender for a map f is a repelling hyperbolic
set (typically a Cantor set) that intersects an open family of (local) hypersurfaces and
this property persists for small perturbations of f . Dujardin constructed in [38] a map
with a blender for which a part of the postcritical set belongs to the associated family
of hypersurfaces. This provides a robust intersection between the blender and the
postcritical set which turns out to be sufficient to have an open set in the bifurcation
locus. The same strategy can be followed in order to prove Theorem C except that
instead of a single intersection we need as many as possible (i.e. the dimension of the
moduli space) independent intersections, i.e. which satisfy the transversality condition
of Definition 1.10. To that end, we consider a map f with a blender Λ( f ) and a
saddle point p ( f ) whose unstable manifold intersects robustly Λ( f ). Observe that in
the terminology of smooth dynamics, this corresponds in our non-invertible context
to a robust heterodimensional cycles (see [19] for the interplays between these cycles and
blenders in the C 1-setting). As the critical set has to intersect the stable manifold of
p ( f ), the inclination lemma gives infinitely many intersections between Λ( f ) and the
postcritical set of f . All the difficulty in the proof is to check that they provide enough
independent intersections. This brings us to prove (very) partial generalizations to
higher dimension of several results from one-dimensional complex dynamics, like
extension of local conjugacies [22], the rigidity of stable algebraic families [72] or the
fact that multipliers of periodic points provide (generically) local coordinates in the
moduli space [55, 62, 72].

In the particular case of regular polynomial endomorphisms of the affine plane,
we consider bifurcations of the finite part of the critical set, i.e. of the closure C f in ℙ2

of the set {z ∈ ℂ2, det(Dz f ) = 0}. In this case, the non-negativity of the Green function
at every place allows us to prove the following uniform result.
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Theorem D (Uniformity). — Fix an integer d ≥ 2. There exists a constant B (d ) ≥ 1
and a non-empty Zariski open subsetU ⊂ Poly2

d such for any f ∈ U (ℂ), we have

# Preper( f ) ∩C f ≤ B (d ).

As mentioned before, similarly flavored uniform results already exist in complex
dynamics and are a very important source of inspiration for us: the quotient S̃ :=
(End1

d ×End1
d )/PGL(2) by the diagonal action by conjugacy is a quasiprojective variety.

On a suitable subvariety S of S̃ , one wants to show that outside a Zariski closed set of S ,
then all pairs of rational maps f , g : ℙ1 → ℙ1 will have at most B preperiodic points in
common. This is a statement very similar to Theorem D where one considers Y to be
the fibered diagonal in ℙ1 × ℙ1 instead of the critical set. Then, such a result was first
shown by DeMarco, Krieger and Ye in the Legendre family [31] and in the quadratic
family [32]. Then, Mavraki and Schmidt proved it in the case of any algebraic curve
S [71]. Finally, DeMarco and Mavraki have shown very recently the optimal result that
there is a uniform bound B , depending only on the degree d , so that for a Zariski open
and dense set in the space of all pairs of rational maps f , g : ℙ1 → ℙ1 with degree d , f
and g have at most B preperiodic points in common [33].

To prove Theorem D, we show in Theorem 7.7 that there is a height gap (there
exists a 𝜀 > 0 such that all points of canonical height ≤ 𝜀 are contained in a Zariski
closed proper subset of the fibered critical locus). For that, we follow the idea of Gao, Ge
and Kühne on abelian varieties [47] (first introduced by Ullmo [84] and Zhang [90]) to
overfiber the dynamics (see also [33] and [71] where this strategy is used). The fact that
local heights are all non-negative in the polynomial setting allows us to get the bound
from the complex place.

Remark. — To prove Theorem D, we give a positive answer to Problem 6.3.9
of [88] in the moduli space P2

d of regular polynomial endomorphisms of ℙ2. To obtain
a similar statement on Pk

d with k ≥ 3, the only missing piece is to prove that multiplier
maps are generically finite to one on Pk

d . This follows from a work in progress of the
second author and Gorbovickis.

Organization of the article. — Section 1 is devoted to the construction of bifur-
cation currents and the corresponding volume we will need to construct the m-order
canonical height. The proof of Theorem C occupies the next three sections. In Sec-
tion 2, we establish that the eigenvalues of the periodic points determine a conjugacy
class up to finitely many choices generically in M k

d and P2
d . In Section 3, we prove that

if an open subset of M k
d or Pk

d satisfies a certain set of assumptions and is not contained
in the support of the bifurcation measure then it has to contain lots of families where the
eigenvalues of most of the periodic points are constant. Open subsets verifying this large
set of assumptions are constructed in Section 4, for all k ≥ 2 and d ≥ 2. In Section 5, we
prove important height inequalities, and in particular Theorem A. Section 6 is devoted
to the proof of the needed Relative Equidistribution theorem. In Section 7, we prove
Theorems B and D.
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1. The dynamical volumes of a family of subvarieties

1.1. The canonical height over a function field of characteristic zero. — We refer
to [54] for more details on the material of this Section. We treat here the case of general
families of polarized endomorphisms and not only of families of endomorphisms of ℙk

since we will latter on need to take fibered product of such families (see Section 1.2).
In the whole section, we let (X, f ,L) be a family of polarized endomorphisms of

degree d ≥ 2 parametrized by a normal projective variety S with regular part X0 → S 0,
all defined over ℂ. We also let Y ⊊ X be a subvariety such that 𝜋(Y) = S . As 𝜋 |Y is
surjective, there is a non-empty Zariski open subset S 0

Y ⊂ S 0 such that 𝜋 |Y is flat and
projective over S 0

Y . Up to replacing S 0
Y by a larger Zariski open of S 0 over which 𝜋 |Y is

flat and projective, we can assume it is maximal for the inclusion with this property.

Definition 1.1. — We say the tuple (X, f ,L,Y) is a dynamical pair parametrized by
S and with regular part S 0

Y .

It is convenient for us to work in the more general setting of families of polarized
endomorphisms since we shall be considering fibered products of several families.
Nevertheless, as the first and third authors showed in [54, Section 3.1], one can always
reduce to the case of families of endomorphisms of a projective space. Indeed, by
a result of Fakhruddin [41, Corollary 2.2], any family of polariezd endomorphisms
(X, f ,L), there exist N ≥ 1, an embedding 𝜄 : X → ℙN

ℂ
× S , an integer e ≥ 1 and a

family of endomorphisms F : ℙN
ℂ
× S → ℙN

ℂ
× S such that

𝜄 ◦ f = F ◦ 𝜄 on X0

and L⊗e = 𝜄∗O(1) on X0.
In particular, we can construct the fibered Green current T̂f of a family of po-

larized endomorphisms by pulling back the Green current of F to X0(ℂ). This shows
that T̂f is the restriction to a (possibly singular) subvariety of a current with continuous
potentials in the ambient space ℙN

ℂ
× S 0(ℂ). Demailly [29] theory of intersection on

singular variety thus applies to our case.
The current T̂f is a closed positive (1, 1)-current of finite mass on X0(ℂ) and,

for any 𝜆 ∈ S 0(ℂ), the slice T𝜆 := T̂f |X𝜆
is the Green current of f𝜆 , see e.g. [54] for

more details. Furthermore, if k := dimX𝜆 , we let 𝜇𝜆 := degL𝜆 (X𝜆 )−1 ·T k
𝜆

be the unique
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maximal entropy measure of f𝜆 , we call its support the small Julia set, and denote it by
Jk (or Jk ( f𝜆 ) to stress the dependence of f𝜆 ) [21, 36].

Let M be an ample ℚ-line bundle on S . LetY𝜂 be the generic fiber of the family
Y → S 0

Y . For any n ≥ 1, the map f n : X d X has a priori indeterminacy points in X\X0

and we can find a projective variety Xn , birational projective morphism 𝜓n : Xn → X
which is an isomorphism above X0 and a morphism Fn : Xn → X such that the following
diagram commutes

Xn
𝜓n
��

Fn

  

X
f n
// X

Moreover, one can choose Xn as a finite sequence of blow-ups of Xn−1. Following [89],
we then define

ĥ f𝜂 (Y𝜂) := lim
n→∞

d −n (dimY𝜂+1)

(
(Fn)∗

(
𝜓∗
n{Y}

)
·c1(L)dimY𝜂+1 ·c1(𝜋∗M)dimS−1

)
(dimY𝜂 + 1) degY𝜂

(L𝜂)
.

The next lemma follows from [54]:

Lemma 1.2. — For any Y as above, ĥ f𝜂 (Y𝜂) is well-defined and satisfies

ĥ f𝜂 (( f𝜂)∗(Y𝜂)) = dĥ f𝜂 (Y𝜂).

In addition, we can compute ĥ f𝜂 (Y𝜂) as

ĥ f𝜂 (Y𝜂) =
1

(dimY𝜂 + 1) degY𝜂
(L𝜂)

∫
X0 (ℂ)

T̂
dimY𝜂+1
f ∧ [Y] ∧ (𝜋∗𝜔S )dimS−1,

where 𝜔S is any smooth form representing c1(M).

Remark. — As explained above, the integral can be lifted to ℙN (ℂ) × S where
the map f is lifted to a family of endomorphisms F . So, we can apply the theory of psh
functions and currents on singular complex varieties of Demailly [29] and the integral
is well defined. Note also that, in what follows, we only consider the wedge product of
currents which satisfy this lift property and that those currents either have continuous
potential or are integration currents on closed subvarieties.

Proof. — Let q := dimY𝜂 and p := dimS . The fact that it is well-defined and
the formula relating the limit of d −n (q+1) ((Fn)∗ (𝜓∗

n{Y}
)
· c1(L)q+1 · c1(𝜋∗M)p−1) with
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T̂ q+1
f ∧ [Y] ∧ (𝜋∗𝜔S )p−1 are contained in [54, Theorem B]. We then can compute

ĥ f𝜂 (( f𝜂)∗(Y𝜂))

=
1

(q + 1) degY𝜂
( f ∗𝜂 L𝜂)

∫
X0 (ℂ)

T̂ q+1
f ∧

(
f∗ [Y]

)
∧ (𝜋∗𝜔S )p−1

=
1

(q + 1)d q degY𝜂
(L𝜂)

∫
X0 (ℂ)

T̂ q+1
f ∧

(
f∗ [Y]

)
∧ (𝜋∗𝜔S )p−1

=
1

(q + 1)d q degY𝜂
(L𝜂)

∫
X0 (ℂ)

(
f ∗

(
T̂ q+1
f ∧ (𝜋∗𝜔S )p−1

))
∧ [Y]

=
d q+1

(q + 1)d q degY𝜂
(L𝜂)

∫
X0 (ℂ)

T̂ q+1
f ∧ [Y] ∧ (𝜋∗𝜔S )p−1 = dĥ f𝜂 (Y𝜂),

where we used that dimY𝜂 = q and 𝜋 ◦ f = 𝜋. □

In particular, the last part of the lemma states that the height ĥ f𝜂 (Y𝜂) is > 0 if

and only if the bifurcation current Tf ,Y := 𝜋∗
(
T̂

dimY𝜂+1
f ∧ [Y]

)
is not identically 0 in S 0,

since ∫
X0 (ℂ)

T̂
dimY𝜂+1
f ∧[Y]∧(𝜋∗𝜔S )dimS−1 =

∫
S 0 (ℂ)

𝜋∗(T̂
dimY𝜂+1
f ∧[Y])∧𝜔dimS−1

S .

1.2. The higher bifurcation currents of a pair. — As above, let (X, f ,L,Y) be a
dynamical pair parametrized by S with regular part S 0

Y .
Let M be an ample ℚ-line bundle on S of volume 1. For any m ≥ 1, let X [m ] :=

X ×S · · · ×S X and Y [m ] := Y ×S · · · ×S Y be the respective m-fiber power of X and Y.
Denote also by 𝜋[m ] : X [m ] → S the morphism induced by 𝜋. We define f [m ] as

f [m ] (x) = ( ft (x1), . . . , ft (xm)), x = (x1, . . . , xm) ∈ X m
t = 𝜋−1

[m ]{t }.

For any 1 ≤ j ≤ m, we let p j : X [m ] → X be the projection onto the j -th factor of the

fiber product and L [m ] := p∗1L + · · · + p∗mL. By construction and using T̂ dimX𝜂+1
f = 0, we

have

(1.1) T̂f [m ] = p∗1(T̂f ) + · · ·+p
∗
m (T̂f ) and T̂

m dimX𝜂

f [m ] = C (m, dimX𝜂)
m∧
j=1

p∗j
(
T̂

dimX𝜂

f

)
,

where C (m, dimX𝜂) :=
∏m

j=1
( j dimX𝜂

dimX𝜂

)
. We define higher bifurcation currents as follows:

Definition 1.3. — For 1 ≤ m ≤ dimS , the m-bifurcation current of (X, f ,L,Y) is
the closed positive (m,m)-current on S 0

Y (ℂ) given by

T (m )
f ,Y := (𝜋[m ])∗

(
T̂
m (dimY𝜂+1)
f [m ] ∧ [Y [m ]]

)
.
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The bifurcation measure of (X, f ,L,Y) is

𝜇 f ,Y := T (dimS )
f ,Y .

As we will see below, the current T (m )
f ,Y — which can be a priori non-zero even

though T m
f ,Y is zero — is the current which characterizes a condition of non-degeneracy

à la Yuan–Zhang [88]. In addition, it is more practical, in order to use dynamical
arguments, to consider a bifurcation current associated to a single (fibered) map rather
than intersecting several bifurcation currents (e.g. [3]) and we will consider, in a crucial
way, families of fibered maps in the sequel. We give basic properties of those currents.

Proposition 1.4. — The following properties hold
(1) For any 1 ≤ m ≤ dimS and any j ≤ m

T (m )
f ,Y ≥ T ( j )

f ,Y ∧T (m− j )
f ,Y ,

(2) For all m, T (m )
f ,Y ≠ 0 implies T (m−1)

f ,Y ≠ 0. Similarly, for all m ≥ dimS ,

(𝜋[m ])∗
(
T̂ dim Y [m ]

f [m ] ∧ [Y [m ]]
)
≥ 𝜇 f ,Y .

(3) if dimY𝜂 = dimX𝜂 − 1, we have

𝜇 f ,Y =

dimS∏
j=1

(
j dimX𝜂

dimX𝜂

)
·
(
T (1)
f ,Y

)∧dimS
,

and for any m ≥ dimS , there is a constant Cm ≥ 1 such that

(𝜋[m ])∗
(
T̂ dim Y [m ]

f [m ] ∧ [Y [m ]]
)
= Cm · 𝜇 f ,Y .

Proof. — Fix 1 ≤ m ≤ dimS . For the sake of simplicity, let us only consider
the case where j = 1. Let pi : X [m ] → X be the projection onto the i-th factor and
𝜋[m ] : X [m ] → S be the canonical projection (so that 𝜋[1] is the projection X → S ). Let
also 𝜏m : X [m ] → X [m−1] be the projection forgetting the first factor. Then

T̂
m (dimY𝜂+1)
f [m ] =

(
p∗1(T̂f ) + · · · + p∗m (T̂f )

)m (dimY𝜂+1)

≥ p∗1
(
T̂

dimY𝜂+1
f

)
∧

(
p∗2(T̂f ) + · · · + p∗m (T̂f )

) (m−1) (dimY𝜂+1)

as (p∗i T̂f )dimY𝜂+1 = p∗i (T̂
dimY𝜂+1
f ). Using the equality

[Y [m ]] = p∗1( [Y]) ∧ 𝜏∗m ( [Y [m−1]])

and the equality

𝜏∗m

(
T̂

(m−1) (dimY𝜂+1)
f [m−1]

)
=

(
p∗2(T̂f ) + · · · + p∗m (T̂f )

) (m−1) (dimY𝜂+1)
,
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we deduce that for a positive test form 𝜙 of bidimension (m,m) on S 0
Y ,

⟨T (m )
f ,Y , 𝜙⟩ = ⟨(𝜋[m ])∗

(
T̂
m (dimY𝜂+1)
f [m ] ∧ [Y [m ]]

)
, 𝜙⟩

= ⟨T̂ m (dimY𝜂+1)
f [m ] ∧ [Y [m ]], 𝜋∗[m ]𝜙⟩

≥
〈
p∗1

(
T̂

dimY𝜂+1
f

)
∧ 𝜏∗m

(
T̂

(m−1) (dimY𝜂+1)
f [m−1]

)
, 𝜋∗[m ]𝜙

〉
≥

〈
T̂

dimY𝜂+1
f ∧ [Y] ∧ (p1)∗

(
𝜏∗m

(
T̂

(m−1) (dimY𝜂+1)
f [m−1]

))
, 𝜋∗[1]𝜙

〉
where we used 𝜋∗[m ]𝜙 = p∗1(𝜋

∗
[1]𝜙). By construction, we have

(p1)∗
(
𝜏∗m

(
T̂

(m−1) (dimY𝜂+1)
f [m−1]

))
= 𝜋∗[1]

(
(T (m−1)
f ,Y )

)
so that

⟨T (m )
f ,Y , 𝜙⟩ ≥

〈
T̂

dimY𝜂+1
f ∧ [Y] ∧ 𝜋∗[1]

(
T (m−1)
f ,Y

)
, 𝜋∗[1]𝜙

〉
which gives the first point.

We prove the second point. Assume T (m )
f ,Y ≠ 0. Then, we develop the product

T̂
m (dimY𝜂+1)
f [m ] =

(
p∗1(T̂f ) + · · · + p∗m (T̂f )

)m (dimY𝜂+1)

inT (m )
f ,Y . We deduce that there exists (𝛼1, . . . 𝛼m) with 𝛼1 + · · · +𝛼m = m (dimY𝜂 +1) such

that
m∧
i=1

p∗i
(
T̂

𝛼 j

f ∧ [Y]
)
> 0.

By symmetry, we can assume that 𝛼2 + · · · + 𝛼m ≥ (m − 1) (dimY𝜂 + 1). Take 𝜙 a test
form on S 0

Y so that

0 ≠

〈
m∧
i=1

p∗i
(
T̂ 𝛼i
f ∧ [Y]

)
, 𝜋∗[m ] (𝜙)

〉
=

〈
T̂ 𝛼1
f ∧ [Y] ∧ (p1)∗

(
m∧
i=2

p∗i
(
T̂ 𝛼i
f ∧ [Y]

))
, 𝜋∗[1] (𝜙)

〉
.

In particular, we deduce that (p1)∗
(∧m

i=2 p
∗
i

(
T̂ 𝛼i
f ∧ [Y]

))
is non zero, which in turn

implies (p1)∗
(∧m

j=2 p
∗
i

(
T̂

𝛼′
i

f ∧ [Y]
))

is non-zero, where the 𝛼′
i are non-negative integers

such that 𝛼′
i ≤ 𝛼i for all i and 𝛼′

2 + · · · + 𝛼′
m = (m − 1) (dimY𝜂 + 1). This in turn implies

that T (m−1)
f ,Y ≠ 0. The case m ≥ dimS is similar.
The proof of the third point is now similar to that of the first point. Indeed,

assume dimY𝜂 = dimX𝜂 − 1, then p∗i (T̂f )dimY𝜂+2 ∧ p∗i ( [Y]) = p∗i (T̂
dimY𝜂+2
f ∧ [Y]) = 0.
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In particular,

T̂
dimS (dimY𝜂+1)
f [dimS ] ∧ [Y [dimS ]] =

dimS∏
i=1

(
i dimX𝜂

dimX𝜂

) dimS∧
i=1

p∗i
(
T̂f )dimY𝜂+1 ∧ [Y]

)
and the rest follows. To conclude, take m ≥ dimS :

(𝜋[m ])∗
(
T̂ dim Y [m ]

f [m ] ∧ [Y [m ]]
)

= (𝜋[m ])∗
((
p∗1(T̂f ) + · · · + p∗m (T̂f )

)dim Y [m ]

∧ [Y [m ]]
)

= (𝜋[m ])∗
((
p∗1(T̂f ) + · · · + p∗m (T̂f )

)m dimY𝜂+dimS
∧ [Y [m ]]

)
.

Developing all terms in the product and using T̂ dimY𝜂+2
f ∧ [Y] = 0, we end up, up to

permutations, to a sum of terms of the form

(𝜋[m ])∗

(
dimS∧
i=1

(
p∗i (T̂

dimY𝜂+1
f ∧ [Y]

)
∧

m∧
ℓ=dimS+1

(
p∗ℓ (T̂

dimY𝜂

f ∧ [Y])
))
.

The assertion now follows by Fubini. □

1.3. The dynamical volumes of a pair. — As above, let (X, f ,L,Y) be a dynamical
pair parametrized by S with regular part S 0

Y . We now can define the dynamical volumes
of Y as follows

Definition 1.5. — For anym ≥ dimS , we define them-dynamical volume Vol(m )
f (Y)

of Y for (X, f ,L) as the non-negative real number

Vol(m )
f (Y) :=

∫
(X [m ] )0 (ℂ)

T̂ dim Y [m ]

f [m ] ∧ [Y [m ]] .

For any ample ℚ-line bundle M on S , we also define the m-parametric degree deg(m )
f ,M (Y) of

Y relative to M as

deg(m )
f ,M (Y) :=

∫
(X [m ] )0 (ℂ)

T̂ dim Y [m ]−1
f [m ] ∧ [Y [m ]] ∧ 𝜋∗[m ] (𝜔S ),

where 𝜔S is any smooth form on S representing c1(M).

Remark 1.6. — When dimS = 1, a computation gives

deg(1)
f ,M (Y) = degY𝜂

(L𝜂) · degM (S ) > 0.

In particular, if degM (S ) = 1, then

ĥ f𝜂 (Y𝜂) =
Vol(1)f (Y)

(dimY𝜂 + 1) · deg(1)
f ,M (Y)

.
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We can relate the non-vanishing of the bifurcation measure 𝜇 f ,Y with the non
vanishing of the volumes Vol(m )

f (Y) for all m ≥ dimS .

Proposition 1.7. — The following properties hold:

(1) We have 𝜇 f ,Y is non-zero if and only if for all m ≥ dimS , Vol(m )
f (Y) > 0.

(2) For any integer m ≥ dimS , and for any ample ℚ-line bundle M on S of volume 1, we
have

deg(m )
f ,M (Y) ≥ m degY𝜂

(L𝜂)m−dimS+1
∫
S 0 (ℂ)

T (dimS−1)
f ,Y ∧ 𝜔S ,

for any smooth form 𝜔S which represents c1(M).
In particular, if 𝜇 f ,Y ≠ 0, then for all m ≥ dimS , and all M, we have Vol(m )

f (Y) > 0 and

deg(m )
f ,M (Y) > 0.

Proof. — The first point follows from Proposition 1.4(2). Let p := dimS . To
prove the second point, we remark that

T̂ dim Y [m ]−1
f [m ] ≥

(
m∧
j=p

p∗ℓ j T̂
dimY𝜂

f

)
∧
p−1∧
j=1

(
p∗jT̂

dimY𝜂+1
f

)
.

Let 𝜋p : X [m ] → X [p−1] be the projection forgetting the m − p + 1 last variables and for
1 ≤ j ≤ p − 1, let p ′j : X [p−1] → X be the projection onto the j -th factor. The measure(

m∧
j=p

p∗ℓ j T̂
dimY𝜂

f

)
∧
p−1∧
j=1

(
p∗jT̂

dimY𝜂+1
f

)
∧ [Y [m ]] ∧ 𝜋∗[m ] (𝜔S )

rewrites as
m∧
ℓ=p

p∗ℓ

(
T̂

dimY𝜂

f ∧ [Y]
)
∧ (𝜋p )∗

©­«
p−1∧
j=1

(p ′j )∗
(
T̂

dimY𝜂+1
f ∧ [Y]

)
∧ 𝜋∗[p−1] (𝜔S )

ª®¬
where we used that 𝜋∗[p ]𝜔S = (𝜋p )∗

(
𝜋∗[p−1]𝜔S

)
. In particular, its volume is that of its

push-forward by 𝜋p , which is the measure

(𝜋p )∗
©­«
m∧
ℓ=p

p∗ℓ

(
T̂

dimY𝜂

f ∧ [Y]
)ª®¬ ∧

p−1∧
j=1

(p ′j )∗
(
T̂

dimY𝜂+1
f ∧ [Y]

)
∧ 𝜋∗[p−1] (𝜔S ).

We now remark that 𝜋p has fibers of dimension k (m − p + 1) := dimX m−p+1
𝜂 , where

k = dimX𝜂 , and that T̂ dimY𝜂

f ∧ [Y] is a (k , k )-current on X0(ℂ), so that the current

T := (𝜋p )∗
©­«
m∧
ℓ=p

p∗ℓ

(
T̂

dimY𝜂

f ∧ [Y]
)ª®¬
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is a (0, 0)-current on (X [p−1])0(ℂ) which is nothing but the constant degY𝜂
(L𝜂)m−p+1.

Therefore, the volume of the studied measure is exactly

degY𝜂
(L𝜂)m−p+1 ·

∫
S 0 (ℂ)

T (dimS−1)
f ,Y ∧ 𝜔S .

As the wedge product is symmetric, proceeding similarly for the other terms of the sum,
we find

degf ,M (Y) ≥ m · degY𝜂
(L𝜂)m−p+1 ·

∫
S 0 (ℂ)

T (dimS−1)
f ,Y ∧ 𝜔S ,

and the proof of the second point is complete (observe that the second point of Proposi-
tion 1.4 guarantees that T (dimS−1)

f ,Y ≠ 0). □

1.4. Dynamical volume as limits of iterated intersection numbers. — Let (X, f ,L)
be a family of polarized endomorphisms of degree d and Y ⊊ X be a subvariety with
𝜋(Y) = S . Let also m ≥ 1 be an integer and let (X [m ] , f [m ] ,L [m ]) be the polarized
endomorphism induced on X [m ] := X ×S · · · ×S X as above with induced morphism
𝜋[m ] : X [m ] → S and let Y [m ] := Y ×S · · · ×S Y. One can check that 𝜋[m ] (Y [m ]) = S and
we have the following.

Lemma 1.8. — For any m ≥ 1, there is a sequence (X (m )
n )n≥0 of projective varieties,

a sequence 𝜓
(m )
n : X (m )

n → X [m ] of birational projective morphisms which are isomorphisms
above the regular part of (X [m ])0 and a sequence of morphisms F (m )

n : X (m )
n → X [m ] such that

X (m )
0 = X [m ] and the following diagram commutes

X (m )
n

𝜓
(m)
n
��

F (m)
n

##

X [m ]
( f [m ] )n

// X [m ] .

Moreover, one can choose X (m )
n as a finite sequence of blow-ups of X (m )

n−1.

Relying on estimates from [54] we can deduce

Lemma 1.9. — For any m ≥ dimS , there is a constant Cm ≥ 1 depending only on
(X, f ,L,Y) and m such that for any n ≥ 1, if Y (m )

n := (F (m )
n )∗(𝜓 (m )

n )∗Y [m ] , then�������
(
{Y (m )

n } · c1(L [m ])dim Y [m ]
)

dn dim Y [m ] − Vol(m )
f (Y)

������� ≤ Cmd −n ,
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and, for any ample ℚ-line bundle M on S of volume 1,�������
(
{Y (m )

n } · c1(L [m ])dim Y [m ]−1 · c1(𝜋∗[m ]M)
)

dn (dim Y [m ]−1)
− deg(m )

f ,M (Y)

������� ≤ Cmd −n .

Proof. — Let 𝜔S be a smooth form on S (ℂ) which represents c1(M) (it has mass
degS (M) = c1(M)dimS = 1) and 𝜔L be a smooth form on X(ℂ) which represents c1(L).
For m ≥ dimS , define 𝜔[m ] :=

∑
j p

∗
j𝜔. Let (X [m ])0 := 𝜋−1

[m ] (S
0
Y) as above. By definition,

we have (
{Y (m )

n } · c1(L [m ])dim Y [m ]
)

=

∫
(X [m ] )0 (ℂ)

(
𝜔[m ]

)dim Y [m ]

∧ [Y (m )
n ]

=

∫
(X [m ] )0 (ℂ)

(
(( f [m ])n)∗𝜔[m ]

)dim Y [m ]

∧ [Y [m ]] .

We rely on Proposition 3.4 of [54]: we have

d −n dim Y [m ]
(
{Y (m )

n } · c1(L [m ])dim Y [m ]
)

=

∫
(X [m ] )0 (ℂ)

T̂ dim Y [m ]

f [m ] ∧ [Y [m ]] +O
(

1
dn

)
.

This is the first assertion we want to prove. Similarly,

In,m :=
(
{Y (m )

n } · c1(L [m ])dim Y [m ]−1 · c1(𝜋∗[m ]M)
)

=

∫
(X [m ] )0 (ℂ)

(
(( f [m ])n)∗𝜔[m ]

)dim Y [m ]−1
∧ [Y [m ]] ∧ (𝜋∗[m ]𝜔S )

and the same argument using Proposition 3.4 of [54] gives

d −n (dim Y [m ]−1)In,m

=

∫
(X [m ] )0 (ℂ)

T̂ dim Y [m ]−1
f [m ] ∧ [Y [m ]] ∧ 𝜋∗[m ] (𝜔S ) +O

(
1
dn

)
.

This concludes the proof. □

1.5. A sufficient criterion for positive volume. — To finish this section, we give a
sufficient criterion for a parameter to belong to the support of the measure 𝜇 f ,Y. The
existence of such a parameter implies in particular that Volf (Y) > 0.

Definition 1.10. — Pick an integer m ≥ 1. We say that Y is m-transversely Jk-
prerepelling (resp. properly Jk-prerepelling) at a point z = (z1, . . . , zm) ∈ X [m ] with
𝜆0 := 𝜋[m ] (z ) ∈ S 0 if z1, . . . , zm are Jk ( f𝜆0)-repelling periodic points of f𝜆0 and if there exist
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an integer N ≥ 1 and a neighborhoodU of 𝜆0 such that, if z j (𝜆 ) is the natural continuation of
z j as a repelling periodic point of f𝜆 inU , then

(1) z j ∈ f N𝜆0
(Y𝜆0) for all 1 ≤ j ≤ m,

(2) z j (𝜆 ) ∈ Jk ( f𝜆 ) for all 𝜆 ∈ U and all 1 ≤ j ≤ m,
(3) the image of the local section Z : 𝜆 ∈ U ↦→ (z1(𝜆 ), . . . , zm (𝜆 )) ∈ (X [m ])0 of 𝜋[m ]

intersects transversely, as local submanifolds, a local branch of ( f [m ])N (Y [m ]) at z
(resp. z lies in an proper intersection between the image of Z and a local branch of
( f [m ])N (Y [m ]) of pure dimension dimS −m).

In some sense, this definition is equivalent to the existence of m independent
Misiurewicz intersections. The case of single Misiurewicz intersections corresponds to
Misiurewicz parameters in [10]. The third point in the definition seems a bit technical
but in the examples we will construct, we cannot a priori exclude the case where Y [m ] is
not locally irreducible and the periodic points lie persistently in a local branch of Y but
transversely to another local branch. Another important remark for what follows is that,
as observed by Dujardin (see [38, Proposition-Definition 2.5]), the repelling periodic
points can be replaced by points in a repelling hyperbolic set contained in Jk . Finally,
notice that when m = dimS and Y is locally irreducible near z1, . . . , zm , Definition 1.10
is exactly what DeMarco and Mavraki [33] call a rigid m-repeller.

We prove the following, which is a general criterion in the spirit of [33, Proposi-
tion 4.8].

Proposition 1.11. — Let (X, f ,L) be a family of polarized endomorphisms parametrized
by S and let Y ⊊ X be a hypersurface which projects dominantly to S . Let 1 ≤ m ≤ dimS and
assume Y is m-properly Jk-prerepelling at z ∈ (X [m ])0. Then

z ∈ supp
(
T̂
m (dimY𝜂+1)
f [m ] ∧ [Y [m ]]

)
.

In particular, 𝜋[m ] (z ) ∈ supp(T (m )
f ,Y ).

The proof of this result is an adaptation of the strategy of Buff and Epstein [23]
and the strategy of Berteloot, Bianchi and Dupont [10], see also [3, 49, 50, 54].

Proof of Proposition 1.11. — As the statement is purely local, we let 𝔹 ⊂ S 0 be a
ball in a local coordinate centered at 𝜆0. Since T̂f has continuous potentials, for any
analytic submanifold Λ ⊂ 𝔹 of dimension m with 𝜆0 ∈ Λ, we have

supp
(
T̂
m (dimY𝜂+1)
f [m ] |

𝜋−1
[m ] (Λ) ∧ [Y [m ] ∩ 𝜋−1

[m ] (Λ)]
)

⊂ supp
(
T̂
m (dimY𝜂+1)
f [m ] ∧ [Y [m ]]

)
by e.g. [49, Lemma 6.3]. In particular, we can replace 𝔹 with the intersection between
𝔹 with a subspace 𝔹 ∩V where V is a linear subspace of dimension m such that the
intersection between the image of the local section Z : 𝜆 ∈ U ∩V ↦→ (z1(𝜆 ), . . . , zm (𝜆 )) ∈
(X [m ])0 of 𝜋[m ] and a local branch of ( f [m ])N (Y [m ]) at z is isolated in (X [m ])0∩𝜋−1

[m ] (𝔹∩
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V ). In the rest of the proof, we thus can assume m = dimS and let k be the relative
dimension of X over S so that dimY𝜂 + 1 = k . To simplify notations, write F := f [m ] :
(X [m ])0 → (X [m ])0 and we let 𝜇 := T (m )

f ,Y |𝔹.
Our aim here is to exhibit a basis of neighborhood {Ωn}n of 𝜆0 in𝔹with 𝜇(Ωn) > 0

for all n. For a Borel subset B ⊂ 𝔹, let (X [m ])B := 𝜋−1
[m ] (B), where 𝜋[m ] : X [m ] → S is the

map induced by 𝜋 : X → S . Then, since F ∗T̂F = dT̂F , we have

(F n)∗
(
T̂ km
F

)
= dmknT̂ km

F and 𝜇(B) = d −kmn
∫
(X [m ] )B

T̂ mk
F ∧ (F n)∗

[
Y [m ]

]
.

Since Y is properly Jk-prerepelling at 𝜆0, there are z1, . . . , zm ∈ X𝜆0 , Jk ( f𝜆0)-
repelling periodic points and N ≥ 1 such that (z1, . . . , zm) ∈ F N (Y [m ])0. Let p ≥ 1 be
such that f p

𝜆0
(zi ) = zi for all i . We let Y0 be the local branch of (F N ) (Y [m ])0 satisfying

the hypothesis of the Proposition. For any integer n ≥ 1, we let Yn := (F np ) (Y0), so that
dim(Yn) = mk and

In :=
∫
(X [m ] )𝔹

T̂ mk
F ∧ [Yn] ≤ dknm𝜇(𝔹).

By our choice of 𝔹, we have that zi (𝜆 ) is Jk ( f𝜆 )-repelling for all 𝜆 ∈ 𝔹 and that there is
K > 1 such that

d ( f p
𝜆
(z ), f p

𝜆
(w)) ≥ K · d (z ,w)

for all z ,w ∈ D (z j , 𝜖 ) ⊂ X and all 𝜆 ∈ 𝔹 for some given 𝜖 > 0 with 𝜋(D (z j , 𝜖 )) ⊂ 𝔹 [10],
whereD (z j , 𝜖 ) is a polydisk of polyradius (𝜖 , . . . , 𝜖 ). Thus, if we denote z := (z1, . . . , zm) ∈
X [m ] and by Sn the connected component of Yn∩D𝜖 containing z whereD𝜖 := DX [m ] (z, 𝜖 ),
the current [Sn] is vertical-like in B𝜖 (i.e. 𝜋[m ] (supp( [Sn]) ∩D𝜖 ) is relatively compact in
𝜋[m ] (D𝜖 )), and there exist n0 ≥ 1 and a basis of neighborhood Ωn of 𝜆0 in 𝔹 such that
for all n ≥ n0

supp( [Sn]) = Sn ⊂ X [m ]
Ωn

∩D𝜖 .

Let S be any weak limit of the sequence [Sn]/∥ [Sn] ∥, where the mass ∥ [Sn] ∥ is
computed with respect to some Kähler form 𝛼 on X [m ]

𝔹
. Then S is a closed positive

(k , k )-current of mass 1 in D𝜖 whose support is contained in the fiber X m
𝜆0

of 𝜋[m ] . Hence
S = M · [X m

𝜆0
∩D𝜖 ], where M −1 > 0 is the volume of D𝜖 for the volume form 𝛼 |X m

𝜆0
.

As a consequence, [Sn]/∥ [Sn] ∥ converges weakly to S as n → ∞ and, since the
(mk ,mk )-current T̂ km

F is the mk-times wedge product of a closed positive (1, 1)-current
with continuous potential (since T̂f has continuous potential),

T̂ km
F ∧ [Sn]

∥ [Sn] ∥
−→ T̂ km

F ∧ S



SPARSITY OF POSTCRITICALLY FINITE MAPS OF ℙk AND BEYOND 19

as n → +∞. Hence the above gives

lim inf
n→∞

(
∥ [Sn] ∥−1 · In

)
≥ lim inf

n→∞

∫
T̂ km
F ∧ [Sn]

∥ [Sn] ∥

≥
∫
T̂ km
F ∧ S

≥ M ·
∫
T̂ km
F ∧ [X m

𝜆0
∩D𝜖 ] .

In particular, there exists n1 ≥ n0 such that for all n ≥ n1,

2∥ [Sn] ∥−1 · In ≥ M
∫
T̂ km
F ∧ [X m

𝜆0
∩D𝜖 ] .

Finally, by construction of Sn , we have lim infn→∞ ∥ [Sn] ∥ ≥ Vol(D𝜀) > 0, where the
volume is computed with respect to the Kähler form 𝛼 |X m

𝜆0
on X m

𝜆0
. Up to increasing n0,

we may assume ∥ [Sn] ∥ ≥ c > 0 for all n ≥ n0. Letting 𝛾 = Mc/4 > 0, we find

𝜇(𝔹) = d −km (np+N )In ≥ d −km (np+N )𝛾

∫
T̂ km
F ∧ [X m

𝜆0
∩D𝜖 ],

for all n ≥ n1. To conclude, we need to prove the last integral is non-zero. By con-
struction, the set X m

𝜆0
∩ D𝜖 is an open neighborhood of z in X m

𝜆0
hence it contains

B (z1, 𝛿) × · · · ×B (zm , 𝛿) ⊂ X m
𝜆0

for some 𝛿 > 0 (with a slight abuse of notations since here

the balls are meant in X𝜆0). Moreover, the current T̂ km
F restricts to X km

𝜆0
as the measure

T̂ km
F |X m

𝜆0
= 𝜇F𝜆0

= 𝜇⊗m
f𝜆0

.

In particular, we can apply Fubini Theorem to find∫
T̂ km
F ∧ [X m

𝜆0
∩D𝜖 ] ≥

∫
X𝜆0

T̂ km
F ∧ [B (z1, 𝛿) × · · · × B (zm , 𝛿)]

=

m∏
j=1

𝜇 f𝜆0
(B (z j , 𝛿)) > 0,

where we used that z j ∈ supp(𝜇 f𝜆0
) by assumption. □

2. Rigidity of some stable families

2.1. Spaces of endomorphisms, moduli spaces, stable families. —

2.1.1. The spaces Endkd and Polykd . — As an endomorphism f of ℙk of degree
d is given by k + 1 homogeneous polynomials of degree d , the coefficients of these
polynomials allow us to see f as a point in ℙN

k
d where N k

d := (k + 1)
(k+d
d

)
− 1. The

condition on the coefficients to ensure that the associated map is an endomorphism
of ℙk is algebraic so there exists a Zariski open set Endkd ⊂ ℙN

k
d corresponding to

degree d endomorphisms. More precisely, the variety Endkd is the complement of the
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hypersurface in ℙN
k
d defined by the vanishing of the Macaulay resultant. Indeed, there

is a unique homogeneous polynomial Res : ℙN
k
d → ℙ1 defined over ℚ such that

• if f = [F0 : · · · : Fk ], then Res( f ) := Res(F0, . . . ,Fk ) = 0 if and only if the
polynomial map (F0, . . . ,Fk ) is degenerate,

• Res(zd0 , . . . , zdk ) = 1.

See e.g. [4, Proposition 1.1] for more details, see also [74, Section 3]. In particular, the
variety Endkd is an irreducible smooth quasi-projective variety defined over ℚ. Moreover,
the map

f : ℙk
Endkd

−→ ℙk
Endkd

is a family (ℙk
ℙ
N k
d
, f ,Oℙk (1)) of degree d endomorphisms of ℙk parametrized by ℙN

k
d

— if we follow the notations introduced above — which is defined over ℚ.
A regular polynomial endomorphism f : 𝔸k → 𝔸k of degree d ≥ 2 is a polynomial

map which extends to a degree d endomorphism f : ℙk → ℙk . For such a morphism, if
H∞ is the hyperplane at infinity of 𝔸k in ℙk , we have f −1(H∞) = H∞, see e.g. [6]. The
space Polykd of regular polynomial endomorphisms of degree d of 𝔸k is a smooth closed
subvariety of Endkd of dimension k

(k+d
d

)
— which is the intersection of Endkd with a linear

subspace of ℙN
k
d defined over ℚ. In particular, Polykd is also a smooth quasi-projective

variety defined over ℚ and the map

f : ℙk
Polykd

−→ ℙk
Polykd

is a family (ℙkS , f ,Oℙk (1)) of degree d endomorphisms of ℙk parametrized by the closure

S of Polykd in ℙN
k
d — if we follow the notations introduced above — which is defined

over ℚ.

2.1.2. The moduli spaces M k
d and Pk

d and good families. — The space which is
really adapted to our investigations is the moduli space M k

d of degree d endomorphisms
of the projective space ℙk of dimension k : it is the quotient space of the space Endkd
of endomorphisms of degree d of ℙk by the action by conjugacy of PGL(k + 1). It is
known to be an irreducible affine variety of dimension

Nk
d := dim M k

d = (k + 1)
(
k + d
d

)
− (k + 1)2

defined over ℚ, see [79] when k = 1 and [74, Sections 3.2 & 3.3] when k > 1, hence
there is a proper closed subvarietyV defined over ℚ such that the canonical projection

Π : Endkd \V −→ M k
d \ Π(V )

is a locally trivial PGL(k + 1)-principal bundle. As this is merely a coarse moduli space,
there is no universal family. However, we can cook up a good family which can play a
sufficiently similar role.
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Lemma 2.1. — There is family (ℙkS , f ,Oℙk (1)) defined over ℚ, with dimS = Nk
d

whose maximal regular part Uk
d satisfies the following properties:

(1) the set U k
d := Π(Uk

d ) contains a dense Zariski open subset of M k
d ,

(2) the map Π |Uk
d

: Uk
d → U k

d is finite.

Proof. — Let Dk := dk + dk−1 + · · · + d + 1. Let Endk ,fix
d be the space of all fixed

marked degree d endomorphisms of ℙk , i.e. the space of all couples ( f , {x1, . . . , xDk })
where f ∈ Endkd is an endomorphism and {x1, . . . , xDk } is an unordered Dk-tuple of
points in ℙk which identifies with the collection of all fixed points of f counted with
multiplicities. This is a quasi-projective variety since it is closed in Endkd ×SymDk (ℙk ).
Remark that, since an endomorphism has Dk fixed points, the canonical projection
𝜌 : Endk ,fix

d → Endkd has finite fibers and is proper. Hence dim Endk ,fix
d = N k

d .

Let now U ⊂ Endk ,fix
d be the Zariski open subset consisting of couples

( f , {x1, . . . , xDk }) where xi ≠ x j for all i ≠ j . Let e1 := [1 : 0 : · · · : 0], e2 := [0 :
1 : 0 : · · · : 0], . . . , ek+1 := [0 : · · · : 0 : 1] and ek+2 := [1 : · · · : 1]. As these points do
not lie in the same hyperplane in ℙk , any 𝜑 ∈ PGL(k + 1) is uniquely determined by
the values it takes on the set {e1, . . . , ek+1}. Define U1 ⊂ U as the subset of U consisting
of those couples ( f , {x1, . . . , xDk }) ∈ U with ei ∈ {x1, . . . , xDk } for 1 ≤ i ≤ k + 2. Note
that this condition is closed in U and that it is not vacuous since Dk ≥ dk + 2 ≥ k + 2,
as d ≥ 2. The quasi-projective variety U1 ⊂ Endk ,fix

d has dimension Nk
d and the map

(Π ◦ 𝜌) |U1 : U1 → M k
d is finite onto its image. Let S be the Zariski closure of 𝜌(U1) in

ℙN
k
d ⊋ Endkd . The family (ℙkS , f ,Oℙk (1)) has the expected properties. □

The second family we will be interested in is the moduli space Pk
d of degree d

regular polynomial endomorphisms of the affine space 𝔸k : it is the quotient of the space
Polykd of regular polynomial endomorphisms of degree d of the affine space 𝔸k by the
action by conjugacy of the group of affine transformations Aut(𝔸k ) = GL(k ) ⋉ 𝔸k . The
same proof as those given in [68, 74, 78] ensures that the moduli space Pk

d is also a
coarse moduli space and is an irreducible affine variety defined over ℚ of dimension

Pk
d := dim Pk

d = k
(
k + d
d

)
− (k2 + k ) > Nk−1

d = dim M k−1
d .

As before, there is a proper closed subvarietyV such that the canonical projection

Π : Polykd \V −→ V k
d := Pk

d \ Π(V )

is a locally trivial Aut(𝔸k )-principal bundle. Proceeding as above, we have

Lemma 2.2. — There is family (ℙkS , f ,Oℙk (1)) of regular polynomial endomorphisms
defined overℚ, with dimS =Pk

d whose maximal regular partVk
d satisfies the following properties:

(1) the set V k
d := Π(Vk

d ) contains a dense Zariski open subset of Pk
d ,

(2) the map Π |Vk
d

: Vk
d → V k

d is finite.
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2.1.3. Stable families of endomorphisms of ℙk following Berteloot–Bianchi–Dupont.
— Let M be a connected complex manifold. An analytic family of endomorphisms of
ℙk parametrized by M can be described as a surjective holomorphic map f : (z , t ) ∈
ℙk ×M ↦→ ( ft (z ), t ) ∈ ℙk ×M . In particular, for any t ∈ M , the induced map ft : ℙk → ℙk

is an endomorphism of degree d (independent of t ∈ M ).
Following Berteloot, Bianchi and Dupont [10], we say that such an analytic family

of endomorphisms of ℙk is Jk-stable if the function

t ∈ M ↦−→ L( ft ) :=
∫
ℙk (ℂ)

log|det(D ft ) |𝜇 ft ,

is a pluriharmonic function on M , i.e. dd ct L( ft ) ≡ 0, where L( ft ) is the sum of Lya-
punov exponents of the unique maximal entropy measure 𝜇 ft of ft . Berteloot–Bianchi–
Dupont gave several equivalent description of this notion of stability and showed it is
the higher-dimensional equivalent to the notion of stability introduced by Mañé, Sad
and Sullivan [70] for families of rational maps of ℙ1.

When M is a quasi-projective variety, and f is a morphism (i.e. f defines an
algebraic family) and, if S is a projective model ofM , then (ℙk ×S , f ,Oℙk (1)) is a family
of endomorphisms as above with regular part M . In this case, one can show that the
familyM is Jk-stable if and only if the function t ↦→ L( ft ) is constant on M . The next
section implies that t ↦→ L( ft ) is constant on M if and only if the multipliers (i.e., the
eigenvalues associated to periodic points) are constant on S . By [4], one also has

dd cL = 𝜋∗
(
T̂ k
f ∧ [Crit( f )]

)
= Tf ,Crit,

as currents on M , so that the family is Jk-stable if and only if Tf ,Crit( f ) = 0 on M . Here
Crit( f ) = {(z , t ) ∈ ℙk ×M , det(D ft ) (z ) = 0}.

In the proof of Theorem C, we will make crucial use of the fact that the multipliers
are generically finite-to-one on M k

d . This is established in Corollary 2.4, whose key
step is the observation that, if this were not the case, then M k

d would be covered by
positive-dimensional algebraic families on which all multipliers are constant. Such
families must be stable in the sense of Berteloot–Bianchi–Dupont, and we rule out this
possibility by exhibiting rigid Lattès maps in M k

d (see Lemma 2.5). The case of P2
d is

addressed separately in Section 2.3.
Note also that for Theorem C, we actually require a slightly stronger statement:

instead of using the multipliers of all periodic points, it suffices to consider almost all of
them. This motivates the introduction of the sequence of periodic points (xn)n≥1 below.

2.2. Families with many constant multipliers. — Let d ≥ 2 and S be an irreducible
complex projective variety. Let (ℙkS , f ,Oℙk (1)) be a family of endomorphisms of ℙk of
degree d , with regular part S 0 ⊆ S . Let t0 ∈ S 0 be an arbitrary parameter in this family.
We consider a non-decreasing sequence (mn)n≥1 of positive integers and a sequence of
distinct points (xn)n≥1 in ℙk such that

• for each n ≥ 1, xn is a repelling periodic point for ft0 of exact period mn ,
• if for s ≥ 1 we set Ms := #{n ≥ 1 ; mn |s } then Ms/d sk converges to 1 when s

goes to ∞.
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In other words, the last point says that most of the periodic points of ft0 are in (xn)n≥1.
Note that the existence of such a sequence follows from the equidistribution theo-
rem of Briend–Duval [21], simply by listing all the periodic points obtained in their
construction.

From these data, for each n ≥ 1 we consider the analytic set

X̃n :=
{
(t , z1, . . . , zn) ∈ S 0 × (ℙk )n ; f mst (zs ) = zs for all 1 ≤ s ≤ n

}
.

Observe that, since the points in the sequence (xn)n≥1 are repelling, the point
(t0, x1, . . . , xn) is regular in X̃ n and we denote by Xn the irreducible component of
X̃ n which contains it. The natural projection 𝜋n : Xn → S 0 is surjective and finite.
We also have a family of multiplier maps Λn : Xn → ℂn defined by Λn (t , z1, . . . , zn) =

(detDzs f
ms
t )1≤s≤n .

Proposition 2.3. — Assume that there exists t1 ∈ S 0 such that there is no algebraic
curve Z ⊂ S 0 passing through t1 such that Z is Jk-stable. Then for n ≥ 1 large enough the
multiplier map Λn is generically finite-to-one.

Proof. — Observe first that, the maps Λn contain more and more information,
if the result holds for one n0 ≥ 1 then it is also the case for all n ≥ n0. Assume by
contradiction that for each n ≥ 1 the map Λn is not generically finite. In particular, for
each n ≥ 1 the setYn = Λ−1

n (Λn (t1)) has positive dimension. The sequence of algebraic
set (Zn)n≥1 defined byZn := 𝜋n (Yn) is decreasing so there exists N ≥ 1 such that Zn = ZN
for all n ≥ N . From this, the key observation is that, relying on the equidistribution of
repelling orbits [21], we have by [13, Theorem 1.5] (see also [12, Theorem 4.1]) for
all t ∈ S 0,

lim
n→+∞

1
dkn

∑︁
p∈RPern ( ft )

log|det(D ft ) (p) | = L( ft ),

where RPern ( ft ) is the set of n-periodic repelling points of ft and L( ft ) the sum of the
Lyapunov exponents of its equilibrium measure. This implies by the chain rules that

lim
n→+∞

1
ndkn

∑︁
p∈RPern ( ft )

log|det(D f nt ) (p) | = L( ft ),

or equivalently

lim
n→+∞

1
ndkn

∑︁
p∈Pern ( ft )

log+ |det(D f nt ) (p) | = L( ft ),

where log+ x = max(log x , 0) and Pern ( ft ) is the set of all n-periodic points of ft . In
particular, as we have assume that Ms/d sk → 1 with s where Ms := #{n ≥ 1 ; mn |s }, the
fact that all the functions Λn are constant onYn implies that t ↦→ L( ft ) is also constant
on ZN . In particular ZN is a Jk-stable family containing t1. Contradiction. □

Using rigid Lattès maps, we have the following result which answers by the
positive to the first part of [37, Question 19.4]. A description of the set Γ in the next
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corollary, however, remains a much more difficult question. Note that in dimension 1,
much sharper results are known. On one hand, when (xn)n≥1 corresponds to all periodic
cycles, McMullen [72] proved this corollary with the optimal Γ, i.e., the set of flexible
Lattès maps. A stronger statement using only the modulus of the multipliers has been
recently given in [62]. On the other hand, Gorbovickis [55] obtained Corollary 2.4
when k = 1 using only the multipliers of an (almost) arbitrary set of 2d − 2 cycles.

Consider now the family (ℙkS , f ,Oℙk (1)) with regular partUk
d given by Lemma 2.1.

For this family, the map Λn is defined on the corresponding variety Xn as above. Recall
that the canonical projection 𝜋n : Xn → Uk

d is surjective and finite.

Corollary 2.4. — Let d ≥ 2 and k ≥ 1. If (mn)n≥1, (xn)n≥1 and (Λn)n≥1 are as
above with X = Uk

d , then there exist N ≥ 1 and a Zariski closed proper subset Γ of Uk
d such that

Λn is finite-to-one on Xn \ 𝜋−1
n (Γ) for all n ≥ N .

Proof. — We simply apply Proposition 2.3 with ft1 equal to a rigid Lattès map in
the family given by Lemma 2.1. By Berteloot and Dupont [11], Lattès maps are the
only minimum of the Lyapunov function L so if ft1 is a rigid Lattès map, there is no
stable family in Uk

d containing it. The next two lemmas conclude the proof. □

Our proof of this result follows Berteloot–Loeb [14], although there might be
a quicker argument using properties of Abelian varieties of CM-type. The existence
of rigid Lattès maps (i.e., not contained in a holomorphic family of such maps) arise
from the next lemma together with Lemma 2.6, which removes the technical difficulty
related to the iterate f pt .

Lemma 2.5. — Let ( ft )t ∈𝔻 be a holomorphic family of Lattès maps of ℙk such that f0
is the symmetric product of a rigid Lattès map of ℙ1. Then, there exist p ≥ 1 and a continuous
deformation (𝜓t )t ∈𝔻 of Id in Aut(ℙk ) such that, for all t ∈ 𝔻, f pt is conjugate to f p0 by 𝜓t .

Proof. — Let g0 the rigid Lattès map of ℙ1 such that f0 is the symmetric product
of g0. There exist an elliptic curve E0, a finite branched cover 𝜌 : E0 → ℙ1 and a complex
number a such that 𝜌 semi-conjugates g0 to the multiplication by a. As g0 is rigid, a has
to be an imaginary quadratic integer (see [73]).

Let 𝜋 : (ℙ1)k → ℙk be the symmetrization map, i.e. the quotient map for the
action by permutation of coordinates of the symmetric group 𝔖k , and m : Ek0 → Ek0 be
the multiplication by a. As the periodic points of m are dense, we can choose a periodic
point x0, of period denoted by p, such that z0 := 𝜋 ◦ 𝜌 (k ) (x0) is not in the ramification
values of 𝜋 ◦ 𝜌 (k ) and such that ap is still not real (i.e., an imaginary quadratic integer).
In particular, f p0 (z0) = z0 and, using the map 𝜋 ◦ 𝜌 (k ) , we obtain that Dz0 f

p
0 = ap Id and

that the Green current of f0 is smooth and strictly positive in a neighborhood of z0.
From now on, we replace the family ( ft )t ∈𝔻 by ( f pt )t ∈𝔻 and assume that p = 1.

A family of Lattès maps has constant sum of Lyapunov exponents so it is stable
in the sense of [10]. Hence, z0 can be followed as a repelling point zt which stay outside
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of the postcritical set. Therefore, by a result of Berteloot–Loeb [14, Proposition 4.2],
for each t ∈ 𝔻 there exists a holomorphic map 𝜙t : ℂk → ℙk , locally injective at 0, and
a linear self-map Dt : ℂk → ℂk of the form Dt (x) =

√
d Ut (x), where Ut is a diagonal

unitary matrix, such that 𝜙t (0) = zt and

𝜙t ◦Dt = ft ◦ 𝜙t .
As explained in the proof of [14], the map 𝜙t corresponds to the Poincaré linearization
map, precomposed with a linear change of coordinates, in an basis of eigenvectors of
Dxt ft . Both can be chosen to depend holomorphically on t . Moreover, the eigenvalues
are of modulus

√
d and depends holomorphically on t , thus they are constant, i.e., the

map Dt is independent of t . As for t = 0 the map D0 corresponds to the multiplication
by an imaginary quadratic integer a ∈ ℂ \ℝ, this holds for all t ∈ 𝔻.

On the other hand, Berteloot–Loeb also proved in [14] that

Gt = {(U , b) ∈ 𝕌k ⋉ ℂ
k ; 𝜙t (U · z + b) = 𝜙t (z )}

is a crystallographic group ofℂk , for each t ∈ 𝔻. By Bieberbach’s theorem, the translation
part Lt is a lattice, and thus At = ℂk/Lt is a complex torus. Moreover, aLt ⊂ Lt ,
and multiplication by a on At induces the endomorphism above ft . Observe that the
injectivity of 𝜙t in a neighborhood (locally uniform in t ) of 0 prevents collisions when
following the elements of Gt . Hence, they can be followed holomorphically for t ∈ 𝔻.

In suitable coordinates of ℂk , after a change of variables given by Siegel normal
form, there exists 𝜏(t ) in the Siegel upper half-space such that

Lt = ℤk + 𝜏(t )ℤk .
Since a is an imaginary quadratic integer and aLt ⊂ Lt for all t ∈ 𝔻, the continuity
of 𝜏(t ) implies that it must be constant. Hence, there exists Pt ∈ GLk (ℂ), depending
holomorphically on t since Lt does, such that Pt (Lt ) = L0.

Furthermore, PtGtP −1
t /L0 is a finite subgroup of Aut(A0, 0), which is a discrete

group, thus it must also be independent of t , always equal toH0 := G0/L0. To summarize,
we obtain the following commutative diagram:

ℂk
𝜙t

//

Pt
��

ℙk

ℂk //

𝜙0

77
A0 := ℂk/L0 // A0/H0 = ℙk

𝜓t

OO

where the map 𝜓t comes from the fact that 𝜙t ◦ P −1
t passes to the quotient. As the

group Gt acts transitively on the fibers of 𝜙t (see [14, Proposition 5.1]), this map 𝜓t is
an automorphism. In particular, if z ∈ ℙk and x ∈ ℂk are such that 𝜙t (x) = z then, on
one hand,

ft (z ) = 𝜙t (ax) = 𝜓t ◦ 𝜙0 ◦ Pt (ax)
= 𝜓t ◦ 𝜙0(aPt (x))
= 𝜓t ◦ f0(𝜙0(Pt (x))),
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and, on the other hand,

𝜙0(Pt (x)) = 𝜓−1
t (z ).

This gives ft = 𝜓t ◦ f0 ◦ 𝜓−1
t . □

Lemma 2.6. — Let ( ft )t ∈𝔻 be a holomorphic family in Endkd . Assume there exist p ≥ 1
and a continuous deformation (𝜓t )t ∈𝔻 of Id in Aut(ℙk ) such that, for all t ∈ 𝔻, the iterate f pt is
conjugate to f p0 by 𝜓t . Then ft = 𝜓t ◦ f0 ◦ 𝜓−1

t for all t ∈ 𝔻.

Proof. — For each t ∈ 𝔻, define gt := 𝜓−1
t ◦ ft ◦ 𝜓t , so that g pt = f p0 . This equality

implies that gt and f0 have the same set of periodic points. In particular, if x is a periodic
point of f0, then yt := gt (x) is again a periodic point of f0. Since this set is discrete and
yt depends continuously on t , we must have yt ≡ y0 = f0(x). Thus f0 = gt on the set of
periodic points, which is Zariski dense; hence f0 = gt on ℙk for all t ∈ 𝔻. □

Proposition 2.7 (From rigid to isolated Lattès maps). — For all k ≥ 2 and d ≥ 2, there
exists a Lattès map whose class in M k

d is isolated among all classes of Lattès maps.

Proof. — Let [ f0] be the class of the symmetric product of a rigid Lattès map
on ℙ1. By Lemma 2.5, no stable algebraic family passes through [ f0]. Hence, by the
proof of Corollary 2.4, the multiplier map Λn is finite-to-one above a neighborhood
of [ f0] for sufficiently large n. It follows that no stable algebraic family intersects this
neighborhood. Therefore, for a sufficiently small compact neighborhood B of [ f0], the
set K of Lattès classes in B is compact (since the Lyapunov function L is continuous)
and disjoint from any stable algebraic family.

Suppose, for contradiction, that K contains no isolated class. As K is compact,
it must be uncountable. Since there are only countably many PCF relations of the
form f p (Critf ) = f q (Critf ), one such relation must contain infinitely many classes in
K . Consequently, a positive-dimensional component of classes satisfying this relation
must intersect B . This gives a contradiction since such a component is a stable algebraic
family. □

Proposition 2.8 (Isolated Lattès maps imply non-vanishing of the bifurcation measure).
— The bifurcation measure 𝜇 f ,Crit is non-zero on M k

d (ℂ).

Proof. — Recall, from Section 2.1.3 that Tf ,Crit = dd cL so by Proposition 1.4,

𝜇 f ,Crit ≥ (dd cL)∧Nk
d . Since at an isolated Lattès map, the Lyapunov function L admits a

strict minimum, its Monge Ampère (dd cL)∧Nk
d does not vanish (see [7]). □

The argument goes back to Bassanelli and Berteloot (see [4, Proposition 6.3]
when k = 1). To the best of our knowledge, no such simple arguments hold in the
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polynomial case and we only know that 𝜇 f ,Crit ≠ 0 on Pk
d when k = 2 thanks to

Theorem C.

2.3. Families of regular polynomial endomorphisms of the affine plane. — In order to
apply Proposition 2.3 to the moduli space P2

d , we prove the following rigidity result.

Theorem 2.9. — Let d ≥ 2. Let g be a rational map of ℙ1 of degree d which is not a
flexible Lattès map. Moreover, assume that

(i) g possesses at least 3 postcritical repelling periodic points (possibly in the same critical
orbit),

(ii) for one of these postcritical repelling periodic points y1 we have that{
a ∈ ℙ1 ; there exists n ≥ 1, g n (a) = y1 and a is not in the critical set of g n

}
is dense in the Julia set Jg of g .

Let (ℙ2 ×Z , f ,Oℙ2 (1)) be a stable family of regular polynomial endomorphisms of ℂ2 of degree
d , parametrized by an irreducible algebraic curve Z . If there exists 𝜆0 ∈ Z such that f𝜆0 is equal
to the lift of g to ℂ2 then the family (ℙ2 × Z , f ,Oℙ2 (1)) is isotrivial.

Remark. — Observe that to find such a rational map g , it suffices to take a
polynomial map with a postcritical repelling point of period 5.

To the best of our knowledge, this is the first rigidity result in higher dimensions
that is not a direct consequence of one-dimensional results.

Proof. — The plan of the proof is first to show that the family ( f𝜆 |L∞)𝜆 ∈Z is
constant — up to conjugacy — using McMullen’s rigidity theorem [72]. In a second
time, we show that for all 𝜆 ∈ Z , the map f𝜆 is a lift of the rational map f𝜆 |L∞ .

We will use several results of Bedford–Jonsson on regular polynomial endomor-
phisms of ℂ2 obtained in [6].

Let 𝜆 be in Z . If Critf𝜆 denotes the critical set of f𝜆 in ℙ2, we set C𝜆 := Critf𝜆 \L∞,
where L∞ is the line at infinity in ℙ2. The critical measure of f𝜆 is 𝜇c ,𝜆 := T𝜆 ∧ [C𝜆 ],
where T𝜆 is the Green current of f𝜆 . In ℂ2, T𝜆 = T̂ |ℙ2×{𝜆 } is equal to the dd c of the
Green function G𝜆 of f𝜆 , which is non-negative on ℂ2 and positive precisely outside
the set K𝜆 of points of ℂ2 with bounded orbit. Bedford–Jonsson proved in particular
that the sum L(𝜆 ) of the Lyapunov exponents of the equilibrium measure 𝜇𝜆 := T𝜆 ∧T𝜆
verifies

L(𝜆 ) = logd +ℓ (𝜆 ) +
∫
G𝜆 𝜇c ,𝜆 ,

where ℓ (𝜆 ) is the Lyapunov exponent associated to f𝜆 |L∞ .
As the family is stable, 𝜆 ↦→ L(𝜆 ) is a harmonic function on Z . Since it is positive,

it must be constant. Actually, both maps 𝜆 ↦→ ℓ (𝜆 ) and ℓ̃ : 𝜆 ↦→
∫
G𝜆 𝜇c ,𝜆 are also constant.

To see this, first observe that ℓ is subharmonic, since it is the Lyapunov exponent of the
family ( f𝜆 |L∞)𝜆 ∈Z . Moreover, by definition, ℓ̃ is non-negative, and the constancy of L
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implies that ℓ is bounded from above. It follows that ℓ , which extends as a subharmonic
function to an algebraic compactification of Z , must be constant.

This has two consequences. First, at the parameter 𝜆0 the map f𝜆0 is the lift of
g to ℙ2 so L(𝜆0) = logd +ℓ (𝜆0), i.e. ℓ̃ (𝜆0) :=

∫
G𝜆0𝜇c ,𝜆0 = 0. Hence, ℓ̃ (𝜆 ) = 0 for all

𝜆 ∈ Z . In other words, the critical measure 𝜇c ,𝜆 is supported in K𝜆 . On the other hand,
( f𝜆 |L∞)𝜆 ∈Z is an algebraic stable family of rational maps on ℙ1 so by [72] it must be
isotrivial since f𝜆0 |L∞ is not a flexible Lattès map. Up to a finite cover of Z , we can then
perform a family of affine conjugations in order to have for each 𝜆 ∈ Z

• f𝜆 |L∞ = g ,
• 0 ∈ ℂ2 is a fixed point of f𝜆 , which is the continuation of the center of the pencil

of curves preserved by f𝜆0 .

Note that there remains one degree of freedom, corresponding to the homothety of
center 0, which will be used later.

We denote by X ′ the set of preperiodic critical points of g and byY ′ its set of
postcritical periodic points. The subset Y ⊂ Y ′ corresponds to repelling postcritical
periodic points and X ⊂ X ′ to points eventually mapped intoY . We also choose two
integers N ≥ 1 andm ≥ 1 such that gN (X ′) ⊂ Y ′ and gm (y) = y for each y ∈Y ′. Observe
that by (i) the setY has at least 3 points. Based on this, the proof proceeds in four main
steps. Notice that in what follows, we identify ℙ1 with L∞.

(1) For each 𝜆 , each irreducible component of the critical set of f𝜆 containing a
point of X has to be preperiodic.

(2) The periodic irreducible components of the postcritical set of f𝜆 passing through
points ofY are lines containing 0. In other words, there exists a set of at least 3
lines L = {Ly ; y ∈Y } where each Ly is f𝜆-periodic for all 𝜆 ∈ Z .

(3) The pencil of lines P passing through 0 has to be preserved by each f𝜆 .
(4) Up to homothety, there is a unique regular polynomial endomorphism of ℂ2

preserving P acting as g on L∞.

Let us now prove these four claims. Note that the delicate one is (3), and that our proof
is strongly inspired by [72], where the difficulties coming from unlabelled holomorphic
motion are highlighted. In our very special situation, we use the lamination coming
from [6, Theorem 8.8] to overcome possible monodromy problems.

Proof of (1). — Let x be in X , i.e, a critical point of g whose image under gN is
a repelling m-periodic point y . Let 𝜆 be in Z and let C be an irreducible component
of C𝜆 passing through x. The point y must be of saddle type for f𝜆 , repelling in the
direction of L∞ and super-attracting in the transverse direction. In particular, it admits
a local stable manifoldW s

y , loc. On the other hand, 𝜇c ,𝜆 = T𝜆 ∧ [C𝜆 ] vanishes near x so
( f n

𝜆 |C )n≥0 is a normal family near x (see e.g. [82, Theorem 1]). The saddle nature of y

gives that the only possible limit value of ( f N +nm )
𝜆 |C )n≥0 near x is the constant function

equal to y . Indeed, if v is such a limit value, then L∞ contains its image, v (x) = y , and
the sequence ( f nm

𝜆
◦ v )n≥0 is also normal. Since f m

𝜆 |L∞ is repelling at y , the map v must

be constant. Therefore, ( f N +nm )
𝜆 |C )n≥0 converges to the constant function equal to y on a
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neighborhoodV of x in C . This implies that f N
𝜆

(V ) ∩W s
y , loc is a neighborhood of y in

W s
y , loc and thus, f N

𝜆
(C ) is m-periodic.

Proof of (2). — Let L′ = {Ly ; y ∈Y ′} be the periodic postcritical lines for f𝜆0 in
the pencil P. Observe that f m

𝜆0 |Ly
is conjugate to zd

m
with a Julia set Sy which is uniformly

hyperbolic.
Let 𝜆 be sufficiently close to 𝜆0. Let y ∈Y and let D be an irreducible component

of the postcritical set of f𝜆 that contains y . As previously noted, D is m-periodic and
locally coincides with the stable manifold of y near this point. In particular, D intersects
transversely L∞ at y . Moreover, by [34, Lemma 6.2], f m

𝜆 |D has topological degree dm

and thus, using a normalization, it has a unique measure of maximal entropy m logd .
On the other hand, since 𝜆 is close to 𝜆0, the curve D is close to a union

⋃
y ′∈I Ly ′ ,

with I ⊂ Y ′. For each y ′ ∈ I , the holomorphic motion of Sy ′ gives a hyperbolic set of
entropym logd for f m

𝜆 |D close to Sy ′ . Since these sets are pairwise disjoint, the uniqueness
of the measure of maximal entropy implies that I consists of a single point and thus
I = {y}. In particular, the intersection points of D with L∞ are postcritical periodic
points close to y . As this set is discrete in L∞ and independent of 𝜆 , D ∩ L∞ is reduced
to {y} for 𝜆 sufficiently close to 𝜆0. Furthermore, we have seen that this intersection is
transverse. Thus, D has degree 1.

Finally, as 𝜆 is close to 𝜆0, 0 is attracting and D intersects its basin of attraction.
By invariance of D , 0 is in D .

This proves the result in a Euclidean neighborhood of 𝜆0. Since it is a closed
property in the Zariski topology, it holds for all 𝜆 ∈ Z .

Proof of (3). — Let L1 denote the line in P that contains y1 ∈Y , the postcritical
periodic point of g given by (ii). As we have seen, L1 is m-periodic for every f𝜆 with
𝜆 ∈ Z . Since the Julia set of f m

𝜆0 |L1
is contained in the small Julia set of f𝜆0 , by [10,

Theorem 1.1] the family ( f m
𝜆 |L1

)𝜆 ∈Z is stable. Indeed, in dynamics in dimension 2
J -stability is equivalent to the fact that J -repelling periodic points move holomorphi-
cally and remain repelling. In particular, all repelling periodic points of f m

𝜆 |L1
move

holomorphically and remain repelling. By [72], it has to be isotrivial. Hence, each f m
𝜆 |L1

is holomorphically conjugate to f m
𝜆0 |L1

, i.e. to z ↦→ zd
m
. In particular, up to a finite cover

of Z and using a family of homotheties of ℂ2, we can assume that f m
𝜆 |L1

is independent
of 𝜆 .

Fix 𝜆 ∈ Z for a moment and denote by A𝜆 the basin of L∞, i.e. A𝜆 := ℙ2 \ K𝜆 . As∫
G𝜆 𝜇c ,𝜆 = 0, by [6, Theorem 8.8], there exists a f𝜆-invariant lamination by holomorphic

discs {Wa,𝜆 | a ∈ Jg } in A𝜆 parametrized by the Julia set Jg of g , such thatWa,𝜆 \ {a} is
either contained in the critical set of f𝜆 or disjoint from it. Moreover,Wa,𝜆 is contained
in the stable manifold of a for a generic a ∈ Jg . Here, genericity is with respect to the
equilibrium measure of f𝜆 |L∞ = g . For the point y1 defined above,Wy1,𝜆 corresponds to
the basin of attraction of y1 for f m

𝜆 |L1
. As we have seen, this set is independent of 𝜆 and

we denote it byWy1 .



30 THOMAS GAUTHIER et al.

Let n ≥ 1 and let an ∈ g −n (y1) be such that an does not lie in the critical set of g n

and an ∉Y . Observe that the setWan ,𝜆 satisfies f n
𝜆
(Wan ,𝜆 ) =Wy1 (and thus is contained in

the algebraic set f −n
𝜆

(L1)) and thatWan ,𝜆 \ {an} is disjoint from the critical set of f n
𝜆

. Let
w ∈Wy1 \ {y1}. The set Pw := {z ∈Wan ,𝜆0 | f n𝜆0

(z ) = w} has exactly dn points. Moreover,
if 𝛾 is a loop in Z and z ∈ Pw then the fact thatWan ,𝜆 \ {an} is disjoint from the critical
set of f n

𝜆
ensures that we can follow z along 𝛾 as a point in f −n

𝜆
(w) ∩Wan ,𝜆 . This gives

an action of 𝜋1(Z ,𝜆0) on Pw by permutations, whose kernel Hn has finite index (≤ dn !)
in 𝜋1(Z ,𝜆0). On the finite branched cover Zn associated to Hn , the points in Pw can be
followed holomorphically, i.e., there exists a family (𝜙z )z ∈Pw of holomorphic maps from
Zn to ℙ2 such that 𝜙z (𝜆0) = z and f n

𝜆
(𝜙z (𝜆 )) = w for all z ∈ Pw and 𝜆 ∈ Zn .

From this, there are two key observations. First, Wan ,𝜆 is disjoint from Ly for
y ∈Y since an ∉Y . Hence, if 𝜋 : ℙ2 \{0} → L∞ denotes the linear projection, 𝜓z := 𝜋◦𝜙z
defines maps from Zn to ℙ1 \Y . The other important observation is that the kernel
Hn defined above is independent of the choice of w ∈ Wy1 \ {y1}. Actually, if V is a
small neighborhood of w then the set Pw ′ can be followed holomorphically for w ′ ∈ V
and the action of 𝜋1(Z ,𝜆0) is compatible with this motion. Hence, the kernel is the
same for all w ′ ∈ V and thus, by connectedness, for all w ′ ∈Wy1 \ {y1}. Thus, for each
z ∈Wan ,𝜆0 we can associate 𝜙z : Zn → ℙ2 \ {Ly ; y ∈ Y } and 𝜓z := 𝜋 ◦ 𝜙z : Zn → ℙ1 \Y .
As the set of non-constant holomorphic maps from Zn to ℙ1 \ {y1, . . . , yk } is finite and
since z ↦→ 𝜓z (𝜆 ) is continuous for each 𝜆 ∈ Zn , the maps 𝜓z are either all constant or
all equal. In both cases, the fact that 𝜙z (𝜆 ) converges to an when z → an implies that
each 𝜙z is identically equal to an. In other words,Wan ,𝜆 is contained in Lan := 𝜋−1(an).
Since the set of all possible an for all possible n ≥ 1 is dense in Jg , each map f𝜆 satisfies
𝜋 ◦ f𝜆 = g ◦ 𝜋 on 𝜋−1( Jg ). This set is not pluripolar in ℙ2 \ {0} so 𝜋 ◦ f𝜆 = g ◦ 𝜋 on
ℙ2 \ {0}, i.e. f𝜆 must preserve the pencil of lines P defined by 𝜋.

Proof of (4). — Let 𝜆 ∈ Z . Since f𝜆 preserves P, it must be of the form

f𝜆 [x : y : z ] = [P (x , y) : Q (x , y) : R𝜆 (x , y , z )],

where g [x : y] = [P (x , y) : Q (x , y)]. But f𝜆 is also a regular polynomial endomorphism
of ℂ2 so R𝜆 (x , y , z ) = c𝜆 zd . □

In particular, Corollary 2.4 also holds on the good family (ℙ2
S , f ,Oℙ2 (1)) with

regular part V2
d given by Lemma 2.2:

Corollary 2.10. — Let d ≥ 2. Let (mn)n≥1, (xn)n≥1 and (Λn)n≥1 be as in Section 2.2
with X = V2

d . Then, there exist N ≥ 1 and a Zariski closed proper subset Γ of V2
d such that Λn

is finite-to-one on Xn \ 𝜋−1
n (Γ) for all n ≥ N .

Proof. — The proof is the same than Corollary 2.4 except that for the map ft1
we take the lift f𝜆0 from Theorem 2.9. As mentioned after this theorem, it suffices to
take for g a polynomial map with a postcritical repelling point of period 5. □
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3. Blenders and the bifurcation measures

Our goal here is to prove that an open set Ω of M k
d or P2

d , satisfying a large set
of assumptions (see Section 3.2), must be contained in the support of the bifurcation
measure. More precisely, if this is not the case, then by Theorem 3.4 below, Ω contains in
a dense way positive dimensional subvarieties where the eigenvalues of all the periodic
points on the small Julia set are constant. This contradicts either Corollary 2.4 or
Corollary 2.10. Note that, unlike in the rest of the article, the families considered here
may be transcendental and are not necessarily closed.

Apart from Theorem 3.4 which only holds for k = 2 in the polynomial case, all
the proofs in this section are the same for both M k

d and for Pk
d . We therefore focus on

the case of M k
d . The only difference for Pk

d is that the dimensions below, N k
d and Nk

d ,
should be replaced by the dimension of Polykd (i.e. k

(k+d
d

)
) and the dimension of Pk

d

(i.e. k
( (k+d

d

)
− (k + 1)

)
) respectively.

In fact, throughout this section and in Section 4, we do not work directly on M k
d

or Pk
d . One key reason is that in Section 4 we consider degenerations outside the space

of endomorphisms of ℙk . In order to obtain a non-empty open subset in the support of
the bifurcation measure on M k

d , we provide a non-empty open subset Ω ⊂ Endkd in the

support of the current T
Nk
d

f ,Crit and use the fact that this current is the pullback of 𝜇 f ,Crit

under the canonical projection Π : Endkd → M k
d .

At the beginning of the section, after introducing some basic notations, we present
in Section 3.2 a long list of assumptions that will be required in what follows. Then,
in Section 3.3 we state the main results of the whole section, Theorem 3.3 and Theo-
rem 3.4, and explain how, combined with Corollary 2.4 or Corollary 2.10 and Theo-
rem 4.1, they imply Theorem C. In Section 3.4, we outline the proof strategy for these
two theorems and describe the structure of the remainder of the section.

3.1. Notations. — If a > 0 then 𝔻a is the disc of center 0 and radius a in ℂ and
we set 𝔻 := 𝔻1.

If A ⊂ ℂ and B ⊂ ℂk−1 are two connected open subsets then Γ ⊂ A×B is a vertical
graph if there exists a holomorphic function g : B → A with g (B) ⋐ A and such that
Γ = {(g (w),w) ; w ∈ B }. One way to measure the verticality of a graph is to consider
cone fields. As we will only work on ℂk where the tangent bundle is trivial, for 𝜌 > 0 we
say that a vertical graph Γ as above is tangent to the cone field

C𝜌 :=
{
(u1, . . . ,uk ) ∈ ℂk ; 𝜌 |u1 | ≤ max

2≤i≤k
|ui |

}
if the tangent bundle T Γ is contained in Γ × C𝜌. If Γ = {(g (w),w) ; w ∈ B } as above,
then this is equivalent to the fact that the partial derivatives of g are uniformly bounded
by 1/𝜌. Observe that the larger 𝜌 is, the more vertical Γ becomes. The case 𝜌 = +∞
corresponds to vertical hyperplanes. We say that a map f contracts the cone field C𝜌 if
there exists 𝜌′ > 𝜌 such that the image of C𝜌 under the differential of f at each point is
contained in C𝜌′ .
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3.2. Assumptions. — Let Ω be a non-empty open subset of Endkd or of Polykd
such that each f ∈ Ω fulfills the properties described below. Observe that most of these
objects (all except Jk ) are assumed to depend holomorphically on f ∈ Ω and our notation
reflects this dependence. For example, p : f ↦→ p ( f ) is the holomorphic motion of the
saddle point given in Assumption (3) and Λ corresponds to the holomorphic motion of
the hyperbolic set Λ( f ) from Assumption (2), i.e. x ∈ Λ is a function f ↦→ x ( f ) given
by this holomorphic motion. Another observation is that the most important case is
k = 2. When k ≥ 3, the dynamics on the last k − 2 coordinates is not very important.
However, item (iii) in Assumption (10) prevents us from taking product maps. The
reader may refer to Figure 1 for an illustration of some of the assumptions.

(1) There exist two disjoint holomorphic discsU+,U− ⊂ ℂ and two constants R > 2,
and 𝜌 > 10 such that f contracts the cone field C𝜌 on U := U+ ∪U− where

U± := 𝔻R ×U± × 𝔻k−2.

(2) There exist two disjoint holomorphic discsV+,V− ⊂ ℂ such that, if we set

V+ := 𝔻R ×V+ × 𝔻k−2, V− := 𝔻R ×V− × 𝔻k−2 and V := V+ ∪V−

then
• V ± ⊂ U±,
• f 2 contracts the cone field C𝜌 on V,
• f 2 is injective on V± and V ⊂ U ⊂ f 2(V±).

Moreover,

Λ( f ) :=
⋂
n≥0

f −2n (V)

is a repelling hyperbolic set for f 2, contained in Jk ( f ).
(3) f has a non-critical saddle fixed point p ( f ) ∈ 𝔻 ×U− × 𝔻k−2 with one stable

direction and k − 1 unstable directions. We ask that its unstable manifold
contains a vertical graph through p ( f ) (denoted W u

p ( f ) , loc) in 𝔻 ×V− × 𝔻k−2

tangent to C𝜌. In what follows,W s
p ( f ) , loc stands for a holomorphic disc in the

stable manifold where f is conjugate to a contraction. Finally, we assume that f
is C 1-linearizable near p ( f ), with a linearization map depending continuously
on f in the C 1-topology.

(4) Each vertical graph in 𝔻×V+×𝔻k−2 (resp. 𝔻×V−×𝔻k−2) tangent toC𝜌 intersects
Λ( f ).

(5) The intersections betweenW u
p, loc and Λ are not persistent in Ω (i.e. if x ∈ Λ and

f ∈ Ω satisfy x ( f ) ∈W u
p ( f ) , loc then there exists g ∈ Ω close to f such that x (g ) is

not inW u
p (g ) , loc).

(6) There exists a repelling 2-periodic point r ( f ) ∈ 𝔻 ×V− × 𝔻k−2 such that the
eigenvalues of Dr ( f ) f 2 are all simple with no resonance. In particular, f 2

is holomorphically linearizable near r ( f ) and we assume that the domain of
linearization contains U−.
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(7) There exists n0 ≥ 1 such that f n0 (Crit( f )) has a transverse intersection with
W s
p ( f ) , loc \ {p ( f )}.

(8) There exist K ∈ ℕ and q̃ ( f ) ∈W u
p ( f ) , loc which is not a critical point for f K and

such that q ( f ) := f K (q̃ ( f )) ≠ p ( f ) is a transverse homoclinic intersection in
W s
p ( f ) , loc.

(9) The exceptional set of f is disjoint from its small Julia set.

We now introduce one last, slightly more technical assumption. It will serve as the
starting point for the induction on the dimension. Let 𝜒 p ( f ) (resp. 𝜒 r ( f ) ) be the
eigenvalue of Dp ( f ) f (resp. Dr ( f ) f 2) with the smallest modulus.

(10) For every non-empty open subset Ω′ ⊂ Ω, there exists f ∈ Ω′, m ∈ ℕ and x ∈ Λ

such that
(i) f m (x ( f )) = r ( f ),
(ii) x ( f ) ∈W u

p ( f ) , loc,

(iii) Dx ( f ) f m
(
Tx ( f )W u

p ( f ) , loc

)
is a “generic” hyperplane for Dr ( f ) f 2, i.e. contains

no eigenvector of Dr ( f ) f 2,
(iv) the subgroup ⟨𝜒 p ( f ) , 𝜒 r ( f )⟩ of ℂ∗ generated by 𝜒 p ( f ) and 𝜒 r ( f ) is dense,

From a non-technical point of view, the main ingredients to prove that Ω ⊂
supp

(
T

Nk
d

f ,Crit

)
are Assumptions (2) to (4). They should be sufficient for the proof. As-

sumption (4) says that Λ( f ) satisfies a blender property and by Assumption (3), there
exists a connection between this blender Λ( f ) and the saddle point p ( f ). If the critical
set has a transverse intersection with the stable manifold of p ( f ), this gives rise, by the
inclination lemma, to infinitely many intersections between the postcritical set and Λ( f ).
Very likely, all these intersections should provide as many independent bifurcations
as possible. Most of the remaining assumptions aim to ensure several transversality
properties which eventually give the existence of these independent bifurcations. In
particular, a transverse intersection betweenW s

p ( f ) , loc and the postcritical set is given by
Assumption (7). Observe that, in addition, this assumption also implies that Ω contains
no PCF maps (see the end of the proof of Theorem C or [85, Corollary 2.5] for a more
precise result).

In the example we construct, all these assumptions are easy to check, except
Assumption (10). This last assumption is the key technical point in proving that the
support of the bifurcation measure has non-empty interior. Establishing it on Ω takes a
large part of Section 4 where we need to consider degenerations outside Endkd .

In order to give more explanations on this assumption, item (iv) will be used
to ensure that the postcritical set of f can approximate any leaf of a foliation by hy-
persurfaces Ff , defined in a neighborhood of r ( f ) as the vertical fibration associated
with the linearization map (i.e., the strong unstable foliation of r ( f )). Point (iii)
implies in particular that the strong unstable hyperplane Tr ( f )W uu

r ( f ) together with(
Dx ( f ) f m+i

(
Tx ( f )W u

p ( f ) , loc

) )
1≤i≤k−1 form a basis of hyperplanes. Each of them is ac-

tually the tangent space of a dynamical foliation, Ff and (Gif )1≤i≤k−1 respectively, which
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thus define local coordinates near r ( f ). A key point will be that, under suitable condi-
tions labeled as (★) in what follows, these coordinates provided local conjugacies which
turn out to extend to a neighborhood of the small Julia set. The results of Section 2
ensure then that the conjugacies are generically global.

Finally, notice that it would be easier to work with a fixed point in Assumption (6).
However, we were not able to obtain the open set Ω when d = 2 with this additional
constraint.

3.3. Statements. — Here, we assume that Ω satisfies all the assumptions of
Section 3.2. The purpose of Assumption (10) is to construct families with the following
properties.

Definition 3.1. — A subvariety M ⊂ Ω satisfies the condition (†) if
(1) M is connected,
(2) there exists x ∈ Λ and m ∈ ℕ such that for all f ∈ M , x ( f ) ∈W u

p ( f ) , loc, f
m (x ( f )) =

r ( f ) and Dx ( f ) f m
(
Tx ( f )W u

p ( f ) , loc

)
is a generic hyperplane for Dr ( f ) f 2,

(3) each intersection point inW u
p ( f ) ∩ Λ( f ) can be locally followed holomorphically,

(4) there exists f0 ∈ M such that the subgroup ⟨𝜒 r ( f0), 𝜒 p ( f0)⟩ is dense in ℂ∗.

We also consider a stronger condition.

Definition 3.2. — A subvariety M ⊂ Ω satisfies the condition (★) if it is simply
connected, fulfills (†) and is a stable family in the sense of Berteloot–Bianchi–Dupont.

The main purpose of this whole section is to show that these conditions combined
with the assumptions on Ω lead to the following two results.

Theorem 3.3. — IfM ⊂ Ω satisfies (†) then the functions f ↦→ 𝜒 p ( f ) and f ↦→ 𝜒 r ( f )
are constant on M . In particular, any connected analytic subset M ′ ⊂ M also satisfies (†).

Theorem 3.4. — Let M ⊂ Ω be an analytic subset which satisfies (★). Let f0 and f1 be
in M . Then, f0 and f1 are holomorphically conjugate in a neighborhood of their respective small
Julia sets.

Furthermore, these conjugacies are compatible with the holomorphic motion of periodic
points, i.e., every n-periodic point x ( f0) of Jk ( f0) can be followed along M as a n-periodic point
x ( f ) in Jk ( f ) and all eigenvalues of Dx ( f ) f n are constant as functions of f . In particular, the
map f ↦→ detDx ( f ) f n is constant on M .

Anticipating the existence of the open set Ω, established in Theorem 4.1, we can
conclude the proof of Theorem C.

Proof of Theorem C. — We only consider the case of M k
d . As we already said,

the proof for P2
d is exactly the same except that Nk

d has to be replaced by 2
(d+2
d

)
− 6.
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Observe that we cannot conclude the proof on Pk
d when k ≥ 3 since Corollary 2.10

only holds on P2
d .

Let k ≥ 2 and d ≥ 2. Let Ω be the open subset of Endkd given by Theorem 4.1.
Our goal is to show that Ω ⊂ supp

(
T

Nk
d

f ,Crit

)
. To that end, we consider a non-empty

connected open subset Ω′ ⊂ Ω and we will prove that Ω′ ∩ supp
(
T

Nk
d

f ,Crit

)
is not empty,

proceeding through the following steps.

Step 1: Reducing Ω′ with respect to multipliers. — First, fix an arbitrary element
f ′ ∈ Ω′. If we apply Corollary 2.4 to the sequence (xn)n≥1 of all repelling periodic points
of f ′ in Jk ( f ′) then there exists N0 ≥ 1 such that the corresponding multiplier map
ΛN0 is generically finite on a branched cover of M k

d . As the periodic points (xn)1≤n≤N0

are repelling and in Jk ( f ′), they can be followed holomorphically as repelling points in
Jk ( f ) in a small neighborhood of f ′ in Endkd . Since ΛN0 is generically finite, the fibers of
the corresponding map on a small open subset Ω′′ ⊂ Ω′ close to f ′ have codimension Nk

d .
Hence, by Theorem 3.4, any analytic subset of Ω′′ satisfying (★) must have codimension
at least Nk

d .
Now, by Assumption (10), there exists f0 ∈ Ω′′, m ∈ ℕ and x1( f0) ∈ Λ( f0)

such that

(i) f m0 (x1( f0)) = r ( f0),
(ii) x1( f0) ∈W u

p ( f0 ) , loc,

(iii) Dx1 ( f0 ) f
m

0 (Tx1 ( f0 )W
u
p ( f0 ) , loc) is a generic hyperplane for Dr ( f0 ) f

2
0 ,

(iv) the subgroup ⟨𝜒 p ( f0 ) , 𝜒 r ( f0 )⟩ of ℂ∗ is dense.

In particular, f0 belongs to

A1 := { f ∈ Ω′′ ; x1( f ) ∈W u
p ( f ) , loc},

which is a hypersurface by Assumption (5).

Step 2: Move to a smooth point. — Our goal now is to fix new relations between
Λ( f0) andW u

p ( f0 )
until condition (†) holds and Theorem 3.3 can be applied. A minor

technical issue arises from the fact that A1 may be non-irreducible at f0, with no control
over the number of components. Hence, a relation between Λ( f0) andW u

p ( f0 )
might

persist on some components but not on others, potentially disrupting the properness of
the intersections. Although it is possible to prove that such a situation cannot occur, we
will, for simplicity, instead pass to a smooth point of A1. More precisely, the parameters
f inA1 such that ⟨𝜒 p ( f ) , 𝜒 r ( f )⟩ is dense in ℂ∗ is itself dense in any irreducible component
of A1 containing f0. Actually, if P ( f ) and R ( f ) denote logarithms of 𝜒 p ( f ) and 𝜒 r ( f )
and if we write R ( f ) = t ( f )P ( f ) + 𝜃 ( f )2i𝜋 with t ( f ), 𝜃 ( f ) ∈ ℝ then this condition on
the subgroup is equivalent to the fact that 1, t ( f ) and 𝜃 ( f ) are independent over ℚ.
This holds outside a countable union of real analytic subsets of A1. Hence, we can take
a smooth point f1 of A1 such that this condition is satisfied and such that f1 is close
enough to f0 to ensure that item (iii) above also holds for f1. Let X1 be the irreducible
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component of A1 containing f1 and let Ω1 ⊂ Ω′′ be a small open neighborhood of f1
such that A1 ∩Ω1 = X1 ∩Ω1 and (iii) is satisfied on Ω1.

Step 3: Building a sequence of relations. — The setW u
p ( f1 )

∩Λ( f1) is infinite and we use
it to define a sequence ( fi )1≤i≤N in Ω′′, a decreasing sequence (Ωi )1≤i≤N of open subsets
of Ω′′, and a decreasing sequence (Xi )1≤i≤N of smooth irreducible analytic sets such that
codim(Xi ) = i and fi ∈ Xi . The construction goes as follows. Assume that ( fi )1≤i≤i0 ,
(Ωi )1≤i≤i0 and (Xi )1≤i≤i0 are defined. If all the intersection points inW u

p ( fi ) ∩ Λ( fi ) can
be followed holomorphically on Xi0 then we set N := i0 and the construction ends.
Otherwise, there exist ni0+1 ≥ 0 and xi0+1 ∈ Λ such that xi0+1( fi0) ∈ f

ni0+1

i0

(
W u
p ( fi0 ) , loc

)
and

this relation does not persist on Xi0 . Here, since f
ni0+1

i0

(
W u
p ( fi0 ) , loc

)
is not a closed analytic

set, we mean that there exists a small neighborhood Ω̃i0+1 ⊂ Ωi0 of fi0 such that the set

Ai0+1 :=
{
f ∈ Xi0 ∩ Ω̃i0+1 ; xi0+1( f ) ∈ f ni0+1

(
W u
p ( f ) , loc

)}
,

is a closed hypersurface in Xi0 ∩ Ω̃i0+1. As in Step 2, the set Ai0+1 might be non-
irreducible but we can choose a smooth point fi0+1 on it such that ⟨𝜒 p ( fi0+1 ) , 𝜒 r ( fi0+1 )⟩
is dense in ℂ∗. We then choose Xi0+1 to be the irreducible component of Ai0+1 which
contains fi0+1 and take Ωi0+1 ⊂ Ω̃i0+1 to be a small enough neighborhood of fi0+1 to
have Ai0+1 ∩ Ωi0+1 = Xi0+1 ∩ Ωi0+1. Observe that we always have N ≤ Nk

d and that XN
satisfies (†).

Interlude: From the unstable manifold to the postcritical set. — Another important
observation is that XN corresponds to N independent intersections betweenW u

p ( f ) and
Λ( f ) and, since the Jk-repelling periodic points are dense in Λ and since by Assump-
tion (7) some parts of the postcritical set approximateW u

p ( f ) , a small perturbation of XN
gives rise to an analytic set which corresponds to N -properly Jk-prerepelling parame-
ters. Since this point is important, we now provide more details. Let ΩN , (xi )1≤i≤N and
(ni )1≤i≤N be as above with the convention that n1 = 0. We now consider the sets

WN :=
{
( f , z1, . . . , zN ) ∈ ΩN × (ℙk )N ; zi ∈ f ni

(
W u
p ( f ) , loc

)
for 1 ≤ i ≤ N

}
and

YN :=
{
( f , z1, . . . , zN ) ∈ ΩN × (ℙk )N ; zi = xi ( f ) for 1 ≤ i ≤ N

}
.

What we have proved so far is that the projection ofWN ∩YN on ΩN , which is equal to
XN ∩ΩN , has codimension N . Since the projection ofYN on ΩN is a biholomorphism,
we have thatWN ∩YN has pure dimension N k

d − N , where N k
d := dim(Endkd ). On the

other hand, dim(YN ) = N k
d and dim(WN ) = N k

d + (k − 1)N so we have

dim(WN ∩YN ) = dim(WN ) + dim(YN ) − dim(ΩN × (ℙk )N ),
which shows that the intersection is proper. As the repelling periodic points are dense
in Λ, the setYN is approximated by setsY ′

N ,n defined in the same way replacing each xi
by repelling periodic points x ′i ,n converging to xi . Moreover, the inclination lemma and
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Assumption (7) also give thatWN is approximated by setsW ′
N ,n defined asWN but using

a local branch of some iterate of the critical set instead ofW u
p ( f ) , loc. The persistence of

proper intersections (see e.g. [27, Section 12.3]) gives thatW ′
N ,n ∩Y

′
N ,n is proper when

n is large enough, i.e.,W ′
N ,n ∩Y

′
N ,n corresponds to N -properly Jk-prerepelling points in

ΩN × (ℙk )N .

Step 4: Finishing the induction. — Now, we continue the construction and define
by induction ( fi )N +1≤i≤N ′ , (Ωi )N +1≤i≤N ′ and (Xi )N +1≤i≤N ′ in the following way. Assume
the construction has been carried out forN ≤ i ≤ i0. If the family defined byXi0 is stable
then we set N ′ := i0. Otherwise, there exists a non-persistent Misiurewicz relation on
Xi0 and we define Ai0+1 to be the analytic hypersurface of Xi0 where this relation persists.
Then, we choose a smooth point fi0+1 on Ai0+1 and a small neighborhood Ωi0+1 ⊂ Ωi0
such that Xi0+1 := Ωi0+1 ∩ Ai0+1 is smooth, connected and simply connected.

As above, at the end we have
• codim(XN ′) = N ′ ≤ Nk

d ,
• all the Misiurewicz relations in XN ′ are persistent, i.e., this family is stable,
• by Theorem 3.3 XN ′ satisfies (†) and thus (★).

The construction of Ω′′ and Theorem 3.4 then ensure that N ′ ≥ Nk
d and thus N ′ = Nk

d .
On the other hand, exactly as in the interlude above, the points of XN ′ are approximated
by N ′-properly Jk-prerepelling parameters in Endkd ×(ℙk )N

′
. By Proposition 1.11, XN ′

is contained in the support of the current T
Nk
d

f ,Crit. Moreover, the bifurcation measure

𝜇 f ,Crit of the moduli space M k
d satisfies Π∗(𝜇 f ,Crit) = T

Nk
d

f ,Crit, where Π : Endkd → M k
d is

the natural projection, see [4]. This implies Ω̂ := Π(Ω′′) ⊂ supp(𝜇 f ,Crit) and Ω̂ is open
since Π is an open map.

Step 5: Absence of PCF maps. — Finally, notice that Assumption (7) gives that
the open set Ω obtained by Theorem 4.1 possesses no PCF maps. More precisely, let
f ∈ Ω. The inclination lemma applied to the portion of f n0 (Critf ) that is transverse
toW s

p ( f ) , loc given by Assumption (7) implies that the postcritical set contains infinitely
many disjoint (local) hypersurfaces converging toW u

p ( f ) , loc. Therefore, the postcritical
set is not algebraic. □

Remark 3.5. — For the absence of PCF maps in Ω we could have used a result
of Le [85, Corollary 2.5], which states that a PCF map of ℙk cannot have a non-critical
saddle periodic point.

3.4. Sketch of the proofs of Theorems 3.3 and 3.4. — Let M ⊂ Ω be a subvariety
satisfying (★). The assumptions of Section 3.2 are used in the following way.

(1) As the family is stable, by [15, Theorem C] there exists an equilibrium lamina-
tion L for the family ( f ) f ∈M (see Definition 3.19).

(2) Points (2) and (3) in Definition 3.1, which come from Assumption (10), ensure
that r ( f ) ∈W u

p ( f ) persistently in the family.
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(3) Since the postcritical set intersects transverselyW s
p ( f ) (Assumption (7)), the

inclination lemma and the assumption ⟨𝜒 p ( f0 ) , 𝜒 r ( f0 )⟩ = ℂ∗ imply that the post-
critical set of f0 can approximate any leaf of a foliation by hypersurfaces Ff0 ,
defined in a neighborhood of r ( f0) as its strong unstable foliation.

(4) The previous point, the stability of ( f ) f ∈M and the blender property from
Assumption (4) imply, at first, a persistent identity 𝜒 r ( f ) = 𝜁 𝜒−𝜔

p ( f ) on M , which
actually gives, combined with Assumption (8), that both these functions are
constant.

(5) The genericity part of (2) in Definition 3.1 allows us to construct k−1 other local
foliations, G1

f , . . . ,Gk−1
f whose leaves are also approximated by the postcritical

set and such that (Ff ,G1
f , . . . ,G

k−1
f ) provides local holomorphic coordinates

(depending holomorphically on f ) near r ( f ).
(6) The fact that the equilibrium lamination L is acritical implies that if 𝛾 ∈ L then

the coordinates of 𝛾( f ) with respect to (Ff ,G1
f , . . . ,G

k−1
f ) are independent of

f .
(7) Since {𝛾( f ) | 𝛾 ∈ L} is not contained in a proper analytic set, these local

coordinates respecting L give a local conjugacy near r ( f ).
(8) This local conjugacy extends to a neighborhood of the small Julia set, forcing

the multipliers to be constant in the family.
Now, in Section 3.5 we set notations and basic results for the family ( f ) f ∈Ω. Section 3.6
and Section 3.7 are devoted to obtain the points (3) and (4) which actually imply
Theorem 3.3. The conjugacy, which corresponds to points (5) to (8), is constructed in
Section 3.8.

3.5. Semi-local dynamics. — First, we fix an arbitrary f0 ∈ Ω. As Theorem 3.4 is
essentially a local result, we will, when necessary, replace Ω by a smaller connected open
neighborhood of f0 in Ω.

Since the fibration of ℂk by vertical hypersurfaces will play an important role in
what follows, we denote by 𝜋 : ℂk → ℂ the projection onto the first coordinate, and we
write points as (z ,w) ∈ ℂ × ℂk−1 to indicate the corresponding coordinates.

Let r ( f ) be the repelling 2-periodic point given by Assumption (6). We denote
by 𝜒 r ( f ) the eigenvalue of Dr ( f ) f 2 with the smallest modulus. Since the eigenvalues of
Dr ( f ) f 2 have no resonance, there exist (see e.g. [9]) a holomorphic family of holomor-
phic maps (𝜙f ) f ∈Ω from ℂk to ℙk and a holomorphic family (L̃ f ) f ∈Ω of linear self-maps
of ℂk−1 such that 𝜙f (0) = r ( f ) and

𝜙−1
f ◦ f 2 ◦ 𝜙f (z ,w) =

(
𝜒 r ( f )z , L̃ f (w)

)
=: L f (z ,w)

for every (z ,w) ∈ ℂ × ℂk−1 near 0. In particular, the vertical linear fibration of ℂk

defined by 𝜋 is sent on the strong unstable fibration of r ( f ) and 𝜙f |𝜋−1 (0) provides a
parametrization of the strongly unstable manifold of r ( f ). Moreover, Assumption (6)
implies that there exists a neighborhood A of 0 in ℂk such that 𝜙f0 is injective on A with
U− ⊂ 𝜙f0 (A). The cone condition in Assumption (2) ensures that there is an open set
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Ã ⊂ ℂk−1 such that {0} × Ã ⊂ A and 𝜙f0 ({0} × Ã) is a vertical graph passing through
𝔻 ×V− × 𝔻k−2, i.e., is a closed analytic subset of 𝔻 ×V− × 𝔻k−2 whose closure in U− is
disjoint from (𝜕𝔻) ×V− ×𝔻k−2. As these properties are stable under small perturbations,
there exists 𝜈 > 0 such that, possibly by reducing Ω and slightly A, Ã, for each f ∈ Ω

• 𝜙f is injective on A with U− ⊂ 𝜙f (A),
• for all c ∈ 𝔻𝜈, {c } × Ã ⊂ A and 𝜙f ({c } × Ã) is a vertical graph passing through
𝔻 ×V− × 𝔻k−2.

We denote by 𝛿 f : 𝜙f (A) → A the associated inverse map. Observe that the second point
above combined with Assumption (4) implies that each 𝜙f ({c } × Ã) intersects Λ( f ). In
what follows, it will be convenient to normalize the family (𝜙f ) f ∈Ω in the following way.
Consider a family (u f ) f ∈Ω of self-maps of ℂ × ℂk−1 of the form u f (z ,w) = (𝜏( f )z ,w)
where 𝜏( f ) ∈ ℂ∗ depends holomorphically on f and is chosen so that

• |𝜏( f ) | < 𝜈 ensuring that u f (𝔻 × Ã) ⊂ 𝔻𝜈 × Ã,
• there exists r ′ ∈ Λ close enough to r such that for all f inΩ, 𝜋◦u−1

f ◦𝛿 f (r ′( f )) ≡ 1.

Hence, if we replace 𝜙f by 𝜙f ◦ u f , we may assume that 𝜈 = 1, and we then have
𝜋 ◦ 𝛿 f (r ′( f )) ≡ 1. This normalization will only appear in Corollary 3.18, which is
nevertheless a key ingredient in Section 3.8.

We then set B := 𝔻 × Ã and D f := 𝜙f (B). The latter possesses a natural foliation
Ff where Ff (c ) = 𝜙f ({c } × Ã) for c ∈ 𝔻. As we have already seen, each leaf is a vertical
graph intersecting Λ( f ). In particular, Ff (0) corresponds to the local strong unstable
manifoldW uu

r ( f ) , loc of r ( f ). We also denote byW cu
r ( f ) , loc = 𝜙f (𝔻 × {0}), the local weak

unstable manifold of r ( f ).
Finally, we also introduce some notation for the dynamics near the saddle fixed

point p ( f ) given by Assumption (3). Let 𝜒 p ( f ) denote the eigenvalue of Dp ( f ) f with
the smallest modulus. Using holomorphic conjugacies separately on the stable and
unstable directions, we first choose holomorphic local coordinates v f : Vf → 𝔻k on a
neighborhoodVf of p ( f ) such that

• v−1
f (𝔻 × {0}) is contained in the stable manifold of p ( f ) and v f ◦ f ◦ v−1

f (z , 0) =
(𝜒 p ( f )z , 0),

• v−1
f ({0} × 𝔻k−1) is contained in the unstable manifold of p ( f ) and, whenever

it is defined, v f ◦ f ◦ v−1
f (0,w) = (0,A f (w)) where A f is an expanding square

matrix of size k − 1.

In what follows, the local stable manifold of p ( f ) will be defined asW s
p ( f ) , loc := v−1

f (𝔻 ×
{0}). For the local unstable manifoldW u

p ( f ) , loc of p ( f ), we take the vertical graph in

𝔻 ×V− × 𝔻k−2 given by Assumption (3).
Moreover, this assumption also implies that there exists a C 1-family (𝜃 f ) f ∈M

of local C 1-diffeomorphisms such that 𝜃 f ◦ f ◦ 𝜃−1
f is the linear map K f (z ,w) =

(𝜒 p ( f )z ,A f (w)). Observe that we can assume the domain of definition of 𝜃 f contains
Vf and that D0(𝜃 f ◦ v−1

f ) = Id.
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Figure 1. — Summary of the notations. The whole picture is contained in U−. In the example
obtained in Section 4, the hyperbolic set Λ( f ) is a Cantor set but it intersects any sufficiently
vertical graph in V−.

Consequences of the inclination lemma. — We will make extensive use of the
inclination lemma for families of hypersurfaces transverse toW s

p ( f ) , loc parametrized by
a subset M of Ω. We will gradually strengthen the assumptions on M until reaching
condition (†) in Section 3.7 and (★) in Section 3.8. For now, we just assume that M is a
connected analytic subset of Ω.

Definition 3.6. — We say that Γ = (Γ( f )) f ∈M is a family of polydiscs intersecting
transverselyW s

p ( f ) , loc at b ( f ) if

• each Γ( f ) is biholomorphic to 𝔻k−1 and f ↦→ Γ( f ) is holomorphic,
• each Γ( f ) intersectsW s

p ( f ) , loc in a unique point and this intersection is transverse,
• the image by v f of this intersection point with Γ( f ) is (b ( f ), 0) ∈ 𝔻 × {0}.

From now on, we also assume that there exists x ∈ Λ and m ∈ ℕ such that for
all f ∈ M , x ( f ) ∈ W u

p ( f ) , loc, f
m (x ( f )) = r ( f ) and Dx ( f ) f m

(
Tx ( f )W u

p ( f ) , loc

)
is a generic

hyperplane for Dr ( f ) f 2. By increasing m if necessary, we can assume that f m maps
biholomorphically a neighborhood of x ( f ) inW u

p ( f ) , loc to a vertical graphWm ( f ) in D f ,

C 1-close toW uu
r ( f ) , loc and thus tangent to C𝜌.
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Let Γ be a family of polydiscs intersecting transverselyW s
p ( f ) , loc. By the inclination

lemma, there exists j0 ≥ 0 such that for all f ∈ M and all j ≥ j0, f j (Γ( f )) contains a
subset which is C 1-close toW u

p ( f ) , loc. In particular, f j+m (Γ( f )) contains a subset Γj ( f )
which is a vertical graph in D f , tangent to C𝜌 and C 1-close toWm ( f ). From this, using
again the inclination lemma but near r ( f ), we can construct families of vertical graphs
which turns out to be key objects to prove that (†) implies a persistent resonance between
𝜒 p ( f ) and 𝜒 r ( f ) .

Definition 3.7. — Let Γ and j0 be as above. Let f ∈ M , l0 ≥ 0 and j ≥ j0. Let
c j ( f ) denote the point of intersection between Γj ( f ) and W cu

r ( f ) , loc. If for all 0 ≤ l ≤ l0,

|𝜋 ◦ 𝛿 f ( f 2l (c j ( f ))) | < 1/2 then we define Γj ,l ( f ) inductively by setting

• Γj ,l ( f ) is the vertical graph in f 2(Γj ,l−1( f )) ∩D f which contains f 2l (c j ( f )).
In this situation, we say that Γj ,l ( f ) is well-defined for all l ≤ l0.

Remark 3.8

(1) Observe that the injectivity in Assumption (2) implies that there is no ambiguity
in the definition of Γj ,l ( f ).

(2) A priori, it could happen that Γj ,l ( f ) is well defined for some f = f1 and not
for f = f2, even if |𝜋 ◦ 𝛿 f1 ( f 2l

1 (c j ( f1))) | is much smaller than 1/2. However, we
will see in Lemma 3.12 that under condition (†), this doesn’t happen, and thus
(Γj ,l ( f )) f ∈M define holomorphic families of vertical graphs.

Since Dx ( f ) f m (Tx ( f )W u
p ( f ) , loc) is a generic hyperplane for Dr ( f ) f 2, in particular

W cu
r ( f ) , loc is transverse toWm ( f ). Hence, by the inclination lemma there exist an integer

a > m and a holomorphic injective map h f : 𝔻 →Vf (whereVf is the neighborhood of
p ( f ) defined above) such that

• Δf := h f (𝔻) is transverse toW u
p ( f ) , loc,

• Δf is a graph aboveW s
p ( f ) , loc, more precisely the projection on the first coordinate

of v f ◦ h f is the identity,
• f a|Δf is injective and f a (Δf ) is a neighborhood of r ( f ) inW cu

r ( f ) , loc.

We define H f : 𝔻 → 𝔻 by H f = 𝜋 ◦ 𝛿 f ◦ f a ◦ h f , which can be seen as a transition map
between parametrizations of Δf andW cu

r ( f ) , loc respectively. Observe that H f is injective
with H f (0) = 0. Hence, there exists 𝛼̃( f ) ≠ 0, which depends holomorphically on f ,
such that

H f (s ) = 𝛼̃( f )s + o (s ),

where o (s ) is uniform in f .
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Remark 3.9. — Observe that a similar construction can be done whereW cu
r ( f ) , loc

is replaced by a holomorphic disc Σf transverse to f n
(
W u
p ( f ) , loc

)
as long as the point in

W u
p ( f ) , loc sent to Σf ∩ f n

(
W u
p ( f ) , loc

)
is not critical for f n. We will use such construction

in Proposition 3.17 for the homoclinic intersection given by Assumption (8), i.e., Σf
will be an open subset ofW s

p ( f ) , loc.

Figure 2. — Definition of Γj ,l ( f ) where x ( f ) ∈W u
p ( f ) , loc is a preimage of r ( f ). The integers

m and a are constant but j and l can be large. The next two lemmas show that c j ( f ) and c j ,l ( f )
are essentially equal to 𝜒 p ( f ) j and 𝜒 p ( f ) j 𝜒 r ( f )l respectively in the coordinates onW cu

r ( f ) , loc
given by 𝜙f .

The two following lemmas can be seen as consequences of the inclination lemma
or linearization results. Their purpose is to show that the vertical graphs Γj ,l ( f ) are close
to leaves Ff (c j ,l ( f )) of the strong unstable foliation of r ( f ), where c j ,l ( f ) is essentially
equal to 𝜒 p ( f ) j 𝜒 r ( f )l . The first lemma focus on Γj ( f ). It should be possible to
prove it using distorsion estimates. Instead, we use C 1-linearization and this part of
Assumption (3) only appears here.

Lemma 3.10. — There exists a holomorphic function 𝛽 : M → ℂ∗ with the following
property. Let (Γ( f )) f ∈M be a family of polydiscs intersecting transverselyW s

p ( f ) , loc at b ( f ).
For each n ≥ 0 large enough there exists a holomorphic function sn : M → ℂ such that for each
f ∈ M

• Δf ∩ f n (Γ( f )) = h f (sn ( f )),
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• sn ( f ) = 𝛽 ( f )b ( f )𝜒np ( f ) + o (𝜒
n
p ( f ) ).

In other words, for j ≥ 0 large enough, Γj ( f ) ∩W cu
r ( f ) , loc ∈ Ff (H f (s j+m−a ( f ))) with

H f (s j+m−a ( f )) = 𝛼( f )b ( f )𝜒 jp ( f ) + u j ( f ),

with 𝛼( f ) := 𝜒m−a
p ( f ) 𝛼̃( f )𝛽 ( f ) and such that u j ( f )/𝜒 jp ( f ) converges to 0, locally uniformly

on M .

Proof. — As 𝜃 f is well defined onVf , we can define a C 1-germ of (ℂ, 0) by

Ff (s ) := 𝜋 ◦ v f ◦ 𝜃−1
f ◦ 𝜋̃0 ◦ 𝜃 f ◦ h f (s ),

where 𝜋 : ℂk → ℂ is the first projection as above and 𝜋̃0 : ℂk → ℂk is defined by
𝜋̃0(z ,w) = (z , 0). The key point in the proof is that the differential of Ff at 0 is ℂ-linear.
The maps h f and 𝜋 ◦v f are holomorphic so we focus on 𝜃−1

f ◦ 𝜋̃0 ◦ 𝜃 f which corresponds
to the projection in the unstable direction given by the linearization 𝜃 f . This maps is a
priori not holomorphic but there exists a sequence (Un)n≥0 of open neighborhoods of
W u
p ( f ) , loc ∩Vf such that

𝜋n := f n ◦ v−1
f ◦ 𝜋̃0 ◦ v f ◦ f −n

is defined on Un . We claim that, for u ∈W u
p ( f ) , loc ∩Vf , we have

𝜋n (u) = 0 = 𝜃−1
f ◦ 𝜋̃0 ◦ 𝜃 f (u) and Du𝜋n −−−−→

n→∞
Du (𝜃−1

f ◦ 𝜋̃0 ◦ 𝜃 f ).

Indeed, the equality is obvious and for the convergence, if we set 𝜓 := 𝜃 f ◦ v−1
f and

F := v f ◦ f ◦ v−1
f then

𝜃 f ◦ 𝜋n ◦ 𝜃−1
f = 𝜓 ◦ F n ◦ 𝜋̃0 ◦ F −n ◦ 𝜓−1 = K n

f ◦ 𝜓 ◦ 𝜋̃0 ◦ 𝜓−1 ◦ K −n
f .

It follows that, if y satisfies 𝜃 f (u) = (0, y) then, using that D0𝜓 = Id and writing
D (0,A−n

f (y ) )𝜓
−1 = Id+En , we have

D (0,y ) (𝜃 f ◦ 𝜋n ◦ 𝜃−1
f ) = K n

f ◦ 𝜋̃0 ◦ (Id+En) ◦ K −n
f

= K n
f ◦ 𝜋̃0 ◦ K −n

f + K n
f ◦ 𝜋̃0 ◦ En ◦ K −n

f .

K f commutes with 𝜋̃0 thus the first term is equal to 𝜋̃0. The second one converges to 0
since ∥K −n

f ∥ ≃ 𝜒−n
p ( f ) , ∥K

n
f ◦ 𝜋̃0∥ ≃ 𝜒np ( f ) and ∥En ∥ converges to 0.

This gives that 𝜃−1
f ◦ 𝜋̃0 ◦ 𝜃 f is ℂ-differentiable onW u

p ( f ) , loc and so at h f (0). Hence,
there exists 𝛾( f ) ∈ ℂ, which is non-zero since Δf andW s

p ( f ) , loc are transverse toW u
p ( f ) , loc,

such that Ff (s ) = 𝛾( f )s + o (s ).
On the other hand, let (Γ( f )) f ∈M be a family of polydiscs intersecting transversely

W s
p ( f ) , loc at b ( f ). For each n ∈ ℕ large enough, there exists sn ( f ) ∈ 𝔻 which depends

holomorphically on f ∈ M and such that h f (sn ( f )) ∈ f n (Γ( f )) ∩ Δf . The set Γ̃( f ) :=
𝜃 f (Γ( f )) is locally a vertical graph {(g f (y), y)} where g f : (ℂk−1, 0) → ℂ is a C 1-germ.
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Its image Γ̃n ( f ) by K n
f is given locally by {(g nf (y), y)} where g nf (y) = 𝜒np ( f ) g f (A

−n
f (y)).

Hence, since A−n
f contracts at an exponential speed, we have g nf (y) = 𝜒np ( f ) g f (0) +

o (𝜒np ( f ) ) where the error term is uniform in f . Moreover, there exists yn ( f ) such that

𝜃−1
f (g nf (yn ( f )), yn ( f )) = h f (sn ( f )). Therefore, the definitions of v f and K f give

Ff (sn ( f )) = 𝜋 ◦ v f ◦ 𝜃−1
f ◦ 𝜋̃0

(
g nf (yn ( f )), yn ( f ))

)
= 𝜋 ◦ v f ◦ 𝜃−1

f

(
g nf (yn ( f )), 0

)
= 𝜋 ◦ v f ◦ 𝜃−1

f

(
𝜒np ( f ) g f (0), 0

)
+ o

(
𝜒np ( f )

)
= 𝜋 ◦ v f ◦ 𝜃−1

f

(
K n
f

(
𝜃 f

(
v−1
f (b ( f ), 0)

) ) )
+ o

(
𝜒np ( f )

)
= 𝜋 ◦ v f ◦ f n

(
v−1
f (b ( f ), 0)

)
+ o

(
𝜒np ( f )

)
= 𝜒np ( f )b ( f ) + o

(
𝜒np ( f )

)
.

Hence, sn ( f ) = 𝛽 ( f )b ( f )𝜒np ( f ) + o (𝜒
n
p ( f ) ) where 𝛽 ( f ) := 𝛾( f )−1. To conclude, the

sequence sn ( f )/(b ( f )𝜒np ( f ) ) depends holomorphically on f and this sequence converge
locally uniformly to 𝛽 ( f ) which is then also holomorphic. □

The next lemma can be seen as a consequence of the inclination lemma in the
presence of a dominated splitting. It can be proved using the linearization near r ( f )
and the proof is left to the reader.

Lemma 3.11. — Let (Γ( f )) f ∈M be a family of polydiscs intersecting transversely
W s
p ( f ) , loc at b ( f ). There exists a sequence (𝜖n)n≥0 converging to 0 with the following property.

If f ∈ M , j ≥ n and l ≥ n are such that Γj ,l ( f ) is well-defined then

d (Γj ,l ( f ),Ff (c j ,l ( f ))) ≤ 𝜖n ,

where c j ,l ( f ) = 𝛼( f )b ( f )𝜒 jp ( f ) 𝜒
l
r ( f ) .

3.6. Strong relations between the multipliers. — From now on, we consider a
subvarietyM ⊂ Ω which satisfies (1), (2) and (3) in Definition 3.1. Once again, we fix
f0 ∈ M .

Lemma 3.12. — Let ( jn)n≥0 and (ln)n≥0 be two increasing sequences such that
(𝜒 jnp ( f0 ) 𝜒

ln
r ( f0 )

)n≥0 is a sequence in 𝔻 which converges. Then
{
f ↦→ 𝜒

jn
p ( f ) 𝜒

ln
r ( f )

}
n≥0 is a normal

family in a neighborhoodM0 ⊂ M of f0.

Proof. — A preliminary observation is that since Λ moves with respect to a
holomorphic motion, the family of functions on M , { f → x ( f )}x∈Λ is a normal family.
In particular, there exists a neighborhood M0 ⊂ M of f0 such that if x ( f0) is in D f0 with
|𝜋 ◦ 𝛿 f0 (x ( f0)) | <

1
20 then for all f ∈ M0, x ( f ) ∈ D f with |𝜋 ◦ 𝛿 f (x ( f )) | < 1

10 .
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By Assumption (8), there exists a family of polydiscs Γ intersecting transversely
W s
p ( f ) , loc at some b ( f ) ≠ 0 and such that Γ( f ) ⊂W u

p ( f ) . By exchanging each Γ( f ) by an

appropriate subset of f N (Γ( f )), we can assume that, for all f ∈ M0, |𝛼( f )b ( f ) | < 1
20 .

By Lemma 3.10, the first coordinate (with respect to 𝛿 f0) of c jn ( f0) := Γjn ( f0) ∩
W cu
r ( f0 ) , loc is H f0 (s jn+m−a ( f0)) = 𝛼( f0)b ( f0)𝜒

jn
p ( f0 )

+ u jn ( f0). Hence,

𝜋 ◦ 𝛿 f0 ( f
2l

0 (c jn ( f0))) = 𝜒 lr ( f0 )

(
𝛼( f0)b ( f0)𝜒

jn
p ( f0 )

+ u jn ( f0)
)
.

Since (𝜒 jnp ( f0 ) 𝜒
ln
r ( f0 )

)n≥0 converges to some 𝜒 ( f0) ∈ 𝔻 and since u jn ( f0)/𝜒
jn
p ( f0 )

converges
to 0, the sets Γjn ,ln ( f0) are well-defined for n ≥ n0 for some n0 large enough.

By Assumption (4), for n ≥ n0 there exists a point xn ( f0) ∈ Λ( f0) which be-
longs to Γjn ,ln ( f0). On the other hand, by Lemma 3.11, the sequence of analytic sets
(Γjn ,ln ( f0))n≥n0 converges to Ff0 (𝛼( f0)b ( f0)𝜒 ( f0)). Since |𝛼( f0)b ( f0) | < 1

20 , this implies
that |𝜋 ◦ 𝛿 f0 (xn ( f0)) | <

1
20 for n ≥ n1 large enough and thus |𝜋 ◦ 𝛿 f (xn ( f )) | < 1

10 for all
f ∈ M0.

As M satisfies (3) in Definition 3.1, the persistence of proper intersections (see
e.g. [27, Section 12.3]) implies that the continuation xn ( f ) of xn ( f0) in Λ( f ) also
lies on Γjn ,ln ( f ), which is thus well-defined. As observed above, all these functions
{ f ↦→ xn ( f )}n≥n1 form a normal family. Hence, the same holds for the family{

f ↦−→
𝜋 ◦ 𝛿 f (xn ( f ))
b ( f )𝛼( f )

}
n≥n1

.

The result follows since, by Lemma 3.10 and Lemma 3.11, these functions are, locally
on M0, arbitrarily close to

{
f ↦→ 𝜒

jn
p ( f ) 𝜒

ln
r ( f )

}
n≥0. □

Proposition 3.13. — There exists 𝜁 ∈ 𝕊1 and 𝜔 ∈ ℝ∗
+ such that for all f ∈ M

𝜒 r ( f ) = 𝜁 𝜒−𝜔
p ( f ) .

Proof. — Let ( jn)n≥0 and (ln)n≥0 be two sequences as in Lemma 3.12 which we
choose so that

𝜒 ( f0) := lim
n→∞

𝜒
jn
p ( f0 )

𝜒
ln
r ( f0 )

is non-zero. By analytic continuation, it suffices to prove the result in a neighborhood
of f0. Let M0 be the neighborhood of f0 obtained by Lemma 3.12 where the family
{ f ↦→ 𝜒

jn
p ( f ) 𝜒

ln
r ( f ) }n≥0 is normal. Let 𝜒 : M0 → ℂ be a limit value and we can assume,

up to take a subsequence, that for each f ∈ M0,

(3.1) 𝜒
jn
p ( f ) 𝜒

ln
r ( f ) −→ 𝜒 ( f ).

Let M1 be a simply connected neighborhood of f0 on which 𝜒 does not vanish. Let
P ( f ) (resp. R ( f ), resp. Q ( f )) be a logarithm of 𝜒 p ( f ) (resp. 𝜒 r ( f ) , resp. 𝜒 ( f )) on M1.
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By (3.1) , the real parts of these functions satisfy on M1

lim
n→∞

jn ReP ( f ) + ln ReR ( f ) = ReQ ( f )

and thus

lim
n→∞

jn
ln

ReP ( f ) + ReR ( f ) = 0.

Hence, if 𝜔 denotes a limit value of ( jn/ln)n≥0 then ReR ( f ) = −𝜔ReP ( f ). This implies
that there exists t ∈ ℝ such that R = −𝜔P + it and so 𝜒 r ( f ) = 𝜁 𝜒−𝜔

p ( f ) with 𝜁 := e it . □

This gives precise information on the possible limit values for families of the
form (Γj ,l ) obtained by Definition 3.7.

Lemma 3.14. — There exist t0 > 0 and a neighborhoodM0 ⊂ M of f0 with the follow-
ing property. Let ( jn)n≥0 and (ln)n≥0 be two increasing sequences such that (𝜒 jnp ( f0 ) 𝜒

ln
r ( f0 )

)n≥0

converges to 𝜉 𝜒 tp ( f0 )
for some t ∈ [t0,+∞[ and 𝜉 ∈ 𝕊1. Let Γ be a family of polydiscs cutting

W s
p ( f ) , loc transversely at b ( f ). Let (Γj ,l ) be the associated sequence of families of polydiscs ob-

tained by Definition 3.7. Then, there exists n0 ∈ ℕ such that for f ∈ M0, (Γjn ,ln ( f ))n≥n0 is well
defined and converges to F (𝛼( f )b ( f )𝜉 𝜒 tp ( f ) ), uniformly on M0.

Proof. — Let t0 > 0 be such that
��𝛼( f0)𝜒 t0p ( f0 ) �� < 1

20 and let M0 ⊂ M be a

relatively compact neighborhood of M such that
��𝛼( f )𝜒 t0p ( f ) �� < 1

10 for all f ∈ M0. By

Proposition 3.13, there exist 𝜔 ∈ ℝ and 𝜁 in 𝕊1 such that for all f ∈ M , 𝜒 r ( f ) = 𝜁 𝜒−𝜔
p ( f ) .

Hence, limn→∞ 𝜒
jn
p ( f0 )

𝜒
ln
r ( f0 )

= 𝜉 𝜒 tp ( f0 )
implies that ( jn − 𝜔ln)n≥0 and (𝜁 ln )n≥0 converge

to t and 𝜉 respectively. Therefore, for all f ∈ M , (𝜒 jnp ( f ) 𝜒
ln
r ( f ) )n≥0 converges to 𝜉 𝜒 tp ( f ) .

As we assumed that t ≥ t0, we thus have that
��𝛼( f )b ( f )𝜒 jnp ( f ) 𝜒 lnr ( f ) �� < 1

5 for all f ∈ M0

and n ≥ n1 where n1 ∈ ℕ is large enough.
By Lemma 3.10, for all f ∈M , Γjn ( f ) passes throughW cu

r ( f ) , loc∩F (H f (s jn+m−a ( f ))),
where H f (s jn+m−a ( f )) = 𝛼( f )b ( f )𝜒 jnp ( f ) + u jn ( f ) with u jn ( f )/𝜒

jn
p ( f ) converging to 0, uni-

formly on f ∈ M0. Thus, for n0 ≥ n1 large enough we have
��u jn ( f )𝜒 lnr ( f ) �� < 1

5 on M0 for

all n ≥ n0. Hence,
��𝜒 lnr ( f )H f (s jn+m−a ( f ))

�� < 1
2 and (Γjn ,ln ( f ))n≥n0 are well-defined. On

the other hand, the convergence above implies that

lim
n→∞

𝜒
ln
r ( f )H f (s jn+m−a ( f )) = 𝛼( f )b ( f )𝜉 𝜒 tp ( f ) .

This, combined with Lemma 3.11, implies that the sequence (Γjn ,ln ( f ))n≥n0 converges
to F (𝛼( f )b ( f )𝜉 𝜒 tp ( f ) ). □

3.7. Special holomorphic motion and constant multipliers. — From now on, we
assume that M ⊂ Ω satisfies condition (†) and we choose an element f0 ∈ M such that
⟨𝜒 p ( f0 ) , 𝜒 r ( f0 )⟩ = ℂ∗.
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Remark 3.15. — Observe that this last condition is equivalent to saying that t ,
𝜔 and 1 are linearly independent over ℚ, where 𝜒 r ( f0 ) = e

2i𝜋t 𝜒−𝜔
p ( f0 )

. Hence, Proposi-

tion 3.13 implies that ⟨𝜒 p ( f ) , 𝜒 r ( f )⟩ = ℂ∗ for all f ∈ M . This actually gives the last point
in Theorem 3.3.

We now prove that this additional assumption on M constrains the holomorphic
motion of Λ( f ) to be very special.

Proposition 3.16. — Let (Γ( f )) f ∈M be a family of polydiscs cuttingW s
p ( f ) , loc trans-

versely at b ( f ) such that Γ( f ) ⊂W u
p ( f ) . Pick x ( f0) ∈ Λ( f0) ∩D f0 such that 𝜋(𝛿 f0 (x ( f0))) =

𝛼( f0)b ( f0)𝜉 𝜒 tp ( f0 ) for some t ∈ ℝ and 𝜉 ∈ 𝕊1. Then, for all f ∈ M , the holomorphic continua-
tion x ( f ) in Λ( f ) of x ( f0) lies in D f and satisfies 𝜋(𝛿 f (x ( f ))) = b ( f )𝛼( f )𝜉 𝜒 tp ( f ) .

Proof. — Let t0 > 0 andM0 ⊂M be as in Lemma 3.14. Let x ( f0) ∈ Λ( f0)∩D f0 . By
exchanging x ( f0) by a preimage, we can assume that 𝜋(𝛿 f0 (x ( f0))) = 𝛼( f0)b ( f0)𝜉 𝜒 tp ( f0 )
with t > t0. Since ⟨𝜒 p ( f0 ) , 𝜒 r ( f0 )⟩ = ℂ∗, there exist ( jn)n≥0 and (ln)n≥0 two increasing
sequences such that (𝜒 jnp ( f0 ) 𝜒

ln
r ( f0 )

)n≥0 converges to 𝜉 𝜒 tp ( f0 )
. Let Γjn ,ln be the families

of analytic sets associated to Γ( f ) ⊂ W u
p ( f ) . Lemma 3.14 implies that (Γjn ,ln ( f ))≥0

converges to F (𝛼( f )b ( f )𝜉 𝜒 tp ( f ) ), uniformly on M0. Hence, if x ( f ) intersects properly
Ff (𝛼( f )b ( f )𝜉 𝜒 tp ( f ) ) then x ( f ) would intersect properly Γjn ,ln ( f ) for n ≥ 0 large enough.
This contradicts condition (†) and thus x ( f ) ∈ Ff (𝛼( f )b ( f )𝜉 𝜒 tp ( f ) ) for all f ∈ M0, i.e.,
𝜋(𝛿 f (x ( f ))) = b ( f )𝛼( f )𝜉 𝜒 tp ( f ) . By analytic continuation, this equality holds on the
whole space M . □

Using several homoclinic intersections, we obtain the following strong restriction
on 𝜒 p which, combined with Proposition 3.13, implies Theorem 3.3

Proposition 3.17. — The function 𝜒 p is constant on M .

Proof. — Assume, by contradiction, that 𝜒 p is not constant. This implies the
existence of a small arc 𝛾 : [0, 1] → M such that 𝜒 p (𝛾 (s ) ) = r e i sa for all s ∈ [0, 1], where
r ∈ ℂ∗ and a > 0 are two constants. In particular, for n ∈ ℕ large, s ↦→ 𝜒np (𝛾 (s ) ) winds
about n/a times around 0 on a small circle. We will use this fast variation in the argument
together with Proposition 3.16 in order to obtain a contradiction.

By Assumption (8), there exist K ≥ 1 and q̃ ( f ) ∈ W u
p ( f ) , loc which is not a crit-

ical point for f K and such that q ( f ) := f K (q̃ ( f )) ≠ p ( f ) is a transverse homoclinic
intersection inW s

p ( f ) , loc. We denote by b0( f ) the point in 𝔻 such that v f (q ( f ), 0) = b0( f )
and we have b0( f ) ≠ 0. As the homoclinic intersection is transverse, there exists
a family of polydiscs (Γ( f )) f ∈M intersecting transverselyW s

p ( f ) , loc at b0( f ) such that
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Γ( f ) ⊂W u
p ( f ) . Moreover, as observed in Remark 3.9, since q̃ ( f ) is not critical for f K ,

there exists a holomorphic injective map g f : 𝔻 →Vf such that
• Δ′

f := g f (𝔻) is transverse toW u
p ( f ) , loc,

• Δ′
f is a graph aboveW s

p ( f ) , loc, i.e., the projection on the first coordinate of v f ◦ g f
is the identity,

• f K|Δ′
f

is injective and f K (Δ′
f ) is a neighborhood of q ( f ) inW s

p ( f ) , loc.

We also defineG f : 𝔻 → 𝔻 byG f = 𝜋◦v f ◦ f K ◦g f where 𝜋 : ℂk → ℂ is the first projection.
Observe that G f is injective with G f (0) = b0( f ). Hence, there exists 𝛽 ( f ) ≠ 0, which
depends holomorphically on f , such that

G f (s ) = b0( f ) + 𝛽 ( f )s + o (s ),
where o (s ) is uniform in f . Just as in Lemma 3.10, for n ≥ K large enough, there exist
holomorphic functions s ′n and 𝛿n such that

• g f (s ′n ( f )) ∈ f n−K (Γ( f )),
• s ′n ( f ) = b0( f )𝜒n−Kp ( f ) + o (𝜒

n
p ( f ) ),

• G f (s ′n ( f )) = b0( f ) (1 + 𝛽 ( f )𝜒np ( f ) + 𝛿n ( f )), where 𝛿n ( f ) = o (𝜒np ( f ) ) and 𝛽 ( f ) :=

𝛽 ( f )𝜒−K
p ( f ) .

We set bn ( f ) := G f (s ′n ( f )) which corresponds to a transverse homoclinic intersection
f n (Γ( f )) ∩W s

p ( f ) , loc very close to b0( f ).
Now, if we apply Proposition 3.16 first to b ( f ) = bn ( f ) with 𝜉 = 1, t = 0

and a second time to b ( f ) = b0( f ), where 𝜉n and tn are chosen such that 𝜉n 𝜒
tn
p ( f0 )

=

1 + 𝜒np ( f0 )
𝛽 ( f0) + 𝛿n ( f0), then we obtain for all f ∈ M

(b0( f ) + b0( f )𝜒np ( f ) 𝛽 ( f ) + b0( f )𝛿n ( f ))𝛼( f ) = b0( f )𝛼( f )𝜉n 𝜒 tnp ( f ) ,

and thus

(3.2) 1 + 𝜒np ( f ) 𝛽 ( f ) + 𝛿n ( f ) = 𝜉n 𝜒
tn
p ( f ) .

Observe that 𝜉n converges to 1 and tn converges to 0 since 1 + 𝜒np ( f0 )
𝛽 ( f0) + 𝛿n ( f0) goes

to 1.
We choose an arc 𝛾 : [0, 1] → M as above, small enough to insure that the

argument of s ↦→ 𝛽 (𝛾(s )) is almost constant and such that 𝜒 p (𝛾 (s ) ) = r e i sa for all
s ∈ [0, 1], where r ∈ ℂ∗ and a > 0 are two constants. In particular, when n is large then
s ↦→ 𝜒np (𝛾 (s ) ) 𝛽 (𝛾(s )) winds about n/a times around 0 on a small circle.

On the other hand, let P : Ω → ℂ be a logarithm of 𝜒 p on Ω and let 𝜃n ∈ ℝ

converging to 0 such that 𝜉n = e i𝜃n . Then 𝜉n 𝜒
tn
p ( f ) − 1 = (tnP ( f ) + i𝜃n) + o (tnP ( f ) + i𝜃n)

whose argument is essentially that of tnP ( f ) + i𝜃n which is never purely imaginary since
|𝜒 p ( f ) | < 1 on Ω. Hence, the equality (3.2) cannot hold for n ≥ 1 large enough. This
gives the desired contradiction. □

The combination of Proposition 3.17 with Proposition 3.16 says that the first
coordinate (with respect to 𝜙f ) of the holomorphic motion of points in Λ( f ) ∩ D f is
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not only holomorphic in f ∈ M but also in the starting point. In fact, in the coordinates
given by 𝜙f , this dependence is linear and our choice of normalization of 𝜙f implies
that it is constant.

Corollary 3.18. — If x ( f0) ∈ Λ( f0) ∩D f then, for all f ∈ M
𝜋(𝛿 f (x ( f ))) = 𝜋(𝛿 f0 (x ( f0))).

Proof. — As in the proof of Proposition 3.17, let q ( f ) be the homoclinic inter-
section and b0( f ) the corresponding point in 𝔻. By Propositions 3.17 and 3.16, if

𝜋(𝛿 f0 (x ( f0))) = 𝛼( f0)b0( f0)s ,
for some s ∈ ℂ, then

𝜋(𝛿 f (x ( f ))) = 𝛼( f )b0( f )s .
In other words

𝜋(𝛿 f (x ( f ))) = 𝜋(𝛿 f0 (x ( f0)))
b0( f )𝛼( f )
b0( f0)𝛼( f0)

.

On the other hand, in order to normalize 𝜙f we had chosen r ′ ∈ Λ in Section 3.5 close
enough to r such that

𝜋(𝛿 f (r ′( f ))) = 𝜋(𝛿 f0 (r
′( f0))).

Hence, b0 ( f )𝛼 ( f )
b0 ( f0 )𝛼 ( f0 ) is constantly equal to 1. □

3.8. Construction of the conjugacy. — We will first construct local conjugacies
between elements of M and then extend them in a neighborhood of the small Julia
set Jk . This type of problem is classical in one variable complex dynamics. See in
particular [22] where Buff–Epstein obtained at the end a global conjugacy outside
the exceptional sets. In our context we have much less information on the dynamics
outside the small Julia set and, even if the counterpart of [22] probably holds in higher
dimension, our final argument relies strongly on the fact that we are working with a
family.

Let M ⊂ Ω be a subvariety which satisfies (★). The difference with condition (†)
is that ( f ) f ∈M is supposed to be simply connected and stable in the sense of Berteloot–
Bianchi–Dupont [10]. Observe that in [10, Theorem 1.1], the parameter space has to
be an open subset of Endkd . However, this restriction has been overcome by Bianchi in
the broader setting of polynomial-like maps with large topological degree [15]. The key
notion in [10, 15] for what follows is the equilibrium lamination. To introduce it, we first
consider the set

J :=
{
𝛾 : M → ℙk 𝛾 is holomorphic and 𝛾( f ) ∈ Jk ( f ) for every f ∈M

}
.

The family ( f ) f ∈M induces naturally a self-map F of J by setting F (𝛾) ( f ) := f (𝛾( f )).

Definition 3.19. — An equilibrium lamination is a relatively compact subset L of J
such that
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(1) 𝛾( f ) ≠ 𝛾′( f ) for all f ∈ M if 𝛾, 𝛾′ ∈ L with 𝛾 ≠ 𝛾′,
(2) for every f ∈ M , the equilibrium measure of f gives full mass to {𝛾( f ) | 𝛾 ∈ L},
(3) for every f ∈ M and 𝛾 ∈ L, 𝛾( f ) is not a critical point of f ,
(4) L is F -invariant and F : L → L is dk to 1.

One characterization of the stability of the family ( f ) f ∈M given by [15, The-
orem C] is that this family admits an equilibrium lamination. A key step in proving
that all elements of M are conjugate near their small Julia sets is to first construct local
conjugacies near the repelling point r ( f ) that respect the equilibrium lamination.

Lemma 3.20. — Assume that M satisfies (★), and let L denote the associated equilib-
rium lamination. Let f0 and f1 be two points in M . For each i ∈ {0, 1}, there exist connected
neighborhoods Ũ i ⋐ Ui of r ( fi ) with the following properties.

• fi (Ũ i ) ∩Ui = ∅ and f 2
i is a biholomorphism between Ũ i andUi ,

• there exists a biholomorphism 𝜓 : U0 ∪ f0(Ũ 0) → U1 ∪ f1(Ũ 1) such that

(3.3) f0 = 𝜓−1 ◦ f1 ◦ 𝜓 and f 2
0 = 𝜓−1 ◦ f 2

1 ◦ 𝜓 on Ũ 0,

• if 𝛾 ∈ L verifies 𝛾( f0) ∈ U0 then 𝛾( f1) = 𝜓(𝛾( f0)),

Observe that, since f0(Ũ 0) ∩U0 = ∅, the first equality in (3.3) is a consequence
of the definition of 𝜓 on these sets. However, it will guarantee that 𝜓 gives a conjugacy
between f0 and f1 on a neighborhood of the small Julia sets as soon as the same holds
between f 2

0 and f 2
1 .

Proof. — For i ∈ {0, 1}, let Ffi be the foliation of D fi defined in Section 3.5.
Observe that by Corollary 3.18, if x ( f0) ∈Λ( f0)∩D f0 lies on the leaf Ff0 (c ) := 𝜙f0 (𝜋−1(c ))
then its continuation x ( f1) lies on Ff1 (c ) := 𝜙f1 (𝜋−1(c )). Replacing the family of polydisk
Γ( f ) ⊂W u

p ( f ) by a similar family with Γ( f ) ⊂ Crit( f ) given by Assumption (7), we can
extend this result to points in Jk ( f0) ∩ D f0 coming from the equilibrium lamination.
To be more precise, let 𝛾 ∈ L such that 𝛾( f0) ∈ D f0 . Since sets of the form (Γjn ,ln ( f0))
with Γ( f0) ⊂ Crit( f0) can approximate every leaf Ff0 (c ), and since 𝛾( f ) is never in
the postcritical set of f , a proper intersection argument shows that 𝜋 ◦ 𝛿 f (𝛾( f )) is
independent of f .

In order to define 𝜓, it suffices to find, for i ∈ {0, 1}, k − 1 foliations (G j
fi
)1≤ j ≤k−1

near r ( fi ) which satisfy the same invariance property and such that
(
Ffi ,G1

fi
, . . . ,Gk−1

fi

)
defines local coordinates near r ( fi ). For this last condition, it is sufficient to check that
the k tangent spaces at r ( fi ) of these k foliations form a family of k linearly independent
hyperplanes.

To this aim, observe first that by Assumption (6), p ( fi ) is in the domain of
linearization of r ( fi ) and thus, there exists n0 ≥ 1 such that f n0

i sends biholomorphically
an open subset Vi ⊂ D fi to a neighborhood V ′

i of p ( fi ). We denote by vi : V ′
i → Vi

the associated inverse branch of f n0
i . Moreover, the cone condition in Assumption (2)

ensures that the leaves of G0
fi

:= f n0
i (Ffi |Vi ) are transverse toW s

p ( fi ) , loc. On the other
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hand, recall that (†) holds on M , so there exist m ∈ ℕ and x ( fi ) ∈W u
p ( fi ) , loc ∩ Λ( fi ) such

that f mi (x ( fi )) = r ( fi ) and that, by increasing m if necessary, we can assume that f mi
sends biholomorphically a neighborhood of x ( fi ) inW u

p ( fi ) , loc to a vertical graphWm ( fi )
in D fi . Hence, by the inclination lemma, there exist n1 ≥ 1, a neighborhood Ui ⊂ D fi of
r ( fi ) and a small open setV ′′

i ⊂ V ′
i close to p ( fi ) such that

• Ui ⊂ f 2
i (Ui ),

• f n1
i : V ′′

i → Ui is a biholomorphism whose inverse is denoted by ui ,
• the leaves of G1

fi
:= f n1

i (G0
fi |V ′′

i
) are all C 1-close toWm ( fi ). In particular, the

point (2) in Definition 3.1 implies that the tangent space of the leaf of G1
fi

containing r ( fi ) is a generic hyperplane for Dr ( fi ) f
2
i .

This last point, together with our choice of m, ensures that each leaf of G1
fi

intersects Λ( fi ). Moreover, G1
fi

has the same invariance property as Ffi , i.e., if, for some

𝛾 ∈ L, 𝛾( f0) is inU0 and lies on a certain leaf of G1
f0

then 𝛾( f1) lies on the corresponding

leaf of G1
f1

. To be more precise, first observe that, by possibly reducing each Ui , we
can assume that U1 = 𝜙f1 ◦ 𝛿 f0 (U0). Moreover, as in the beginning of this proof, the
fact that each leaf of Ffi can be approximated by Γj ,l ( fi ) in the postcritical set of fi and
properties (3) and (4) in Definition 3.19 imply that if 𝛾( f0) ∈ U0 then

𝜋 ◦ 𝛿 f0 ◦ v0 ◦ u0(𝛾( f0)) = 𝜋 ◦ 𝛿 f1 ◦ v1 ◦ u1(𝛾( f1)).

The other foliations are simply defined as G j
fi

:=
(
f 2( j−1)
i

(
G1
fi

) )
|Ui

. They also have

the above invariance property since the same arguments imply

𝜋 ◦ 𝛿 f0 ◦ v0 ◦ u0 ◦ g j−1
0 (𝛾( f0)) = 𝜋 ◦ 𝛿 f1 ◦ v1 ◦ u1 ◦ g j−1

1 (𝛾( f1)),

if 𝛾 ∈ L with 𝛾( f0) ∈ U0, where gi is the local inverse of f 2
i near r ( fi ). Furthermore, the

fact that the leaf of G1
fi

containing r ( fi ) is a generic hyperplane for Dr ( fi ) f
2
i ensures that

the tangent spaces of Ffi , G1
fi
, . . . ,Gk−1

fi
at r ( fi ) are k linearly independent hyperplanes.

Hence, possibly by reducingUi , these foliations define coordinates on Ui , i.e., since Ffi
(resp. G j

fi
) corresponds to the fibration defined by 𝜋◦𝛿 fi (resp. 𝜋◦𝛿 fi ◦vi ◦ui ◦ g

j−1
i ), there

exists an open subset Û i ⊂ ℂk such that the holomorphic map 𝜓i : Ui → Û i defined by

𝜓i (y) =
(
𝜋 ◦ 𝛿 fi (y), 𝜋 ◦ 𝛿 fi ◦ vi ◦ ui (y), . . . , 𝜋 ◦ 𝛿 fi ◦ vi ◦ ui ◦ g k−2

i (y)
)

is biholomorphic.
Possibly by reducing again these sets, 𝜓 := 𝜓−1

1 ◦𝜓0 is a biholomorphism between
U0 and U1. Furthermore, the discussion above and Corollary 3.18 imply that if 𝛾 ∈ L
satisfies 𝛾( f0) ∈ U0 then 𝛾( f1) ∈ U1 and 𝛾( f1) = 𝜓(𝛾( f0)). In particular, 𝜓(r ( f0)) = r ( f1).
Thus, using that these points are 2-periodic and possibly by changing one last time
U0 and U1, we can assume that, for i ∈ {0, 1}, there exists a connected neighborhood
Ũ i ⋐ Ui of r ( fi ) such that fi (Ũ i ) ∩Ui = ∅ and f 2

i defines a biholomorphism between Ũ i

andUi . This allows us to extend 𝜓 to f0(Ũ 0) by 𝜓(y) := f1 ◦ 𝜓( f −1
0 (y)) which artificially
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gives

f0 = 𝜓−1 ◦ f1 ◦ 𝜓 on Ũ 0.

On the other hand, coming back to f 2
0 and f 2

1 , the fact that 𝜓(𝛾( f0)) = 𝛾( f1) for each
𝛾 ∈ L with 𝛾( f0) ∈ U0 implies that

(3.4) f 2
0 = 𝜓−1 ◦ f 2

1 ◦ 𝜓 on Ũ 0 ∩ Λ( f0).
Since Assumption (2) guarantees that the points of the blender lie in the small Julia set
which is not contained in an analytic subset of Ũ 0, [45], then Ũ 0 ∩ {𝛾( f0) | 𝛾 ∈ L} is
not contained in an analytic subset and the equality (3.4) holds throughout Ũ 0. □

To emphasize the dependency of 𝜓 on f1, in what follows we will denote by 𝜓f
the corresponding map for f ∈ M where f0 stays fixed.

Lemma 3.21. — The closure L of L is an unbranched lamination. In particular, 𝜓f
extends to a conjugacy between Jk ( f0) and Jk ( f ).

Proof. — Let f1 ∈ M and letUi , i ∈ {0, 1}, be as in Lemma 3.20. Let (𝛾n)n≥0 and
(𝜌n)n≥0 be two sequences in L which converge toward two maps from M to ℙk , 𝛾 and
𝜌 respectively. Assume further that 𝛾( f1) = 𝜌( f1). Our first aim is to show that 𝛾 = 𝜌

on M .
Let N ≥ 0 be such that there exists y ∈ f −N

1 (𝛾( f1)) ∩U1. For n ≥ 0 large enough,
let yn ∈ U1 (resp. zn ∈ U1) be such that f N1 (yn) = 𝛾n ( f1), f N1 (zn) = 𝜌n ( f1) and

lim
n→∞

yn = lim
n→∞

zn = y .

The point (4) in Definition 3.19 gives the existence of two sequences (𝛾̃n)n≥0 and
(𝜌n)n≥0 in L such that F N (𝛾̃n) = 𝛾n , F N (𝜌n) = 𝜌n and 𝛾̃n ( f1) = yn , 𝜌n ( f1) = zn. Up
to a subsequence, we can assume that (𝛾̃n)n≥0 and (𝜌n)n≥0 converge to two maps 𝛾̃

and 𝜌. Since, by Lemma 3.20 𝜓f1 (𝛾̃n ( f0)) = 𝛾̃n ( f1) and 𝜓f1 (𝜌n ( f0)) = 𝜌n ( f1) we have
𝜓f1 (𝛾̃( f0)) = 𝜓f1 (𝜌( f0)) and thus 𝛾̃( f0) = 𝜌( f0) by injectivity of 𝜓f1 . By applying F N , we
also have 𝛾( f0) = 𝜌( f0). The same arguments with an arbitrary map f ∈ M give 𝛾 = 𝜌.
This proves that L is unbranched.

From this, we can define, for every 𝛾 ∈ L, 𝜓f (𝛾( f0)) := 𝛾( f ). Since L is un-
branched, it extends 𝜓f as a conjugacy between Jk ( f0) and Jk ( f ). □

The extension of 𝜓f to a neighborhood of Jk ( f0) comes from the following partial
generalization of [22] to higher dimensions.

Proposition 3.22. — Let f0 and f1 be two endomorphisms of ℙk of degree d ≥ 2.
Assume there exist an open setV0 and a continuous map 𝜓 : V0 ∪ Jk ( f0) → ℙk such that

• 𝜓 | Jk ( f0 ) is a homeomorphism from Jk ( f0) to Jk ( f1) such that 𝜓 ◦ f0 = f1 ◦𝜓 on Jk ( f0),
• V0 ∩ Jk ( f0) ≠ ∅ and 𝜓 |V0 is holomorphic.

Assume also that the exceptional set E( f0) of f0 is disjoint from Jk ( f0). Then, there exist two
open neighborhoods N1 ⊂ N2 of Jk ( f0) such that
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• f0(N1) ⊂ N2,
• 𝜓 extends to a holomorphic map 𝜓 on N2 such that f1 ◦ 𝜓 = 𝜓 ◦ f0 on N1.

As a first step, we show that the set of points where 𝜓 admits a local holomorphic
extension is invariant under the dynamics. To this end, we need to lift small paths via f0
in a controlled way. This is done through the following two elementary lemmas, where
we denote by C the critical set of f0, set A := f0(C ) its set of critical values, and define
B := f −1

0 (A).

Lemma 3.23. — Let y ∈ ℙk \ B , and let 𝛾′ : [0, 1] → ℙk \ A be a path such that
𝛾′(0) = f0(y). Then there exists a unique path 𝛾 : [0, 1] → ℙk \ B such that 𝛾(0) = y and
f0(𝛾(t )) = 𝛾′(t ) for all t ∈ [0, 1].

Proof. — This comes from the fact that f0 : ℙk \B → ℙk \A is a covering map. □

Lemma 3.24. — Let y ∈ ℙk and letV be a neighborhood of y . There exists a connected
open neighborhoodVy (resp.Wy ) of y (resp. of f0(y)) such that

• Vy ⊂ V andWy ⊂ f0(Vy ),
• if 𝛾′ : [0, 1] →Wy \ A is a path and z ∈ f −1

0 (𝛾′(0)) ∩Vy then there exists a path 𝛾 in
Vy with 𝛾(0) = z and f0(𝛾(t )) = 𝛾′(t ) for all t ∈ [0, 1].

Notice that in the following proof we use a Lojasiewicz type inequality but the
fact that f is finite and open is sufficient.

Proof. — LetVy ⊂V be a connected open neighborhood of y such that f −1
0 ( f0(y))∩

𝜕Vy = ∅, i.e., dist(𝜕Vy , f −1
0 ( f0(y))) = a with a > 0. A Lojasiewicz type inequality ([45,

Corollary 4.12] when k = 2) gives that there exists a constant c > 0, depending only on
f0, such that

dist( f0(𝜕Vy ), f0(y)) ≥ cad
k
.

Since f0 is an open mapping, there exists 𝜖 > 0 such that 𝜖 < cad
k

andWy := B ( f0(y), 𝜖 ) ⊂
f0(Vy ). In particular, f0(𝜕Vy ) ∩Wy = ∅. Hence, if 𝛾′ : [0, 1] → Wy \ A is a path and
z ∈ f −1

0 (𝛾′(0)) ∩Vy then by Lemma 3.23 we can lift 𝛾′ to a path 𝛾 in ℙk such that
𝛾(0) = z . Since 𝛾′( [0, 1]) ⊂Wy and f0(𝜕Vy ) ∩Wy = ∅, we must have 𝛾( [0, 1]) ⊂ Vy . □

Lemma 3.25. — The set of points y in Jk ( f0) where 𝜓 admits a holomorphic extension
in a neighborhood of y is f0-invariant.

Proof. — Let y ∈ Jk ( f0) be such a point and letV be a neighborhood of y where
𝜓 extends holomorphically. The interesting case is when y is a critical point of f0. Let
Vy andWy be the connected open neighborhood of y and f0(y) respectively given by
Lemma 3.24. Let z ∈Wy \ A and let z1 and z2 be two points in f −1

0 (z ) ∩Vy . The goal is
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to show that f1(𝜓(z1)) = f1(𝜓(z2)) since in that case, we can define 𝜓 onWy \ A using
local inverse branches of f0 and the definition will extend toWy .

Since y is in Jk ( f0), the same holds for f0(y). The fact that Jk ( f0) is nowhere
pluripolar [45] implies the existence of w ∈ (Wy ∩ Jk ( f0)) \A. Let 𝛾′ be a simple path in
Wy \ A between z and w . By Lemma 3.24, it admits two lifts 𝛾1 and 𝛾2 inVy such that
𝛾1(0) = z1 and 𝛾2(0) = z2. The end points w1 := 𝛾1(1) and w2 := 𝛾2(1) are preimages
of w and thus are in Jk ( f0). Since 𝛾′ is simple, by analytic continuation there exist a
connected neighborhood Ω of 𝛾′( [0, 1]) and two holomorphic maps, g1 and g2, from Ω

toVy such that for i ∈ {1, 2},
• gi is an inverse branch of f0, i.e., f0 ◦ gi = IdΩ,
• 𝛾i (t ) = gi (𝛾′(t )) for all t ∈ [0, 1].

Since 𝜓 | Jk ( f0 ) conjugates f0 to f1 on Jk ( f0), we have f1 ◦ 𝜓 ◦ gi = 𝜓 on Ω ∩ Jk ( f0) for
i ∈ {1, 2}. Hence, the fact that Ω ∩ Jk ( f0) is not pluripolar and the connectedness of
Ω implies that f1 ◦ 𝜓 ◦ g1 = f1 ◦ 𝜓 ◦ g2 on Ω. In particular f1(𝜓(z1)) = f1(𝜓(g1(z ))) =
f1(𝜓(g2(z ))) = f1(𝜓(z2)). □

From this, the proof of Proposition 3.22 is identical to the one of [22, Lemma 3]
but we include it here for completeness.

Proof of Proposition 3.22. — Since Jk ( f0) ∩ E( f0) = ∅, there exists N ≥ 1 such
that Jk ( f0) ⊂ f N0 (U1). Hence, Lemma 3.25 implies that for all y ∈ Jk ( f0) there is a
holomorphic extension 𝜓y of 𝜓 in a neighborhood of y . In particular, there exists ry > 0
such that 𝜓y is defined on B (y , 3ry ). Observe that if y , z ∈ Jk ( f0) are such that ry ≤ rz
and B (y , ry ) ∩ B (z , rz ) ≠ ∅ then B (y , ry ) ⊂ B (z , 3rz ). In particular, by non-pluripolarity
of B (y , ry ) ∩ Jk ( f0), we have that 𝜓y = 𝜓z on B (y , ry ). Hence, 𝜓 has a holomorphic
extension 𝜓 on

N2 :=
⋃

y∈ Jk ( f0 )
B (y , ry ).

By continuity of f0, there exists an open neighborhood N1 ⊂ N2 of Jk ( f0) such that
f0(N1) ⊂ N2. We can also assume that each connected component of N1 intersects
Jk ( f0). If N is such connected component then f1 ◦ 𝜓 = 𝜓 ◦ f0 on N ∩ Jk ( f0) by
definition of 𝜓 and thus by analytic continuation f1 ◦ 𝜓 = 𝜓 ◦ f0 on N . □

This allows us to complete to proof of Theorem 3.4.

Proof of Theorem 3.4. — LetM be an analytic subset of Ω satisfying (★). Let f0 and
f1 be two elements ofM . By Lemma 3.20 and Lemma 3.21, there exists a map 𝜓, given
on Jk ( f0) by the unbranched holomorphic motion L, which satisfies the assumptions of
Proposition 3.22. Observe that we use Assumption (9) here, which ensures that Jk ( f0)
is disjoint from the exceptional set E( f0). Hence, there are two neighborhoods N1 ⊂ N2
of Jk ( f0) and a holomorphic map 𝜓 on N2 such that f1 ◦ 𝜓 = 𝜓 ◦ f0 on N1. This directly
implies that all the periodic points in Jk ( f0) can be followed holomorphically on M and
that their multipliers are constant on M . □
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4. Existence of a suitable open subset in Endkd

The aim of this section is to prove the following existence statement.

Theorem 4.1. — There exist (a, 𝜖 ,𝜎3, . . . ,𝜎k ) ∈ (ℝ>0)k and a small perturbation
f ∈ Polykd of the map f0 : ℂk → ℂk given by

f0(z ,w , y3, . . . , yk ) = (e i𝜋/4z + 𝜖w , a (w2 − 1),𝜎3y3, . . . ,𝜎k yk )

such that f admits a neighborhood Ω in Endkd which satisfies all the assumptions described in
Section 3.2.

Remark 4.2. — Since the map f in Theorem 4.1 belongs to Polykd , the result also
provides a non-empty open subset of Polykd satisfying all the assumptions of Section 3.2.

The structure of the section is as follows. In Section 4.1, we recall elementary
results about the dynamics of w ↦→ a (w2 − 1) when |a | is large. In Section 4.2, we
begin to study the 2-dimensional case which is the most important one. In particular,
Lemma 4.5 and Lemma 4.6 settle the blender property for the repelling hyperbolic
set Λ. Observe that for d = 2, it is delicate to obtain a saddle point and a repelling
hyperbolic set which form a heterodimensional cycle. This explains why we have to
work with the second or the fourth iterates of our maps. Section 4.2 is also devoted to
the study of the degeneracy of these maps when the parameter a goes to infinity. This
is the key ingredient to check Assumption (10) of Section 3.2, which is by far the most
difficult to obtain. The case of higher dimension is considered in Section 4.3 where the
parameters are chosen more carefully, in particular to linearize in family the dynamics
near the two periodic points p and r . Section 4.4 is devoted to establishing point (iii) in
Assumption (10). Finally, we prove Theorem 4.1 in Section 4.5.

4.1. Dynamics of a (w2 − 1). — For a ∈ ℂ∗ we consider the polynomial map
qa (w) := a (w2−1). For |a | large enough, qa is hyperbolic with a Cantor set as Julia set. In
what follows, we will construct a blender for a map of the form (z ,w) ↦→ (g (z ,w), q4

a (w)).
To this end, we need to consider open sets with specific (but simple) combinatorics.

From now on, we fix a ∈ ℂ∗ with |a | > 10.

Lemma 4.3. — There exists a neighborhoodU+ (resp. U−) of 1 (resp. −1) such that
qa |U± is a biholomorphism betweenU± and 𝔻3, and

D (±1, |a |−1) ⊂ U± ⊂ D (±1, 3|a |−1).

In particular, qa admits a unique fixed point w̃ (a) ∈ U− .

This implies that the Julia set of qa is a Cantor set, equal to Jqa =
⋂
n≥0 q

−n
a (U+∪U−).

Its dynamics corresponds to a (one-sided) full 2-shift. However, our construction will
not use the entire Jqa but two smaller hyperbolic sets.
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The first one is simply the unique fixed point w̃ (a) ∈ U−. For the second one, let
g+ : 𝔻3 → U+ and g− : 𝔻3 → U− be the two inverse branches of qa obtained in Lemma 4.3.
From this point, we define the following open sets:

• V− := g− (U+) andV+ := g+(U−),
• V1 := q −2

a (V+) ∩V+,V2 := q −2
a (V−) ∩V+,V3 := q −2

a (V+) ∩V− andV4 := q −2
a (V−) ∩V−.

They satisfy q2
a (V−) = q2

a (V+) = 𝔻3 and q4
a (Vi ) = 𝔻3 for i ∈ {1, 2, 3, 4}. The definition of

Vi ensures that the associated maximal invariant sets are equal, i.e.,

(4.1) E :=
⋂
n≥0

q −2n
a (V+ ∪V−) =

⋂
n≥0

q −4n
a

(
4⋃
i=1

Vi

)
.

It is also a Cantor set where q2
a is conjugate to a full 2-shift. Observe that if {+,−} is

the alphabet for qa | Jqa then q2
a |E corresponds to the 2-shift associated to {+−,−+}. This

alternation will play an important role in the proof of Theorem 4.1. In particular, the
second coordinates of r in Assumption (6) will be the point w0(a) which is the unique
2-periodic point of qa inV4 ⊂ V−. We will need the following simple fact in the proof
of Lemma 4.14.

Lemma 4.4. — If a is real then the 2-periodic point w0(a) ∈ V− is also real. Actually,
the two inverse branches, g+ : 𝔻3 → U+ and g− : 𝔻3 → U− map real points into ℝ. In particular,
wl (a) := (g+ ◦ g−)l (w0(a)), are real for all l ≥ 0.

Proof. — This simply comes from the fact that g±(w) = ±
√︁

1 +w/a and w0(a) =
limn→∞(g− ◦ g+)n (0). □

All the subsets defined in this section depend on a. If necessary, we will write
U±(a),V±(a),Vi (a) or E (a) to emphasize on these dependencies.

4.2. Perturbations of product maps and the IFS at infinity. — The construction in
Theorem 4.1 starts from a skew product

F𝜆 (z ,w) = (𝛼z + 𝜖w + 𝛽zw , qa (w)),

where 𝜆 = (a,𝛼, 𝛽 , 𝜖 ). Such a map does not extend to ℙ2. The case of Endkd with a
general k ≥ 2 will be considered in Section 4.3. Several objects denoted with stylized
uppercase letters in this section (e.g. F𝜆 , P(𝜆 ), R(𝜆 )) will corresponds to lowercase
letters in Section 4.3 (e.g. f𝜆 , p (𝜆 ), r (𝜆 )).

A first observation is that F(a,𝛼, 𝛽 ,𝜖 ) and F(a,𝛼, 𝛽 ,𝜖 ′ ) are globally conjugate if 𝜖 ≠ 0 ≠

𝜖 ′ by (z ,w) ↦→ (C z ,w) for some C ≠ 0. The role of the parameter 𝜖 ≠ 0 is just to rescale
the dynamics in order to have the blender property above 𝔻.

If w̃ (a) denotes the unique fixed point of qa in U− (a) then F𝜆 has a fixed point

P(𝜆 ) =
(

−𝜖w̃ (a)
𝛼 + 𝛽w̃ (a) − 1

, w̃ (a)
)
,

which is repelling in a vertical direction and whose multiplier in the horizontal direction
is 𝛼 + 𝛽w̃ (a), very close to 𝛼 − 𝛽 when |a | is large. On the other hand, by the choice of
the setsV+(a) andV− (a), the dynamics in the horizontal direction of the second iterate



SPARSITY OF POSTCRITICALLY FINITE MAPS OF ℙk AND BEYOND 57

F 2
𝜆

is mainly a dilatation of factor 𝛼2− 𝛽2 on ℂ× (V+(a) ∪V− (a)). Hence, in what follows
we will choose 𝛼 and 𝛽 in order to have |𝛼 − 𝛽 | < 1, which implies that P(𝜆 ) is saddle,
and |𝛼2 − 𝛽2 | > 1 which ensures the existence of a repelling hyperbolic set Λ(𝜆 ) for F 2

𝜆
.

This hyperbolic set will have a blender property if 𝛼, 𝛽 and 𝜖 are well chosen and it
will project on E (a). In order to check transversality properties, we will make a goes to
infinity. In this situation, the set E (a) degenerates to {−1, 1} and the dynamics on Λ(𝜆 )
degenerates to (the inverse of) an iterated function system (IFS) with 2 generators.

To be more precise, the second iterate of F𝜆 is

F 2
𝜆 (z ,w) =

(
z
(
𝛼2 + 𝛼𝛽 (w + qa (w)) + 𝛽2wqa (w)

)
+ 𝜖

(
𝛼w + qa (w) + 𝛽wqa (w)

)
, q2
a (w)

)
.

In particular, since

V+(a) ⊂ qa (V−) = U+(a) ⊂ D (1, 3|a |−1) and

V− (a) ⊂ qa (V+) = U− (a) ⊂ D (−1, 3|a |−1),

if 𝜆 := (𝛼, 𝛽 , 𝜖 ) ∈ ℂ3 and R > 0 are fixed then for |a | > 10 large enough, F 2
𝜆
(z ,w)

is arbitrarily close to (𝜙+
𝜆
(z ), q2

a (w)) (resp. (𝜙−
𝜆
(z ), q2

a (w))) on 𝔻R × V+(a) (resp. on
𝔻R ×V− (a)) where

𝜙+
𝜆
(z ) = (𝛼2 − 𝛽2)z − 𝜖 (𝛽 + 1 − 𝛼), 𝜙−

𝜆
(z ) = (𝛼2 − 𝛽2)z − 𝜖 (𝛽 + 𝛼 − 1).

From this, we define

𝜙1,𝜆 := 𝜙+
𝜆
◦ 𝜙+

𝜆
, 𝜙2,𝜆 := 𝜙−

𝜆
◦ 𝜙+

𝜆
, 𝜙3,𝜆 := 𝜙+

𝜆
◦ 𝜙−

𝜆
and 𝜙4,𝜆 := 𝜙−

𝜆
◦ 𝜙−

𝜆

in order to have F 4
𝜆
(z ,w) ≃ (𝜙 j ,𝜆 (z ), q4

a (w)) on 𝔻R ×V j (a).
Now, we fix a small real A > 0 and take 𝛼0 := 𝜁 (1 + A) and 𝛽0 := 2A𝜁 where

𝜁 ∈ 𝕊1. This gives 𝛼0 − 𝛽0 = 𝜁 (1 − A) and thus the fixed point P(a,𝛼0, 𝛽0, 𝜖 ) is saddle
for |a | large enough. On the other hand, 𝛼2

0 − 𝛽2
0 = 𝜁2(1 +2A −3A2) which has modulus

larger than 1 if A < 2/3. For the constant 𝜁 ∈ 𝕊1, following [38, Lemma 4.4], we will
take 𝜁 = e i𝜋/4 in order to have a blender property for Λ(𝜆 ). The following result can be
seen as the counterpart in our context of this lemma using the vocabulary of [81].

Lemma 4.5. — Let 𝜁 := e i𝜋/4 and 𝜖0 = (20(𝜁 − 1))−1. Let A ∈ (0, 1/10] be small
enough and let set 𝜆0 := (𝛼0, 𝛽0, 𝜖0) where

𝛼0 = 𝜁 (1 + A) and 𝛽0 = 2A𝜁 .

Then, there exist four open sets H j , j ∈ {1, 2, 3, 4} such that

𝔻2 =

4⋃
j=1

H j , 𝜙 j ,𝜆0
(H j ) ⊂ 𝔻2 and 𝔻 ⊂ H j .
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Proof. — For 𝜆1 := (𝜁 , 0, 𝜖0), an easy computation gives

𝜙1,𝜆1
(z ) = −z + 1 + i

20
, 𝜙2,𝜆1

(z ) = −z + i − 1
20

,

𝜙3,𝜆1
(z ) = −z + 1 − i

20
and 𝜙4,𝜆1

(z ) = −z − 1 + i
20

.

Moreover, if we define

H j = 𝔻4/3 ∪
{
z ∈ 𝔻2 ;

��arg
(
z 𝜁−2 j+1) �� < 𝜋/3

}
,

then 𝜙 j ,𝜆1
(H j ) ⊂ 𝔻2. Actually, this comes from the inequalities |2e i𝜋/3 −

√
2/20| < 2 and

|
√

2/20| < 1. Since this inclusion is stable under small perturbations, if A ∈ (0, 1/10]
is small enough and j ∈ {1, 2, 3, 4} then 𝜙 j ,𝜆0

(H j ) ⊂ 𝔻2 when 𝜆0 = (𝜁 (1 + A), 2A𝜁 , 𝜖0).
On the other hand, 𝔻2 =

⋃4
j=1H j and 𝔻 ⊂ ⋂4

j=1H j follow from the definition of H j . □

Since the properties in Lemma 4.5 are stable under perturbations of the 𝜙 j ,𝜆0
,

they persist in a small neighborhood of 𝜆0 = (𝛼0, 𝛽0, 𝜖0). From now on, we denote
by M̂ such small neighborhood of 𝜆0 which is connected and where, moreover, for all
𝜆 = (𝛼, 𝛽 , 𝜖 ) ∈ M̂

(4.2) 1/20 < |𝜖 | < 1/10, |𝛼 − 𝛽 | < 1 and |𝛼2 | − |𝛽2 | > 1 + A

In particular, if R := A−1, the maps 𝜙±
𝜆

satisfies 𝔻R ⊂ 𝜙±
𝜆
(𝔻R).

The next step is to define the hyperbolic set Λ with the blender property which
appears in Assumptions (2) and (4).

Lemma 4.6. — There exist 𝜌 > 100 and 𝛿 > 100 such that, if |a | > 𝛿 then for every
(𝛼, 𝛽 , 𝜖 ) ∈ M̂ the map F𝜆 , with 𝜆 := (a,𝛼, 𝛽 , 𝜖 ), satisfies the following properties.

• On both 𝔻R ×V− (a) and 𝔻R ×V+(a) the map F 2
𝜆

is injective, contracts the cone field
C𝜌 and is expanding. Moreover

𝔻R × (U+(a) ∪U− (a)) ⊂ F 2
𝜆 (𝔻R ×V±(a)).

In particular, the set Λ(𝜆 ) :=
⋂
n≥0 F −2n

𝜆
(𝔻R × (V− (a) ∪ V+(a))) is a hyperbolic

repelling invariant set for F 2
𝜆

.
• For i ∈ {1, 2, 3, 4}, any vertical graph in Hi ×Vi (a) tangent to the cone C𝜌 intersects
Λ(𝜆 ).

Moreover, both statements are stable under small C 1-perturbations of F𝜆 .

Proof. — Let 𝜆 = (𝛼, 𝛽 , 𝜖 ) be in M̂ . The key ingredient is that if |a | is large
enough then F 2

𝜆
is arbitrarily close to the product map (𝜙±

𝜆
, q2
a ) on 𝔻R ×V±(a) and F 4

𝜆
is

arbitrarily close to (𝜙 j ,𝜆 , q4
a ) onH j ×V j (a). This gives that F 2

𝜆
is expanding on 𝔻R×V±(a)

and also injective since q2
a is injective onV±(a). Moreover, F 2

𝜆
contracts the cone fieldC𝜌

on 𝔻R ×V±(a) for |a | large since the derivative of F 2
𝜆

in the vertical direction is bounded
from below by |a |2 while the derivative in the horizontal direction is uniformly bounded
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from above on 𝔻R ×V±(a). Hence, for every 𝜌 > 0 there exists 𝛿 > 0 such that F 2
𝜆

contracts the cone field C𝜌 on 𝔻R ×V±(a) as soon as |a | > 𝛿.
We also have 𝔻R × (U+(a) ∪U− (a)) ⊂ F 2

𝜆
(𝔻R × V±(a)) since U+(a) ∪U− (a) ⊂

𝔻3 = q2
a (V±(a)) and 𝔻R ⊂ 𝜙±

𝜆
(𝔻R). From this, it is classical that Λ(𝜆 ) :=

⋂
n≥0 F −2n

𝜆
(𝔻R ×

(V− (a) ∪V+(a))) is a hyperbolic repelling set for F 2
𝜆

. Actually, it is easy to see that Λ(𝜆 )
is homeomorphic, via the second canonical projection, to the corresponding set E (a)
for q2

a defined by (4.1) which is a Cantor set. Observe that, as in (4.1) , we also have
Λ(𝜆 ) = ⋂

n≥0 F −4n
𝜆

(𝔻R × (⋃4
j=1V j (a))).

The second statement is the counterpart of [38, Lemma 4.5] or [81, Proposi-
tion 3.3] in our setting and we only sketch the proof. Let H j , j ∈ {1, 2, 3, 4}, be the
four open subsets of 𝔻2 defined in Lemma 4.5. Recall that 𝔻2 =

⋃4
j=1H j , 𝔻 ⊂ H j and

𝜙 j ,𝜆 (H j ) ⊂ 𝔻2, where this last inclusion comes from our choice of M̂ . In particular,
there exists r > 0 such that

⋃4
j=1 𝜙 j ,𝜆 (H j ) ⊂ 𝔻2−r and thus, if |a | is large enough and we

set F 4
𝜆
(z ,w) = (F𝜆 (z ,w), q4

a (w)) then

4⋃
j=1

F𝜆 (H j ×V j (a)) ⊂
4⋃
j=1

H j .

Let 𝜂 > 0 denote the Lebesgue number of this open cover. If 𝜌 > 0 is large enough then
the projection on the first coordinate of a vertical graph tangent to C𝜌 has diameter less
than 𝜂. Hence, if j0 ∈ {1, 2, 3, 4} and Γ0 ⊂ H j0 ×V j0 (a) is a vertical graph tangent to C𝜌

then F 4
𝜆
(Γ0) contains a vertical graph Γ1 in H j1 ×V j1 (a) for some j1 ∈ {1, 2, 3, 4} which

is tangent to C𝜌. By induction, we obtain a sequence of vertical graph Γn ⊂ F 4n
𝜆

(Γ0) in
some H jn ×V jn (a) and thus Γ0 intersects

⋂
n≥0 F −4n

𝜆
(𝔻R × (⋃4

j=1V j (a))) = Λ(𝜆 ). □

By construction, each point in Λ(𝜆 ) is associated to a unique word 𝜔 in Σ :=
{−1, 1}ℕ. To be more precise, let g𝜆 ,+ : 𝔻R × 𝔻3 → 𝔻R ×V+(a) and g𝜆 ,− : 𝔻R × 𝔻3 →
𝔻R ×V− (a) be the two inverse branches of F 2

𝜆
. If we identify the symbol + with 1 and −

with −1 then a word 𝜔 = (𝜔n)n≥0 ∈ Σ := {−1, 1}ℕ induces a dynamical system (g n
𝜆 ,𝜔)n≥0

where

g n𝜆 ,𝜔 := g𝜆 ,𝜔0 ◦ · · · ◦ g𝜆 ,𝜔n−1 .

Since the maps g𝜆 ,± are contracting, the sequence (g n
𝜆 ,𝜔 (y))n≥0 has a limit, denoted by

x𝜔 (𝜆 ), which is independent of y ∈ 𝔻R × 𝔻3. The hyperbolic set Λ(𝜆 ) corresponds
exactly to {x𝜔 (𝜆 ) ; 𝜔 ∈ Σ} and the repelling point R(𝜆 ) in Assumption (6) is, in this
situation, x𝜔 (𝜆 ) where 𝜔 = (−1)n≥0. Observe that x𝜔 (𝜆 ) depends holomorphically on 𝜆

and continuously on 𝜔 with respect to the product topology on Σ.
In order to check Assumption (10), we are interested in parameters 𝜆 = (a,𝛼, 𝛽 , 𝜖 )

and 𝜔 ∈ Σ where x𝜔 (𝜆 ) is a preimage of R(𝜆 ) lying on W u
P(𝜆 ) , loc with an additional

condition on the multipliers. Here, we consider the local unstable manifold in 𝔻R ×
D (−1, 1/2), which is a vertical graph, see Lemma 4.8 below. In what follows, we will
study the degeneracy of these relations x𝜔 (𝜆 ) ∈W u

P(𝜆 ) , loc when |a | tends to infinity. The
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general picture is that Λ(𝜆 ) degenerates to the limit set of the IFS generated by two affine
maps andW u

P(𝜆 ) , loc converges to a vertical linear hypersurface. To study this degeneracy,
we introduce the set D (∞, r ) := {∞} ∪ {a ∈ ℂ ; |a | > 1/r } and we fixe 𝜌 > 100 and
𝛿 > 100 as in Lemma 4.6

Lemma 4.7. — For each 𝜔 ∈ Σ, the map x𝜔 extends holomorphically toD (∞, 1/𝜌)×M̂ .
If 𝜆 = (𝛼, 𝛽 , 𝜖 ), then this extension is given by

x𝜔 (∞,𝜆 ) = (z𝜔 (𝜆 ),𝜔0),
where

(4.3) z𝜔 (𝜆 ) = 𝜖 𝜇

(
𝛽

1 − 𝜇
+ (1 − 𝛼)h𝜔 (𝜇)

)
,

with 𝜇 := (𝛼2 − 𝛽2)−1 and h𝜔 (𝜇) :=
∑
n≥0 𝜔n𝜇

n . Moreover, the map x𝜔 depends continuously
on 𝜔 with respect to the product topology on Σ.

Proof. — When a converges to infinity, the maps g𝜆 ,± converge to (ℓ𝜆 ,±,±1) where

(4.4) ℓ𝜆 ,+(z ) = 𝜇z + 𝜈+ and ℓ𝜆 ,− (z ) = 𝜇z + 𝜈−,

with 𝜆 = (𝛼, 𝛽 , 𝜖 ), 𝜇 := (𝛼2 − 𝛽2)−1 and 𝜈± := 𝜇𝜖 (𝛽 ± (1 − 𝛼)). Hence, since the maps
g𝜆 ,± and ℓ𝜆 ,± are contractions, the point x𝜔 (𝜆 ) converges to (z𝜔 (𝜆 ),𝜔0) where

z𝜔 (𝜆 ) := lim
n→∞

ℓ𝜆 ,𝜔0
◦ · · · ◦ℓ𝜆 ,𝜔n−1

(y)

for any y ∈ 𝔻R . This gives the desired extension (which is holomorphic by the Riemann
extension theorem).

Moreover, the definition of ℓ± in (4.4) ensures that

z𝜔 (𝜆 ) =
∑︁
n≥0

𝜈𝜔n 𝜇
n .

Using the definition of 𝜈±, this gives

z𝜔 (𝜆 ) = 𝜖 𝜇

(
𝛽

1 − 𝜇
+ (1 − 𝛼)h𝜔 (𝜇)

)
,

where h𝜔 (𝜇) :=
∑
n≥0 𝜔n𝜇

n .
The continuity of 𝜔 ↦→ x𝜔 follows again from the fact that g𝜆 ,± are two

contractions. □

On the other hand, F𝜆 contractsC𝜌 on ℂ×D (−1, 1/2) thus when a goes to infinity,
the unstable manifoldW u

P(a,𝛼,𝛽 ,𝜖 ) , loc converges to a vertical line. More precisely, we have
the following result in family.

Lemma 4.8. — There exists a closed analytic subvariety W of D (∞, 1/𝜌) × M̂ ×
𝔻R ×D (−1, 1/2) that is vertical (i.e., its closure in a neighborhood of D (∞, 1/𝜌) × M̂ × 𝔻R ×
D (−1, 1/2) is disjoint from D (∞, 1/𝜌) × M̂ × (𝜕𝔻R) × D (−1, 1/2)). More precisely, W
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corresponds to a family of analytic sets (W𝜆 )𝜆 ∈D (∞,1/𝜌)×M̂ such thatW𝜆 is tangent to C𝜌 and,
denoting 𝜆 = (a,𝛼, 𝛽 , 𝜖 ), satisfies

• W u
P(𝜆 ) , loc if a ≠ ∞,

•
{
z = 𝜖

𝛼−𝛽−1

}
if a = ∞.

Proof. — For this proof, if a ≠ ∞ then we denote by Ga : D (−1, 1/2) → ℂ the
inverse branch of qa (w) = a (w2 − 1) defined byGa (w) = −

√︁
1 +w/a. Hence, the inverse

branch G𝜆 : ℂ ×D (−1, 1/2) → ℂ ×U− (a) of F𝜆 when 𝜆 = (a,𝛼, 𝛽 , 𝜖 ) is

G𝜆 (z ,w) =
(
z − 𝜖Ga (w)
𝛼 + 𝛽Ga (w)

,Ga (w)
)
.

Both definitions can be extended holomorphically to a = ∞ with G∞(w) := −1, but G𝜆

can no longer be seen as an inverse branch there. For n ≥ 1, we define

Wn :=
{
(𝜆 , z ,w) ∈ D (∞, 1/𝜌) × M̂ × ℂ ×D (−1, 1/2) ; 𝜋 ◦ Gn𝜆 (z ,w) = 0

}
,

where 𝜋 is the projection onto the first coordinate. Outside {a = ∞},Wn is the graph
transform ofW0 := D (∞, 1/𝜌) × M̂ × {0} × D (−1, 1/2) by F n (𝜆 , z ,w) := (𝜆 ,F n

𝜆
(z ,w))

and thus, the fibers have to converge toW u
P(𝜆 ) , loc. Since the fibers ofW0 are tangent to

C𝜌 and F𝜆 contracts this cone, the unstable manifolds are also tangent to C𝜌. Thus, they
have to be vertical in 𝔻R ×D (−1, 1/2) since P(𝜆 ) ∈ 𝔻1/4 ×D (−1, 1/2) and 𝜌 > 100.

Above {a = ∞}, the fibers of Wn are the vertical lines {z = f n
𝛼,𝛽 ,𝜖 (0)}, where

f𝛼,𝛽 ,𝜖 (z ) = (𝛼 − 𝛽 )z − 𝜖 . As this map is a contraction whose fixed point is 𝜖
𝛼−𝛽−1 , these

lines converge to
{
z = 𝜖

𝛼−𝛽−1

}
.

The fact that each fiber ofWn is a graph tangent to C𝜌 ensures that the sequence
(Wn)n≥1 lies in a compact family of closed analytic subsets of D (∞, 1/𝜌) × M̂ × 𝔻R × 𝔻3.
Any limit valueW of this sequence (which is actually unique by the discussion above)
provides the desired set in the statement. □

These information help us to understand the relation x𝜔 (𝜆 ) ∈ W u
P(𝜆 ) , loc. The

following result will in particular imply Assumption (5).

Lemma 4.9. — Let (𝛼0, 𝛽0, 𝜖0) be as in Lemma 4.5. There exists a non-empty
connected open neighborhood M of (∞,𝛼0, 𝛽0, 𝜖0) in D (∞, 1/𝛿) × M̂ such that for each 𝜔 ∈ Σ,
the analytic set

X𝜔 :=
{
𝜆 ∈ D (∞, 1/𝛿) × M̂ ; x𝜔 (𝜆 ) ∈W u

P(𝜆 ) , loc

}
is a (possibly empty) hypersurface and each irreducible component of X𝜔 that intersects M also
intersects {∞} × M̂ .

Proof. — It is clear that X𝜔 is an analytic set of codimension at most 1 (if not
empty). Let assume that for some 𝜔 ∈ Σ we have X𝜔 = D (∞, 1/𝛿) × M̂ . In particular,



62 THOMAS GAUTHIER et al.

with a = ∞ we have for all (𝛼, 𝛽 , 𝜖 ) ∈ M̂ , and after simplification by 𝜖 , that

𝜇

(
𝛽

1 − 𝜇
+ (1 − 𝛼)h𝜔 (𝜇)

)
=

1
𝛼 − 𝛽 − 1

,

where 𝜇 = (𝛼2 − 𝛽2)−1. As M̂ is open and as the radius of convergence of h𝜔 is 1, this
equality should hold for all (𝛼, 𝛽 ) ∈ ℂ2 with |𝛼2 − 𝛽2 | > 1 which is impossible with
𝛼 = 2 and 𝛽 = 1 since the right hand side diverges.

Observe that we have proved the stronger result that the intersections between
each X𝜔 and {∞} × M̂ are proper. This will allow us to prove the second statement
by contradiction. Assume there exist a sequence (𝜔n)n≥0 in Σ and a sequence (𝜆n)n≥0
in M̂ converging toward 𝜆∞ := (∞,𝛼0, 𝛽0, 𝜖0) such that 𝜆n belongs to an irreducible
component C𝜔n of X𝜔n which is disjoint from {∞} × M̂ . Up to a subsequence, (𝜔n)n≥0
converges to some 𝜔∞ ∈ Σ. By Lemma 4.7, 𝜔 ↦→ x𝜔 is continuous, thus X𝜔n converges
to X𝜔∞ and C𝜔n converges to a union of irreducible components C𝜔∞ of X𝜔∞ . Since
𝜆n ∈ C𝜔n , we must have 𝜆∞ ∈ C𝜔∞ , i.e., C𝜔∞ ∩ {∞} × M̂ ≠ ∅. The fact that C𝜔n is disjoint
from {∞} × M̂ then contradicts the persistence of proper intersections (see e.g. [27,
Section 12.3]). □

The next step is to check that we have a dense set of maps where points (i), (ii)
and (iv) in Assumption (10) are simultaneously satisfy. We denote by 𝜒 P(𝜆 ) (resp.
𝜒 R(𝜆 ) ) the eigenvalue of DP(𝜆 )F𝜆 (resp. DR(𝜆 )F 2

𝜆
) with the smallest modulus. A first

observation, already made in Remark 3.15, is that the condition ⟨𝜒 P(𝜆 ) , 𝜒 R(𝜆 )⟩ = ℂ∗

is equivalent to 1, 𝜃 and t being independent over ℚ, where 𝜒 R(𝜆 ) = e2i𝜋𝜃𝜒 tP(𝜆 ) . This
is fulfilled by a dense subsets of (𝜃, t ) ∈ ℝ2. Hence, in order to have (i), (ii) and (iv)
in Assumption (10) simultaneously it is sufficient to have the “transversality” property
described in Lemma 4.11 below, between two families of hypersurfaces (Y𝜁 ,t )𝜁∈𝕊1,t ∈ℝ
and (X𝜔)𝜔∈Σ. If 𝜁 ∈ 𝕊1 and t ∈ ℝ, we set

Y𝜁 ,t :=
{
𝜆 ∈ D (∞, 1/𝛿) × M̂ ; 𝜒 R(𝜆 ) = 𝜁 𝜒 tP(𝜆 )

}
.

Observe that 𝜒 R(a,𝛼, 𝛽 , 𝜖 ) ≃ 𝛼2 − 𝛽2 and 𝜒 P(a,𝛼, 𝛽 , 𝜖 ) ≃ 𝛼 − 𝛽 near a = ∞ soY𝜁 ,t is actually
a hypersurface. The family (Y𝜁 ,t )𝜁∈𝕊1, t ∈ℝ defined a (possibly singular) foliation which
is not holomorphic. On the other hand, (X𝜔)𝜔∈Σ is parametrized by a Cantor set and
depends continuously on 𝜔. Furthermore, the blender property of Λ(𝜆 ) ensures that
(X𝜔)𝜔∈Σ covers D (∞, 1/𝛿) × M̂ . Actually, many points belong to two X𝜔 and X𝜔′ at the
same time, which will greatly simplify the verification of Assumption (10).

Lemma 4.10. — Possibly by reducing M , for each 𝜆 ∈ M
• W u

P(𝜆 ) , loc ⊂ 𝔻1/4 ×D (−1, 1/2),
• there exist two words 𝜔,𝜔′ ∈ Σ such that 𝜔′ ≠ 𝜔 and 𝜆 ∈ X𝜔 ∩ X𝜔′ .

Proof. — The first point follows from the facts that P(𝜆 ) ∈ 𝔻1/4 × D (−1, 1/2)
and thatW u

P(𝜆 ) , loc is almost a straight vertical graph when |a | is large.
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For the second point, observe that both V3(a) and V4(a) are contained in
D (−1, 1/2) hence, since each H j in Lemma 4.5 contains D1/4 ⊂ 𝔻, the local stable
manifoldW u

P(𝜆 ) , loc intersects H3 ×V3(a) and H4 ×V4(a) in two vertical graphs tangent
to C𝜌. By Lemma 4.6, there exist two intersections betweenW u

P(𝜆 ) , loc and Λ(𝜆 ). □

Lemma 4.11. — Let M be as in Lemma 4.10. Let 𝜔,𝜔′ ∈ Σ, 𝜆 ∈ M and (𝜁 , t ) ∈
𝕊1 ×ℝ. If there exist irreducible components Z𝜔 and Z𝜔′ of X𝜔 and X𝜔′ respectively such that
𝜆 ∈ Z𝜔 = Z𝜔′ ⊂ Y𝜁 ,t then 𝜔 = 𝜔′.

Proof. — In this situation, by Lemma 4.9, Z𝜔 intersects {∞} × M̂ . As we have
seen in the proof of Lemma 4.9, a point 𝜆 = (∞,𝛼, 𝛽 , 𝜖 ) ∈ {∞}×M̂ is in X𝜔 if and only if

𝜖 𝜇

(
𝛽

1 − 𝜇
+ (1 − 𝛼)h𝜔 (𝜇)

)
=

𝜖

𝛼 − 𝛽 − 1
,

where 𝜇 = (𝛼2 − 𝛽2)−1 = 𝜒−1
R(𝜆 ) and h𝜔 (𝜇) =

∑
n≥0 𝜔n𝜇

n . The relation Z𝜔 = Z𝜔′ implies

that on Ẑ𝜔 := Z𝜔 ∩ {∞} × M̂ , which has dimension at least 2, h𝜔 (𝜇) = h𝜔′ (𝜇). If 𝜔 ≠ 𝜔′

then these two power series are different and 𝜇 has to be constant on Ẑ𝜔. On the other
hand, Z𝜔 ⊂ Y𝜁 ,t hence 𝜒 R(𝜆 ) = 𝜁 𝜒 tP(𝜆 ) on Ẑ𝜔. Since 𝜒 R(∞,𝛼,𝛽 ,𝜖 ) = 𝛼2 − 𝛽2 = 𝜇−1 and

𝜒 P(∞,𝛼,𝛽 ,𝜖 ) = 𝛼 − 𝛽 , both are constant on Ẑ𝜔 and thus 𝛼, 𝛽 are also constant. This
contradicts the fact that Ẑ𝜔 has dimension at least 2. Hence, 𝜔 = 𝜔′. □

4.3. Higher dimensions and degrees. — The next step is to move to higher di-
mensions and higher degrees. Let k ≥ 2 and d ≥ 2. We denote by [y0 : · · · : yk ] the
homogeneous coordinates on ℙk and we will mainly work in the affine chart y0 = 1.
Since the two first coordinates are the most important for the dynamics, we take the
convention of notation that

z = y1, w = y2 and y = (y3, . . . , yk ).

Recall that N k
d := (k + 1)

(k+d
d

)
is the dimension of the set of k + 1 homogeneous poly-

nomials of degree d . We choose coordinates in ℂN
k
d such that, if 𝜎 = (𝜎3, . . . ,𝜎k ) and

𝜏 = (𝜏3, . . . , 𝜏k ) are in ℂk−2 then the parameter 𝜆 = (a,𝛼, 𝛽 , 𝜖 ,𝜎, 𝜏, 0) ∈ ℂN
k
d corresponds

to the map

(4.5) f𝜆 (z ,w , y) =
(
𝛼z + 𝜖w + 𝛽zw +w

k∑︁
i=3

𝜏i yi , qa (w),𝜎3y3, . . . ,𝜎k yk

)
.

Observe that, when 𝜏 = 0 then this map is a product map, acting by F(a,𝛼,𝛽 ,𝜖 ) on (z ,w)
and by a diagonal matrix on y . When 𝜏 ≠ 0 then it is a skew product of ℂ × ℂk−1.
In what follows, we will take 𝜎 with |𝜎i | > 1 very large with respect to 𝛼, 𝛽 and 𝜖 in
order to ensure a dominated splitting. The choice of 𝜎 will also depend on a in order
to obtain non-resonance conditions for the periodic points p and r . The parameter 𝜏
will be chosen very small at the end and its only role will be to obtain the point (iii) in
Assumption (10).
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To be more explicit, let (a,𝛼, 𝛽 , 𝜖 ) be in the set M given by Lemma 4.9, let 𝜏 = 0
and let 𝜎 = (𝜎3, . . . ,𝜎k ) ∈ ℂk−2 be such that each |𝜎i | > 1 is large. In this situation, the
corresponding map f𝜆 has a fixed saddle point p (𝜆 ) = (P(𝜆 ), 0), a period 2 repelling
point r (𝜆 ) = (R(𝜆 ), 0) and a repelling hyperbolic set

Λ(𝜆 ) :=
⋂
n≥0

f −2n
𝜆 (𝔻R × (V− (a) ∪V+(a)) × 𝔻k−2)

which is equal to the product of the hyperbolic set of F(a,𝛼,𝛽 ,𝜖 ) with {0}. If each |𝜎i | > 1 is
large enough then the cone fieldC𝜌 := {(u1, . . . ,uk ) ∈ ℂk ; 𝜌 |u1 | ≤ max2≤i≤k |uk |}, where
𝜌 is given by Lemma 4.6, is contracted by f𝜆 (resp. f 2

𝜆
) on 𝔻R × (U− (a) ∪U+(a)) ×𝔻k−2

(resp. 𝔻R × (V− (a) ∪V+(a)) × 𝔻k−2) and thus Λ(𝜆 ) has the following blender property:
for each i ∈ {1, 2, 3, 4}, any vertical graph in 𝔻 ×Vi (a) × 𝔻k−2 tangent to C𝜌 intersects
Λ(𝜆 ). Moreover, a simple computation gives that the critical set of f𝜆 is disjoint from
𝔻R×(U− (a)∪U+(a))×𝔻k−2 and that the stable manifold of p (𝜆 ) is equal to ℂ×{(w̃ (a), 0)},
where w̃ (a) is the unique fixed point of qa in U− (a).

We also need non-resonance conditions for p (𝜆 ) and r (𝜆 ) and for that we will
choose (a,𝛼, 𝛽 , 𝜖 ) ∈ M and 𝜎 more carefully. When |a | is very large then the eigenvalues
of Dp (𝜆 ) f𝜆 are close to 𝛼 − 𝛽 , −2a and 𝜎3, . . . ,𝜎k . Those of Dr (𝜆 ) f 2

𝜆
are close to 𝛼2 − 𝛽2,

−4a2 and 𝜎2
3, . . . ,𝜎2

k . In both cases, only the first two ones depend on a. Hence, we
can first fix 𝛼1, 𝛽1 and 𝜖1 then a1 ∈ ℝ+ then 𝜎1 = (𝜎i )3≤i≤k ∈ (ℝ−)k−2 in order to have
(a1,𝛼1, 𝛽1, 𝜖1) ∈ M and for f𝜆1 , 𝜆1 := (a1,𝛼1, 𝛽1, 𝜖1,𝜎1, 0) ∈ ℂN

k
d

(1) the eigenvalues of p (𝜆1) satisfy the strong Sternberg condition of order 3,
(2) max3≤i≤k |𝜎i | < |a1 | < min3≤i≤k |𝜎i |2/4,
(3) there is no resonance between the eigenvalues of Dr (𝜆1 ) f

2
𝜆1

and they are all differ-
ent.

A first remark is that we choose a1 in ℝ+ and 𝜎1 in (ℝ−)k−2 only to have specific cone
contractions for Lemma 4.14. For the other properties, recall that there is a resonance
between k complex numbers (𝜂1, . . . , 𝜂k ) if there exist j ∈ {1, . . . , k } and a multi-index
N = (N1, . . . ,Nk ) of non-negative integers such that

∑k
i=1Ni ≥ 2 and

��∏k
i=1 𝜂

Ni
i

�� = |𝜂 j |.
Notice that for repelling or attracting periodic points, the eigenvalues have no resonance
for an open and dense set of parameters, provided there are no persistence relations
between them, which is the case here. In this situation, the periodic point can be
holomorphically linearized, with a linearization which depends holomorphically in the
parameters. This can be seen in the proof of Lattès in [66] for k = 2 and Berger and
Reinke deal with a much more general setting in [9]. Observe that we also ask for
different eigenvalues in order to locally follow the associated eigenspaces.

In the saddle case, the absence of resonance is no longer an open condition and
in particular, it might be not possible to holomorphically linearized in family. Thus,
we use the work of Sell [77] in order to have C 1-linearization in family. The strong
Sternberg condition of order 3 comes from [77] and is implied by the non-existence
of resonance with multi-index N = (N1, . . . ,Nk ) with

∑k
i=1Ni ≤ 3 which is an open

and dense property. The condition (2) above ensures that the spectral spreads as
defined in [77] satisfy 𝜌− = 1 and 𝜌+ < 2. Hence, [77, Theorem 7] implies that the
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dynamics near p (𝜆 ) can be C 1-linearized for 𝜆 in a small neighborhood of 𝜆1 and with
a linearization which depends continuously in the C 1-topology on 𝜆 .

Since all the properties above are stable under small C 1-perturbations there exists
a small connected open neighborhood M̃ of 𝜆1 in ℂN

k
d such that p (𝜆 ), r (𝜆 ) and Λ(𝜆 )

can be followed holomorphically and, for each 𝜆 ∈ M̃ , in addition to the linearization
properties of p (𝜆 ) and r (𝜆 ) we just mentioned, we also have the following properties.

• If we set U± := U±(a1), V± := V±(a1), U± := 𝔻R ×U± × 𝔻k−2 and V± := 𝔻R ×
V± × 𝔻k−2 then f𝜆 (resp. f 2

𝜆
) contracts to cone field C𝜌 on U+ ∪ U− (resp. on

V+ ∪V−) and U+ ∪U− ⊂ f 2
𝜆
(V±) with f 2

𝜆
injective and expanding on V+ and

on V−.
• The critical set of f𝜆 is disjoint from U+ ∪U−.
• Using inverse branches, each point in Λ(𝜆 ) corresponds to a unique coding
𝜔 ∈ Σ and (𝜆 ↦→ x𝜔 (𝜆 ))𝜔∈Σ gives the holomorphic motion of Λ(𝜆 ).

• For each i ∈ {1, 2, 3, 4}, any vertical graph in 𝔻 ×Vi (a1) × 𝔻k−2 tangent to C𝜌

intersects Λ(𝜆 ).
• p (𝜆 ) is saddle andW u

p (𝜆 ) , loc is a hypersurface intersecting 𝔻1/4 ×V− × 𝔻k−2 as a
vertical graph tangent to C𝜌. In particular, as in Lemma 4.10,W u

p (𝜆 ) , loc intersects
Λ(𝜆 ) at two different points.

• The stable manifoldW s
p (𝜆 ) contains a subset close to 𝔻R × {(w̃ (a1), 0)} and in

particular it intersects any vertical graphs in U− tangent to C𝜌.
• r (𝜆 ) is a repelling 2-periodic point in Λ(𝜆 ) with k different eigenvalues.

In particular, we can define for 𝜔 ∈ Σ

X̃ 𝜔 :=
{
𝜆 ∈ M̃ ; x𝜔 (𝜆 ) ∈W u

p (𝜆 ) , loc

}
,

and for (𝜁 , t ) ∈ 𝕊1 ×ℝ, if 𝜒 r (𝜆 ) (resp. 𝜒 p (𝜆 ) ) is the eigenvalue of Dr (𝜆 ) f 2
𝜆

(resp. Dp (𝜆 ) f𝜆 )
with the smallest modulus,

Ỹ 𝜁 ,t :=
{
𝜆 ∈ M̃ ; 𝜒 r (𝜆 ) = 𝜁 𝜒 tp (𝜆 )

}
.

The following result is deduced from its counterpart on M .

Lemma 4.12. — For each 𝜔 ∈ Σ the set X̃ 𝜔 is a (possible empty) hypersurface of M̃ .
Moreover, there exists a connected open neighborhood M̃ ′ ⊂ M̃ of 𝜆1 such that if (𝜁 , t ) are in
𝕊1 × ℝ and 𝜆 ∈ M̃ ′ is a regular point of Ỹ 𝜁 ,t then there is 𝜔 ∈ Σ such that 𝜆 belongs to an
irreducible component of X̃ 𝜔 which is not included in Ỹ 𝜁 ,t .

Proof. — The first point is a direct consequence of Lemma 4.9 since if X̃ 𝜔 = M̃
then X𝜔 = D (∞, 1/𝛿) × M̂ .

Exactly as in the proof of Lemma 4.9, there exists a connected open neighborhood
𝜆1 in M̃ such that if an irreducible component of X̃ 𝜔 intersects M̃ ′ then it also intersects
M × {(𝜎1, 0)}.

Let (𝜁 , t ) ∈ 𝕊1 × ℝ and 𝜆 ∈ M̃ ′ be a regular point of Y𝜁 ,t . As we have already
seen, there exists two different coding 𝜔,𝜔′ ∈ Σ such that 𝜆 ∈ X̃ 𝜔 ∩ X̃ 𝜔′ . Let Z̃𝜔 and
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Z̃𝜔′ be irreducible components of X̃ 𝜔 and X̃ 𝜔′ respectively containing 𝜆 . Assume by
contradiction that both X̃ 𝜔 and X̃ 𝜔′ are contained in Ỹ 𝜁 ,t . As 𝜆 is a regular point of Ỹ 𝜁 ,t

this implies that Z̃𝜔 = Z̃𝜔′ ⊂ Ỹ 𝜁 ,t . Hence, since Z̃𝜔 intersects M × {(𝜎1, 0)}, a similar
result holds on M which is not possible by Lemma 4.11. □

As a consequence, generically p (𝜆 ) has plenty of homoclinic points.

Lemma 4.13. — The set of parameters in M̃ where Assumption (8) holds is open
and dense.

Proof. — This set is clearly open. It remains to prove that it is dense. Notice that
the set Σ′ of 𝜔 ∈ Σ coding for a point with dense orbit in Λ(𝜆 ) is dense in Σ and does
not depend on 𝜆 . As each X̃ 𝜔 is a hypersurface, the set

⋃
𝜔∈Σ′ X̃ 𝜔 is dense in M̃ . Let

𝜔 ∈ Σ′, 𝜆 ∈ X̃ 𝜔 and let Γ be a small neighborhood of x𝜔 (𝜆 ) inW u
p (𝜆 ) , loc. For n ≥ 1 large

enough, its image f 2n
𝜆

(Γ) contains a vertical graph in U− and thus, as we have seen when
M̃ was chosen, it intersectsW s

p (𝜆 ) . As the graph is vertical, the intersection is transverse.
Moreover, we obtain in this way several different intersection points. Actually, the
orbit of x𝜔(𝜆 ) is dense in Λ(𝜆 ) and, by the blender property, the projection on the first
coordinate of this set contains 𝔻. This, combined with the fact that the graphs above are
tangent to C𝜌 with 𝜌 > 100, ensures that several of these intersection points are different
from p (𝜆 ).

Finally, all the dynamics above stay in U− which is disjoint from the critical set
of f𝜆 , by assumption on M̃ . □

4.4. Tangencial dynamics. — In this part, we will prove that a property, which is
robust in the C 1-topology and which implies (iii) in Assumption (10), holds generically
in the open set M̃ ⊂ ℂN

k
d obtained in Section 4.3.

To fix some notations, let 𝜆 ∈ M̃ and F𝜆 := f 2
𝜆

. Since Λ(𝜆 ) is a hyperbolic set for
F𝜆 with a dominated splitting, to each history x̂ (𝜆 ) = (xn)n≤0 in the natural extension
Λ̂(𝜆 ) is associated a strong unstable subspace Euux̂ (𝜆 ) . This subspace is simply obtained by

(4.6) Euux̂ (𝜆 ) := lim
n→∞

Dx−nF
n
𝜆 E

v = lim
n→∞

(Dx−1F𝜆 ◦ · · · ◦Dx−nF𝜆 )Ev .

where Ev = {(u1, . . . ,uk ) ∈ ℂk ; u1 = 0}. The strong unstable manifold can be con-
structed in a similar way using graph transform but we will not use it. These objects
depend continuously on x̂ and holomorphically on 𝜆 ∈ M̃ . Actually, this is true as long
as the hyperbolic set can be followed, a remark that will be used in Lemma 4.14.

Observe that the natural extension Λ̂(𝜆 ) of Λ(𝜆 ) corresponds to the two-sided
full shift encoded by Σ̂ := {−1, 1}ℤ. For l ∈ ℕ and n ∈ ℤ, we set 𝜔n (l ) = 1 if n < l and
𝜔n (l ) = −1 otherwise. If 𝜔(l ) := (𝜔n (l ))n∈ℕ and 𝜔(l ) := (𝜔n (l ))n∈ℤ then x𝜔(l ) (𝜆 ) ∈ Λ(𝜆 )
is a preimage of r (𝜆 ) by F l

𝜆
and x𝜔̂(l ) (𝜆 ) ∈ Λ̂(𝜆 ) is a history of x𝜔(l ) (𝜆 ).
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Lemma 4.14. — The set T defined by

T :=
{
𝜆 ∈ M̃ ; Euux𝜔̂(0) (𝜆 ) contains an eigenvector of Dr (𝜆 )F𝜆

}
is a proper analytic subset of M̃ .

Proof. — First, recall that the eigenvalues of Dr (𝜆 )F𝜆 are all different thus we can
follow the corresponding eigenspaces holomorphically in 𝜆 . Hence, the fact that T is
analytic comes from the holomorphic dependency of Euux̂ (𝜆 ) on 𝜆 . It remains to prove

properness, i.e., to find 𝜆 ∈ M̃ outside T . Observe that as soon as k ≥ 3, the parameter
𝜆1 = (a1,𝛼1, 𝛽1, 𝜖1,𝜎1, 0) ∈ ℂN

k
d defined in Section 4.3 is in T since f𝜆1 is a product

map on ℂ2 × ℂk−2. We perturb it as a skew product of ℂ × ℂk−1

f𝜆2 (z ,w , y) =
(
𝛼1z + 𝜖1w + 𝛽1zw +w

k∑︁
i=3

𝜏i yi , qa1 (w),𝜎3y3, . . . ,𝜎k yk

)
,

where 𝜆2 := (a1,𝛼1, 𝛽1, 𝜖1,𝜎1, 𝜏1, 0) ∈ ℂN
k
d , with 𝜏1 = (𝜏i )3≤i≤k ∈ (ℝ>0)k−2 is small

enough to have 𝜆2 ∈ M̃ . We will deform f𝜆2 along a path ( f𝛾 (t ) )t ∈[0,1] of maps of the
form (4.5) such that f𝛾 (1) = f𝜆2 and f𝛾 (0) does not satisfies the property defining T .
Observe that the path 𝛾 may go outside M̃ but the hyperbolic set Λ can be followed all
along 𝛾, which is sufficient.

For t ∈ [0, 1] we define 𝛾(t ) := (a1, |𝛼1 |e it arg(𝛼1 ) , t 𝛽1, |𝜖1 |e it arg(𝜖1 ) ,𝜎1, 𝜏1, 0). This
path is chosen in such a way that 𝛾(0) = (a1, |𝛼1 |, 0, |𝜖1 |,𝜎1, 𝜏1, 0) is in (ℝ+)N

k
d and that

the map F𝛾 (t ) is still expanding on V+ ∪ V− with V+ ∪V− ⊂ F𝛾 (t ) (V+) ∩ F𝛾 (t ) (V−)
since (𝛼1, 𝛽1, 𝜖1) satisfies (4.2) . In particular, the hyperbolic set Λ can be followed in a
neighborhood of this path.

From this, an important remark is that, by Lemma 4.4, r (𝛾(0)) = (z0,w0, 0)
with w0 real close to −1 and, for l ≥ 1, x𝜔(l ) (𝛾(0)) = (zl ,wl , 0) with wl real close to
1. Moreover, if (z ,w) ∈ 𝔻R × (V− ∪V+) with w real then D (z ,w ,0)F𝛾 (0) = (Ai , j ) is a real
matrix with Ai , j = 0 if i ≠ j and i ≠ 1, and, with the notation w ′ := qa1 (w),

A1,1 = |𝛼1 |2, A2,2 = 4a2
1ww

′, A1,2 = |𝜖1 | ( |𝛼1 | + 2a1w),

Ai ,i = 𝜎2
i and A1,i = 𝜏i ( |𝛼1 |w + 𝜎iw ′)

for i ∈ {3, . . . , k }. From this, using that r (𝛾(0)) = (z0,w0, 0) with w0 close to −1 and w ′
0

close to 1, it is easy to see that the eigenvectors associated to r (𝛾(0)) are proportional to
e1 and to ei + bie1 where bi > 0 for each i ∈ {2, . . . , k }. Here, (e1, . . . , ek ) is the canonical
basis of ℂk . On the other hand, for each l ≥ 1, x𝜔(l ) (𝛾(0)) = (zl ,wl , 0) withwl real close
to 1 and w ′

l close to −1. Hence, a vector of the form ei + cie1 with −1 ≤ ci ≤ 0 is send by
D (zl ,wl ,0)F𝛾 (0) on a vector proportional to ei + c ′i e1 with

c ′i =
|𝛼1 |2ci + 𝜏i ( |𝛼1 |wl + 𝜎iw ′

l )
𝜎2
i

if i ∈ {3, . . . , k }

c ′2 =
|𝛼1 |2c2 + |𝜖1 | ( |𝛼1 | + 2a1wl )

4a2
1wlw

′
l

.



68 THOMAS GAUTHIER et al.

In particular, since a1 and every 𝜎i are very large and |𝛼1 | < 2, |𝜖1 | > 1/20, each
c ′i satisfies −1 ≤ c ′i < 0. This implies that the subspace Euu

x𝜔̂(0) (𝛾 (0) )
, which by (4.6) is

equal to

lim
n→∞

(
Dx𝜔(1) (𝛾 (0) )F𝛾 (0) ◦ · · · ◦Dx𝜔(n) (𝛾 (0) )F𝛾 (0)

)
Ev ,

is generated by (ei + die1)2≤i≤k with di < 0. Hence, it contains none of the eigenvectors
of Dr (𝛾 (0) )F𝛾 (0) described above. This conclude the proof. □

4.5. Verification of the assumptions. — We have now all the ingredients to prove
Theorem 4.1. Let 𝜆1, M̃ , U±, U±,V± and V± be as in Section 4.3. Recall that f𝜆1 is of
the form

f𝜆1 (z ,w , y) =
(
𝛼1z + 𝜖1w + 𝛽1zw +w

k∑︁
i=3

𝜏i yi , qa (w),𝜎3y3, . . . ,𝜎k yk

)
.

As we have said in the discussion in Section 4.3 where M̃ was chosen, for each 𝜆 ∈ M̃
the map f𝜆 satisfies several assumptions of Section 3.2. More precisely, if 𝜌 > 0 and
R > 0 as in Lemma 4.6, then we already know that Assumptions (1), (3) and (4) hold
in M̃ . This is also true for Assumption (2) except on the point about the small Julia set
Jk , which is not necessarily well-defined for f𝜆 , and for Assumption (6) except the part
about the domain of linearization. For this last point, since the map f 2

𝜆
restricted to V−

is expanding and injective with U− in its image so, if h𝜆 : U− → V− denotes its inverse
then we can extend the linearization 𝛿𝜆 on U− in an injective way using the dynamics,
i.e., if x ∈ U− then 𝛿𝜆 (x) := (Dr (𝜆 ) f 2

𝜆
)n ◦ 𝛿𝜆 ◦ hn

𝜆
(x) for n ≥ 1 large enough. We will

come back to the small Julia set of Assumption (2) later.
Assumption (5) is just a reformulation of the fact that X̃ 𝜔 is a proper analytic

subset of M̃ and thus, it holds on M̃ by Lemma 4.12.
For the other assumptions, we consider a perturbation f𝜆 in M̃ ′ of f𝜆1 defined by

f𝜆 (z ,w , y) = f𝜆1 (z ,w , y) + c (zd ,wd , yd3 , . . . , ydk ),

where c ∈ ℂ∗ is very close to 0. Observe that f𝜆 is a regular polynomial endomorphism
of ℂk which is a skew product of ℂ × ℂk−1 above a product map of ℂk−1. This implies
that the small Julia set Jk ( f𝜆 ) is exactly the closure of the repelling periodic points of
f𝜆 . Actually, this was proved by Jonsson [63] when k = 2 where the key ingredient is
a fibered formula for the equilibrium measure. This formula has been generalized in
higher dimension by [40, Corollary 1.2] and thus the result of Jonsson also holds for f𝜆 .
In particular, since the repelling periodic points are dense in the hyperbolic set Λ(𝜆 ),
this gives that Λ(𝜆 ) ⊂ Jk ( f𝜆 ). As this property persists under small perturbations (see
e.g. [38, Lemma 2.3]), Assumption (2) holds in a small neighborhood of f𝜆 in Endkd .
Moreover, one part of the critical set of f𝜆 comes from the dynamics on the basis ℂk−1.
A simple computation gives that the remaining part of this critical set is

C𝜆 :=
{
(z ,w , y) ∈ ℂk ; w = −𝛼1 + cdzd−1

𝛽1

}
,
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which is always transverse to fibers of the form {w = w0, y = y0} except when d ≥ 3
and w0 = −𝛼1/𝛽1. The stable manifoldW s

p (𝜆 ) of the saddle point p (𝜆 ) is an attracting

basin in the invariant fiber {w = w0, y = 0} where w0 ≃ −1 is the unique fixed point of
w ↦→ qa1 (w) + cwd in U− and thus by a classical result of Fatou it has to intersect C𝜆 in a
point of infinite orbit. Furthermore, since w0 ≃ −1 and −𝛼1/𝛽1 has large modulus, they
cannot be equal. This gives a transverse intersection betweenW s

p (𝜆 ) and the critical set.

The skew product structure of f𝜆 and the fact that {w = w0, y = 0} is not a critical fiber
ensures that the images of this transverse intersection remain transverse. This shows
Assumption (7) is satisfied in a small neighborhood of f𝜆 .

Observe that by Lemma 4.13 and Lemma 4.14, there exists near 𝜆 a small
non-empty open set Ω in Endkd ∩M̃ ′ where, in addition to all the assumptions above,
Assumption (8) holds and which is disjoint from the set T defined in Lemma 4.14.
Moreover, as by [43, Corollary C] when k = 2 and [35, Lemma 5.4.5] for k ≥ 2 the
exceptional set is generically empty (or reduced to the hyperplane at infinity in the case of
regular polynomial endomorphisms of ℂk , with the same proof than [35, Lemma 5.4.5]),
we can also assume that it is the case for maps in Ω, i.e., that Assumption (9) holds on Ω.

Hence, all assumptions of Section 3.2 are satisfied on Ω, except possibly Assump-
tion (10). Let Ω′ a non-empty open subset of Ω. Let 𝜆 ′ ∈ Ω′ be a regular point of
the foliation (Ỹ 𝜁 ,t ) (𝜁 ,t ) ∈𝕊1×ℝ defined just before Lemma 4.12. This lemma implies that
there exists 𝜔′ = (𝜔′

n)n≥0 ∈ Σ such that 𝜆 ′ ∈ X̃ 𝜔′ and X̃ 𝜔′ is not contained in some
Ỹ 𝜁 ,t . In particular, if 𝜔 = (𝜔n)n≥0 is very close to 𝜔′ then X̃ 𝜔 intersects Ω′ and is not
contained in some Ỹ 𝜁 ,t . We defined such 𝜔 by

𝜔n =


𝜔′
n if n ≤ N1,

1 if N1 < n ≤ N1 + N2,
−1 if n > N1 + N2,

where N1 and N2 are two very large positive integers. The first condition ensures that
𝜔 is close enough to 𝜔′. The third one that the corresponding point x𝜔 (𝜆 ) ∈ Λ(𝜆 ) is a
preimage by f 2(N1+N2+1)

𝜆
of the repelling periodic point r (𝜆 ). This gives point (i)) of

Assumption (10) with m := 2(N1 + N2 + 1) for every 𝜆 ∈ Ω′ ∩ X̃ 𝜔. By definition of X̃ 𝜔,
x𝜔 (𝜆 ) ∈W u

p (𝜆 ) , loc on this set and thus (ii) also holds. The fact that X̃ 𝜔 is not contained

in some Ỹ 𝜁 ,t implies that (iv) is satisfied on a dense subset of Ω′ ∩ X̃ 𝜔. Finally, recall
Ω′ is disjoint from the set T defined in Lemma 4.14. Recall that this implies that if
𝜔(1) := (𝜔n (1))n≥0 ∈ Σ and the history 𝜔(1) := (𝜔n (1))n∈ℤ ∈ {−1, 1}ℤ are defined
by 𝜔n (1) = 1 if n < 1 and 𝜔n (1) = −1 otherwise then the image by Dx𝜔(1) (𝜆 ) f

2
𝜆

of
the strong unstable subspace Euux𝜔̂(1) (𝜆 )

associated to x𝜔̂(1) (𝜆 ) is a generic hyperplane

for Dr (𝜆 ) f 2
𝜆

, i.e., does not contain any eigenvector of Dr (𝜆 ) f 2
𝜆

. On the other hand, if
𝜆 ∈ Ω′ ∩ X̃ 𝜔 and if E denotes the tangent space ofW u

p (𝜆 ) , loc at x𝜔 (𝜆 ) then E is in the

cone C𝜌 and Dx𝜔 (𝜆 ) f
2(N1+N2 )
𝜆

E is very close to Euux𝜔̂(1) (𝜆 )
if N2 is large enough. Hence,

Dx𝜔 (𝜆 ) f
2(N1+N2+1)
𝜆

E is also a generic hyperplane for Dr (𝜆 ) f 2
𝜆

. Thus, the point (iii) of
Assumption (10) is satisfied for all 𝜆 ∈ Ω′ ∩ X̃ 𝜔.
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In conclusion, the open set Ω verifies all the assumptions of Section 3.2.

5. The fundamental height inequalities

5.1. Adelic metrics, height functions. — Let X be a projective variety, and let
L0, . . . ,Lk be ℚ-line bundles on X , all defined over a number field 𝕂.

For any i , assume Li is equipped with an adelic continuous metric {∥ · ∥v ,i }v ∈M𝕂

and we denote Li := (Li , {∥ · ∥v }v ∈M𝕂
). Assume also Li is semi-positive. Fix a place

v ∈ M𝕂. Denote by X an
v the Berkovich analytification of X at the place v . We also let

c1(Li )v be the curvature form of the metric ∥ · ∥v ,i on Lan
i ,v .

For any closed subvarietyY of dimension q , as observed by Chambert-Loir [26],
the arithmetic intersection number

(
L0 . . .Lq

��Y )
is symmetric and multilinear with

respect to the Li ’s and is defined inductively by(
L0 . . .Lq

��Y )
=

(
L1 . . .Lq

��div(s ) ∩Y
)
+

∑︁
v ∈M𝕂

nv

∫
Y an
v

log ∥s ∥−1
v ,0

q∧
j=1

c1(Li )v ,

for any global section s ∈ H 0(X ,L0). In particular, if L0 is the trivial bundle and ∥ · ∥v ,0
is the trivial metric at all places but v0, this gives(

L0 . . .Lq
��Y )

= nv0

∫
Y an
v0

log ∥s ∥−1
v0,0

q∧
j=1

c1(Li )v0 .

When L is a big and nef ℚ-line bundle endowed with a semi-positive continuous adelic
metric L, following Zhang [89], we can define hL (Y ) as

hL (Y ) :=

(
L
q+1

���Y )
(q + 1) [𝕂 : ℚ] degY (L)

,

where degY (L) = (L |Y )q is the volume of the line bundle L restricted toY .
Recall that a sequence (xi )i of points ofY (ℚ) is generic if for any closed subvariety

W ⊂ Y defined over 𝕂, there is i0 ≥ 1 such that O(xi ) ∩W = ∅ for all i ≥ i0. By Zhang’s
inequalities [89], if hL ≥ 0 on X (ℚ), if we let

e1(L) := sup
Z⊊Y

inf
x∈ (Y \Z ) (ℚ)

hL (x),

where Z ranges on strict subvarieties ofY defined over ℚ, then we have

e1(L) ≥ hL (Y ) ≥ 1
q + 1

e1(L).(5.1)

In particular, there is a generic sequence (xi )i of closed points ofY (ℚ) such that

lim inf
i→∞

hL (xi ) ≥ hL (Y ) ≥ 1
q + 1

lim inf
j→∞

hL (x j ).(5.2)

Let X be a projective variety defined on a number field 𝕂 and let L be an ample
line bundle on X endowed with an adelic semi-positive metric. Let m ≥ 1 be an integer
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and, for 1 ≤ i ≤ m, let pi : X m → X be the projection onto the i-th factor. Let
Lm := p∗1(L) + · · · + p∗m (L).

We will use the next lemma.

Lemma 5.1. — For any subvarietyY ⊂ X defined over 𝕂, we have

hLm (Y
m) = m · hL (Y ).

Proof. — For m = 1, or if q = dimY = 0 there is nothing to prove. We can
assume that L is very ample. Fix m ≥ 2 and set q := dimY ≥ 1. For any 1 ≤ i ≤ m and
any line bundles Mq+2, . . . ,Mqm on X m , we have(

c1(p∗i L)q+1 · c1(Mq+2) . . . c1(Mqm) · {Y m}
)
= 0.

In particular,

degLm (Y
m) =

(
qm
q

) (
c1(p∗1L)

q . . .
(
c1(p∗2L) + · · · + c1(p∗mL)

)q (m−1) · {Y m}
)
,

hence

degLm (Y
m) =

(
qm
q

)
degL (Y ) degLm−1

(
Y m−1) .

Similarly, as the arithmetic intersection product is multilinear and symmetric, if we let
𝜋i : X m → X m−1 be the cancellation of the i th variable, we have(

L
qm+1
m

���Y m
)
=

m∑︁
i=1

(
qm + 1
q + 1

) (
p∗i L

q+1 · 𝜋∗i L
q (m−1)
m−1

���Y m
)
.

Let s1, . . . , sq+1 be sections of L such that div(s1) ∩ · · · ∩div(sq+1) ∩Y = ∅ and let Z0 :=Y
and for 1 ≤ j ≤ q , Z j := Z j−1 ∩ div(s j ). Following [26], asY m = p−1

i (Y ) ∩ 𝜋−1
i (Y m−1),

we have (
p∗i L

q+1 · 𝜋∗i L
q (m−1)
m−1

���Y m
)

=

(
p∗i L

q · 𝜋∗i L
q (m−1)
m−1

���𝜋−1
i

(
Y m−1) ∩ p−1

i (Z1)
)

+
∑︁
v ∈M𝕂

nv

∫
(Y m )an

v

log ∥p∗i s1∥p∗i L,vc1(p
∗
i L)

q
v ∧ c1(𝜋∗i Lm)

q (m−1)
v ,

which rewrites as(
p∗i L

q+1 · 𝜋∗i L
q (m−1)
m−1

���Y m
)

=

(
p∗i L

q · 𝜋∗i L
q (m−1)
m−1

���𝜋−1
i

(
Y m−1) ∩ p−1

i (Z1)
)

+ degLm−1

(
Y m−1) ∑︁

v ∈M𝕂

nv

∫
Y an
v

log ∥s1∥L,vc1(L)
q
v .
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Similarly, for any 1 ≤ j ≤ q − 1 one can write(
p∗i L

q− j+2 · 𝜋∗i L
q (m−1)
m−1

���𝜋−1
i

(
Y m−1) ∩ p−1

i (Z j−1)
)

=

(
p∗i L

q− j+1 · 𝜋∗i L
q (m−1)
m−1

���𝜋−1
i

(
Y m−1) ∩ p−1

i (Z j )
)

+ degLm−1

(
Y m−1) ∑︁

v ∈M𝕂

nv

∫
(Z j−1 )an

v

log ∥s j ∥L,vc1(L)
q− j+1
v .

Summing up over the q + 1 terms we get(
p∗i L

q+1 · 𝜋∗i L
q (m−1)
m−1

���Y m
)
= degLm−1

(
Y m−1) · (Lq+1

���Y )
.

Together with the above, this gives(
L
qm+1
m

���Y m
)
= m

(
qm + 1
q + 1

)
degLm−1

(
Y m−1) · (Lq+1

���Y )
.

Since by definition,

hL (Y ) =

(
L
q+1

���Y )
[𝕂 : ℚ] (q + 1) degL (Y )

and hLm (Y
m) =

(
L
qm+1
m

���Y m
)

[𝕂 : ℚ] (qm + 1) degLm (Y m)
,

the proof is complete. □

5.2. Dynamics over number fields. — Let X be a projective variety, f : X → X
a morphism and L be an ample line bundle on X , all defined over a number field 𝕂.
Recall that we say (X , f ,L) is a polarized endomorphism of degree d > 1 if f ∗L ≃ L⊗d , i.e.
f ∗L is linearly equivalent to L⊗d . Let k := dimX .

It is known that polarized endomorphisms defined over the field 𝕂 admit a
canonical metric. This is an adelic semi-positive continuous metric on L, which can be
built as follows: let X → Spec(O𝕂) be an O𝕂-model of X and L be a model of L
endowed with a model metric, for example L = 𝜄∗OℙN (1), where 𝜄 : X ↩→ ℙN is an
embedding inducing L and OℙN (1) is the naive metrization. We then can define L as

L := lim
n→∞

1
dn

( f n)∗L |𝕂 .

This metrization induces the canonical height ĥ f of f : for any closed point x ∈ X (ℚ) and
any section 𝜎 ∈ H 0(X ,L) which does not vanish at x , we let

ĥ f (x) :=
1

[𝕂 : ℚ] deg(x)
∑︁
v ∈M𝕂

∑︁
y∈O(x )

nv log ∥𝜎(y)∥−1
v ,

where O(x) is the Galois orbit of x in X . The function ĥ f : X (ℚ) → ℝ satisfies
ĥ f ◦ f = d · ĥ f , ĥ f ≥ 0 and ĥ f (x) = 0 if and only if x is preperiodic under iteration of f ,
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i.e. if there are n > m ≥ 0 such that f n (x) = f m (x). Note that ĥ f can also be defined as

ĥ f (x) = lim
n→∞

1
dn
hX ,L ( f n (x)),

where hX ,L is any Weil height function on X associated with the ample line bundle L.
IfY is a subvariety of dimension q ≥ 0 defined over ℚ, we define

ĥ f (Y ) := hL (Y ) =

(
L
q+1

���Y )
(q + 1) [𝕂 : ℚ] degY (L)

(observe that whenY = {x} has dimension 0, both definitions coincide i.e. both defini-
tions of ĥ f coincide). This satisfies ĥ f ( f∗(Y )) = dĥ f (Y ), where f∗(Y ) is the image ofY
by f counted with multiplicity as a cycle on X . In particular, ifY is preperiodic under
iteration of f , i.e. if there are n > m ≥ 0 such that f n (Y ) = f m (Y ), then ĥ f (Y ) = 0.

5.3. Canonical height and height on the base. — We now let (X, f ,L,Y) be a
dynamical pair of degree d ≥ 2 parametrized by a smooth projective variety S , with
regular part S 0

Y . Let Y0 := 𝜋 |−1
Y (S 0

Y). We also assume (X, f ,L), Y and S are all defined
over a number field 𝕂. In what follow, we fix an embedding 𝜄 : 𝕂 ↩→ ℂ for which we
define the different bifurcation currents.

Definition 5.2. — Let m ≥ dimS . If the measure 𝜇 f ,Y is non-zero, we define the
m-higher order canonical height Ĥ (m )

f ,M (Y) of the family Y, relative to M, as

Ĥ (m )
f ,M (Y) :=

Vol(m )
f (Y)

dimY [m ] · deg(m )
f ,M (Y)

.

Otherwise, we let Ĥ (m )
f ,M (Y) := 0.

Remark 5.3
(1) Observe that both Vol(m )

f (Y) and deg(m )
f ,M (Y) are geometric quantities that do

not depend on the choice of a place (hence we can take another embedding
𝜄 : 𝕂 ↩→ ℂ).

(2) If dimS = 1, we have Ĥ (1)
f (Y) = ĥ f𝜂 (Y𝜂), see Section 1.1 for the definition of

the geometric canonical height,
(3) The quantity Ĥ (m )

f ,M (Y) is well-defined by Proposition 1.7 and satisfies

Ĥ (m )
f ,M (Y) > 0 for all m ≥ dimS if and only if 𝜇 f ,Y is non-zero.

We prove here the following which is inspired from [48, Theorem 1.4 and
Proposition 10.1] and [46, Theorem 1.6]:
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Theorem 5.4. — Assume that 𝜇 f ,Y is non-zero. Let m ≥ dimS and M be any ample
ℚ-line bundle on S of volume 1. Then, for any 0 < 𝜀 < Ĥ (m )

f ,M (Y), there is a non-empty Zariski

open subset U ⊂ (Y [m ])0 and a constant C ≥ 1 depending only on (X, f ,L), Y, M, m and 𝜀

such that

hS ,M (𝜋[m ] (x)) ≤
1

Ĥ (m )
f ,M (Y) − 𝜀

m∑︁
j=1

ĥ f𝜋 (x j ) (x j ) +C ,

for any x = (x1, . . . , xm) ∈ U(ℚ).

As explained in the introduction, one can use the theory of adelic line bundles on
quasi-projective varieties set up by Yuan and Zhang [88] to obtain such an inequality
(see Theorem 6.2.2 therein). The hypothesis that 𝜇 f ,Y is non zero in Theorem 5.4 is
equivalent to the non degeneracy of Y [m ] in [88, Theorem 6.2.2]. However, the proof
we give here allows us to have explicit constants in the inequality.

Proof. — Fix 0 < 𝜀 < Ĥ (m )
f ,M (Y) and C ≥ 1. Take n ≥ 1 such that dn

(
Ĥ (m )
f ,M (Y) −

𝜀/2
)
> 1 and C ≤ dn𝜀/4. Choose integers M ,N ≥ 1 such that

N
(
dnĤ (m )

f ,M (Y) −C
)
> M ≥ N dn

(
Ĥ (m )
f ,M (Y) − 𝜀/2

)
.

We use Lemma 1.8: increasing n if necessary, if Y (m )
n := (F (m )

n )∗(𝜓 (m )
n )∗Y [m ] , we

deduce from Lemma 1.9 that the quantity(
{Y (m )

n } ·
(
N c1(L [m ])

)dim Y [m ] )
dimY [m ]

(
{Y (m )

n } ·
(
N c1(L [m ])

)dim Y [m ]−1 ·
(
Mc1(𝜋∗[m ]M)

))
is bounded from below by N

M

(
dnĤ (m )

f ,M (Y) − C
)
> 1. Let Yn := (𝜓 (m )

n )∗(Y [m ]), Ln :=

((Fn)∗L [m ]) |Yn , and Mn :=
(
(𝜋[m ] ◦ 𝜓 (m )

n )∗M
) ��
Yn . By construction, the line bundles Ln

and Mn are nef on Yn and the above inequality implies(
(N Ln)dim Yn

)
> dimYn

(
(MMn) · (N Ln)dim Yn−1

)
by the projection formula. We thus can apply Siu’s bigness criterion [67, Theo-
rem 2.2.15] and find that N Ln −MMn is a big line bundle on Yn . In particular, there
exist ℓ ≥ 1 and a non-empty Zariski open set Un ⊂ Yn such that for any x ∈ Un (ℚ),

hYn ,ℓ (N Ln−MMn ) (x) ≥ −C1

for some constantC1 depending only on n. Now we use successively functorial properties
of Weil height functions, see e.g. [56]. First, we find that for any y ∈ Un (ℚ),

hYn ,ℓ (N Ln−MMn ) (y)

= ℓ
(
N hY [m ] ,L [m ] (F n (y)) −MhS ,M (𝜋[m ] ◦𝜓n (y)

)
+O (1).



SPARSITY OF POSTCRITICALLY FINITE MAPS OF ℙk AND BEYOND 75

Since Fn = ( f [m ])n ◦ 𝜓 (m )
n on the non-empty Zariski open set Un ∩ (𝜓 (m )

n )−1((Y [m ])0),
since 𝜓n is an isomorphism from Un ∩ (𝜓 (m )

n )−1((Y [m ])0) to its image U1 := 𝜓
(m )
n (Un) ∩

(Y [m ])0, and since Y [m ] is a subvariety of X [m ] we deduce that, for any x ∈ U1(ℚ),

hYn ,ℓ (N Ln−MMn ) (𝜓−1
n (x))

= ℓ
(
N hX [m ] ,L [m ] ( f n (x)) −MhS ,M (𝜋[m ] (x))

)
+O (1).

In particular, the above gives

hX [m ] ,L [m ] (( f [m ])n (x)) ≥ M
N
hS ,M (𝜋[m ] (x)) −C2

≥ dn
(
Ĥ (m )
f ,M (Y) − 𝜀/2

)
hS ,M (𝜋[m ] (x)) −C2,

for any x ∈ U(ℚ), where C2 is a constant depending on n. This rewrites as

1
dn
hX [m ] ,L [m ] (( f [m ])n (x)) ≥

(
Ĥ (m )
f ,M (Y) − 𝜀/2

)
hS ,M (𝜋[m ] (x)) −C3,

for any x ∈ U1(ℚ), where C3 depends on n. We now use an estimate of Call and
Silverman [24, Theorem 3.1]: there is a constant C4 > 0 depending only on (X, f ,L)
and M such that for any x ∈ X0(ℚ),���ĥ f𝜋 (x ) (x) − hX,L (x)

��� ≤ C4
(
hS ,M (𝜋(x)) + 1

)
.

By functorial properties of heights

hX [m ] ,L [m ] (x) =
m∑︁
j=1

hX,L (x j ) +O (1), x = (x1, . . . , xm) ∈ X [m ] (ℚ),

and the construction of the canonical height gives

ĥ f [m ]
𝜋[m ] (x )

(x) =
m∑︁
i=1

ĥ f𝜋 (xi ) (xi ), x = (x1, . . . , xm) ∈ X [m ] (ℚ),

since 𝜋[m ] (x) = 𝜋(xi ) for any i by construction. Applying this inequality to ( f [m ])n (x)
and using that ĥ f𝜋 (xi ) ( f

n (xi )) = dnĥ f𝜋 (xi ) (xi ) for any i , we find
m∑︁
j=1

ĥ f𝜋 (x j ) (x j ) ≥
(
Ĥf ,M (Y) − 𝜀

2
− C4

dn

)
hS ,M (𝜋[m ] (x)) −C3 − C4

dn
,

for any x = (x1, . . . , xm) ∈ U1(ℚ). Up to increasing n, we can assume C4 ≤ dn𝜀/2, which
gives the expected inequality. □

As an immediate application of Theorem 5.4, we have

Corollary 5.5. — Fix m ≥ dimS and assume Vol(m )
f (Y) > 0. Let M be any ample

ℚ-line bundle on S of volume 1 and let 0 < 𝜀 < Ĥ (m )
f ,M (Y). There is a non-empty Zariski open
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subset U ⊂ Y0 and a constant C ≥ 1 depending only on (X, f ,L), Y, M, m and 𝜀 such that

hS ,M (𝜋(x)) ≤ m

Ĥ (m )
f ,M (Y) − 𝜀

ĥ f𝜋 (x ) (x) +C , x ∈ U(ℚ).

Proof. — Fix M and 0 < 𝜀 < Ĥ (m )
f ,M (Y) and let B be the set of points x ∈ Y

such that

hS ,M (𝜋(x)) > m

Ĥ (m )
f ,M (Y) − 𝜀

ĥ f𝜋 (x ) (x) +C

where C is the constant given by Theorem 5.4. We deduce that

∀ (x1, . . . , xm) ∈ B [m ] , hS ,M (𝜋[m ] (x)) >
1

Ĥ (m )
f ,M (Y) − 𝜀

m∑︁
j=1

ĥ f𝜋 (x j ) (x j ) +C ,

so that B [m ] is necessarily contained in a strict Zariski closed subset of Y [m ] by Theo-
rem 5.4, hence B is contained in a strict Zariski closed subset of Y. □

5.4. General dynamical heights as moduli heights. — Let (X, f ,L,Y) be a dynamical
pair of degree d ≥ 2 parametrized by a smooth projective variety S , with regular part
S 0
Y , all defined over a number field 𝕂.

When Z is a subvariety of S 0
Y , we let YZ := 𝜋 |−1

Y (Z ) and we define (XZ , fZ ,LZ )
as the family of polarized endomorphisms induced by restriction of (X, f ,L) to XZ :=
𝜋−1(Z ).

We prove here the following

Theorem 5.6. — let (X, f ,L), S and Y be all defined over a number field 𝕂. Fix an
embedding 𝜄 : 𝕂 → ℂ for which we define the different bifurcation currents and assume that
𝜇 f ,Y ≠ 0. Then, there is a non-empty Zariski open subsetU ⊂ S 0

Y such that for any ample height
h onU , there are constants C1,C2 > 0 and C3,C4 ∈ ℝ such that

C1h (t ) +C3 ≤ ĥ ft (Yt ) ≤ C2h (t ) +C4 for all t ∈ U (ℚ).

Moreover, for any archimedean place v ∈ M𝕂 , any irreducible component Z of S 0
Y \U satisfies

T (dimZ )
f ,Y,v ∧ [Z ] = 0.

We are now in position to prove Theorem A.

Proof of Theorem A. — We work at the archimedean place of ℚ. It follows from
Proposition 2.8 (or from Theorem C) that the bifurcation measure 𝜇 f ,Crit is non-
zero on M k

d (ℂ), hence it is sufficient to apply Theorem 5.6 to conclude the proof of
Theorem A. □

The proof of Theorem 5.6 splits into two distinct parts that are summarized in
two Propositions below. We first use Zhang’s inequalities over number fields to deduce
the following from Corollary 5.5:
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Proposition 5.7. — Let M be an ample ℚ-line bundle on S of volume 1 and assume
Vol(dimS )

f (Y) > 0. There are constants C1 > 0 and C2 ≥ 1 depending only on (X, f ,L,Y)
and M and a non-empty Zariski open subsetV ⊂ S 0

Y defined over ℚ such that

hS ,M (t ) ≤ C1ĥ ft (Yt ) +C2, t ∈ V (ℚ).

Moreover, for any irreducible component Z of S 0
Y \V , we have VolfZ (YZ ) = 0.

Proof. — Let q := dimY𝜂 . Fix 0 < 𝜀 < Ĥ (dimS )
f ,M (Y). Let U be the Zariski open

subset in Corollary 5.5, letV be the set of t ∈ 𝜋(U) so thatUt := U ∩Yt is non-empty a
Zariski open subset ofYt . The setV is a Zariski open subset of S 0 and for any t ∈ V (ℚ),
we have

hS ,M (t ) ≤ dimS

Ĥf ,M (Y) − 𝜀

(
ĥ ft (x) +C

)
, x ∈ Ut (ℚ).

Taking the infimum of ĥ ft (x) over x ∈ Ut (ℚ) and using Zhang’s inequalities (5.2) gives

hS ,M (t ) ≤ dimS

Ĥf ,M (Y) − 𝜀

(
(q + 1)ĥ ft (Yt ) +C

)
.

This is the wanted inequality, but we may have restricted too much the open set.
To conclude, we can proceed exactly the same way on any irreducible component

Z of S 0
Y \V , where Vol(dimZ )

fZ
(YZ ) > 0. In finitely many steps, we end with the expected

result. □

We now use another description of the height hL (Yt ), when t ∈ S 0
Y (ℚ), using

Chow forms as in [57]. The next is probably well-known, but we include a proof for
the sake of completeness.

Lemma 5.8. — Let S be a projective variety, let 𝜋 : Y → S be a surjective morphism,
both defined over a number field 𝕂. Let L be a relatively ample line bundle on Y endowed with
an adelic relatively semi-positive metrization. Let S 0

Y ⊆ S be a Zariski open set such that 𝜋 is flat
over S 0

Y .
For any ample line bundle M on S , there are constants C1,C2 > 0 such that

hL (Yt ) ≤ C1hS ,M (t ) +C2, t ∈ S 0
Y (ℚ).

Proof. — Up to replacing L by a large multiple and up to changing the metrization
on L, we may assume that there is an embedding 𝜄 : Y ↩→ ℙNS such that L = 𝜄∗OℙN (1),
so that

hL (Yt ) = hℙN (𝜄∗(Yt )), for all t ∈ S 0
Y (ℚ),

where hℙN is the naive height function on ℙN . This is where Chow forms are used, to
give a different description of hℙN (Yt ), which makes easier the expected inequality.
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For any irreducible subvarietyY ⊂ ℙN of dimension q ≥ 1, in the Grassmannian
G (N − k − 1,N ) of linear subspaces of dimension N − k − 1 of ℙN , the set

ZY := {V ∈ G (N − k − 1,N ) ; V ∩Y ≠ ∅}

is an irreducible hypersurface. Moreover, in the Plücker coordinates, we have ZY =

{RY = 0}, where RY is a homogeneous polynomial satisfying the following properties,
see, e.g., [28, 57]:

(1) ifY is defined over ℚ, then RY is also defined over ℚ,
(2) deg(RY ) = deg(Y ),
(3) hℙN (Y ) = h ( [a0 : · · · : aM ]), where a0, . . . , aM are the coefficients of RY .

Coming back to our situation, the above gives

hL (Yt ) = h ( [a0(t ) : · · · : aM (t )]), t ∈ S 0
Y (ℚ).

We now observe that the map A : t ∈ S 0
Y ↦→ [a0(t ) : · · · : aM (t )] ∈ ℙM is regular and

defined over ℚ, i.e. A ∈ ℚ[S 0
Y]. This observation is true by construction of the Chow

form, see, e.g., [80, Section 3]. The lemma follows. □

As an application of Call and Silverman’s fundamental work [24] and from
Lemma 5.8, we prove Theorem 5.6:

Proof of Theorem 5.6. — The left hand side inequality is proved in Proposition 5.7.
We now prove the right hand side inequality. Fix any closed point t ∈ S 0(ℚ). By Zhang’s
inequality (5.2) , if (x j ) is a generic sequence of closed points ofYt (ℚ), we have

ĥ ft (Yt ) ≤ lim inf
j→∞

ĥ ft (x j ) and
1

q + 1
lim inf
j→∞

hL (x j ) ≤ hL (Yt ).

We now apply [24, Theorem 3.1]: there exists constants C ,C ′ > 0 depending only on
(X, f ,L,Y) and on M such that���ĥ ft (x) − hL (x)��� ≤ ChM (t ) +C ′,

for all x ∈Yt (ℚ). The above implies

ĥ ft (Yt ) ≤ (q + 1)hL (Yt ) +ChM (t ) +C ′.

The conclusion follows from Lemma 5.8 above. □

6. Two dynamical equidistribution results

The purpose of this section is to state two arithmetic equidistribution’s theorems
on quasi-projective varieties. Equivalent statements were already obtained by Yuan
and Zhang using their theory of adelic line bundles on quasi-projective varieties ([88,
Theorems 6.2.3 and 6.3.5]). Nevertheless, for the sake of completeness, we choose to
follow the works of the first author [51] and Kühne [65] which are both of a more local
nature.
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6.1. Good height functions on quasi-projective varieties. — LetV be a smooth quasi-
projective variety defined over a number field 𝕂 and let 𝕂 ↩→ ℂ be an embedding and
let h : V (ℚ) → ℝ be a function. A sequence (Fi )i of Galois-invariant finite subsets of
V (ℚ) is

• generic if for any subvarietyZ ⊂ V defined over 𝕂, there is i0 such that Fi ∩Z = ∅
for i ≥ i0, and

• h-small if h (Fi ) := 1
#Fi

∑
x∈Fi h (x) → 0, as i → ∞.

As in [51], we say h is a good height at the complex place if for any n ≥ 0, there is
a projective model Xn ofV together with a birational morphism 𝜓n : Xn → X0 which is
an isomorphism aboveV and a big and nef ℚ-line bundle Ln on Xn endowed with an
adelic semi-positive continuous metrization Ln , such that the following holds :

(1) For any generic h-small sequence (Fi )i of Galois-invariant finite subsets ofV (ℚ),
the sequence 𝜀n ({Fi }i ) := lim supi hLn (𝜓

−1
n (Fi )) − hLn (Xn) satisfies 𝜀n ({Fi }) → 0

as n → ∞,
(2) the sequence of volumes vol(Ln) converges to vol(h) > 0 as n → ∞ and if c1(Ln)

is the curvature form of Ln on Xn (ℂ), then the sequence of finite measures(
vol(Ln)−1(𝜓n)∗c1(Ln)k

)
n converges weakly onV (ℂ) to a probability measure 𝜇,

(3) If k := dimV > 1, for any ample line bundle M0 on X0 and any adelic semi-
positive continuous metrization M 0 on M0, there is a constant C ≥ 0 such
that (

𝜓∗
n (M 0)

) j
·
(
Ln

)k+1− j
≤ C ,

for any 2 ≤ j ≤ k + 1 and any n ≥ 0.
We say that vol(h) is the volume of h and that 𝜇 is the measure induced by h over the
complex numbers.

The first author proved in [51, Theorem 1] the next result:

Theorem 6.1. — For any h-small and generic sequence (Fm)m of Galois-invariant finite
subsets ofV (ℚ), the probability measure 𝜇Fm onV (ℂ) which is equidistributed on Fm converges
to 𝜇 in the weak sense of measures, i.e. for any 𝜑 ∈ C 0

c (V (ℂ)), we have

lim
m→∞

1
#Fm

∑︁
y∈Fm

𝜑(y) =
∫
V (ℂ)

𝜑 𝜇.

6.2. A dynamical relative equidistribution Theorem. — When 𝜋 : A → S is a
family of abelian varieties defined over a number field 𝕂, where S is a smooth projective
variety, and Y ⊂ A is a non-degenerate subvariety also defined over 𝕂, Kühne [65]
proposes and proves a Relative Equidistribution Conjecture which, in turn, says that if
there is a generic sequence {xi }i in Y0(ℚ) with ĥA (xi ) → 0, then the measure 𝜇xi on
Y0(ℂ) equidistributed on the Galois orbit O(xi ) converges weakly on Y0(ℂ) to a given
probability measure 𝜇.

We want here to prove the next dynamical generalization of Kühne’s Relative
Equidistribution Conjecture:
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Theorem 6.2 (Dynamical Relative Equidistribution). — Let (X, f ,L) be a family of
polarized endomorphisms parametrized by a smooth projective variety S and let Y ⊂ X be a
family of subvarieties of X. Assume 𝜇 f ,Y is non zero on S 0(ℂ).

Then for any m ≥ dimS and any 𝜑 ∈ C 0
c ((Y [m ])0(ℂ),ℝ) and any generic and ĥ f [m ]-

small sequence {Fi }i of Galois invariant subsets of (Y [m ])0(ℚ), we have

lim
i→∞

1
#Fi

∑︁
x∈Fi

𝜑(x) = 1

Vol(m )
f (Y)

∫
(Y [m ] )0 (ℂ)

𝜑 T̂ dim Y [m ]

f [m ] .

As mentioned above, we could also have used [88, Theorem 6.2.3]. To do
that, we need to check that Y [m ] is non-degenerate which, in turn, is equivalent to the
non-vanishing of the bifurcation measure ([88, Lemma 5.4.4]).

Proof. — We fix an archimedean place of 𝕂 and a corresponding embedding
𝕂 ↩→ ℂ. By Theorem 6.1, all there is to prove is that ĥ f [m ] is a good height function on

(Y [m ])0 and to show its induced measure on (Y [m ])0(ℂ) is indeed T̂ dim Y [m ]

f [m ] .

Let M be an ample ℚ-line bundle on S of volume 1 and let L0 := L [m ] +
𝜋∗[m ]M. The line bundle L0 is ample on X [m ]. Recall Call and Silverman’s result [24,
Theorem 3.1] guarantees the existence of C ≥ 1 such that��ĥ f (x) − hX,L (x)

�� ≤ C (hS (𝜋(x)) + 1),

for all x ∈ X0(ℚ). As in the proof of Theorem 5.4, using that ĥ f ◦ f = d · ĥ f , we deduce
that up to changing the constant C , we have����ĥ f [m ] (x) −

1
dn
hX [m ] ,L [m ] (( f [m ])n (x))

���� ≤ C
dn

(
hS (𝜋[m ] (x)) + 1

)
,

for any x ∈ (X [m ])0(ℚ) and any n ≥ 0. As (( f [m ])n)∗L0 = dnL [m ] + 𝜋∗[m ]M, this implies����ĥ f [m ] (x) −
1
dn
hX [m ] ,L0

(( f [m ])n (x))
���� ≤ C

dn
(
hS (𝜋[m ] (x)) + 2

)
,

for any x ∈ (X [m ])0(ℚ) and any n ≥ 0. We now use Theorem 5.4: there is a non-empty
Zariski open set V ⊂ (Y [m ])0 such that for any x ∈ V(ℚ), we have

hS (𝜋[m ] (x)) ≤
2

Ĥ (m )
f ,M (Y)

(
ĥ f [m ] (x) + 1

)
.

We thus have a constant C2 > 0 such that for any x ∈ V(ℚ) and any n ≥ 0,����ĥ f [m ] (x) −
1
dn
hX [m ] ,L [m ] (( f [m ])n (x))

���� ≤ C2

dn

(
ĥ f [m ] (x) + 1

)
.(6.1)

We now use Lemma 1.8: let Fn ,𝜓n : Xn → X [m ] be such that Fn = ( f [m ])n ◦ 𝜓n on
𝜓−1
n (X0) with 𝜓n birational. We also let 𝜋n : Xn → S be the structure morphism induced

by 𝜋[m ] , i.e. such that 𝜋n = 𝜋[m ] ◦ 𝜓n . Choose a model metric M on M with hM ≥ 0 on
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S (ℚ). We endow L with a metrization L coming from the embedding 𝜄 : X ↩→ ℙN × S
for which (a multiple) of L is 𝜄∗OℙN (1), where OℙN (1) is the naive metrization. Define

L0 := L [m ] + (𝜋[m ])∗M .

We then let Yn := 𝜓−1
n (Y [m ]) and

Ln :=
1
dn

(
F ∗
nL0

)���
Yn

=
1
dn

(
F ∗
nL

[m ] )���
Yn

+ 1
dn

(𝜋∗nM)|Yn , n ≥ 0.

By construction the map Fn is a generically finite morphism. Since L0 is an adelic semi-
positive continuous ample line bundle, Ln is thus an adelic semi-positive continuous
big and nef ℚ-line bundle on Yn . Moreover, by construction, we have

hYn ,Ln
(𝜓−1
n (x)) = 1

dn
hX [m ] ,L0

(( f [m ])n (x)),

for any n ≥ 0 and any x ∈ (Y [m ])0(ℚ). Note also that, by construction, hYn ,Ln
≥ 0 on

Yn (ℚ), so that [51, Lemma 6] gives

hLn
(Yn) ≥ 0.

We combine this inequality with the inequality (6.1) : this implies that for any generic
sequence {Fi }i of Galois invariant subsets of (Y [m ])0(ℚ) with ĥ f [m ] (Fi ) → 0, we have

lim sup
i→∞

(
hYn ,Ln

(𝜓−1
n (Fi )) − hYn ,Ln

(Yn)
)
≤ lim sup

i→∞
hYn ,Ln

(𝜓−1
n (Fi )) ≤ 2

C2

dn
.

We now let 𝜔 and 𝜌 be the respective curvature forms 𝜔 := c1(L|Y) and 𝜌 = c1(M) on
Y(ℂ) and S (ℂ) respectively. Then 𝜔 is a smooth form on Y(ℂ) representing c1(L|Y),
and if we denote as before p j : Y [m ] → Y the projection onto the j -th factor of the
fiber-product, the curvature form of Ln satisfies as forms on (Y [m ]) (ℂ):

c1(Ln)dim Y [m ]

= d −n dim Y [m ]
𝜓∗
n

(
(( f [m ])n)∗

(
p∗1(𝜔) + · · · + p∗m (𝜔) + 𝜋∗[m ] (𝜌)

)dim Y [m ] )
so that, if 𝜔m := p∗1(𝜔) + · · · + p∗m (𝜔), we have as measures on (Y [m ]) (ℂ):

(𝜓n)∗
(
c1(Ln)dim Y [m ]

)
= d −n dim Y [m ]

(
(( f [m ])n)∗

(
𝜔m + 𝜋∗[m ] (𝜌)

)dim Y [m ] )
.

Now, as d −n (( f [m ])n)∗𝜔m converges to T̂f [m ] with a uniform convergence of local poten-
tials and as we have (( f [m ])n)∗𝜋∗[m ] (𝜌) = 𝜋∗[m ] (𝜌) by construction, the following holds in
the weak sense of measures on (Y [m ]) (ℂ):

d −n dim Y [m ]
(
(( f [m ])n)∗

(
𝜔m + 𝜋∗[m ] (𝜌)

)dim Y [m ] )
−→ T̂ dim Y [m ]

f [m ] .

Finally, the volume of Ln can be computed as

degYn (Ln) = Vol(m )
f (Y) +O

(
1
dn

)
.
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Indeed, by definition of L0 and by Lemma 1.2, we find

degYn (Ln) =
(
c1(Ln)dim Y [m ] · {Yn}

)
=

(
d −n dim Y [m ] (Fn)∗c1(L0)dim Y [m ] · {Y [m ]}

)
=

(
d −n dim Y [m ] (Fn)∗c1(L [m ])dim Y [m ] · {Y [m ]}

)
+O

(
1
dn

)
= Vol(m )

f (Y) +O
(

1
dn

)
.

Our assumption that Vol(m )
f (Y) > 0 thus implies limn→∞ degYn (Ln) = Vol(m )

f (Y) > 0.

To prove that ĥ f [m ] is a good height function on (Y [m ])0(ℚ), the last thing to
check is condition (3) introduced in Section 6.1. Let 𝜋n : Yn → S be the morphism
induced by 𝜋[m ] : Y [m ] → S .

Let M 0 be an ample adelic semi-positive continuous line bundle on Y0. Then
𝜓∗
nM 0 is a big and nef ℚ-line bundle on Yn and 𝜓∗

nM 0 is a semi-positive adelically
metrized line bundle on Yn. Let E := d −1F ∗

1L − 𝜓∗
1L. Then, there is D effective on S

such that −d −1𝜋∗1D ≤ E ≤ d −1𝜋∗1D .
By construction, we can assume there is a birational morphism 𝜙n : Yn+1 → Yn

with 𝜋n ◦ 𝜙n+1 = 𝜋n+1 and that 𝜓n+1 = 𝜓n ◦ 𝜙n+1. Without loss of generality, we can also
assume 𝜓n = 𝜙1 ◦ · · · ◦ 𝜙n and there is a morphism gn : Yn+1 → Y1 such that

𝜙1 ◦ gn = Fn ◦ 𝜙n+1 and F1 ◦ gn = Fn+1 on Yn+1.

We have d −ng ∗n (E) ≤ d −(n+1) g ∗n𝜋
∗
1D = d −(n+1)𝜋∗n+1D . In particular, one sees that

Ln+1 − 𝜙∗n+1Ln =
1
dn
g ∗n

(
E
)
+

(
1
dn+1

− 1
dn

)
𝜋∗n+1(M)

≤ 1
dn+1

𝜋∗n+1(D +M).

Hence Ln+1 ≤ 𝜙∗n+1(Ln + d −(n+1)𝜋∗n (D +M)). An immediate induction gives

Ln ≤ 𝜓∗
n

(
L0 + d

d − 1
𝜋∗[m ] (D +M)

)
.(6.2)

Let P := dimY [m ] and pick 0 ≤ ℓ ≤ P + 1. For all n ≥ 0, (6.2) gives( (
𝜓∗
n (M 0)

)ℓ
·
(
Ln

)P +1−ℓ
����Yn)

≤
( (
𝜓∗
n (M 0)

)ℓ
· 𝜓∗

n

(
L0 + d

d − 1
𝜋∗[m ] (D +M)

)P +1−ℓ
�����Yn

)
≤

(
(M 0)ℓ ·

(
L0 + d

d − 1
𝜋∗[m ] (D +M)

)P +1−ℓ
�����Y [m ]

)
,



SPARSITY OF POSTCRITICALLY FINITE MAPS OF ℙk AND BEYOND 83

where we used the projection formula and that (𝜓n)∗(Yn) = Y [m ] . This proves hypothe-
sis (3) of Section 6.1 is satisfied as the last quantity is independent of n and the proof of
Theorem 6.1 is complete. □

6.3. Parametric equidistribution. — For any finite Galois invariant subset F ⊂
S 0(ℚ), we define h f ,Y (F ) as

h f ,Y (F ) :=
1

#F

∑︁
t ∈F

ĥ ft (Yt ).

As usual, we say a sequence Fi of finite Galois invariant subsets of S 0(ℚ) is h f ,Y-small if
h f ,Y (Fi ) → 0.

Corollary6.3. — Let (X, f ,L,Y) be a dynamical pair parametrized by a smooth projec-
tive variety S with regular part S 0, all defined over a number field 𝕂. Assume Vol(dimS )

f (Y) > 0.
Assume also there is a generic and h f ,Y-small sequence {Fi }i of finite Galois invariant subsets of
S 0(ℚ). Then for any 𝜑 ∈ C 0

c (S 0(ℂ),ℝ), we have

lim
i→∞

1
#Fi

∑︁
t ∈Fi

𝜑(t ) =
∫
S 0 (ℂ)

𝜑
𝜇 f ,Y

Volf (Y)
.

Observe that this result corresponds to [88, Theorem 6.3.5]. Our approach is
based on Zhang inequalities over number fields and Theorem 6.2, whereas Yuan and
Zhang rely on properties of metrics on the Deligne pairing on adelic line bundles.

Proof. — Fix m ≥ dimS and fix i and let t ∈ Fi . Zhang’s inequalities (5.2) imply
there exists a generic sequence {x (t )j } j ofY [m ]

t (ℚ) such that we have

lim sup
j→∞

ĥ f [m ] (x (t )j ) ≤ (q + 1)ĥ f [m ]
t

(Y [m ]
t ) .

For any i , j , we define a finite Galois invariant subset Z ij of (Y [m ])0(ℚ) by letting

Z ij :=
⋃
t ∈Fi

O(x (t )j ).

By the above, and by Lemma 5.1, we deduce that

lim inf
j→∞

ĥ f [m ] (Z ij ) ≤ (q + 1)h f [m ] ,Y [m ] (Fi ) = m (q + 1) · h f ,Y (Fi ).

Take 𝜀i > 0 such that 𝜀i → 0 as i → ∞ and such that (q + 1)2m · h f ,Y (Fi ) ≤ 𝜀i for any
i . For any i ≥ 1, there is an infinite sequence ( jn (i + 1))n , extracted from ( jn (i ))n such
that, for any n ≥ 0, we have ĥ f [m ] (Z ijn (i ) ) ≤ 2𝜀i . We deduce there exists a sequence

{Zi }i of finite Galois invariant finite subsets of (Y [m ])0(ℚ) such that 𝜋[m ] (Zi ) = Fi and
such that for any t ∈ Fi , we have O(x (t )j (i ) ) ⊂ 𝜋−1

[m ]{t } for some j (i ) ≥ j0(i ). Moreover, by
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construction we can choose Zi generic, and we have

0 ≤ 1
#Zi

∑︁
x∈Zi

ĥ f [m ] (x) ≤ 2𝜀i .

As 𝜀i → 0 and {Zi }i is generic, Theorem 6.2 implies

1
#Zi

∑︁
x∈Zi

𝛿x ,v −→ 𝜇v ,

where 𝜇v is a probability measure on (Y [m ])0,an
v which satisfies

(𝜋[m ])∗(𝜇v ) = 𝜇 f ,[Y],v (S 0,an
v )−1𝜇 f ,[Y],v ,

when v is archimedean. Let 𝜈v := (𝜋[m ])∗(𝜇v ) and take 𝜑 ∈ C 0
v (S

0,an
v ,ℝ). Then

1
#Fi

∑︁
t ∈Fi

𝜑(t ) = 1
#Fi

∑︁
t ∈Fi

1

#O(x (t )j (i ) )

∑︁
x∈O(x (t )j (i ) )

𝜑(𝜋[m ] (x))

=
1

#Zi

∑︁
x∈Zi

𝜑(𝜋[m ] (x)).

We now use that 𝜈v = (𝜋[m ])∗(𝜇v ) so that∫
S 0,an
v

𝜑𝜈v =

∫
(Y [m ] )0,an

v

(𝜑 ◦ 𝜋[m ])𝜇v .

Finally, if v is archimedean, since (𝜋[m ])∗(𝜇v ) =
(
𝜇 f ,[Y],v (S 0,an

v )
)−1 · 𝜇 f ,Y,v , we have

𝜈v =
(
𝜇 f ,Y,v (S 0,an

v )
)−1 · 𝜇 f ,Y,v and the proof is complete. □

7. Sparsity and uniformity: proof of the main results

We are now interested in applying all the above results in two specific situations,
where we study the variations of the dynamics of the critical set.

7.1. Sparsity of PCF maps of ℙk . — We focus the family introduced in Section 2.1
(which plays the role of a universal family here), which is a family (ℙkS , f ,Oℙk (1)) of
degree d endomorphisms of ℙk parametrized by a projective model S of finite branched
cover of M k

d with regular part Uk
d — if we follow the notations introduced above —

which is defined over ℚ, see Lemma 2.1.
The critical variety Crit( f ) ⊊ ℙkS satisfies 𝜋(Crit( f )) = S , where 𝜋 : ℙkS → S is

the canonical projection, and 𝜋 |Crit( f ) is flat and projective over a Zariski open subset
S 0 ⊆ M k

d . Moreover, for any t ∈ S 0, the fiber Crit( ft ) = 𝜋 |−1
Crit( f ) (t ) is the critical locus

of ft . Moreover, up to reducing the open set S 0, we can assume Crit( ft ) is irreducible
for all t ∈ S 0.

We are now in position to prove Theorem B.
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Proof of Theorem B. — Recall that being PCF is a property which is invariant under
conjugacy, hence the set of PCF maps f ∈ Endkd is Zariski dense in Endkd if and only
if their conjugacy classes are Zariski dense in M k

d . To prove Theorem B, we proceed
by contradiction. Assume PCF maps are Zariski dense in Endkd . Then they are Zariski
dense in Uk

d . In this case, those which are defined over ℚ are countable and Zariski
dense.

We thus can find a generic sequence (tn)n∈ℕ of PCF parameters tn ∈ Uk
d (ℚ). Note

here that the bifurcation measure 𝜇 f ,Crit of the family we consider is the pull-back of
the measure of the moduli space by the canonical projection Π : Uk

d → M k
d which

is finite and whose image U k
d contains a non-empty Zariski open subset of M k

d . In
particular, 𝜇 f ,Crit is non-zero, and supp(𝜇 f ,Crit) contains a non-empty analytic open
subset Ω which contains no PCF parameters, by Theorem C.

Let now 𝜇n be the measure of Uk
d (ℂ) equidistributed on the Galois orbit O(tn) of

tn . By the parametric equidistribution Theorem (see Corollary 6.3), we have

𝜇n :=
1

Card(O(tn))
∑︁

t ∈O(tn )
𝛿t −→ 𝜇 f ,Crit, as n −→ ∞.

In particular, in the analytic topology of Uk
d (ℂ), the support of 𝜇 f ,Crit is accumulated by

PCF classes. In particular, PCF parameters are dense in Ω. This is a contradiction. □

7.2. Height gap and uniformity for regular maps of the affine space. — In this section,
we focus on the case when X = ℙk ×S and where there is a hyperplaneH∞ ⊂ ℙk such that
f −1
t (H∞) = H∞ for all t ∈ S 0. We call such a family of regular polynomial endomorphisms

of the affine space 𝔸k , see [6]. Choosing an affine chart, we can assume the hyperplane
H∞ is the hyperplane at infinity of 𝔸k in ℙk . When (ℙk × S , f ,Oℙk (1)) is such a family
of regular polynomial endomorphisms, we let

G ft (z ) = G f (z , t ) := lim
n→∞

1
dn

log+ ∥ f nt (z )∥,

for all z ∈ ℂk and all t ∈ S 0(ℂ).
We let Y ⊂ ℙk × S be an irreducible hypersurface that projects surjectively onto

S and which intersects properly H∞ × S . Up to reducing the Zariski open set S 0, we can
assume Y is flat over S 0 andYt ≠ H∞ for all t ∈ S 0.

Definition 7.1. — The polynomial bifurcation measure 𝜇
pol
f Y of the pair (ℙk ×

S , f ,Oℙk (1),Y) is the Monge–Ampère measure associated to the functionG f ,Y : S 0(ℂ) → ℝ+

defined by

G f ,Y (t ) :=
∫
ℂk
G ft (dd cG ft (z ))k−1 ∧ [Yt ], t ∈ S 0(ℂ),

i.e. 𝜇pol
f Y := (dd cG f ,Y)dimS as a measure on S 0(ℂ).
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The measure 𝜇
pol
f Y detects phenomena which occur in the affine space. However,

it does not in general allow to collect all the informations that 𝜇 f ,Y carries. However, as
measures on S 0, we have

𝜇 f ,Y ≥ 𝜇
pol
f ,Y .

We now prove here the following which is a sufficient condition to get a height
gap, and then to deduce uniformity in a Bogomolov-type statement. To pursue the
parallel with [88], this Theorem in turn says that if the Deligne pairing M relatively to
𝜋 |Y : Y → S of the adelic line bundle L f has strictly positive arithmetic volume, then
one has a uniform Bogomolov-type statement in the total space.

Theorem 7.2. — Let (ℙk × S , f ,Oℙk (1)) be a family of regular polynomial endomor-
phisms of degree d of the affine space parametrized by S , and let Y ⊂ ℙk × S be an irreducible
hypersurface such that 𝜋 |Y : Y → S is surjective, all defined over a number field. Assume Y
intersects properly H∞ × S . Assume also∫

S (ℂ)
G f ,Y · 𝜇pol

f ,Y > 0.

Then there exists Z ⊊ S Zariski-closed, 𝜀 > 0, and an integer N ≥ 1, such that for all
t ∈ (S 0 \ Z ) (ℚ), there exists a strict subvarietyWt ⊊ Yt with deg(Wt ) ≤ N and such that

{z ∈Yt (ℚ) : ĥ ft (z ) ≤ 𝜀} ⊂Wt .

Remark 7.3. — By Zhang’s inequalities (5.1) , this in particular implies that

ĥ ft (Yt ) ≥
𝜀

k
> 0, for all t ∈ (S 0 \ Z ) (ℚ).

The key ingredient is the next lemma, which is of purely complex analytic na-
ture. Again, in the parallel with [88], it says that if the Deligne pairing M has positive
arithmetic volume, then L

[m+1]
f |Y [m+1] also has positive arithmetic volume.

Lemma 7.4. — Let (ℙk × S , f ,Oℙk (1)) be a complex family of regular polynomial
endomorphisms of the affine space of degree d parametrized by S of dimension m. Then∫

ℂk (m+1)×S
G f [m+1] (dd cG f [m+1] )km+k−1 ∧ [Y [m+1]] ≥

∫
S
G f ,Y · 𝜇pol

f ,Y .

Proof. — We denote by pi : (ℙk )m+1 × S → ℙk × S the projection onto the
i-th factor of the fiber product and by 𝜋i : (ℙk )m+1 × S → (ℙk )m × S the projection
consisting in forgetting the i-th factor. By construction f [m ] and f [m+1] are families of
regular polynomial endomorphisms of the affine spaces 𝔸km and 𝔸k (m+1) respectively.
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Moreover, for any 1 ≤ i ≤ m + 1, we have

G f [m+1] =

m+1∑︁
j=1

G f ◦ p j = G f ◦ pi +G f [m ] ◦ 𝜋i .

Using that [Y [m+1]] = p∗1 [Y] ∧ 𝜋∗1 [Y
[m ]], we find

I :=
∫
ℂk (m+1)×S

G f [m+1] (dd cG f [m+1] )km+k−1 ∧ [Y [m+1]]

≥
∫
ℂk (m+1)×S

(G f ◦ p1) · (p∗1dd
cG f + 𝜋∗1dd

cG f [m ] )km+k−1 ∧ [Y [m+1]]

≥
∫
ℂk (m+1)×S

(G f ◦ p1) · (p∗1dd
cG f )k−1 ∧ (𝜋∗1dd

cG f [m ] )km ∧ [Y [m+1]]

=

∫
ℂk (m+1)×S

p∗1

(
G f (dd cG f )k−1 ∧ [Y]

)
∧ 𝜋∗1

(
(dd cG f [m ] )km ∧ [Y [m ]]

)
=

∫
ℂkm×S

(∫
ℂk
G ft (dd cG ft )k−1 ∧ [Yt ]

)
(dd cG f [m ] )km ∧ [Y [m ]]

=

∫
ℂkm×S

(G f ,Y ◦ 𝜋[m ]) · (dd cG f [m ] )km ∧ [Y [m ]] .

Claim. — For m ≥ dimS , there is C (m) ≥ 1 such that

(𝜋[m ])∗
(
(dd cG f [m ] )km ∧ [Y [m ]]

)
= C (m)𝜇pol

f ,Y .

According to the Claim above, we find

I ≥
∫
S
G f ,Y · 𝜇pol

f ,Y ,

which concludes the proof. □

All there is left to do is to prove the Claim.

Proof of the Claim. — We first prove that dd cG f ,Y = 𝜋∗
(
(dd cG f )k ∧ [Y]

)
using a

slicing argument. Indeed, if 𝜙 is a smooth compactly supported (dimS − 1, dimS − 1)-
form on S 0(ℂ), we have∫

X0 (ℂ)
𝜋∗𝜙 ∧ (dd cG f )k ∧ [Y]

=

∫
X0 (ℂ)

G f (dd cG f )k−1 ∧ [Y] ∧ 𝜋∗(dd c𝜙)

=

∫
S 0 (ℂ)

(∫
𝜋−1{t }

G ft (dd cG ft )k−1 ∧ (𝜄t )∗ [Y]
)
· dd c𝜙,
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where 𝜄t : Xt → X is the natural injection, so that 𝜄∗t [Y] = [Yt ], hence∫
X0 (ℂ)

𝜋∗𝜙 · (dd cG f )k ∧ [Y] =
∫
S 0 (ℂ)

G f ,Y · dd c𝜙 =

∫
S 0 (ℂ)

dd cG f ,Y ∧ 𝜙.

To conclude, we proceed as in the proof of Proposition 1.4. □

Now, when X is a projective variety and L is a line bundle on X , we denote by
L⊠N the induced line bundle on X N , i.e. L⊠N = 𝜏∗1L + · · · + 𝜏∗N L, where 𝜏i : X N → X is
the canonical projection onto the i-th coordinate. We will also use the next Lemma due
to Gao, Ge and Kühne [47, Lemma 4.3].

Lemma 7.5. — Let X be an irreducible projective variety with a very ample line bundle
L, defined over an algebraically closed field K and N ≥ 2. Let Z ⊊ X N be a proper closed
subvariety. There exists a constant

B = B (N , dimX , degL (X ), degL⊠N (Z )) > 0,

such that for any subset Σ ⊂ X (K ) with ΣN ⊆ Z (K ), there exists a proper closed subvariety X ′

of X with Σ ⊂ X ′(K ) and degL (X ′) < B .

We are now in position to prove Theorem 7.2.

Proof of Theorem 7.2. — For any v ∈ M𝕂 , recall that the Green function of f [m+1] is

G f [m+1] ,v (x) := lim
n→∞

m+1∑︁
j=1

1
dn

log+ ∥ f n ◦ pi (x)∥v , x ∈ 𝔸k (m+1) (ℚ) × S 0(ℚ).

One can show that for any x ∈ 𝔸k (m+1) (ℚ) × S 0(ℚ), we have

ĥ f [m+1] (x) =
1

[𝕃 : 𝕂]
∑︁
v ∈M𝕂

∑︁
𝜎∈Gal(𝕃/𝕂)

nvG f [m+1] ,v (𝜎(x)),

where 𝕃 is any finite extension of 𝕂 so that x ∈ 𝔸k (m+1) (𝕃) × S 0(𝕃). In particular, for a
given place v ∈ M𝕂 , we deduce that

nv
[𝕃 : 𝕂]

∑︁
𝜎∈Gal(𝕃/𝕂)

G f [m+1] ,v (𝜎(x)) ≤ ĥ f [m+1] (x).(7.1)

We proceed by contradiction, assuming that there is a Zariski dense subset of small
points, i.e. for all 𝜀 > 0, the set

E𝜀 :=
{
x ∈ Y [m+1] (ℚ) : ĥ f [m+1] (x) ≤ 𝜀

}
is Zariski dense in Y [m+1] (ℚ). In particular, there exists a generic sequence (xn) ∈
(Y [m+1])0(ℚ) such that ĥ f [m+1] (xn) → 0 as n → ∞. Let now v0 ∈ M𝕂 be an archimedean
place. Since we will now work only at the place v0, we forget the subscript v0 in the rest
of the proof.
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By construction of the Green current T̂f [m+1] and of the Green function G :=
G f [m+1] , as measures on ℂk (m+1) × S 0(ℂ), we have

T̂ k (m+1)−1
f [m+1] ∧ [Y [m+1]] = (dd cG f [m+1] )k (m+1)−1 ∧ [Y [m+1]] .

In particular, Lemma 7.4 says that∫
(Y [m+1] )0

★ (ℂ)
G · 𝜇m+1 > 0,

where 𝜇m+1 = T̂ dim Y [m+1]

f [m+1] and (Y [m+1])0★ = (Y [m+1])0 ∩ (𝔸k (m+1) × S ).
AsG is continuous and non-negative on (Y [m+1])0★(ℂ), we deduce that there exists

a non-empty open analytic set Ω ⋐ (Y [m+1])0★(ℂ) such that G > 0 on Ω and such that
𝜇m (Ω) > 0. Let 𝜒 : (Y [m+1])0★(ℂ) → ℝ+ be a smooth compactly supported function
with 𝜒 = 1 on Ω and 0 ≤ 𝜒 ≤ 1. The function 𝜙 := G · 𝜒 is thus continuous, compactly
supported, and G ≥ 𝜙. We now apply the Equidistribution Theorem 6.1:

lim
n→∞

1
Card(O(xn))

∑︁
y∈O(xn )

𝜙(y) =
∫
(Y [m+1] )0

★ (ℂ)
𝜙𝜇m+1.

In particular, there is n0 ≥ 1 such that for any n ≥ n0, we have
1

Card(O(xn))
∑︁

y∈O(xn )
𝜙(y) ≥ 1

2

∫
(Y [m+1] )0

★ (ℂ)
𝜙𝜇m+1 ≥ 1

2

∫
Ω

G 𝜇m+1 > 0.

Moreover, for any finite extension 𝕃n of 𝕂 with xn ∈ Y [m+1] (𝕃n),
1

[𝕃n : 𝕂]
∑︁

𝜎∈Gal(𝕃n/𝕂)
G f [m+1] (𝜎(xn)) =

1
Card(O(xn))

∑︁
y∈O(xn )

G (y)

≥ 1
Card(O(xn))

∑︁
y∈O(xn )

𝜙(y),

where we used that G ≥ 𝜙. Together with (7.1) , this gives

ĥ f [m+1] (xn) ≥
nv0

2

∫
Ω

G 𝜇m+1 > 0,

for any n ≥ n0. This is a contradiction since ĥ f [m+1] (xn) → 0 as n → ∞ by hypothesis.
We have thus proved there exists 𝜀0 > 0 such that the set E𝜀0 is not Zariski dense

in Y [m+1] (ℚ). In particular, there is a proper Zariski closed subsetV ⊊ Y [m+1] which is
defined over ℚ and that contains E𝜀0 . If Z := 𝜋[m+1] (V ) ⊊ S is a proper closed subvariety
of S , then for any t ∈ (S 0 \ Z ) (ℚ), we have ĥ f [m+1] ≥ 𝜀0 onY m+1

t (ℚ). It is in particular
true on Δ := {(z , . . . , z ) : z ∈Yt (ℚ)}. Let 𝜀 := 𝜀0/(m + 1). This gives

m+1∑︁
j=1

ĥ ft (z ) = ĥ f [m+1] (z , . . . , z , t ) ≥ 𝜀0,

which rewrites as ĥ ft ≥ 𝜀 = 𝜀0/(m + 1) onYt (ℚ).
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Assume now that 𝜋(V ) = S and let Z ⊊ S be the proper closed subvariety of
S such that 𝜋[m+1] is flat on each irreducible component of V over S 0 \ Z . Pick now
t ∈ (S 0 \ Z ) (ℚ). By definition, the line bundle Lt := Oℙk (1) |Yt is very ample and the set
Vt :=V ∩Y m+1

t is a proper closed subvariety ofY m+1
t with D := degLt (Vt ) independent

of t . Let

Σt :=
{
z ∈Yt (ℚ) : ĥ ft (z ) ≤ 𝜀

}
.

where 𝜀 = 𝜀0/(m + 1) as above. The conclusion follows from Lemma 7.5. □

7.3. Uniformity in the moduli space P2
d . — As before, we focus on the good family

(ℙ2
S , f ,Oℙ2 (1)) of degree d endomorphisms of ℙ2 which is defined over ℚ introduced

in Lemma 2.2 and let, as before, V2
d be its maximal regular part (see Section 2.1).

We also study here the variation of the canonical height of the critical locus.
However, when f : 𝔸2 → 𝔸2 is a degree d regular polynomial endomorphism, L∞ is an
irreducible component of the critical locus of f and f induces an endomorphism of L∞,
we denote by fL∞ . This induces a map

r : V2
d −→ U1

d

defined by r (t ) = ft ,L∞ . This map is well defined and surjective and, for every g ∈ U1
d ,

the set r −1(g ) consists of conjugacy classes of regular polynomial endomorphisms
whose restriction to L∞ are conjugate to g . It thus is a subvariety of V2

d of dimension
dim P2

d − dim M 1
d > 0.

In the present situation, one sees that Crit( ft ) decomposes as

Crit( ft ) = L∞ ∪C ft
where C ft ∩𝔸2 = {z ∈ 𝔸2 : det(Dz ft ) = 0} = Crit( ft ) ∩ 𝔸2. We now let

C := {(z , t ) ∈ ℙ2 ×V2
d : z ∈ C ft }.

The next key lemma is a consequence of Theorem C (see Theorem 4.1).

Lemma 7.6. — There exists a non-empty open set Ω ⊂ V2
d (ℂ) that is contained in

supp(𝜇poly
f ,C ). In particular,∫

S (ℂ)
G f ,Y · 𝜇pol

f ,Y > 0.

Proof. — Write P := dimP2
d for simplicity. First, as currents on ℂ2P × V2

d (ℂ),
we have

T̂f [P ] = dd cG f [P ] .

In particular, as measures on ℂ2P ×V2
d (ℂ), we also have

T̂ 2P
f [P ] ∧ [Crit[P ]] = T̂ 2P

f [P ] ∧ [C [P ]] =
(
dd cG f [P ]

)2P
∧ [C [P ]] .
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By construction, the points of the support of T̂ 2P
f [P ]∧[Crit[P ]] constructed in Theorem 4.1

belong to ℂ2P ×V2
d (ℂ). In particular, they belong to the support of

(
dd cG f [P ]

)2P ∧[C [P ]].
We conclude by pushing forward this measure by 𝜋[P ] that there exists Ω ⊂ supp(𝜇poly

f ,C ).
We prove that the integral is strictly positive by contradiction. If the integral

vanishes, for any 𝜀 > 0, the set of points t ∈ Ω such that G f ,Y (t ) ≤ 𝜀 is dense in Ω. As
G f ,Y ≥ 0, this implies the continuous function G f ,Y : S 0(ℂ) → ℝ is constant equal to
zero on Ω. This is a contradiction since (dd cG f ,Y)P would be zero on Ω. □

We are now in position to prove the following result.

Theorem 7.7. — Fix d ≥ 2. There are constants B (d ) ≥ 1 and 𝜀(d ) > 0 and a
non-empty Zariski open subsetU ⊂ Poly2

d such for any f ∈ U (ℚ), then

#
{
z ∈ C f (ℚ) : ĥ f (z ) ≤ 𝜀(d )

}
≤ B (d ).

Proof. — Let (ℙ2
S , f ,Oℙ2 (1)) be the family introduced in Lemma 2.2. Lemma 7.6

with Theorem 7.2 imply that there are 𝜀 > 0, B ≥ 1 and a non-empty Zariski open set
U ⊂ V2

d such that for any t ∈ U (ℚ)

#
{
z ∈ C ft (ℚ) : ĥ ft (z ) ≤ 𝜀

}
≤ B .

Now, recall that if two maps f , g ∈ Poly2
d (ℚ) are conjugate by 𝜙 ∈ Aut(𝔸2), i.e. if

f ◦ 𝜙 = 𝜙 ◦ g , then ĥ f ◦ 𝜙 = ĥg and 𝜙−1(C f ) = Cg so that{
z ∈ C f (ℚ) : ĥ f (z ) ≤ 𝜀

}
= 𝜙

({
z ∈ Cg (ℚ) : ĥg (z ) ≤ 𝜀

})
.

As 𝜙 is an automorphism of ℙ2, the conclusion follows. □

To conclude, it remains to prove Theorem D.

Proof of Theorem D. — Observe that the statement is a direct consequence of
Theorem 7.7 in ℚ: there exists a constant B (d ) ≥ 1, 𝜀(d ) > 0 and a non-empty Zariski
open subset U ⊂ Poly2

d such for any f ∈ U (ℚ), we have

#
{
z ∈ C f (ℚ) : ĥ f (z ) ≤ 𝜀(d )

}
≤ B (d ).

As preperiodic points of f ∈ U (ℚ) are those z ∈ ℙ2(ℚ) with ĥ f (z ) = 0, this implies

# Preper( f ) ∩C f ≤ B (d ),

for any f ∈ U (ℚ).
Now, let f0 ∈ U (ℂ) with # Preper( f0) ∩C f0 ≥ B (d ) + 1. Write Preper( f0) ∩C f0 =

{z1, . . . , zN } and let ni > m j ≥ 0 be minimal such that f ni0 (zi ) = f mi0 (zi ) for 1 ≤ i ≤ N .
For any i , the set

Xi :=
{
( f , z ) ∈ Poly2

d ×𝔸2, f ni (z ) = f mi (z ) and det(Dz f ) = 0
}
.
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is a closed subvariety of Poly2
d ×𝔸2 which is defined over ℚ. For 1 ≤ j ≤ N , let

p j : Poly2
d ×(𝔸2)N → Poly2

d ×𝔸2 be the map defined by p j ( f , z1, . . . , zN ) = ( f , z j ) and
set

X :=
N⋂
j=1

p−1
j (X j ).

Then X is a closed subvariety of Poly2
d ×(𝔸2)N which is defined over ℚ. Let

Δ :=
⋃
i≠ j

{
( f , z1, . . . , zN ) ∈ Polyd ×(𝔸2)N : zi = z j

}
.

Δ is also a closed subvariety of Polyd ×(𝔸2)N . Our assumption on f0 guarantees that
( f0, z1, . . . , zN ) ∈ X (ℂ) so that (X \ Δ) (ℂ) ≠ ∅. As X is defined over ℚ, this implies
(X \ Δ) (ℚ) ≠ ∅. This is a contradiction. □
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