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ABSTRACT

An endomorphism f : P¥ — P* of degree d > 2 is said to be postcritically finite (or PCF) if its critical set Crit(f) is
preperiodic, i.e. if there are integers m > n > 0 such that f™(Crit(f)) € f"(Crit(f)). When £ > 2, it was conjectured in [61]
that, in the space EndldC of all endomorphisms of degree d of P*, such endomorphisms are not Zariski dense. We prove this
conjecture. Further, in the space Polyg of all regular polynomial endomorphisms of degree d > 2 of the affine plane A2, we
construct a dense and Zariski open subset where we have a uniform bound on the number of preperiodic points lying in the
critical set.

The key object in the article are the complex bifurcation measure and its properties. The proofs are a combination of
the theory of heights in arithmetic dynamics and methods from real dynamics to produce open subsets with maximal bifurcation.
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Introduction

Let 7 : X — S be a family of complex projective varieties, where S is a smooth
complex projective variety, and let £ be a nef and relatively ample line bundle on
X. Welet f : X --» X be a rational map such that (X, £, £) is a family of polarized
endomorphisms of degree d > 2 over a Zariski open subset $° of S, i.e. forall ¢ € §9(C),
X, == 7~ ¢} is normal, L, := L|x, is ample and f*L, ~ L®?. We further assume that
the generic fiber is smooth. If X0 = 771(89), the family X — 8 is the regular part of
(X, f, £). The purpose of the article is to study maximal instability phenomena in both
complex and arithmetic dynamics, each viewpoint giving deep insights into the other.
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From the arithmetic viewpoint, we are mainly interested in the notion of canonical
height of a subvariety. Such height is a function meant to measure the arithmetic
dynamical complexity of the orbit of the subvariety. Studying such objects in family,
we are particularly interested in two cases:

e the moduli space %f of degree d endomorphisms of the projective space P%,
e the moduli space @5 of degree d regular endomorphisms of the affine space A%,

In both cases, we study a family which is finite to one over a Zariski open subset of the
moduli space, and the family of subvarieties we consider is the critical set, see Section 2.1
for more details. More precisely, we

e show that this height is in fact a moduli height on a Zariski open set U of //lf.

e use that height to show that postcritically finite maps — PCF maps for short —
(see below) are not Zariski dense in ///j nor in ,@3.

e prove a uniform bound on the number of preperiodic critical points for regular
polynomial endomorphisms whose conjugacy lies in a Zariski open set of 93.

The complex analytic viewpoint is essential in that process to

e show that the support of the bifurcation measure (see below) has non-empty
interior in both .//l(;C and 93

e prove that the correspondence between an endomorphism in .# dk (or 3”3) and
the collection of the multipliers of its periodic points is finite-to-one outside a
Zariski closed set.

We are strongly inspired by the recent results on families of abelian varieties
where similar type of results have been established, as well as by the recent uniform
bounds on the number of common preperiodic points for rational maps of P!, initiated
by DeMarco, Krieger and Ye [31, 32] in the cases of flexible Lattes maps and quadratic
polynomials, and developed since then by Mavraki and Schmidt [71] and DeMarco
and Mavraki [33]. Concerning families of abelian varieties, they naturally fall in the
setting of family of polarized endomorphisms when taking the multiplication by [z]
morphism. In particular, we used ideas coming from the work of Gao—Habegger [48]
and Cantat—-Gao—Habegger—Xie [25] where the Geometric Bogomolov conjecture is
proved in characteristic 0 (note that Xie and Yuan recently managed the tour de force of
proving it in arbitrary characteristic [86]). We also rely on the work of Dimitrov—Gao—
Habegger [46] where a uniform bound on the number of rational points of a curve C,
defined over a number field, inside its Jacobian is established (Uniform Mordell-Lang)
and the works of Kithne [65], generalized by Yuan in arbitrary characteristic [87], and
Gao—Ge—Kiithne [47] where the Uniform Mordell-Lang Conjecture is generalized to
arbitrary subvariety of an abelian variety.

A crucial point in our work is to link the notion of dynamical stability in complex
dynamics, which can be characterized by positive closed currents, with the notion
of dynamical height. In [564], relying on the theory of DSH functions of Dinh and
Sibony [36], the first and third authors established such link for the (1, 1) bifurcation
current of a family of subvarieties, here we need to deal with the bifurcation measure,
which measures higher bifurcation phenomena. Let us explain those terms.
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Let w be a smooth positive form representing the first Chern class ¢ (£) on X. As
f L~ L£8 on XY, there is a smooth function g : X — R such that d™' f*w = w + dd‘g
as forms on X. In particular, the following limit exists as a closed positive (1, 1)-current
with continuous potential on the quasi-projective variety X°(C):

P
Ty = lim — (/") (@),

and can be written as ff = w+dd°gs, where g is continuous on X(C). The current ff
is the fibered Green current of f (note that for abelian varieties, ff is the Betti form). Let
Y — S8 be a family of subvarieties of X, i.e. Y is a subvariety of X and 7|y : Y/ — S of x
is flat over 80, If ¢ is the relative dimension of Y, for 1 < m < dim S, the m-bifurcation
current of (X, f, £,Y) can be defined on $Y(C) as

Fm(dim ¥, +1)
Tf(,”fy) = (ﬂ[m])*(Tf”Em]lm i+ A [y[m]]),

where Y}, is the generic fiber of Y, 7y, : XIm — § is the m-fiber product of X, and
£1m is the map induced by the fiberwise diagonal action of f. The bifurcation measure of

(X, f,L,Y) is then

_ o (dimS)
Hpy = Tf,y .

We now focus on the case of a family of rational maps of P*(C), parametrized
by a projective variety §. In this case, the regular part is X = P*¥ x §Y, where ¥ is a
Zariski open subset of §. We then are interested in the bifurcation of the critical set
Crit(f) = {(z,t) € PF x S0 det(D.f)) = 0}. So, the bifurcation measure is

dim § 7k(dim S . dim S
Hf,Crit *= T;’Cn:;t(}) = (ﬂ[dimS])*(Tf[Ejil:?] ) A [Crlt(f)[ m ]]);

since Crit(f) is a hypersurface of P* x §°.

When £ = 1, the bifurcation current has been introduced by DeMarco [30] and
the bifurcation measure by Bassanelli-Berteloot [4]. For families of endomorphisms
of P*, the bifurcation current has been introduced by Bassanelli-Berteloot [4]. In this
higher dimensional setting, Berteloot—Bianchi-Dupont showed it is the appropriate
tool for studying bifurcations in the important work [10] and the bifurcation measure
was first considered by Astorg and Bianchi [2] in the very particular case of families of
polynomial skew-product.

It is an important question in complex dynamics to understand what kind of
phenomena these currents (or this measure) actually characterize. One way to explore
this question is to prove that the measure y 7 equidistributes specific type of dynamical
behaviors ([5, 39, 42, 52]).

We now come to stating precise results. Define the critical height of a degree 4
endomorphism f : P¥ — P* defined over a number field as the canonical height of f
evaluated at the critical set of f:

herit(f) = hy (Crit(f))
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and remark that this quantity depends only on the conjugacy class. In particular, this
defines a function

herit //f;(@) — R,.

Our first result here is the following:

Theorem A (The critical height is a moduli height). — The critical height hegi of the
moduli space M f of degree d of endomorphisms of P* is an ample height on a non-empty Zariski

open subset U of .M, i.e. for any ample line bundle M on a projective model of .#*, there are
constants Cy, Cog > 0 and C3, Cy € R such that

Cr-hu([f])+Cs < herit([f]) < Cohar([f]) + Cy,

for all [f] € U(Q). Moreover, a subvariety Z is an irreducible component of .4 ; \ U if and
only if the bifurcation measure i ¢ i,z of the family induced by Z vanishes.

In Theorem A, y; stands for a Weil height on a projective model of .#*, associ-
ated with the ample line bundle M.

We want to stress the fact that Yuan and Zhang already showed Theorem A under
the hypothesis that u s ¢ # 0 on ///‘f(C) ([88, Theorem 5.3.5(2) and Problem 6.3.9]).
Their approach is arithmetic in nature and allows an optimal control on the constant Cs,
our approach has a more complex geometric flavor and permits instead a control of the
multiplicative constant Cj.

For k£ = 1, Theorem A is due to Ingram [58] (see also [53]). For £ > 1, Ingram
also proved explicit versions of the above theorem for specific families using convenient
parametrizations (e.g. [59, 60]). In dimension 1, McMullen’s result [72] implies that
the algebraic subvariety .# dl \ U where we do not have the inequality in Theorem A is
exactly the flexible Lattes family. Characterizing that subvariety in higher dimension is
one of the main questions in bifurcation theory in higher dimension.

In order to prove Theorem A, we follow Gao and Habbeger and Dimitrov in
the abelian case [46, 48] to prove an estimate in a family with positive (suitable) height
which compares the height of a parameter with the heights of generic point in the m-fiber
product of m-fiber product of Y. Our arguments are based on the early work [54] of the
first and third authors (see Theorem 5.4). We then use notably Zhang inequalities [89]
to conclude.

Let £ > 1. Let Endfl denote the set of endomorphisms f : P¥(C) — P*(C) of
degree d (in homogeneous coordinates, f is the data of £+ 1 homogeneous polynomials
with no common factor and the same degree d). Such f is postcritically finite (PCF for
short) if its posteritical set

PC(f) := | ) £ (Crit(f))
n>1
is an algebraic subvariety of P¥, where Crit(f) = {z € P¥(C) : det(D,f) = 0} is its
critical set. In dimension 1, the critical set is a finite set of cardinality 2d — 2 so, for
all n, f"(Crit(f)) is again a finite set of cardinality 2d — 2 (counting the multiplicity),
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so PCF maps are not so hard to exhibit and it turns out that PCF maps are in fact
Zariski dense (e.g. [23, 39, 51, 52]). In higher dimension, the algebraic hypersurface
Crit(f) has positive dimension, hence it is not finite, and this fact is responsible for
several new phenomena arising in complex dynamics in several variables. In particular,
only few examples of PCF maps which do not derive directly from 1-dimensional PCF
maps are known: the first examples were given by Fornaess and Sibony [44], interesting
examples were also produced by Rong [76] and by Koch [64] who used constructions
from Teichmiiller theory. The dynamical study of such maps was notably developed by
Ueda [83] and latter by Astorg [1].

Furthermore, since being PCF is invariant by conjugacy, such maps define ele-
ments of .# f since being PCF is invariant by conjugacy, and are of the utmost arithmetic

importance since they satisfy &qi (f) = 0 when they are defined over Q (in dimension 1,
it is known that the converse is true by Northcott’s property, for £ > 1, this is an open
and important problem). This motivates the following theorem:

Theorem B (Sparsity of PCF maps). — Fix two integers k,d > 2. There exists a strict
subvariety de c End{; such that any PCF endomorphism f is contained in de.

Such a result was conjectured by Ingram, Ramadas and Silverman in [61], who
showed that {f € End”, f™(Crit(f)) = f™(Crit(f))} is not Zariski dense for m €
{0,1,2} and d > 3. Our approach is inspired by Kiihne’s Relative Equidistribution [65]
on families of abelian varieties defined over a number field K which we generalize to the
setting of families of polarized endomorphisms using the arithmetic equidistribution
theorem of the first author [51] and Theorem A (again, we stress that the arithmetic
equidistribution result that we need was already proved by Yuan and Zhang [88] using
the properties of metrics on the Deligne pairing on adelic line bundles). Thus, if PCF
maps were Zariski dense, they would equidistribute the bifurcation measure. In order
to get a contradiction, we inject the following crucial theorem working at the complex
place.

Theorem C (Robust strong bifurcations). — Fix two integers k,d > 2. There exists a
non-empty analytic open subset Q C M ; (C) (resp. Q C 93) such that

o the open set Q is contained in SUpp(u ,cxit),
e the open set Q contains no PCF conjugacy class.

Observe that we do not prove the theorem for the moduli space @f when £ > 3.
This is a technical issue that comes from the fact that our proof of the generic finiteness
of the multiplier maps only works on .# [f and 333. The same result probably holds on
95 in all dimensions but our main motivation for the polynomial case is Theorem D
whose counterpart (see Theorem 7.2) is weaker when £ > 3.

In dimension 1, the works of Lyubich [69] and Mafié-Sad-Sullivan [70] imply
that the bifurcation locus (i.e. the support of the bifurcation current) has empty interior.
In higher dimension, Bianchi and the second author first gave an example (the Desboves
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family) where this is not the case [16]. In general, the fact that the support of the
bifurcation current has non-empty interior is due to the seminal work of Dujardin [38],
whose ideas were expanded upon by the second author in [81] to produce open sets of
bifurcation in other situations. A different approach, due to Biebler, was to construct an
open set of bifurcations around Latteés maps [17]. Turning to the bifurcation measure,
the firsts to prove the non-emptiness of the support of the bifurcation measure were
Astorg and Bianchi [2] in the very particular case of the family of polynomial skew-
products (with given base dynamics satisfying certain additional assumptions) of C2.

An important ingredient in the proof of Theorem C is a mechanism called blender
in smooth dynamics. It was introduced by Bonatti-Diaz in [18] to obtain new examples
of robustly transitive diffeomorphisms. Since then, it was used in a wide range of
contexts in real dynamics (see e.g. [8, 20, 75]). A remarkable feature about blenders is
that they are much easier to construct than other mechanisms given robust intersections
(like the Newhouse phenomenon). This characteristic is of particular importance in the
rigid setting of holomorphic dynamics, where they were first introduced by Dujardin
in [38].

Roughly speaking, in our context, a blender for a map f is a repelling hyperbolic
set (typically a Cantor set) that intersects an open family of (local) hypersurfaces and
this property persists for small perturbations of f. Dujardin constructed in [38] a map
with a blender for which a part of the postcritical set belongs to the associated family
of hypersurfaces. This provides a robust intersection between the blender and the
postcritical set which turns out to be sufficient to have an open set in the bifurcation
locus. The same strategy can be followed in order to prove Theorem C except that
instead of a single intersection we need as many as possible (i.e. the dimension of the
moduli space) independent intersections, i.e. which satisfy the transversality condition
of Definition 1.10. To that end, we consider a map f with a blender A(f) and a
saddle point p(f) whose unstable manifold intersects robustly A(f). Observe that in
the terminology of smooth dynamics, this corresponds in our non-invertible context
to a robust heterodimensional cycles (see [19] for the interplays between these cycles and
blenders in the C!-setting). As the critical set has to intersect the stable manifold of
p(f), the inclination lemma gives infinitely many intersections between A(f) and the
postcritical set of f. All the difficulty in the proof is to check that they provide enough
independent intersections. This brings us to prove (very) partial generalizations to
higher dimension of several results from one-dimensional complex dynamics, like
extension of local conjugacies [22], the rigidity of stable algebraic families [72] or the
fact that multipliers of periodic points provide (generically) local coordinates in the
moduli space [55, 62, 72].

In the particular case of regular polynomial endomorphisms of the affine plane,
we consider bifurcations of the finite part of the critical set, i.e. of the closure Cf in P2

of the set {z € C%,det(D,f) = 0}. In this case, the non-negativity of the Green function
at every place allows us to prove the following uniform result.
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Theorem D (Uniformity). — Fix an integer d > 2. There exists a constant B(d) > 1
and a non-empty Zariski open subset U C Polyg such for any f € U(C), we have

# Preper(f) N Cr < B(d).

As mentioned before, similarly flavored uniform results already exist in complex
dynamics and are a very important source of inspiration for us: the quotient § :=
(Endﬂll X End}l) /PGL(2) by the diagonal action by conjugacy is a quasiprojective variety.
On a suitable subvariety S of §, one wants to show that outside a Zariski closed set of S,
then all pairs of rational maps f, g : P! — P! will have at most B preperiodic points in
common. This is a statement very similar to Theorem D where one considers Y to be
the fibered diagonal in P! x P! instead of the critical set. Then, such a result was first
shown by DeMarco, Krieger and Ye in the Legendre family [31] and in the quadratic
family [32]. Then, Mavraki and Schmidt proved it in the case of any algebraic curve
S [71]. Finally, DeMarco and Mavraki have shown very recently the optimal result that
there is a uniform bound B, depending only on the degree d, so that for a Zariski open
and dense set in the space of all pairs of rational maps f, g : P! — P! with degree d, f
and g have at most B preperiodic points in common [33].

To prove Theorem D, we show in Theorem 7.7 that there is a height gap (there
exists a £ > 0 such that all points of canonical height < ¢ are contained in a Zariski
closed proper subset of the fibered critical locus). For that, we follow the idea of Gao, Ge
and Kiithne on abelian varieties [47] (first introduced by Ullmo [84] and Zhang [90]) to
overfiber the dynamics (see also [33] and [71] where this strategy is used). The fact that
local heights are all non-negative in the polynomial setting allows us to get the bound
from the complex place.

Remark. — To prove Theorem D, we give a positive answer to Problem 6.3.9
of [88] in the moduli space 333 of regular polynomial endomorphisms of P2. To obtain

a similar statement on @5 with £ > 3, the only missing piece is to prove that multiplier
maps are generically finite to one on ,@5 . This follows from a work in progress of the
second author and Gorbovickis.

Organization of the article. — Section 1 is devoted to the construction of bifur-
cation currents and the corresponding volume we will need to construct the m-order
canonical height. The proof of Theorem C occupies the next three sections. In Sec-
tion 2, we establish that the eigenvalues of the periodic points determine a conjugacy
class up to finitely many choices generically in .# j and @3. In Section 3, we prove that
if an open subset of .///(5C or @5 satisfies a certain set of assumptions and is not contained
in the support of the bifurcation measure then it has to contain lots of families where the
eigenvalues of most of the periodic points are constant. Open subsets verifying this large
set of assumptions are constructed in Section 4, forall £ > 2 and d > 2. In Section 5, we
prove important height inequalities, and in particular Theorem A. Section 6 is devoted
to the proof of the needed Relative Equidistribution theorem. In Section 7, we prove
Theorems B and D.
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1. The dynamical volumes of a family of subvarieties

1.1. The canonical height over a function field of characteristic zero. — We refer
to [54] for more details on the material of this Section. We treat here the case of general
families of polarized endomorphisms and not only of families of endomorphisms of P*
since we will latter on need to take fibered product of such families (see Section 1.2).

In the whole section, we let (X, f, £) be a family of polarized endomorphisms of
degree d > 2 parametrized by a normal projective variety S with regular part X0 — §9,
all defined over C. We also let ¥ ¢ X be a subvariety such that n7(Y) = §. As n|y is
surjective, there is a non-empty Zariski open subset Sg c Y such that n|y is flat and
projective over Sg. Up to replacing Sg by a larger Zariski open of $* over which x|y is
flat and projective, we can assume it is maximal for the inclusion with this property.

Definition 1.1. —  We say the tuple (X, f, L,Y) is a dynamical pair parametrized by
S and with regular part SJO/.

It is convenient for us to work in the more general setting of families of polarized
endomorphisms since we shall be considering fibered products of several families.
Nevertheless, as the first and third authors showed in [54, Section 8.1], one can always
reduce to the case of families of endomorphisms of a projective space. Indeed, by
a result of Fakhruddin [41, Corollary 2.2], any family of polariezd endomorphisms
(X, f, L), there exist N > 1, an embedding ¢ : X — [P’g x §, an integer ¢ > 1 and a
family of endomorphisms F : PY x .§ — PY x § such that

tof=For onX’

and £% = *0(1) on X°.

In particular, we can construct the fibered Green current 7, r of a family of po-
larized endomorphisms by pulling back the Green current of ¥ to X°(C). This shows
that 7, r is the restriction to a (possibly singular) subvariety of a current with continuous
potentials in the ambient space PY x § 0(C). Demailly [29] theory of intersection on
singular variety thus applies to our case.

The current ff is a closed positive (1, 1)-current of finite mass on X°(C) and,
for any A € $°(C), the slice T := Tf|X4 is the Green current of fj, see e.g. [54] for
more details. Furthermore, if £ := dim X, we let u, := deg;, (X)~!- T} be the unique
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maximal entropy measure of f;, we call its support the small Julia set, and denote it by
Ji (or Jr(f2) to stress the dependence of f;) [21, 36].

Let M be an ample Q-line bundle on §. Let ¥, be the generic fiber of the family
Y - S;. Forany z > 1, the map £ : X --» X has a priori indeterminacy points in X\ X°
and we can find a projective variety X, birational projective morphism ¢, : X, — X
which is an isomorphism above X° and a morphism F, : X, — X such that the following
diagram commutes

Xa
Fy
N
X-=--KX

fﬂ

Moreover, one can choose X, as a finite sequence of blow-ups of X,_;. Following [89],
we then define

(B 1)1 (LI Ty e Aty s-1)
(dim ¥;, + 1) degy, (L)

;l\ﬁv(Yn) = 111_{210 J-n(dimY+1)

The next lemma follows from [54]:
Lemma 1.2. —  For any Y as above, Zﬁ, (Yy) is well-defined and satisfies
Zf,]((ﬁ;)*(xy)) = d;l\f,](Yn).
In addition, we can compute h 5 (Yy) as

R 1 =~dim Y, +1
he (Yy) = I
ﬁ,( ) (dim Y, + 1) degyn (Ly) Jxo(c) f

A [y] A (ﬂ_*ws)dims—l,

where wg 1s any smooth form representing ¢1 (M).

Remark. — As explained above, the integral can be lifted to PY(C) x § where
the map £ is lifted to a family of endomorphisms F. So, we can apply the theory of psh
functions and currents on singular complex varieties of Demailly [29] and the integral
is well defined. Note also that, in what follows, we only consider the wedge product of
currents which satisfy this lift property and that those currents either have continuous
potential or are integration currents on closed subvarieties.

Proof. — Let ¢ := dimY, and p := dim §. The fact that it is well-defined and
the formula relating the limit of d="@*D ((F,),(¢i{Y}) - e (L) - o1 (7 M)P~T) with
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f;“ A [Y] A (m*ws)?~! are contained in [54, Theorem B]. We then can compute

by, ((f)+ (%))

1 Fg+l1 ~
- T A (A[Y]) A (rFws)? !
(g + 1) degy, (f;Ly) Jaoe) 7 (ALY]) A (°ws)

B 1 =g+1 s \p-1
- (q+1)dqdeg)’n(lﬂ7) X()(C) Tf /\(ﬁ[y])/\(ﬂ' (US)

1 —g+1 -
= (77 A (rFws)? )] A
(g + D)d degy, (Ly) Jxo(c) (f ( ;oA Ews) )) Y]
o4 T AT A (s = diy (Yy),
(¢ + Dd? degy, (Ly) Jxoc) © "
where we used that dimY;, =g and 7o f = 7. O

In particular, the last part of the lemma states that the height % 5 (Y) is > 0 if
AY ]) is not identically 0 in $?,

. . . ~~dim ¥, +1
and only if the bifurcation current Ty y := 7. (T ; S

since

/ T}iim L [ A ()M S—1 = / ﬂ_*(]’:fdim Yn+1/\[y])/\wgims—1‘
XU(C) SO(C)

1.2. The higher bifurcation currents of a pair. — As above, let (X, f, £,Y) be a
dynamical pair parametrized by § with regular part Sg.

Let M be an ample Q-line bundle on § of volume 1. For any m > 1, let XI™] :=
X xg--xg X and Y™ := Y x5 --- xg Y be the respective m-fiber power of X and Y.
Denote also by 7, : X[ — § the morphism induced by 7. We define fI™! as

MG = (@), fixn)), %= (31,0, x) € X = 710 {2

Forany 1 < j < m, welet p; : XI™l — X be the projection onto the j-th factor of the

fiber product and £I™] := pi L+ +p, L. By construction and using f](,iimx”ﬂ =0, we
have
m
= Ry 5 ~m dim X, . « [ /~dim X,
(L) Ty =p{(Tp+4pp(Tp) and T/ = C(m,dlmX,,)/\][)j(Tflm ),
j:
where C(m,dim X,) := 7:1 (jd?;;n;”) We define higher bifurcation currents as follows:
n

Definition 1.3. — For 1 < m < dim S, the m-bifurcation current of (X, f, L, Y) is
the closed positive (m, m)-current on Sg(C) given by

T(m) — (ﬂ[m] ). (j:m(dim Y,+1)

Yy flml A [y[m])'
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The bifurcation measure of (X, f, L,Y) is

_ o (dimS)
Hfy = Tf,y .

As we will see below, the current T’ f('j/) — which can be a priori non-zero even
though T f”‘y is zero — is the current which characterizes a condition of non-degeneracy

a la Yuan—Zhang [88]. In addition, it is more practical, in order to use dynamical
arguments, to consider a bifurcation current associated to a single (fibered) map rather
than intersecting several bifurcation currents (e.g. [3]) and we will consider, in a crucial
way, families of fibered maps in the sequel. We give basic properties of those currents.

Proposition 1.4. —  The following properties hold
(1) Forany 1 <m < dimS andany j < m

(m) () (m=j)
Tf,y ZTf,yATf,y ,

(2) For all m, T;'ﬁ,’l) # 0 implies T;'ﬁl_l) # 0. Similarly, for all m > dim S,

Zdim Y(ml m
(”[MJ)*(de[mly A [y[ ]]) > Ury.

(3) if dimY, = dim X, — 1, we have
dims$ ;. 1. .
3 Jj dim AX]7 1) Adim §
Hry = 1_1[ (dimX,, 7))
]:
and for any m > dim S, there is a constant C,, > 1 such that

7dim Y] m

Proof. — Fix 1 < m < dimS. For the sake of simplicity, let us only consider
the case where j = 1. Let p; : X"l — X be the projection onto the i-th factor and
#im) : XM — § be the canonical projection (so that rrj1} is the projection X — ). Let
also 7, : X" — XIm=11 be the projection forgetting the first factor. Then

=m(dim ¥;+1 I — m(dim ¥y, +1)
Tf[i] ”+):(P1(Tf)+"'+Pm(Tf)) !
« [ ndim Yy +1 . . (m—1)(dim Y;,+1)
Z[)l(Tf nt )/\(l)Q(Tf)"'"""Pm(Tf))

~dim Y, +1

as (10:1/:,f)dirny'frl = [);‘(Tf ). Using the equality

(Y] = i (YD Az, (Y]
and the equality

)

* (j:(m—l)(dim Y,+1)

PP P (m—1)(dim Y;+1)
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we deduce that for a positive test form ¢ of bidimension (m, m) on Sg,

m(dlm Y, +1)

(T}, 8 = (a1 ™ A (1), 9)
< m(dle+l)

PR VAL )

dle+1 (m-1)(dimY,+1)
> (i (7)) A o)

>< ~dim Y, +1 (m 1) (dim Y;+1)

Tf TN A (p1)- ( ( Flm-1] ))’ﬂ[1]¢>

where we used T ® = [Jl(ﬂ[l ¢). By construction, we have

(o0 (o Ty V) = iy (™)

so that
<T( LB > < d1mY+1 ALY A [1](T;r$ 1))’7TF1]¢>

which gives the first point.

We prove the second point. Assume T f(";) # 0. Then, we develop the product

Tm(dlm Y,+1)

—~ \m(dimY,+1)
Flm (x”l(Tf)+ +I’fn(Tf)) !

in Tf('ﬁ} We deduce that there exists (a7, ...ay) with @] +---+ap = m(dim ¥, + 1) such

that
/m\p;."(f;’ A [y]) > 0.
i=1

By symmetry, we can assume that @g + -+ + @y > (m — 1)(dimY; + 1). Take ¢ a test
form on SJ()/ so that

oo [tz o)
_ <],:;1 ALY A (Pl)*(/rn\p:@:}?l A [y])),nf“(¢)>.

i=2
In particular, we deduce that (py). (/\”‘Zpl (T“’ A [y])) is non zero, which in turn

implies (p1). (A’” 9 0; (T A [y])) is non-zero, where the @ are non-negative integers
such that @] < @; forall i and @ +- - +a}, = (m = 1)(dim ¥; + 1). This in turn implies
that Tf(m N # 0. The case m > dlmS is similar.

The proof of the third point is now similar to that of the first point. Indeed
assume dim ¥, = dim X,, — 1, then pl.(Tf)d‘mY"z Api([Y]) = pl(lemY"” AY)) =
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In particular,
dims§ ;. 3. dim §
~dim § (dim ¥, +1) [dimS]y _ i dim XTI * ( 7 \dim Y, +1 )
Tf[dimS] A [‘y ] - !:I d]mXTI l/_\l pi Tf) n A [y]
and the rest follows. To conclude, take m > dim S

7dim Y] m
()T Y™ A Lyt

dim ym
) A [y[m]])

A [y[ml]).

= (ﬂ[m])*((ﬁ(ff) ook pr(Ty)

) m dim ¥, +dim §

= (n[mp*((zf{(ff) ot (Ty)

~dim Y;+2

Developing all terms in the product and using T f A [Y] =0, we end up, up to

permutations, to a sum of terms of the form

dim § ] m L
o[ E s w)n f )
i=1 ¢=dim S+1
The assertion now follows by Fubini. i

1.3. The dynamical volumes of a pair. — As above, let (X, f, £L,Y) be a dynamical
pair parametrized by § with regular part S;. We now can define the dynamical volumes

of Y as follows

Definition1.5. — Forany m > dim S, we define the m-dynamical volume Volj(,m) (Y)
of Y for (X, f, L) as the non-negative real number

VAP @)= [y T A0
(Xtmh0(c)

For any ample Q-line bundle M on S, we also define the m-parametric degree deg](,m/{/( (YY) of
Y relative to M as

deo™ ::/ Fdimy -1 oy imly o o ,
g pm(Y) o) L (Y™ A7, (ws)

where wg is any smooth form on S representing ¢ (M).

Remark 1.6. — When dim § = 1, a computation gives
deg}l’jw (Y) = dng]7 (Ly,) - deg((S) > 0.
In particular, if deg ,((S) = 1, then
vol}” (V)

(dim ¥, + 1) - deg\) ()’

ky (Yy) =
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We can relate the non-vanishing of the bifurcation measure u 7 y with the non
vanishing of the volumes Vol}m) (Y) forall m > dim S.

Proposition 1.7. —  The following properties hold:
(1) We have uy y is non-zero if and only if for all m > dim S, Vol](f") (Y) > 0.

(2) For any integer m > dim S, and for any ample Q-line bundle M on S of volume 1, we
have

deg(m) (y) > mdng (Ln)mdimS+1/ T((?ylmS 1) A ws,
g S”(C) f

Jor any smooth form ws which represents c; (M).
In particular, if uyp,y # 0, then for all m > dim S, and all M, we have Vol}m) (Y) > 0 and
deg(m) Y) > 0.

Proof. — The first point follows from Proposition 1.4(2). Let p := dim S. To
prove the second point, we remark that

~dim Yl _] dle
Teim) ( /\ p, Ty

Let y : X!mI — X17=11 be the projection forgetting the m — p + 1 last variables and for
I<j<p-1lletp): X [#=11 — X be the projection onto the j-th factor. The measure

(/\p[ dlm Y,

p-1

/\(Pj d1mY+1).

j=1

A( T A [y A (ws)

j=1

rewrites as
dle dle+l %
l i _
Ap( AYI) A () (A(p (T A YY) A, (s)

where we used that 7w 4] = (mp)* ( 1% ) In particular, its volume is that of its

push-forward by 7, whlch is the measure

ooy )

We now remark that 7, has fibers of dimension k(m — p + 1) := dim Xnm_p +1, where
k = dim X;,, and that lemY A [Y] is a (k, k)-current on X9(C), so that the current

T = (n)). (Ap[( 7™ A 1))

/\(p] ( Fdim¥+l [y])A”Fp-l](“’S)-
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is a (0,0)-current on (X#~11)0(C) which is nothing but the constant dng” (Ly)™#+1,
Therefore, the volume of the studied measure is exactly

d L m—p+1./ T(dimS—l)A ]
ngTI( T]) SO(C) f’y wS

As the wedge product is symmetric, proceeding similarly for the other terms of the sum,

we find

- dim -1
degy p(Y) 2 m - degy, (Ly)" - ./SO(C) T]E,ylm ) A wg,

and the proof of the second point is complete (observe that the second point of Proposi-

tion 1.4 guarantees that Tf(dyims_l) # 0). i
1.4. Dynamical volume as limits of iterated intersection numbers. — Let (X, f, L)

be a family of polarized endomorphisms of degree d and Y ¢ X be a subvariety with
n(Y) = 8. Letalso m > 1 be an integer and let (X", £l  £lm]) be the polarized
endomorphism induced on X" := X xg --- xg X as above with induced morphism
Mm] Xl ¢ and let Y .= Y x5 -+ xg Y. One can check that Tm] (Y'!m) = § and
we have the following.

Lemma 1.8. — Forany m > 1, there is a sequence (X,Sm) )u=0 0f projective varieties,
a sequence w™ = X\ — xlml of birational projective morphisms which are isomorphisms
above the regular part of (X!™)0 and a sequence of morphisms F\™ : X\™ — X™1 such that
Xém) = X" and the following diagram commutes

X\

(m)
wé’”l K

Xlml— — 5 xlml,
(e

Moreover, one can choose X\™ as a finite sequence of blow-ups of Xﬁ’i

Relying on estimates from [54] we can deduce

Lemma 1.9. — For any m > dim S, there is a constant Cy, > 1 depending only on
(X, f, L,Y) and m such that for any n > 1, if Y™ := (™), (¢ ™) Y "), then

(%™ -y (Llmydim &)
A dim ym]

—Vol}m(y) < Cpd ™",
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and, for any ample Q-line bundle M on S of volume 1,

(B - er (Ll m ¥ty (M)
4n(dim Ylml_1)

—deg " (M) < Cpd™".

(m)
M

Proof. — Let wg be a smooth form on §(C) which represents ¢; (M) (it has mass
degg(M) = ¢; (M)H™S = 1) and w be a smooth form on X (C) which represents ¢; (L£).
For m > dim §, define w!™! := 2 pyw- Let (XImh0 .= n[‘”:](Sg) as above. By definition,
we have

({J/,,(’”)} -e] (_L[m])dimylml)

dim yml
- / (w0!™) ALY
(XI=1)0(C)

_ / (((f[m])”)*w[m])dlrny[ml
(XIm1)0(C)

We rely on Proposition 3.4 of [54]: we have
R (VAL SO Rty

. n 1
= pdimytm \pylm] +0(—).
/(X'mUU(C) s WO\

This is the first assertion we want to prove. Similarly,

A [y,

L = ({y,f"”} oy (Llmtm L 61<ﬂ’fm]M))

S N (FLOERPE
(XIm1)0(C)

and the same argument using Proposition 3.4 of [54] gives

dim yml-1
) A Y] A (2] ws)

d—n(dimy[’”]—l)l
n,m

_ Zdim ylml -1 [m] * i
_/(X[m])o(c) T ALY ]/\ﬂ[m](a)s)+0(dn).

This concludes the proof. i

1.5. A sufficient criterion for positive volume. — To finish this section, we give a
sufficient criterion for a parameter to belong to the support of the measure u s y. The
existence of such a parameter implies in particular that Vol (¥) > 0.

Definition 1.10. —  Pick an integer m > 1. We say that Y is m-transversely J-
prerepelling (resp. properly Ji-prerepelling) at a point z = (z1,...,2,) € X!™ with
A0 = 71 (2) € SV if 21, .., 2y are Ji(f1,)-repelling periodic points of f1, and if there exist
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an integer N > 1 and a neighborhood U of A such that, if z;(1) is the natural continuation of
z; as a repelling periodic point of fy in U, then
(1) z; € fﬂl(\)’()ﬁo)foralll <j<m,
(2) z;(2) € Ji(fo) forall A e Uandall 1 < j < m,
(8) the image of the local section Z : X € U + (21(1),...,2x(2)) € (X" of 7(
intersects transversely, as local submanifolds, a local branch of (fI™HN (Y1) ar 2

(resp. z lies in an proper intersection between the image of Z and a local branch of
(fImHN(ymly of pure dimension dim S — m).

In some sense, this definition is equivalent to the existence of m independent
Misiurewicz intersections. The case of single Misiurewicz intersections corresponds to
Misiurewicz parameters in [10]. The third point in the definition seems a bit technical
but in the examples we will construct, we cannot a priori exclude the case where Y™ is
not locally irreducible and the periodic points lie persistently in a local branch of Y but
transversely to another local branch. Another important remark for what follows is that,
as observed by Dujardin (see [38, Proposition-Definition 2.5]), the repelling periodic
points can be replaced by points in a repelling hyperbolic set contained in Ji. Finally,
notice that when m = dim § and Y is locally irreducible near z, . .., z,, Definition 1.10
is exactly what DeMarco and Mavraki [33] call a rigid m-repeller.

We prove the following, which is a general criterion in the spirit of [33, Proposi-

tion 4.8].

Proposition 1.11. —  Let (X, f, L) be a family of polarized endomorphisms parametrized
by S and let Y C X be a hypersurface which projects dominantly to S. Let 1 < m < dim § and
assume Y is m-properly Ji-prerepelling at z € (X1™)0. Then

z € supp(ff";,(n(]hmx’ﬂ) A [y[m]]).

In particular, nj,y)(2) € supp(T;ﬁ}).
The proof of this result is an adaptation of the strategy of Buff and Epstein [23]
and the strategy of Berteloot, Bianchi and Dupont [10], see also [3, 49, 50, 54].

Proof of Proposition 1.11. — As the statement is purely local, we let B ¢ $° be a
ball in a local coordinate centered at 1. Since Ty has continuous potentials, for any
analytic submanifold A ¢ B of dimension m with 1 € A, we have

~m(dim ¥,+1 _
supp (7" ) AL 0 (1)
c Supp(ffﬂz,ﬁc]limi’;ﬁl) A [y[m]])

by e.g. [49, Lemma 6.3]. In particular, we can replace B with the intersection between
B with a subspace B N V where V is a linear subspace of dimension m such that the
intersection between the image of the local section Z : 1 e UNV = (21(2),...,zx(1)) €
(Xtm1)9 of 71(,, and a local branch of (fI™)¥ (Y[m1) at z is isolated in (X[™1)0 ﬂn["i] (BN
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V). In the rest of the proof, we thus can assume m = dim S and let £ be the relative
dimension of X over § so that dim ¥, + 1 = k. To simplify notations, write F := flml .

(XImH0 5 (Xm0 and we let u := T]f'z'v)hg.
Our aim here is to exhibit a basis of neighborhood {Q,}, of 1 in B with u(Q,) > 0
for all #. For a Borel subset B c B, let (X!™]) := n‘lJ (B), where r[,,) : XI™ — § is the

[m

map induced by 7 : X — §. Then, since F*Tp = dTr, we have

(F"(Tm) = @™ Tfn - and - p(B) = a7t [ Tk p (pm,|yio].
(Xml)p

Since Y is properly Ji-prerepelling at 1, there are zy,...,2, € X, Ji(fi,)-
repelling periodic points and N > 1 such that (z1,...,z,) € FN(Y"™)0. Let p > 1 be
such that ffo(z,-) = z for all i. We let Y be the local branch of (FV) (Y10 satisfying

the hypothesis of the Proposition. For any integer n > 1, we let Y, := (F")(Y,), so that
dim(Y,) = mk and

I, ::/ M A (Y] < d*"™u(B).
(Xml)g

By our choice of B, we have that z;(2) is J(f1)-repelling for all 2 € B and that there is
K > 1 such that

d(fl(2), fl(w)) > K - d(2,w)

forall z,w € D(z;,e) c X and all 2 € B for some given € > 0 with 7(D(z;,¢€)) c B [10],
where D(z;, €) is a polydisk of polyradius (e, . . ., €). Thus, if we denote z := (z1,...,2n) €
X[™ and by §, the connected component of Y, N D, containing z where D := D y(u (2, €),
the current [S,] is vertical-like in B, (i.e. [} (supp([Sy,]) N D) is relatively compact in
m(m)(De)), and there exist ny > 1 and a basis of neighborhood Q, of 1( in B such that
for all n > n

supp([S,]) = S, € X" N D..

Let S be any weak limit of the sequence [S,]/]|[S:]ll, where the mass ||[S,]]| is
computed with respect to some Kihler form @ on XE[B'"]. Then S is a closed positive
(k, k)-current of mass 1 in D, whose support is contained in the fiber X i of m(). Hence
S=M- [X/l”:) N D,], where M~1 > 0 is the volume of D, for the volume form a|Xﬂn6'

As a consequence, [S,]/||[S.]]] converges weakly to § as n — oo and, since the
(mk, mk)-current ]’";{‘m is the mk-times wedge product of a closed positive (1, 1)-current
with continuous potential (since T, r has continuous potential),

-~ [Sn] Tk
TEkm A — Tk A §
E LS d
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as n — +oo. Hence the above gives

[Sa]
11811l

hminf(n[s,,]n—l -In) > liminf/ TEm A

/f}”"/\s

> M-‘/flf'"/\[X/l”(’)ﬂDe].

\%

In particular, there exists n; > ng such that for all n > ny,
28,1171, > [ TE" ALxp 0 DL

Finally, by construction of S, we have liminf,_ |[[S.]]| = Vol(D,) > 0, where the
volume is computed with respect to the Kihler form a|x» on X 1o Up to increasing n,
0

we may assume ||[S,]|| = ¢ > 0 forall n > ny. Letting y = Mc¢/4 > 0, we find
p(B) = d~ NI L, > gkminpeN )y, / T A X 0 D),

for all » > ny. To conclude, we need to prove the last integral is non-zero. By con-
struction, the set X 1o N De is an open neighborhood of z in X 0 hence it contains

B(z1,8) X+ X B(zp,6) C Xn for some § > 0 (with a slight abuse of notations since here

the balls are meant in X;,). Moreover, the current T, }’” restricts to X /{‘0’” as the measure
Tkm _ _ . ®m
Tp"lxp = pry, = My

In particular, we can apply Fubini Theorem to find

/T}m ALX] 0 D] z/ TE™ A [B(21,6) X -+ X B(2n, 6)]
Xa

0

[ [1s, (B(z;,6)) >0,
j=1

where we used that z; € supp (i, ) by assumption. i

2. Rigidity of some stable families

2.1. Spaces of endomorphisms, moduli spaces, stable families. —

2.1.1. The spaces Endfl and Poly],f,. — As an endomorphism f of P* of degree
d is given by k£ + 1 homogeneous polynomials of degree d, the coeflicients of these

polynomials allow us to see f as a point in PN where Nd]C = (k+ 1)(]“;’1) — 1. The
condition on the coeflicients to ensure that the associated map is an endomorphism
of P* is algebraic so there exists a Zariski open set Ends c pNi corresponding to
degree d endomorphisms. More precisely, the variety Ends is the complement of the
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hypersurface in PNi defined by the vanishing of the Macaulay resultant. Indeed, there
is a unique homogeneous polynomial Res : PNi — P! defined over @ such that

o if f =[F): - : F], then Res(f) := Res(F,...,F;) = 0 if and only if the
polynomial map (Fy, ..., F;) is degenerate,
. Res(zg,...,z/’f) =1.

See e.g. [4, Proposition 1.1] for more details, see also [74, Section 3]. In particular, the

variety Endfl is an irreducible smooth quasi-projective variety defined over Q. Moreover,
the map

. ok k
f ’ I]j)End];, — PEnd:,
is a family (P;N; , > Opt (1)) of degree d endomorphisms of P* parametrized by pN;
— if we follow the notations introduced above — which is defined over Q.

A regular polynomial endomorphism f : A¥ — A* of degree d > 2 is a polynomial
map which extends to a degree d endomorphism f : P¥ — P*. For such a morphism, if
H,, is the hyperplane at infinity of A* in P¥, we have f~1(H,) = H., see e.g. [6]. The
space Polys of regular polynomial endomorphisms of degree d of A* is a smooth closed

subvariety of End} of dimension £ (¥*?) — which is the intersection of End’ with a linear

subspace of PVi defined over @. In particular, Polys is also a smooth quasi-projective
variety defined over Q and the map

k k
P — P
f Polys Polys

is a family (P%, £, Opt (1)) of degree d endomorphisms of P* parametrized by the closure

S of Poly” in PNi — if we follow the notations introduced above — which is defined
over Q.

2.1.2. The moduli spaces .# ; and 935 and good families. — The space which is
really adapted to our investigations is the moduli space .# dk of degree d endomorphisms

of the projective space P* of dimension £: it is the quotient space of the space Endfl
of endomorphisms of degree d of P* by the action by conjugacy of PGL(k + 1). It is
known to be an irreducible affine variety of dimension

k+d
d

defined over Q, see [79] when £ = 1 and [74, Sections 3.2 & 8.3] when &£ > 1, hence

there is a proper closed subvariety ¥ defined over Q such that the canonical projection

NE = dim.#f = (k+ 1)( ) — (k+1)?

n:End5\v — 78\ 11(v)

is a locally trivial PGL(% + 1)-principal bundle. As this is merely a coarse moduli space,
there is no universal family. However, we can cook up a good family which can play a
sufliciently similar role.
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Lemma 2.1. —  There is family (PX, £, Opi (1)) defined over Q, with dim§ = N ;
whose maximal regular part U 5 satisfies the following properties:

(1) the set % dk =11(U 5 ) contains a dense Zariski open subset of /¥,
(2) the map H|fu§ : ‘LI"; — %dk is finite.

Proof — Let Dy :=d*+d*'+...+d+1. Let End{;,’l(iX be the space of all fixed
marked degree d endomorphisms of P%, i.e. the space of all couples (f, {x1,...,xp,})
where f € Ends is an endomorphism and {x,...,xp,} is an unordered D;-tuple of
points in P* which identifies with the collection of all fixed points of f counted with
multiplicities. This is a quasi-projective variety since it is closed in Ends x Sym?* (PF).
Remark that, since an endomorphism has Dy fixed points, the canonical projection
p: End];’1L1X — Endg has finite fibers and is proper. Hence dim Endﬁ,’hx =N f.

Let now U c Endfl’ﬁX be the Zariski open subset consisting of couples
(f,{x1,...,xp,}) where x; # x; forall i # j. Lete; :==[1:0:---: 0], e9 := [0 :
1:0:---:0],...,e451:=[0:---:0:1] and ¢z,9 := [1 : --- : 1]. As these points do
not lie in the same hyperplane in P, any ¢ € PGL(k + 1) is uniquely determined by
the values it takes on the set {eq, ..., e;,1}. Define U; c U as the subset of U consisting
of those couples (f,{x,...,xp,}) € U with ¢; € {x,...,xp,} for 1 <i <k +2. Note
that this condition is closed in U and that it is not vacuous since Dy > d*+2 >k +2,
as d > 2. The quasi-projective variety U; C End{;{,’f1X has dimension NV f and the map
(ITop)ly, : Uy — .///{jC is finite onto its image. Let § be the Zariski closure of p(U;) in

PN 2 Endl(f,. The family (P£, £, Opi (1)) has the expected properties. i

The second family we will be interested in is the moduli space 9”(’1‘ of degree d
regular polynomial endomorphisms of the affine space A: it is the quotient of the space
Polys of regular polynomial endomorphisms of degree d of the affine space A* by the
action by conjugacy of the group of affine transformations Aut(A*) = GL(k) < A*. The
same proof as those given in [68, 74, 78] ensures that the moduli space 95 is also a
coarse moduli space and is an irreducible affine variety defined over Q of dimension
k+d

d

As before, there is a proper closed subvariety ¥V such that the canonical projection

I : Polyb \V — v} = 25\ (V)

Ph = dim 7% = k( ) — (K2 + k) > NED = dimozf 1

is a locally trivial Aut(A*)-principal bundle. Proceeding as above, we have

Lemma 2.2. — There is family (P%, £, Opi (1)) of regular polynomial endomorphisms
defined over Q, withdim S = P{f whose maximal regular part V a{“ satisfies the following properties:
(1) the set "I/dk =1I(V a{“ ) contains a dense Zariski open subset of 2%,
(2) the map H|rvdk : (de — ”I/dk is finite.
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2.1.3. Stable families of endomorphisms of P* following Berteloot—Bianchi—Dupont.
— Let M be a connected complex manifold. An analytic family of endomorphisms of
P* parametrized by M can be described as a surjective holomorphic map f : (z,t) €
PExM s (f(2),t) € PExM. In particular, for any ¢ € M, the induced map f; : P* — P*
is an endomorphism of degree d (independent of ¢t € M).

Following Berteloot, Bianchi and Dupont [10], we say that such an analytic family
of endomorphisms of P* is J;-stable if the function

ve M L(f) = [ logdeuDfluy,
Pk(C)

is a pluriharmonic function on M, i.e. dd{L(f;) = 0, where L(f;) is the sum of Lya-
punov exponents of the unique maximal entropy measure u of f;. Berteloot-Bianchi-
Dupont gave several equivalent description of this notion of stability and showed it is
the higher-dimensional equivalent to the notion of stability introduced by Marié, Sad
and Sullivan [70] for families of rational maps of P

When M is a quasi-projective variety, and f is a morphism (i.e. f defines an
algebraic family) and, if § is a projective model of M, then (P* xS, f, Op+ (1)) is a family
of endomorphisms as above with regular part M. In this case, one can show that the
family M is Ji-stable if and only if the function ¢ — L(f;) is constant on M. The next
section implies that ¢ — L(f;) is constant on M if and only if the multipliers (i.e., the
eigenvalues associated to periodic points) are constant on §. By [4], one also has

dd*L = . (TF A Crit(N)]) = Ty e

as currents on M, so that the family is f;-stable if and only if Tr sy = 0 on M. Here
Crit(f) = {(z,t) € P x M, det(Df)(2) = 0}.

In the proof of Theorem C, we will make crucial use of the fact that the multipliers
are generically finite-to-one on ,///f. This is established in Corollary 2.4, whose key
step is the observation that, if this were not the case, then .# ; would be covered by
positive-dimensional algebraic families on which all multipliers are constant. Such
families must be stable in the sense of Berteloot—Bianchi-Dupont, and we rule out this
possibility by exhibiting rigid Lattes maps in .# j (see Lemma 2.5). The case of 333 is
addressed separately in Section 2.3.

Note also that for Theorem C, we actually require a slightly stronger statement:
instead of using the multipliers of all periodic points, it suffices to consider almost all of
them. This motivates the introduction of the sequence of periodic points (x,),>1 below.

2.2. Families with many constant multipliers. — Lt d > 2 and § be an irreducible
complex projective variety. Let (P%, £, Opi (1)) be a family of endomorphisms of P* of
degree d, with regular part SO € 8. Let # € SY be an arbitrary parameter in this family.
We consider a non-decreasing sequence (m,),s of positive integers and a sequence of
distinct points (x,),>1 in P* such that

e for each n > 1, x, is a repelling periodic point for f;, of exact period m,,

o if for s > 1 we set M, := #{n > 1; m,|s} then M,/d** converges to 1 when s
goes 1o .
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In other words, the last point says that most of the periodic points of f;, are in (x,),>1-
Note that the existence of such a sequence follows from the equidistribution theo-
rem of Briend—Duval [21], simply by listing all the periodic points obtained in their
construction.

From these data, for each n > 1 we consider the analytic set

X, = {(t,zl,...,zn) e SV x (PF); fM(z) =z forall 1 <s < n}

Observe that, since the points in the sequence (x,),>; are repelling, the point
(to, x1,. . .,%y) is regular in X, and we denote by X, the irreducible component of
X, which contains it. The natural projection 7,: X, — S is surjective and finite.
We also have a family of multiplier maps A,: X, — C" defined by A,(¢,21,...,2,) =
(detDzXﬁmj)ISJSn-

Proposition 2.8. —  Assume that there exists t; € S° such that there is no algebraic
curve Z < S° passing through t, such that Z is Ji-stable. Then for n > 1 large enough the
multiplier map A, is generically finite-to-one.

Proof. — Observe first that, the maps A, contain more and more information,
if the result holds for one ny > 1 then it is also the case for all n > ny. Assume by
contradiction that for each n > 1 the map A, is not generically finite. In particular, for
each n > 1 the set ¥, = A; ' (A,(#1)) has positive dimension. The sequence of algebraic
set (Z,),>1 defined by Z, := 7,(Y;) is decreasing so there exists N > 1 such that Z, = Zy
forall > N. From this, the key observation is that, relying on the equidistribution of
repelling orbits [21], we have by [13, Theorem 1.5] (see also [12, Theorem 4.1]) for

all ¢t € S,

lim = > logldet(Df) ()] = L(f),

—+o0 gk
nkeo @R peRPery ()
where RPer,(f;) is the set of n-periodic repelling points of f; and L(f;) the sum of the
Lyapunov exponents of its equilibrium measure. This implies by the chain rules that

lim — S logldet( DA ()] = L),

kn
n=+e nd peRPer, ()

or equivalently

. 1
lim
n—+oo ndk”

2, logldetDf(p)l = L),
pePer, (f7)

where log* x = max(log x, 0) and Per,(f;) is the set of all z-periodic points of f;. In
particular, as we have assume that M,/d** — 1 with s where M; := #{n > 1; m,|s}, the
fact that all the functions A, are constant on Y, implies that ¢ — L(f;) is also constant
on Zy. In particular Zy is a _Ji-stable family containing ¢;. Contradiction. mi

Using rigid Lattes maps, we have the following result which answers by the
positive to the first part of [37, Question 19.4]. A description of the set I' in the next
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corollary, however, remains a much more difficult question. Note that in dimension 1,
much sharper results are known. On one hand, when (x,),> corresponds to all periodic
cycles, McMullen [72] proved this corollary with the optimal T, i.e., the set of flexible
Lattes maps. A stronger statement using only the modulus of the multipliers has been
recently given in [62]. On the other hand, Gorbovickis [55] obtained Corollary 2.4
when £ = 1 using only the multipliers of an (almost) arbitrary set of 2d — 2 cycles.

Consider now the family (P%, £, Opt (1)) with regular part U ; given by Lemma 2.1.
For this family, the map A, is defined on the corresponding variety X, as above. Recall
that the canonical projection 7, : X, — (Llf is surjective and finite.

Corollary 2.4. — Letd > 2 and k > 1. If (my)ps1, (%2)us1 and (Ay)ys1 are as
above with X = U 5, then there exist N > 1 and a Zariski closed proper subset T of U (f such that

Ay i finite-to-one on X, \ «; (T forall n > N.

Proof. — We simply apply Proposition 2.3 with f;, equal to a rigid Lattes map in
the family given by Lemma 2.1. By Berteloot and Dupont [11], Lattes maps are the
only minimum of the Lyapunov function L so if f;, is a rigid Lattes map, there is no
stable family in (Llf containing it. The next two lemmas conclude the proof. i

Our proof of this result follows Berteloot—=Loeb [14], although there might be
a quicker argument using properties of Abelian varieties of CM-type. The existence
of rigid Lattes maps (i.e., not contained in a holomorphic family of such maps) arise
from the next lemma together with Lemma 2.6, which removes the technical difficulty
related to the iterate ftp .

Lemma 2.5. — Let (f;),cp be a holomorphic family of Lattes maps of P* such that f;
is the symmetric product of a rigid Lattes map of P1. Then, there exist p > 1 and a continuous
deformation (,)rep of 1d in Aut(P*) such that, for all t € D, f is conjugate to fop by ;.

Proof. — Let gy the rigid Lattés map of P! such that £ is the symmetric product
of g. There exist an elliptic curve Ej, a finite branched cover p: Eq — P! and a complex
number a such that p semi-conjugates gy to the multiplication by a. As g is rigid, a has
to be an imaginary quadratic integer (see [73]).

Let 7: (PH)* — P* be the symmetrization map, i.e. the quotient map for the
action by permutation of coordinates of the symmetric group &, and m: Eé“ — Eg be
the multiplication by a. As the periodic points of m are dense, we can choose a periodic
point x, of period denoted by p, such that zy := 7 o p®) (x) is not in the ramification
values of 7 o p®) and such that a? is still not real (i.e., an imaginary quadratic integer).
In particular, fo‘b (20) = 29 and, using the map 7 o p®), we obtain that D, fop =a?Id and
that the Green current of fj is smooth and strictly positive in a neighborhood of z.
From now on, we replace the family (f;);ep by ( ftp )tep and assume that p = 1.

A family of Lattes maps has constant sum of Lyapunov exponents so it is stable
in the sense of [10]. Hence, 2, can be followed as a repelling point z; which stay outside
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of the postcritical set. Therefore, by a result of Berteloot—Loeb [14, Proposition 4.2],
for each ¢ € D there exists a holomorphic map ¢,: C* — P*, locally injective at 0, and
a linear self-map D,: CF — CF of the form D,(x) = Vd U,(x), where U, is a diagonal
unitary matrix, such that ¢,(0) = z; and

¢t°Dt=ft°¢t-

As explained in the proof of [14], the map ¢, corresponds to the Poincaré linearization
map, precomposed with a linear change of coordinates, in an basis of eigenvectors of
Dy, f;. Both can be chosen to depend holomorphically on ¢. Moreover, the eigenvalues
are of modulus Vd and depends holomorphically on ¢, thus they are constant, i.e., the
map D; is independent of ¢. As for ¢ = 0 the map D corresponds to the multiplication
by an imaginary quadratic integer a € C \ R, this holds for all ¢ € D.

On the other hand, Berteloot=Loeb also proved in [14] that

G ={(U,b) € Up < C"; (U - 2+b) = p(2)}

is a crystallographic group of C*, for each ¢ € D. By Bieberbach’s theorem, the translation
part L, is a lattice, and thus 4, = C*/L, is a complex torus. Moreover, al; C L,
and multiplication by a on 4, induces the endomorphism above f;. Observe that the
injectivity of ¢, in a neighborhood (locally uniform in ¢) of 0 prevents collisions when
following the elements of G;. Hence, they can be followed holomorphically for ¢ € D.

In suitable coordinates of C*, after a change of variables given by Siegel normal
form, there exists 7(¢) in the Siegel upper half-space such that

L =7"+7(0)Z".

Since a is an imaginary quadratic integer and aL, C L, for all ¢ € D, the continuity
of 7(¢) implies that it must be constant. Hence, there exists P, € GL;(C), depending
holomorphically on ¢ since L; does, such that P,(L;) = L.

Furthermore, P, GtPt‘1 /Ly is a finite subgroup of Aut(4y, 0), which is a discrete
group, thus it must also be independent of ¢, always equal to Hy := Gy/Ly. To summarize,
we obtain the following commutative diagram:

ck ¢ pk

! k

Ct—— 4y :=CF/Ly —— Ay/Hy = P*F
$0

where the map ¢, comes from the fact that ¢; o P! passes to the quotient. As the
group G; acts transitively on the fibers of ¢; (see [14, Proposition 5.1]), this map y; is
an automorphism. In particular, if z € P¥ and x € C* are such that ¢,(x) = z then, on
one hand,
Ji(z) = ¢i(ax) = i 0 ¢g o Pr(ax)
=y 0 po(aP(x))
=y 0 fo(po(Pi(x))),



26 THOMAS GAUTHIER et al.

and, on the other hand,
$o(Pi(x) =7 (2).

This gives f; = ¢, 0 fyoy; L. o

Lemma 2.6. — Let (f;),cp be a holomorphic family in Endf. Assume there exist p > 1
and a continuous deformation (,);ep of Id in Aut(P*) such that, for all t € D, the iterate ft‘b is
conjugate to j%p by wi. Then f; =y, 0 fyow; ! forall t € D.

Proof. — For each t € D, define g; := ¢! o f; 0 4y, so that gf = fop. This equality
implies that g; and f have the same set of periodic points. In particular, if x is a periodic
point of fy, then y; := g;(x) is again a periodic point of fj. Since this set is discrete and
y: depends continuously on ¢, we must have y; = yg = fy(x). Thus fy = g; on the set of
periodic points, which is Zariski dense; hence f; = g, on P* forall ¢ € D. m]

Proposition 2.7 (From rigid to isolated Lattes maps). — Forallk > 2 and d > 2, there
exists a Lattes map whose class in A4 ; is isolated among all classes of Lattes maps.

Proof. — Let [fy] be the class of the symmetric product of a rigid Lattes map
on P!, By Lemma 2.5, no stable algebraic family passes through [ f;]. Hence, by the
proof of Corollary 2.4, the multiplier map A, is finite-to-one above a neighborhood
of [fy] for sufficiently large n. It follows that no stable algebraic family intersects this
neighborhood. Therefore, for a sufficiently small compact neighborhood B of [ fj], the
set K of Lattes classes in B is compact (since the Lyapunov function L is continuous)
and disjoint from any stable algebraic family.

Suppose, for contradiction, that K contains no isolated class. As K is compact,
it must be uncountable. Since there are only countably many PCF relations of the
form f?(Crits) = f7(Crits), one such relation must contain infinitely many classes in
K. Consequently, a positive-dimensional component of classes satisfying this relation
must intersect B. This gives a contradiction since such a component is a stable algebraic
family. i

Proposition 2.8 (Isolated Lattes maps imply non-vanishing of the bifurcation measure).
—  The bifurcation measure i cyi; is non-zero on M ; (O).

Proof. — Recall, from Section 2.1.3 that Ty ¢, = dd°L so by Proposition 1.4,
My Crie > (dd° L)ANéC . Since at an isolated Lattes map, the Lyapunov function L admits a

strict minimum, its Monge Ampere (dd”L)AN5 does not vanish (see [7]). O

The argument goes back to Bassanelli and Berteloot (see [4, Proposition 6.3]
when £ = 1). To the best of our knowledge, no such simple arguments hold in the
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polynomial case and we only know that s cy # 0 on 95 when £ = 2 thanks to
Theorem C.

2.3. Families of regular polynomial endomorphisms of the affine plane. — In order to
apply Proposition 2.3 to the moduli space 22, we prove the following rigidity result.

Theorem 2.9. — Let d > 2. Let g be a rational map of P of degree d which is not a
[lexible Lattes map. Moreover, assume that
(i) g possesses at least 3 postcritical repelling periodic points (possibly in the same critical
orbit),
(ii) for one of these postcritical repelling periodic points y, we have that

{aeP'; there exists n > 1, g"(a) =y) and a is not in the critical set of g"}

is dense in the Julia set Jq of g.
Let (P2 x Z, f,O0p2(1)) be a stable family of regular polynomial endomorphisms of C? of degree
d, parametrized by an irreducible algebraic curve Z. If there exists Ao € Z such that fy, is equal
to the lift of g to C? then the family (P% x Z, f, Ops (1)) is isotrivial.

Remark. — Observe that to find such a rational map g, it suffices to take a
polynomial map with a postcritical repelling point of period 5.

To the best of our knowledge, this is the first rigidity result in higher dimensions
that is not a direct consequence of one-dimensional results.

Proof. — The plan of the proof is first to show that the family (fi|..)icz is
constant — up to conjugacy — using McMullen’s rigidity theorem [72]. In a second
time, we show that for all 2 € Z, the map f; is a lift of the rational map f;|,_.

We will use several results of Bedford—Jonsson on regular polynomial endomor-
phisms of C2 obtained in [6].

Let A be in Z. If Crity, denotes the critical set of f; in P2, we set C; = Crit, \ Lo,
where L, is the line at infinity in P2. The critical measure of f; is p,1 := Ty A [Ch],
where T is the Green current of f;. In C?, T; = fhpﬁx{/l} is equal to the dd°¢ of the
Green function G; of f;, which is non-negative on C? and positive precisely outside
the set K; of points of C? with bounded orbit. Bedford=Jonsson proved in particular
that the sum L(1) of the Lyapunov exponents of the equilibrium measure u, := T) A T
verifies

L(/l):logd+€(/l)+'/Gﬂ,uc,ﬂ,

where £(2) is the Lyapunov exponent associated to fjz...

As the family is stable, A — L(2) is a harmonic function on Z. Since it is positive,
it must be constant. Actually, both maps A — £(1) and VR SN f G are also constant.
To see this, first observe that ¢ is subharmonic, since it is the Lyapunov exponent of the
family (f3z.,)1ez. Moreover, by definition, ?is non-negative, and the constancy of L
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implies that ¢ is bounded from above. It follows that £, which extends as a subharmonic
function to an algebraic compactification of Z, must be constant.

This has two consequences. First, at the parameter 1 the map £, is the lift of
g to P2 so L(Ag) = logd + £(2y), i.e. £(1g) = f Gy, = 0. Hence, £(2) = 0 for all
A € Z. In other words, the critical measure y,, is supported in K. On the other hand,
(filz.)aez is an algebraic stable family of rational maps on P! so by [72] it must be
isotrivial since f;,z., is not a flexible Lattes map. Up to a finite cover of Z, we can then
perform a family of affine conjugations in order to have for each 1 € Z

i -f;llLoo = g’
e 0 € C?is a fixed point of f;, which is the continuation of the center of the pencil
of curves preserved by f,,.

Note that there remains one degree of freedom, corresponding to the homothety of
center 0, which will be used later.

We denote by X’ the set of preperiodic critical points of g and by Y its set of
postcritical periodic points. The subset Y c Y’ corresponds to repelling postcritical
periodic points and X c X’ to points eventually mapped into Y. We also choose two
integers N > 1 and m > 1 such that g¥(X’) ¢ Y’ and g™(y) = y foreach y € Y”. Observe
that by (i) the set Y has at least 3 points. Based on this, the proof proceeds in four main
steps. Notice that in what follows, we identify P! with L.

(1) For each A, each irreducible component of the critical set of f; containing a
point of X has to be preperiodic.

(2) The periodic irreducible components of the postcritical set of f; passing through
points of Y are lines containing 0. In other words, there exists a set of at least 3
lines £ ={L,; y € Y} where each L, is f;-periodic forall 1 € Z.

(8) The pencil of lines £ passing through 0 has to be preserved by each f;.

(4) Up to homothety, there is a unique regular polynomial endomorphism of C?
preserving P acting as g on L.

Let us now prove these four claims. Note that the delicate one is (3), and that our proof
is strongly inspired by [72], where the difficulties coming from unlabelled holomorphic
motion are highlighted. In our very special situation, we use the lamination coming
from [6, Theorem 8.8] to overcome possible monodromy problems.

Proof of (1). — Let x be in X, i.e, a critical point of g whose image under g¥ is
a repelling m-periodic point y. Let A be in Z and let C be an irreducible component
of C, passing through x. The point y must be of saddle type for f;, repelling in the
direction of L., and super-attracting in the transverse direction. In particular, it admits
a local stable manifold Wy’,loc. On the other hand, u,, = T) A [C,] vanishes near x so

(fﬁc)nzo is a normal family near x (see e.g. [82, Theorem 1]). The saddle nature of y

gives that the only possible limit value of ( ]31;/5 nm)

equal to y. Indeed, if v is such a limit value, then L. contains its image, v(x) = y, and
the sequence (f}"" 0 v),>¢ is also normal. Since s repelling at y, the map » must

)n=0 Near x is the constant function

+

be constant. Therefore, ( f/llrcnm))nzo converges to the constant function equal to y on a
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neighborhood ¥ of x in €. This implies that £¥ (V) n W; e 18 @ neighborhood of y in

Wys s and thus, f/lN(C) is m-periodic.

Proof of (2). — Let L' ={L,; y € Y’} be the periodic postcritical lines for f;, in
the pencil £. Observe that [, is conjugate to z%" with a Julia set §, which is uniformly
Y

hyperbolic.

Let A be sufficiently close to 1. Let y € ¥ and let D be an irreducible component
of the postcritical set of f; that contains y. As previously noted, D is m-periodic and
locally coincides with the stable manifold of y near this point. In particular, D intersects
transversely Ly, at y. Moreover, by [34, Lemma 6.2], f;lnllD has topological degree d™

and thus, using a normalization, it has a unique measure of maximal entropy m log d.

On the other hand, since 4 is close to A, the curve D is close to a union U, ¢ Ly,
with 7 c Y’. For each y’ € I, the holomorphic motion of §, gives a hyperbolic set of
entropy m log d for j;”fD close to S,. Since these sets are pairwise disjoint, the uniqueness
of the measure of maximal entropy implies that I consists of a single point and thus
I = {y}. In particular, the intersection points of D with L. are postcritical periodic
points close to y. As this set is discrete in L, and independent of 1, D N L, is reduced
to {y} for A sufficiently close to 1. Furthermore, we have seen that this intersection is
transverse. Thus, D has degree 1.

Finally, as A is close to A¢, 0 is attracting and D intersects its basin of attraction.
By invariance of D, 0 is in D.

This proves the result in a Euclidean neighborhood of 1. Since it is a closed
property in the Zariski topology, it holds for all 1 € Z.

Proof of (3). — Let Ly denote the line in P that contains y; € Y, the postcritical
periodic point of g given by (ii). As we have seen, L; is m-periodic for every f; with
A € Z. Since the Julia set of f/{glLl is contained in the small Julia set of f;,, by [10,
Theorem 1.1] the family ( fﬁ‘Ll),ze z is stable. Indeed, in dynamics in dimension 2
J -stability is equivalent to the fact that J-repelling periodic points move holomorphi-
cally and remain repelling. In particular, all repelling periodic points of j;”le move
holomorphically and remain repelling. By [72], it has to be isotrivial. Hence, each fﬁ‘Ll
is holomorphically conjugate to f/{(’:l Lo le oz z%" . In particular, up to a finite cover

of Z and using a family of homotheties of C2, we can assume that f/{TLl is independent

of A.

Fix A € Z for a moment and denote by 4, the basin of Le, i.e. 43 := P2\ K. As
f G = 0,by [6, Theorem 8.8], there exists a f; -invariant lamination by holomorphic
discs {Wy,1 la € J,} in 4, parametrized by the Julia set J, of g, such that W, , \ {a} is
either contained in the critical set of f; or disjoint from it. Moreover, W, , is contained
in the stable manifold of a for a generic a € J,. Here, genericity is with respect to the
equilibrium measure of f;|;, = g. For the point y; defined above, W, ; corresponds to
the basin of attraction of y; for fﬂTrLf As we have seen, this set is independent of 1 and

we denote it by W, .
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Let n > 1 and let a, € g7"(y1) be such that a, does not lie in the critical set of g”
and a, ¢ Y. Observe that the set W,, , satisfies f*(W,, 1) = Wj, (and thus is contained in
the algebraic set f;7"(L;)) and that W,, 1 \ {a,} is disjoint from the critical set of f}*. Let
we W, \{91}. Theset P, :={z €W, ,, |jj{(‘) (z) = w} has exactly d" points. Moreover,
if y isaloop in Z and z € P, then the fact that W, , \ {a,} is disjoint from the critical
set of f" ensures that we can follow z along y as a point in f;7"(w) N W,, 1. This gives
an action of 71(Z, 1¢) on P, by permutations, whose kernel H, has finite index (< d"!)
inm1(Z,4p). On the finite branched cover Z, associated to H,, the points in P, can be
followed holomorphically, i.e., there exists a family (¢,).cp, of holomorphic maps from
Z, to P2 such that ¢,(1() = z and fl(¢:(1)) =wlorall z € P, and A € Z,.

From this, there are two key observations. First, W,, ; is disjoint from L, for
y € Y since a, ¢ Y. Hence, if 7: P2\ {0} — L, denotes the linear projection, ¢, := no¢,
defines maps from Z, to P! \ Y. The other important observation is that the kernel
H, defined above is independent of the choice of w € W, \ {y;}. Actually, if V' is a
small neighborhood of w then the set P, can be followed holomorphically for w’ € V
and the action of 71(Z, 1) is compatible with this motion. Hence, the kernel is the
same for all w’ € V and thus, by connectedness, for all w” € W, \ {y1}. Thus, for each
z € Wy, 1, We can associate ¢,: Z, — P2 \{L,;yeY}tand y, :=mo¢,: Z, > p! \Y.
As the set of non-constant holomorphic maps from Z, to P!\ {yy,...,y;} is finite and
since z > ¥,(A) is continuous for each A € Z,, the maps ¢, are either all constant or
all equal. In both cases, the fact that ¢,(1) converges to a, when z — a, implies that

each ¢, is identically equal to a,. In other words, W, , is contained in L,, := 771 (a,).
Since the set of all possible a, for all possible n > 1 is dense in J,, each map f; satisfies
mofi = gomonn l(J,). This set is not pluripolar in P2\ {0} so 7o f; = gox on
P2\ {0}, i.e. £y must preserve the pencil of lines # defined by 7.

Proof of (4). — Let A € Z. Since f; preserves P, it must be of the form

f;l[x 2y z] = [P(x7_y) : Q(x>}’) :Rl(x,y,z)],

where g[x : y] = [P(x,9) : Q(x,y)]. But f; is also a regular polynomial endomorphism
of C2so R, (%,9,2) = 2% m]

In particular, Corollary 2.4 also holds on the good family (P2, f, Op2(1)) with
regular part (de given by Lemma 2.2:

Corollary 2.10. — Letd > 2. Let (my),>1, (%4)n>1 and (Ay),>1 be as in Section 2.2
with X = (VdQ. Then, there exist N > 1 and a Zariski closed proper subset T of (Vdg such that A,

is finite-to-one on X, \ n; (') for all n > N.

Proof. — The proof is the same than Corollary 2.4 except that for the map f;,
we take the lift £, from Theorem 2.9. As mentioned after this theorem, it suffices to
take for g a polynomial map with a postcritical repelling point of period 5. i
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3. Blenders and the bifurcation measures

Our goal here is to prove that an open set Q of .# ; or @3, satisfying a large set
of assumptions (see Section 3.2), must be contained in the support of the bifurcation
measure. More precisely, if this is not the case, then by Theorem 3.4 below, Q contains in
a dense way positive dimensional subvarieties where the eigenvalues of all the periodic
points on the small Julia set are constant. This contradicts either Corollary 2.4 or
Corollary 2.10. Note that, unlike in the rest of the article, the families considered here
may be transcendental and are not necessarily closed.

Apart from Theorem 3.4 which only holds for £ = 2 in the polynomial case, all
the proofs in this section are the same for both .Z ; and for ﬂg. We therefore focus on

the case of ///f. The only difference for 95 is that the dimensions below, Nd’C and Nf,

should be replaced by the dimension of Poly”, (i.e. k(k;d)) and the dimension of 2%

(i.e. k((k;d) — (k +1))) respectively.

In fact, throughout this section and in Section 4, we do not work directly on .# {f
or @g. One key reason is that in Section 4 we consider degenerations outside the space
of endomorphisms of P*. In order to obtain a non-empty open subset in the support of
the bifurcation measure on .# ;, we provide a non-empty open subset Q C Endfl in the

T f)?(érit and use the fact that this current is the pullback of ur ¢,y
under the canonical projection IT: Endz — .///;.

At the beginning of the section, after introducing some basic notations, we present
in Section 3.2 a long list of assumptions that will be required in what follows. Then,
in Section 3.3 we state the main results of the whole section, Theorem 3.3 and Theo-
rem 3.4, and explain how, combined with Corollary 2.4 or Corollary 2.10 and Theo-
rem 4.1, they imply Theorem C. In Section 3.4, we outline the proof strategy for these
two theorems and describe the structure of the remainder of the section.

support of the current

3.1. Notations. — If a > 0 then D, is the disc of center 0 and radius @ in C and
we set D := Dy.

If A c Cand B c CF-! are two connected open subsets then I' ¢ 4 x B is a vertical
graph if there exists a holomorphic function g: B — 4 with g(B) € 4 and such that
I'={(g(w), w) ; w € B}. One way to measure the verticality of a graph is to consider
cone fields. As we will only work on C* where the tangent bundle is trivial, for p > 0 we
say that a vertical graph T" as above is tangent to the cone field

k
C,:= {(ul,...,uk) e C*; pluy| £ max |u,~|}
2<i<k

if the tangent bundle 7T is contained in T’ x C,. If T = {(g(w), w) ; w € B} as above,
then this is equivalent to the fact that the partial derivatives of g are uniformly bounded
by 1/p. Observe that the larger p is, the more vertical I' becomes. The case p = +o0
corresponds to vertical hyperplanes. We say that a map f contracts the cone field C, if
there exists p’ > p such that the image of C, under the differential of f at each point is
contained in Cy.



32

THOMAS GAUTHIER et al.

3.2. Assumptions. — Let Q be a non-empty open subset of Ends or of Po]yf,
such that each f € Q fulfills the properties described below. Observe that most of these
objects (all except /i) are assumed to depend holomorphically on f € © and our notation
reflects this dependence. For example, p: f +— p(f) is the holomorphic motion of the
saddle point given in Assumption (3) and A corresponds to the holomorphic motion of
the hyperbolic set A(f) from Assumption (2), i.e. x € A is a function f + x(f) given
by this holomorphic motion. Another observation is that the most important case is
k =2. When £ > 3, the dynamics on the last £ — 2 coordinates is not very important.
However, item (iii) in Assumption (10) prevents us from taking product maps. The
reader may refer to Figure 1 for an illustration of some of the assumptions.

(1)

2)

3)

“)
©®)

(6)

There exist two disjoint holomorphic discs Uy, U~ c C and two constants R > 2,
and p > 10 such that f contracts the cone field C, on U := U, U U_ where

U, = Dg x Uy x D2,
There exist two disjoint holomorphic discs V., V_ c C such that, if we set
V, =D x Vo xDF 2, V_:=Dpx V. xD¥? and V=V, U1

then

o V.cCU.,

° f2 contracts the cone field C, on V,

e fZisinjective on Vi and V C U C f2(Vy).
Moreover,

A = () F72V)

n>0

is a repelling hyperbolic set for £2, contained in Ji(f).
f has a non-critical saddle fixed point p(f) € D x U- x D¥~2 with one stable
direction and £ — 1 unstable directions. We ask that its unstable manifold

contains a vertical graph through p(f) (denoted W;( ) ) I DX VZ % Dk-2

tangent to C,. In what follows, W;( ). loc stands for a holomorphic disc in the

stable manifold where f is conjugate to a contraction. Finally, we assume that f
is C'!-linearizable near p(f), with a linearization map depending continuously
on f in the C!-topology.

Each vertical graph in Dx V;, x D=2 (resp. Dx V_xD*~2) tangent to C, intersects

A(f).

The intersections between Wp” e and A are not persistent in Q (i.e. if x € A and
f € Qsatisty x(f) e W then there exists g € Q close to f such that x(g) is

p(f),loc
1 u
not in Wp(g),loc)'

There exists a repelling 2-periodic point 7(f) € D x V_ x D*~2 such that the
eigenvalues of D, ) f 2 are all simple with no resonance. In particular, f?
is holomorphically linearizable near r(f) and we assume that the domain of
linearization contains U_.
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(7) There exists ng > 1 such that £ (Crit(f)) has a transverse intersection with
Wiy ioe VP

(8) There exist K € Nand g(f) € Wp”(f) e Which is not a critical point for K and

such that ¢(f) = fE(g(f)) # p(f) is a transverse homoclinic intersection in

w .
p(f),loc
(9) The exceptional set of f is disjoint from its small Julia set.

We now introduce one last, slightly more technical assumption. It will serve as the
starting point for the induction on the dimension. Let y,s) (resp. x,(r)) be the

eigenvalue of Dy (s f (resp. D, (s)f 2) with the smallest modulus.

(10) For every non-empty open subset Q' c Q, there exists f € Q', m e Nand x € A
such that
() () =r(f),
(i) x(f) € WSr 1o

(iil) Dycryf™(Te(p) Wpu(f),loc) is a “generic” hyperplane for D, () f?, i.e. contains

no eigenvector of D, (s f2,
(iv) the subgroup (x,(s), xr(r)) of C* generated by x () and x,(y) is dense,

From a non-technical point of view, the main ingredients to prove that Q c
k

supp(T f}?/éril) are Assumptions (2) to (4). They should be sufficient for the proof. As-
sumption (4) says that A(f) satisfies a blender property and by Assumption (3), there
exists a connection between this blender A(f) and the saddle point p(f). If the critical
set has a transverse intersection with the stable manifold of p(f), this gives rise, by the
inclination lemma, to infinitely many intersections between the postcritical set and A(f).
Very likely, all these intersections should provide as many independent bifurcations
as possible. Most of the remaining assumptions aim to ensure several transversality
properties which eventually give the existence of these independent bifurcations. In

particular, a transverse intersection between W[f( ). loc and the postcritical set is given by

Assumption (7). Observe that, in addition, this assumption also implies that Q contains
no PCF maps (see the end of the proof of Theorem C or [85, Corollary 2.5] for a more
precise result).

In the example we construct, all these assumptions are easy to check, except
Assumption (10). This last assumption is the key technical point in proving that the
support of the bifurcation measure has non-empty interior. Establishing it on Q takes a
large part of Section 4 where we need to consider degenerations outside Endfl.

In order to give more explanations on this assumption, item (iv) will be used
to ensure that the postcritical set of f can approximate any leaf of a foliation by hy-
persurfaces ¥, defined in a neighborhood of r(f) as the vertical fibration associated
with the linearization map (i.e., the strong unstable foliation of r(f)). Point (iii)

implies in particular that the strong unstable hyperplane T, f)Wr‘E?) together with

(Dx(f)f’””(Tx(f)M;“(f) ) 1<i<k—1 form a basis of hyperplanes. Each of them is ac-
tually the tangent space of a dynamical foliation, ¥ and (g})lsz’sk—l respectively, which
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thus define local coordinates near r(f). A key point will be that, under suitable condi-
tions labeled as (%) in what follows, these coordinates provided local conjugacies which
turn out to extend to a neighborhood of the small Julia set. The results of Section 2
ensure then that the conjugacies are generically global.

Finally, notice that it would be easier to work with a fixed point in Assumption (6).
However, we were not able to obtain the open set Q when d = 2 with this additional
constraint.

3.3. Statements. — Here, we assume that Q satisfies all the assumptions of
Section 3.2. The purpose of Assumption (10) is to construct families with the following
properties.

Definition 3.1. — A subvariety M C Q satisfies the condition () if

(1) M is connected,
(2) there exists x € A and m € N such that for all f € M, x(f) € I/Vp“(f) we S (x() =

r(f) and Dy ) f™ (Te(p) Wp”(f) o) 18 @ generic hyperplane for D,(p)f2
(8) each intersection point in W[)”( N A(f) can be locally followed holomorphically,
(4) there exists fy € M such that the subgroup (x,(fo), x p(fo)) is dense in C*.

We also consider a stronger condition.

Definition 3.2. — A subvariety M C Q satisfies the condition (x) if it is simply
connected, fulfills () and is a stable family in the sense of Berteloot—Bianchi—Dupont.

The main purpose of this whole section is to show that these conditions combined
with the assumptions on Q lead to the following two results.

Theorem 3.3. — If M C Q satisfies () then the functions f +— x p(r) and f = x(f)
are constant on M. In particular, any connected analytic subset M’ C M also satisfies ().

Theorem 3.4. — Let M C Q be an analytic subset which satisfies (%). Let fy and fi be
in M. Then, fy and f are holomorphically conjugate in a neighborhood of their respective small
Julia sets.

Furthermore, these conjugacies are compatible with the holomorphic motion of periodic
points, i.e., every n-periodic point x(fy) of Ji(fo) can be followed along M as a n-periodic point
x(f) in Ji(f) and all eigenvalues of Dy(r) f™ are constant as functions of f. In particular, the
map f +> det Dy(p) f" is constant on M.

Anticipating the existence of the open set Q, established in Theorem 4.1, we can
conclude the proof of Theorem C.

Proof of Theorem C. — We only consider the case of .# ;. As we already said,
the proof for 93 is exactly the same except that N a’f has to be replaced by 2(“’:,2) - 6.



SPARSITY OF POSTCRITICALLY FINITE MAPS OF P AND BEYOND 35

Observe that we cannot conclude the proof on WC’; when £ > 3 since Corollary 2.10
only holds on ,@5.
Let £ > 2and d > 2. Let Q be the open subset of Ends given by Theorem 4.1.

Our goal is to show that Q ¢ supp( ) To that end, we consider a non-empty

Nk
d
Tf,Crit i

connected open subset Q" ¢ Q and we will prove that Q' N supp( ) is not empty,

T, ¢
f,Cirit
proceeding through the following steps.

Step 1: Reducing Q' with respect to multipliers. — First, fix an arbitrary element
[’ € Q. If weapply Corollary 2.4 to the sequence (x,),> of all repelling periodic points
of f”in Ji(f’) then there exists Ny > 1 such that the corresponding multiplier map
Ay, is generically finite on a branched cover of .#Z ;. As the periodic points (x,)1<<n,
are repelling and in i (f”), they can be followed holomorphically as repelling points in
Ji(f) in a small neighborhood of £ in End’. Since A, is generically finite, the fibers of
the corresponding map on a small open subset Q” c Q' close to f” have codimension N ; .
Hence, by Theorem 3.4, any analytic subset of Q" satisfying (%) must have codimension
at least N/ ;.

Now, by Assumption (10), there exists fy € Q”, m € N and x(fy) € A(fy)
such that

() fy" (1 (o)) = r(fo)s
(i) x1(f0) € Wyis) 1o

(iil) Dy, () fy" (T, (ﬁ>)%u(ﬁ)),loc) is a generic hyperplane for D,z /2,
(iv) the subgroup (x (£, X (%)) of C* is dense.

In particular, f belongs to
4y :=Af € Q" x1(f) € I/Vpu(f),loc}’
which is a hypersurface by Assumption (5).

Step 2: Move to a smooth point. — Our goal now is to fix new relations between

A(fy) and Wp"( ) until condition (7) holds and Theorem 3.3 can be applied. A minor

technical issue arises from the fact that 4; may be non-irreducible at f, with no control

over the number of components. Hence, a relation between A(f) and I/1/p"(f0) might

persist on some components but not on others, potentially disrupting the properness of
the intersections. Although it is possible to prove that such a situation cannot occur, we
will, for simplicity, instead pass to a smooth point of 41. More precisely, the parameters
fin A4y such that (x ,(r), xr(r)) is dense in C* is itself dense in any irreducible component
of 4; containing fy. Actually, if P(f) and R(f) denote logarithms of y ) and x,(y)
and if we write R(f) = t(f)P(f) +0(f)2in with ¢(f),0(f) € R then this condition on
the subgroup is equivalent to the fact that 1, ¢(f) and 0(f) are independent over Q.
This holds outside a countable union of real analytic subsets of 41. Hence, we can take
a smooth point f] of 4; such that this condition is satisfied and such that fj is close
enough to fj to ensure that item (iii) above also holds for fj. Let X; be the irreducible
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component of 4; containing f] and let Q; c Q" be a small open neighborhood of f;
such that 41 N Q1 = X; N Q; and (iii) is satisfied on €.

Step 8: Building a sequence of relations. — The set Wﬁ”( ) NA(f}) is infinite and we use
it to define a sequence (f;)1<;<y in Q”, a decreasing sequence (£;)<,;<y of open subsets
of Q”, and a decreasing sequence (X;);<;<n of smooth irreducible analytic sets such that
codim(X;) = i and f; € X;. The construction goes as follows. Assume that (f;)1<;<,,
(Qi)1<i<iy and (X;)1<;<;, are defined. If all the intersection points in Wp“(f) N A(f;) can
be followed holomorphically on X;, then we set N := iy and the construction ends.

n
Otherwise, there exist ;),1 > 0 and x;,41 € A such that x; 1 (f;,) € £, o+t (I/Vpu(ﬁo),loc) and

o we ) is not a closed analytic

p(fiy),loc
set, we mean that there exists a small neighborhood Q, .1 c Q;, of f;, such that the set

Ai0+1 = {f S AXViO N Qio+1 > xi()+1(f) € fni0+l (%’?f),lt)()}’

is a closed hypersurface in X;, N §~2,~0+1. As in Step 2, the set 4, ,; might be non-
irreducible but we can choose a smooth point f; .1 on it such that (,\(/,(ﬁ0+1),)(,(ﬁ0+1))

n
this relation does not persist on X;,. Here, since L

is dense in C*. We then choose X; ,; to be the irreducible component of 4, ,; which
contains f; ,1 and take Q; ,1 C ;.1 to be a small enough neighborhood of f; ,; to
have 4,1 N Q; 41 = X1 N Qy41. Observe that we always have N < N; and that Xy
satisfies (7).

Interlude: From the unstable manifold to the postcritical set. — Another important
observation is that Xy corresponds to N independent intersections between Wp“( f) and

A(f) and, since the Ji-repelling periodic points are dense in A and since by Assump-

tion (7) some parts of the postcritical set approximate W[)”( £y small perturbation of Xy

gives rise to an analytic set which corresponds to N-properly Ji-prerepelling parame-
ters. Since this point is important, we now provide more details. Let Qy, (x;)1<;<y and
(n;)1<i<y be as above with the convention that n; = 0. We now consider the sets

Wy = {(frz1 0 omn) € Qux (PO 5 e (Wi, ) for 1 <i < N
and
Y = {(f,zl,...,zN) cQvx (PHY ; zi=x(f)forl <i< N}.

What we have proved so far is that the projection of Wy N Yy on Qy, which is equal to
Xy N Qy, has codimension N. Since the projection of Yy on Qy is a biholomorphism,

we have that Wy N Yy has pure dimension N f — N, where N f = dim(Endfl). On the
other hand, dim(Yy) = Nf and dim(Wy) = Nf + (k= 1)N so we have

dim(Wy N Yy) = dim(Wy) + dim(Yy) — dim(Qy x (PHY),

which shows that the intersection is proper. As the repelling periodic points are dense
in A, the set Yy is approximated by sets Y}, defined in the same way replacing each x;

by repelling periodic points x; , converging to x;. Moreover, the inclination lemma and
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Assumption (7) also give that Wy is approximated by sets Wy, = defined as Wy but using

a local branch of some iterate of the critical set instead of Wﬁ”( ) oc” The persistence of

proper intersections (see e.g. [27, Section 12.3]) gives that W}, N Yy, is proper when
n is large enough, i.e., Wy, N Yy  corresponds to N-properly J;-prerepelling points in
Qpn X (Pk)N.

Step 4: Finishing the induction. — Now, we continue the construction and define
by induction (f;)y+1<i<n’> (Qi)nv+1<i<ny and (X;)y+1<i<n- in the following way. Assume
the construction has been carried out for N < i < 4. If the family defined by X;; is stable
then we set N’ := iy. Otherwise, there exists a non-persistent Misiurewicz relation on
X;, and we define 4, ;1 to be the analytic hypersurface of X;, where this relation persists.
Then, we choose a smooth point f; ;1 on 4,1 and a small neighborhood ;.1 € Q;,
such that X; .1 := Q; 41 N 4,41 is smooth, connected and simply connected.

As above, at the end we have

e codim(Xy/) =N’ < Nf,

e all the Misiurewicz relations in Xy- are persistent, i.e., this family is stable,

e by Theorem 3.3 Xy satisfies (1) and thus (x).

The construction of Q" and Theorem 3.4 then ensure that N’ > N f and thus N’ = N ; .

On the other hand, exactly as in the interlude above, the points of Xy are approximated

by N’-properly Ji-prerepelling parameters in }Ends x(PF)N'. By Proposition 1.11, Xy-
N

T i .- Moreover, the bifurcation measure

. . NE .
K r crit of the moduli space .Z j satisfies IT" (i r.coi) = T p o Where I1 End]‘; — M f is
the natural projection, see [4]. This implies Q := II(Q") ¢ supp (4 f,cxit) and Q is open
since IT is an open map.

is contained in the support of the current

Step 5: Absence of PCF maps. — Finally, notice that Assumption (7) gives that
the open set Q obtained by Theorem 4.1 possesses no PCF maps. More precisely, let
f € Q. The inclination lemma applied to the portion of £ (Crits) that is transverse

to W;( £).loc given by Assumption (7) implies that the postcritical set contains infinitely

many disjoint (local) hypersurfaces converging to Wp”( ) loct Therefore, the postcritical

set is not algebraic. mi

Remark 3.5. — For the absence of PCF maps in Q we could have used a result
of Le [85, Corollary 2.5], which states that a PCF map of P* cannot have a non-critical
saddle periodic point.

3.4. Sketch of the proofs of Theorems 3.3 and 3.4. — Let M c Q be a subvariety
satisfying (*). The assumptions of Section 3.2 are used in the following way.

(1) As the family is stable, by [15, Theorem C] there exists an equilibrium lamina-
tion £ for the family (f) ey (see Definition 3.19).
(2) Points (2) and (3) in Definition 3.1, which come from Assumption (10), ensure

that r(f) € W;(f) persistently in the family.
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(3) Since the postcritical set intersects transversely Wlf( ) (Assumption (7)), the

inclination lemma and the assumption (x (5, ¥ r(,)) = C* imply that the post-
critical set of f can approximate any leaf of a foliation by hypersurfaces 7,
defined in a neighborhood of r(f) as its strong unstable foliation.

(4) The previous point, the stability of (f)sey and the blender property from
Assumption (4) imply, at first, a persistent identity y,s) = ¢ X;(“;,) on M, which
actually gives, combined with Assumption (8), that both these functions are

constant.
(5) The genericity part of (2) in Definition 3.1 allows us to construct £ —1 other local
foliations, g}, . g}-l whose leaves are also approximated by the postcritical

set and such that (77, Q}, e Q}’ﬁ‘l) provides local holomorphic coordinates

(depending holomorphically on f) near r(f).

(6) The fact that the equilibrium lamination £ is acritical implies that if y € £ then
the coordinates of y(f) with respect to (77, Q}, e j’i‘l) are independent of
f-

(7) Since {y(f) | ¥ € L} is not contained in a proper analytic set, these local
coordinates respecting £ give a local conjugacy near r(f).

(8) This local conjugacy extends to a neighborhood of the small Julia set, forcing
the multipliers to be constant in the family.

Now, in Section 3.5 we set notations and basic results for the family (f)feq. Section 3.6
and Section 3.7 are devoted to obtain the points (3) and (4) which actually imply
Theorem 3.3. The conjugacy, which corresponds to points (5) to (8), is constructed in
Section 3.8.

3.5. Semi-local dynamics. — First, we fix an arbitrary f € Q. As Theorem 3.4 is
essentially a local result, we will, when necessary, replace Q by a smaller connected open
neighborhood of f in Q.

Since the fibration of C* by vertical hypersurfaces will play an important role in
what follows, we denote by 7: C* — C the projection onto the first coordinate, and we
write points as (z,w) € C x C¥~! to indicate the corresponding coordinates.

Let r(f) be the repelling 2-periodic point given by Assumption (6). We denote
by x+(r) the eigenvalue of Dr(f)fQ with the smallest modulus. Since the eigenvalues of
D, f 2 have no resonance, there exist (see e.g. [9]) a holomorphic family of holomor-
phic maps (¢7) req from CF to P* and a holomorphic family (L 7)req of linear self-maps
of C*¥-1 such that ¢7(0) =7(f) and

¢,71 o f2o¢r(z,w) = (Xr(f)z,zf(w)) = Ly (z,w)

for every (z,w) € C x C*¥~! near 0. In particular, the vertical linear fibration of C*
defined by x is sent on the strong unstable fibration of r(f) and ¢, -1y, provides a
parametrization of the strongly unstable manifold of r(f). Moreover, Assumption (6)
implies that there exists a neighborhood 4 of 0 in C* such that ¢, is injective on 4 with

U_c¢ % (4). The cone condition in Assumption (2) ensures that there is an open set
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A c €k such that {0} x 4 ¢ 4 and ¢5 ({0} x A) is a vertical graph passing through
D x V- x D¥=2 i.e., is a closed analytic subset of D x V_ x D*¥=2 whose closure in U_ is
disjoint from (D) x V_ x D¥~2. As these properties are stable under small perturbations,
there exists v > 0 such that, possibly by reducing Q and slightly 4, 4, for each f € Q

o ¢/ is injective on 4 with U_ c ¢/(4),
o forallc eD,, {¢} x4 c Aand dr({c} x A) is a vertical graph passing through
D x V_ x DF2,

We denote by 67: ¢7(A4) — A the associated inverse map. Observe that the second point
above combined with Assumption (4) implies that each ¢ ({c} x A) intersects A(f). In
what follows, it will be convenient to normalize the family (¢7)scq in the following way.
Consider a family (us) req of self-maps of C x C¥~1 of the form us(z, w) = (v(f)z, w)
where 7(f) € C* depends holomorphically on f and is chosen so that

e [7(f)| < v ensuring that u(D x A) c D, x 4,

e there exists " € A close enough to r such that forall £ in Q, ﬂoujjloéf(r’(f)) =1.

Hence, if we replace ¢ by ¢ o ur, we may assume that v = 1, and we then have
modp(r'(f)) = 1. This normalization will only appear in Corollary 3.18, which is
nevertheless a key ingredient in Section 3.8.

We then set B := D x 4 and Dy := ¢7(B). The latter possesses a natural foliation
Fr where F7(¢c) = ¢r({c} x A) for ¢ € D. As we have already seen, each leaf is a vertical
graph intersecting A(f). In particular, 7(0) corresponds to the local strong unstable

manifold erz;) e of r(f). We also denote by Wr”(”f) e = 7 (D x{0}), the local weak

unstable manifold of r(f).

Finally, we also introduce some notation for the dynamics near the saddle fixed
point p(f) given by Assumption (3). Let x,(s) denote the eigenvalue of D,y f with
the smallest modulus. Using holomorphic conjugacies separately on the stable and
unstable directions, we first choose holomorphic local coordinates v7: V; — D* on a

neighborhood Vy of p(f) such that
o z);] (D x {0}) is contained in the stable manifold of p(f) and vy o f o vjjl (z,0) =
(X p(£)% 0,
. vjjl({O} x DF~1) is contained in the unstable manifold of p(f) and, whenever
it is defined, vy o f o 0;1(0, w) = (0, Ar(w)) where Ay is an expanding square
matrix of size £ — 1.
In what follows, the local stable manifold of p(f) will be defined as Wp’( Foidoc = v;l (D x

{0}). For the local unstable manifold Wp”( ). loc of p(f), we take the vertical graph in

D x V- x D*=2 given by Assumption (3).

Moreover, this assumption also implies that there exists a C!-family (67)reu
of local C!-diffeomorphisms such that Or o f o 9;1 is the linear map Ky(z,w) =
(X p(f)% Af(w)). Observe that we can assume the domain of definition of 6 contains
Vr and that Dy(6 o v;l) = Id.
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r(f)
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A(f) Wrc(%‘),loc
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p(f) Wotp)toc
Ficure 1. — Summary of the notations. The whole picture is contained in U_. In the example

obtained in Section 4, the hyperbolic set A(f) is a Cantor set but it intersects any sufficiently
vertical graph in V_.

Consequences of the inclination lemma. — We will make extensive use of the
inclination lemma for families of hypersurfaces transverse to W;( ). loc parametrized by

a subset M of Q. We will gradually strengthen the assumptions on M until reaching
condition (T) in Section 3.7 and (%) in Section 3.8. For now, we just assume that M is a
connected analytic subset of Q.

Definition 3.6. —  We say that T = (U'(f)) ren is a family of polydiscs intersecting
transversely W[f( Frdoc @ b(f)if

e each T'(f) is biholomorphic to D*~1 and f v T(f) is holomorphic,

e cach U'(f) intersects W;( ) oc in a unique point and this intersection is transverse,

e the image by vy of this intersection point with U'(f) is (b(f),0) € D x {O}.

From now on, we also assume that there exists x € A and m € N such that for
all f € M, x(f) € Wpu(f),loc’ f™(x(f)) = r(f) and Dx(f)fm(Tx(f)%u(f),loc) is a generic

hyperplane for D, ) f 2. By increasing m if necessary, we can assume that f™ maps

biholomorphically a neighborhood of x(f) in Wp"(f) 1o (0 @ vertical graph W, (f) in Dy,

1
C’-close to W e and thus tangent to C,.
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Let I be a family of polydiscs intersecting transversely Wp‘( Foloct By the inclination

lemma, there exists jy > 0 such that forall f € M and all j > jy, f/(T'(f)) contains a

subset which is C!-close to Wﬁ”(f) oo+ 11 particular, f7™T(f)) contains a subset I'; (f)

which is a vertical graph in Dy, tangent to C, and C I_close to Wy, (f). From this, using
again the inclination lemma but near r(f), we can construct families of vertical graphs
which turns out to be key objects to prove that (1) implies a persistent resonance between

Xp(r) and xr(f).-

Definition 3.7. — Let T and jiy be as above. Let f € M, Iy > 0 and j > jy. Let

¢;(f) denote the point of intersection between I';(f) and Wr‘(’}) oo W foral 0 <1 < Iy,

| o 6f(f21(cj ()| < 1/2 then we define T'; ;(f) inductively by setting
o [';1(f) is the vertical graph in fQ(Fj,l_l (f)) N Dy which contains fQI(cj ().
In this situation, we say that T'; ;(f) is well-defined for all I < L.

Remark 3.8

(1) Observe that the injectivity in Assumption (2) implies that there is no ambiguity
in the definition of T'; ;(f).

(2) A priori, it could happen that T'; ;(f) is well defined for some f = f; and not
for f = f3, evenift [ 06y (flgl(cj(fl)))l is much smaller than 1/2. However, we
will see in Lemma 3.12 that under condition (), this doesn’t happen, and thus
(;,1(f)) fem define holomorphic families of vertical graphs.

Since Dx(f)fm(T"(f)%u(f),loc) is a generic hyperplane for Dr(f)fQ, in particular
wer is transverse to W,,(f). Hence, by the inclination lemma there exist an integer

r(f),loc
a > m and a holomorphic injective map 4s: D — Vy (where Vy is the neighborhood of

p(f) defined above) such that
e As:=hs(D) is transverse to I/Vpu(f),lac’

e Arisagraphabove W; more precisely the projection on the first coordinate

(), loc?
of vy o hy is the identity,

. flgf is injective and f*(Ay) is a neighborhood of r(f) in W**

r(f),loc’
We define Hr: D — Dby Hy =71 o670 f* o hy, which can be seen as a transition map
between parametrizations of Ay and Wr”(’j,) 1o Tespectively. Observe that Hy is injective

with Hr(0) = 0. Hence, there exists @(f) # 0, which depends holomorphically on f,
such that

Hy(s) =a(f)s +o(s),

where o(s) is uniform in f.
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Remark 3.9. — Observe that a similar construction can be done where Wr?’j,) oo

is replaced by a holomorphic disc £y transverse to f*( ) as long as the point in

W/Ju(f),loc sent to X7 N f”(Wp"(f),[ac)

in Proposition 3.17 for the homoclinic intersection given by Assumption (8), i.e., Z¢

1 S
will be an open subset of Wp(f),loc‘

Wu
p(f),loc
is not critical for f”. We will use such construction

F1Gure 2. — Definition of I'; ;(f) where x(f) € W;]”(f) Joc 1S @ preimage of r(f). The integers

m and a are constant but j and / can be large. The next two lemmas show that ¢;(f) and ¢; ;(f)
are essentially equal to x,(f)7 and x,(f) x,(f)" respectively in the coordinates on Wrc(l}),loc
given by ¢ .

The two following lemmas can be seen as consequences of the inclination lemma
or linearization results. Their purpose is to show that the vertical graphs I'; ;(f) are close
to leaves F7(c;,;(f)) of the strong unstable foliation of 7(f), where ¢; ;(f) is essentially
equal to x,(f) x,(f)!. The first lemma focus on T;(f). It should be possible to
prove it using distorsion estimates. Instead, we use C!-linearization and this part of
Assumption (3) only appears here.

Lemma 3.10. —  There exists a holomorphic function p: M — C* with the following

property. Let (U(f))rem be a family of polydiscs intersecting transversely WI;‘( Frloc @ b(f).

For each n > 0 large enough there exists a holomorphic function s, : M — C such that for each
feM

o Ar 0 fUI(f)) = hy(sa(f)),
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d sn(f) =:8(f)b(f))(2(f) +0(X;(f))'

In other words, for j > 0 large enough, T';(f) N Wr‘(’}) oo € T (Hy (sj4m-a(f))) with

Hy (spem-a(f)) = € (D)) ) + 150,

with a(f) := X;"(‘f“)& (F)B(f) and such that u;(f)/ )(; (f) Converges Lo 0, locally uniformly
on M.

Proof. — As 0 is well defined on V, we can define a C I_germ of (C,0) by
Fr(s):=mouso 9]21 ompofrohs(s),
where 7: C¥ — C is the first projection as above and 7y: CF — C* is defined by
mo(z,w) = (2,0). The key point in the proof is that the differential of F at 0 is C-linear.

The maps &y and 7 o vy are holomorphic so we focus on 6’}71 o7y o @y which corresponds

to the projection in the unstable direction given by the linearization 6. This maps is a
priori not holomorphic but there exists a sequence (U,),so of open neighborhoods of

Wpu(f),loc NVr such that

Ty ;:f”oz}}loﬁooz}fof_"

is defined on U,. We claim that, for « € W[J”( ). loc N Vy, we have

ma(u)=0= 9}1 ompobr(u) and Dym, — Du(Hj?1 oy oby).

Indeed, the equality is obvious and for the convergence, if we set y := 67 o v/;l and
F =y OvaJ;1 then

Hfonnoej?l =yoF"omyoF "oy ! :K;od/oﬁood/—l oKf”.
It follows that, if y satisfies 6(u) = (0,y) then, using that Dyyy = Id and writing
D(O’A;n(y))lﬁ_l = Id +E,, we have

D,y (O om0 8;") = K} oy o (Id+E,) o K"

:K]',’oﬁ()on;"+K;oﬁ()oEnoK]Z”.

Ky commutes with 7 thus the first term is equal to 77y. The second one converges to 0
1 —n ~ —n n - ~ n
since ||Kf | =X,y ||Kf oyl =X h(f) and || E,|| converges to 0.
This gives that 6]71 omyoby is C-differentiable on W})u(f),loc and so at & (0). Hence,
there exists y(f) € C, which is non-zero since Ay and W; are transverse to W*

(f),loc p(f),loc’

such that Fr(s) = y(f)s +o(s).
On the other hand, let (I'(f)) rear be a family of polydiscs intersecting transversely
Wps( Foudoc A b(f). For each n € N large enough, there exists s,(f) € D which depends

holomorphically on f € M and such that &7 (s,(f)) € f"(I'(f)) N Ay. The set I(f) :=
07(T(f)) is locally a vertical graph {(g7(y), )} where g¢: (C*1,0) - Cisa C'-germ.



44 THOMAS GAUTHIER et al.

Its image T"(f) by K7 is given locally by {(g;(y),y)} where gf”(y) = )(;‘(f)gf(Aj}”(y)).
Hence, since A]Z” contracts at an exponential speed, we have g;(y) = XZ(f)gf(O) +
o5 5)) where the error term is uniform in f. Moreover, there exists y,(f) such that
0}1 (g;(yn(f)),yn(f)) = hy(sy(f)). Therefore, the definitions of vr and K give

Fr(su(f)) =monso 9/:1 o 70 (g7 0n(f)),3(f)))
—rouy 007 (g ((f),0)
=mour 087 (x}87(0),0) +o(xps)
=movp o0 (KF07 (07" (6(/),0)))) +0(x} 1)
—rouvpof (fl(b(f),o))’L”(Xp(f))
=X () +olxhs):

Hence, s,(f) = ﬁ(f)b(f))(z(f) + O(XZ(f)) where B(f) := y(f)~!. To conclude, the
sequence s,(f)/(b(f) /\(Z ( f)) depends holomorphically on f and this sequence converge

locally uniformly to B(f) which is then also holomorphic. i

The next lemma can be seen as a consequence of the inclination lemma in the
presence of a dominated splitting. It can be proved using the linearization near r(f)
and the proof is left to the reader.

Lemma 3.11. — Let (U'(f))rem be a family of polydiscs intersecting transversely
Wlf( Frioc @ b(f). There exists a sequence (€,),>o converging to 0 with the following property.

If f eM, j>nandl > naresuch that T'; ;(f) is well-defined then
Liu(f), Frleji(f))) < €u,
where c;u(f) = a(HBX) XLy

3.6. Strong relations between the multipliers. — From now on, we consider a
subvariety M c Q which satisfies (1), (2) and (3) in Definition 3.1. Once again, we fix

JfoeM.

Lemma 3.12. — Let (ju)u>0 and (1,),>0 be two increasing sequences such that
(X[,(ﬁ]))(r(ﬁ)))po is a sequence in D which converges. Then {f Xp(f)Xr(f)}n>0 is a normal

family in a neighborhood My c M of fp.

Proof. — A preliminary observation is that since A moves with respect to a
holomorphic motion, the family of functions on M, {f — x(f)}sea is @ normal family.
In particular, there exists a neighborhood My c M of f; such that if x(fy) is in Dy, with

lmods(x(fo)l < % then for all f € My, x(f) € Dy with |70 67(x(f))] < %
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By Assumption (8), there exists a family of polydiscs I' intersecting transversely
W;(f) e At some b(f) # 0 and such that I'(f) ¢ Wp”(f). By exchanging each I'(f) by an

appropriate subset of f¥(T'(f)), we can assume that, for all f € My, |a(f)b(f)| < %
By Lemma 3.10, the first coordinate (with respect to 6 7)) of ¢;,(fo) :==T;,(fo) N

Wt e 1S Hy (Spam-a(f)) = € (f0)b(fo)x i 1) + 5, (fo). Hence,
70 84, (A e () = L ) (BN o)+ 3, (0))-

: Jn In : Jn
Since (Xp(fo)Xr(fo))"ZO converges to some y (fp) € D and since u;, (fO)/X[J(fo) converges
to 0, the sets I';, ; (fo) are well-defined for n > n( for some ng large enough.
By Assumption (4), for n > ng there exists a point x,(fy) € A(fy) which be-
longs to T'; ; (fo). On the other hand, by Lemma 3.11, the sequence of analytic sets

(Tj,.1, (o)) uzn, converges to Fz (a(f0)b(fo)x (fo)). Since |a(f)b(fo)l < %, this implies
that |7 0 6 7 (x,(f0))| < 2% for n > ny large enough and thus |7 0 6 (x,(f))| < % for all
f e M.

As M satisfies (3) in Definition 3.1, the persistence of proper intersections (see
e.g. [27, Section 12.3]) implies that the continuation x,(f) of x,(fy) in A(f) also
lies on T';, ; (f), which is thus well-defined. As observed above, all these functions
{f = x2(f)}n=n, form a normal family. Hence, the same holds for the family

[ no6f<xn<f>>} |

b(f)a(f)
The result follows since, by Lemma 3.10 and Lemma 3.11, these functions are, locally
on My, arbitrarily close to {f — Xﬁf)/\/in(f)}nz()' i

Proposition 3.13. — There exists { € S' and w € R* such that for all f € M
Xr(f) = EX p(7)-

Proof: — Let (ju)n>0 and (1,),0 be two sequences as in Lemma 3.12 which we
choose so that

— Jn ln
x(fo) = lim XX i)

is non-zero. By analytic continuation, it suffices to prove the result in a neighborhood
of fy. Let My be the neighborhood of f; obtained by Lemma 3.12 where the family

{f Xﬁf)/\/in(f)}"zo is normal. Let y: My — C be a limit value and we can assume,

up to take a subsequence, that for each f € M,
Jn Ly
(31) Xp(f)/\/f(f) _>X(f)

Let M) be a simply connected neighborhood of f on which y does not vanish. Let
P(f) (resp. R(f), resp. Q(f)) be alogarithm of x () (resp. x (), resp. x (f)) on Mj.
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By (3.1), the real parts of these functions satisfy on M;
lim j, Re P(f) +1,Re R(f) = Re Q(f)
and thus

lim ‘;—"ReP(f) +ReR(f) = 0.

n—o0

Hence, if w denotes a limit value of (j,/1,),s0 then Re R(f) = —w Re P(f). This implies
that there exists ¢ € R such that R = —wP + it and so y, () = g’)([:(“j'f) with £ :=¢''. O

This gives precise information on the possible limit values for families of the
form (I'; ;) obtained by Definition 3.7.

Lemma 3.14. —  There exist t) > 0 and a neighborhood My c M of f with the follow-
ing property. Let (jy),>0 and (1y),s0 be two increasing sequences such that ( ,\/ﬁ " Xi"( fo))”ZO
converges to €y ; o) for some t € [ty,+oo[ and & € S'. Let T be a family of polydiscs cutting
W;( ) loc transversely at b(f). Let (T';;) be the associated sequence of families of polydiscs 0b-

tained by Definition 3.7. Then, there exists ny € N such that for f € Moy, (T, 1,(f))nsn, is well
defined and converges to F (a(f)b(f)éx ; ( f))’ uniformly on M.

Proof. — Let ty > 0 be such that |cx(f0))(;"(ﬁ))| < % and let My ¢ M be a

relatively compact neighborhood of  such that |a(f) )(;“( f)| < 1—10 for all f € M. By

Proposition 8.183, there exist w € R and ¢ in S! such that for all f € M, Xr(f) = g’)(/jé‘}).
: Jn b _ t . : P Iy

Hence, lim,_ X o X7t = g/"/p(fo) implies that (],', wly)ps0 and (), converge

to ¢ and & respectively. Therefore, for all f € M, ()(;)'Zf))(i”(f))nzo converges to f)(;(f).

As we assumed that ¢ > ¢j, we thus have that |oz(f)b(f))(] )| < % forall f € My

n Iy
pNX (s
and n > n; where n; € N is large enough.

By Lemma 3.10, forall f e M, T';,(f) passes through Wr‘(”f) 1o NF (Hy (8j,4m-a(f)))s

where Hr (sj,4m-a(f)) = a(f)b(f),\/;”(f) +uj, (f) with u;, (f)//\/‘f)"(f) converging to 0, uni-
formly on f € M. Thus, for ny > n; large enough we have |”jn (f))(i"(f)| < % on M for
all n > ny. Hence, |Xi"(f)Hf(sjn+m—a(f))| < % and (I, 1, (f))uzn, are well-defined. On
the other hand, the convergence above implies that

iggo/\(i"(f)Hf(Sjﬁm—a(f)) = a(f)b(f)f)(;,(f)-

This, combined with Lemma 3.11, implies that the sequence (I';, ;, (f))nzs, converges

o F(@()bEX /). o

3.7. Special holomorphic motion and constant multipliers. — From now on, we
assume that M c Q satisfies condition (1) and we choose an element f € M such that

Xph)s Xr(p)) = C"
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Remark 3.15. — Observe that this last condition is equivalent to saying that ¢,
w and 1 are linearly independent over Q, where y, ) = eQi”tX;(‘%). Hence, Proposi-

tion 3.13 implies that (x »(r), xr(s)) = C* forall f € M. This actually gives the last point
in Theorem 3.3.

We now prove that this additional assumption on M constrains the holomorphic
motion of A(f) to be very special.

Proposition 3.16. —  Let (I'(f)) fem be a family of polydiscs cutting W;( ), loc LTANS=

versely at b(f) such that T(f) c I/Vp”(f). Pick x(fy) € A(fo) N Dy, such that (6 5, (x(fo))) =
a(fo)b(fo)f)(;(fo) for some t € R and & € S'. Then, for all f € M, the holomorphic continua-

tion x(f) in A(f) of x(fy) lies in Dy and satisfies (6 (x(f))) = b(f)a/(f)f)(;(f).

Proof. — Let #y > 0and My C M be asin Lemma 3.14. Let x(fy) € A(fy)NDy,. By
exchanging x(fy) by a preimage, we can assume that 7(6 5 (x(fp))) = cx(fo)b(ﬁ))f)(;(ﬁ))
with ¢ > #. Since m = C*, there exist (j,),>0 and ({,),>0 two increasing
)
of analytic sets associated to T'(f) c Wpu(f)' Lemma 3.14 implies that (I'; ; (f))s0
converges to T(a(f)b(f)f/\(;(f)), uniformly on M. Hence, if x(f) intersects properly
?}(a(f)b(f)f)(;(f)) then x(f) would intersect properly I';, ;. (f) for » > 0 large enough.
This contradicts condition (1) and thus x(f) € Tf(a/(f)b(f)f)(;(f)) forall f € My, i.e.,
n(6r(x(f))) = b(f)a/(f)f)(;)(f). By analytic continuation, this equality holds on the

whole space M. i

sequences such that (y Xi"(fo))”zo converges to fX;(fo)' Let T, ;, be the families

Using several homoclinic intersections, we obtain the following strong restriction
on y, which, combined with Proposition 3.13, implies Theorem 3.3

Proposition 3.17. —  The function y p is constant on M.

Proof. — Assume, by contradiction, that y, is not constant. This implies the
existence of a small arc y: [0, 1] — M such that y ¢, (s)) = re”** for all s € [0, 1], where
r € C* and a > 0 are two constants. In particular, for n € N large, s XZ()/(S)) winds

about n/a times around 0 on a small circle. We will use this fast variation in the argument
together with Proposition 3.16 in order to obtain a contradiction.

By Assumption (8), there exist K > 1 and g(f) € W) doc which is not a crit-

ical point for f% and such that ¢(f) := fX(g(f)) # p(f) is a transverse homoclinic

intersection in Wlf(f) oo We denote by by (f) the point in D such that 7 (¢(f),0) = bo(f)

and we have by(f) # 0. As the homoclinic intersection is transverse, there exists

a family of polydiscs (I'(f)) ey intersecting transversely W;( oc & bo(f) such that
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['(f)c Woir): Moreover, as observed in Remark 3.9, since g( f) is not critical for fX,
there exists a holomorphic injective map gr: D — Vy such that

. A} := gr(D) is transverse to Wpu(f) loc?
. A} is a graph above WI;‘( Foloc i.e., the projection on the first coordinate of v7 o g¢

is the identity,

. flff is injective and & (A}) is a neighborhood of ¢(f) in W;(f)’loc.

We also define Gy: D — Dby Gy = movsofXogr where n: CF — Cis the first projection.
Observe that G is injective with G£(0) = by(f). Hence, there exists B(f) # 0, which
depends holomorphically on f, such that

Gr(s) = bo(f) +B(f)s +o(s),

where o(s) is uniform in f. Just as in Lemma 3.10, for n > K large enough, there exist
holomorphic functions s, and 6, such that

o gr(s,(f)) € fPEIT(S)),

o 5. () =bo(Nx f +00x ) )

o Gr(si(f) = b1+ B( X" ) +0u(f)), where 8,(f) = o(x% ) and B(f) =

BUx, -

We set b, (f) := G (s,(f)) which corresponds to a transverse homoclinic intersection
() n W;(f)’loc very close to by (f).

Now, if we apply Proposition 3.16 first to 8(f) = b,(f) with & = 1, ¢ =0
and a second time to b(f) = by(f), where &, and ¢, are chosen such that fn)(;”(ﬁ)) =
1 +)(Z(ﬁ))ﬁ(f0) +6,(fy), then we obtain forall f € M

(Bo(f) + o) sy B +bo(P)8u( N (f) = bo(Da(N)Enx 1),

and thus
3.2) 1 +XZ(f)ﬂ(f) +6a(f) :é:”X;’n(f)'

Observe that &, converges to 1 and ¢, converges to 0 since 1 +X;(ﬁ))ﬁ(f0) +6.(fo) goes
to 1.

We choose an arc y: [0,1] — M as above, small enough to insure that the
argument of s +— B(y(s)) is almost constant and such that y,(s)) = re”** for all
s € [0, 1], where r € C* and a > 0 are two constants. In particular, when = is large then
s Xz(y(s))ﬁ(y(s)) winds about n/a times around 0 on a small circle.

On the other hand, let P: Q — C be a logarithm of y, on Q and let , € R
converging to 0 such that &, = ¢'%. Then f,l)(;"(f) =1 =(t,P(f) +i0,) +o(t,P(f)+i6,)
whose argument is essentially that of #,P(f) + i6, which is never purely imaginary since
lxp(r)| < 1 on Q. Hence, the equality (3.2) cannot hold for # > 1 large enough. This
gives the desired contradiction. i

The combination of Proposition 3.17 with Proposition 3.16 says that the first
coordinate (with respect to ¢7) of the holomorphic motion of points in A(f) N Dy is
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not only holomorphic in f € M but also in the starting point. In fact, in the coordinates
given by ¢, this dependence is linear and our choice of normalization of ¢ implies
that it is constant.

Corollary 3.18. — If x(fo) € A(fo) N Dy then, forall f € M
m(0r(x(f))) = n(07 (x(f0)))-

Proof. — As in the proof of Proposition 3.17, let ¢(f) be the homoclinic inter-
section and b((f) the corresponding point in D. By Propositions 3.17 and 3.16, if

m(6£,(x(f0))) = a(fo)bo(fo)s,

for some s € C, then

m(67(x(f)) = a(fbo(f)s.
In other words
b
(87 (x(f))) = (87 (x( ﬁ))))%.

On the other hand, in order to normalize ¢ we had chosen 7" € A in Section 3.5 close
enough to r such that

m(6r(r'(f)) =765 (" (fo))-

b .
Hence, % is constantly equal to 1. mi
3.8. Construction of the conjugacy. — We will first construct local conjugacies

between elements of M and then extend them in a neighborhood of the small Julia
set Jr. This type of problem is classical in one variable complex dynamics. See in
particular [22] where Buff=Epstein obtained at the end a global conjugacy outside
the exceptional sets. In our context we have much less information on the dynamics
outside the small Julia set and, even if the counterpart of [22] probably holds in higher
dimension, our final argument relies strongly on the fact that we are working with a
family.

Let M c Q be a subvariety which satisfies (x). The difference with condition ()
is that (f) e is supposed to be simply connected and stable in the sense of Berteloot—
Bianchi-Dupont [10]. Observe that in [10, Theorem 1.1], the parameter space has to
be an open subset of End%. However, this restriction has been overcome by Bianchi in
the broader setting of polynomial-like maps with large topological degree [15]. The key
notion in [10, 15] for what follows is the equilibrium lamination. To introduce it, we first
consider the set

g = {y: M — P* ‘y is holomorphic and y(f) € Jx(f) for every feM}
The family (f) ey induces naturally a self-map F of [J by setting F(y)(f) = f(y(f)).

Definition 3.19. — An equilibrium lamination is a relatively compact subset L of J
such that
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(D y(f)#y'(f) forall f e M if y,y € Lwithy #7v/,

(2) forevery f € M, the equilibrium measure of f gives full mass to {y(f) | y € L},
(8) forevery f € M and y € L, y(f) is not a critical point of f,

(4) L is F-invariant and F: £ — L is d* to 1.

One characterization of the stability of the family (f)seu given by [15, The-
orem C] is that this family admits an equilibrium lamination. A key step in proving
that all elements of M are conjugate near their small Julia sets is to first construct local
conjugacies near the repelling point r(f) that respect the equilibrium lamination.

Lemma 3.20. —  Assume that M satisfies (x), and let L denote the associated equilib-
rium lamination. Let fy and fi be two points in M. For each i € {0, 1}, there exist connected
neighborhoods U ; € U; of r(f;) with the following properties.

. f,-(l7 )NU; =2 and f,.2 is a biholomorphism between U; and Us,
o there exists a biholomorphism y : Uy U fo(Uo) — Uy U £ (U ) such that

(3.3) ﬁ)=1,//_1of10l,// andf02=z//_10f1201,// on U,
o if y € Lverifies y(fo) € Uy then y(f1) = ¥ (y(f0)),

Observe that, since fj(Ug) N Uy = @, the first equality in (8.8) is a consequence
of the definition of  on these sets. However, it will guarantee that ¢ gives a conjugacy
between fj and f; on a neighborhood of the small Julia sets as soon as the same holds
between fo2 and f12.

Proof. — For i € {0, 1}, let 7 be the foliation of D defined in Section 3.5.
Observe that by Corollary 3.18, if x(fy) € A(fy) N Dy, lies on the leaf 7 (¢) := ¢ 1, (771(¢))
then its continuation x(f7) lies on 7, (¢) := ¢, (7=1(¢)). Replacing the family of polydisk

['(f)c W;( f) by a similar family with T'(f) c Crit(f) given by Assumption (7), we can

extend this result to points in J;(fy) N Dy, coming from the equilibrium lamination.
To be more precise, let y € £ such that y(fy) € Dy . Since sets of the form (I';, ;, (o))
with T'(fy) ¢ Crit(fy) can approximate every leaf ¥ (¢), and since y(f) is never in
the postcritical set of f, a proper intersection argument shows that 7 o §7(y(f)) is
independent of f.

In order to define y, it suffices to find, for i € {0, 1}, £ — 1 foliations (gj{;_)lgjgk_l

near r(f;) which satisfy the same invariance property and such that (7%, g}_, e ]’2‘1)

defines local coordinates near r(f;). For this last condition, it is sufficient to check that
the £ tangent spaces at r(f;) of these £ foliations form a family of £ linearly independent
hyperplanes.

To this aim, observe first that by Assumption (6), p(f;) is in the domain of
linearization of r(;) and thus, there exists ny > 1 such that £;"* sends biholomorphically
an open subset V; C Dy to a neighborhood V; of p(f;). We denote by v;: V/ — V;
the associated inverse branch of £;"°. Moreover, the cone condition in Assumption (2)

ensures that the leaves of g}?_ = f;""(Ffw,) are transverse to W[;‘( o loc” On the other
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hand, recall that (1) holds on M, so there exist m € N and x(f;) € W, p(f) 1oe VA(fi) such

that £;"(x(f;)) = r(f;) and that, by increasing m if necessary, we can assume that f;”
sends biholomorphically a neighborhood of x(f;) in W, f ( oo 0 vertical graph W, (f;)

in Dg. Hence, by the inclination lemma, there exist n; > 1, a neighborhood U; c Dy, of
r(f;) and a small open set V" c ¥/ close to p(f;) such that

e Ui C f2(U),
o MV 5 Uisa biholomorphism whose inverse is denoted by u;,
e the leaves of g} YA fIV,,) are all C!-close to W,,(f;). In particular, the

point (2) in Definition 3.1 implies that the tangent space of the leaf of g}l
containing r(f;) is a generic hyperplane for D,y f2.

This last point, together with our choice of m, ensures that each leal of Q}l
intersects A(f;). Moreover, Q}l has the same invariance property as ¥, i.e., if, for some
vy € L, ¥(fp) is in Uy and lies on a certain leaf of Q}b then y(f7) lies on the corresponding
leaf of Q}l To be more precise, first observe that, by possibly reducing each U;, we
can assume that U = ¢4, o 67, (Up). Moreover, as in the beginning of this proof, the

fact that each leaf of 77 can be approximated by I'; ;(f;) in the postcritical set of f; and
properties (3) and (4) in Definition 8.19 imply that if y(fy) € Uy then

modf o ouy(y(fo)) =mody ovyou(y(fi))
The other foliations are simply defined as Q}l = (fg(] b (gf)) . They also have

the above invariance property since the same arguments imply

modys ovoouoog() ('y(f))) =modp ovou og1 (y(fl)),

if y € £ with y(fy) € Uy, where g; is the local inverse of £ near r(f;). Furthermore, the
fact that the leaf of G % containing r(f;) is a generic hyperplane for D,y £;? ensures that
the tangent spaces of 77, Q}i, e Qj’;_l at r(f;) are k linearly independent hyperplanes.
Hence, possibly by reducing U;, these foliations define coordinates on U, i.e., since 77,
(resp. g}{,) corresponds to the fibration defined by 7o 6, (resp. o8 0v;0u; ogl.j_1 ), there
exists an open subset U; ¢ CF such that the holomorphic map y;: U; — U; defined by

l,bi(y):(JTO(Sfl.(y),ﬂ'O(SﬁOIJ,-Oui(y),...,ﬂ'O(Sin?)lOu,Ogl 2(y))

is biholomorphic.
Possibly by reducing again these sets, ¢ := ¢/7 16y is a biholomorphism between
Uy and U;. Furthermore, the discussion above and Corollary 3.18 imply thatif y € £

satisfies y(fy) € Uy then y(f) € Uy and y(f1) = ¢ (y(fy)). In particular, ¢ (r(f)) = r(f1)-
Thus, using that these points are 2-periodic and possibly by changing one last time

Up and Uy, we can assume that, for i € {0, 1}, there exists a connected neighborhood
U, € U; of r(f;) such that £;(U;) NU; = @ and f;? defines a blholomorphlsm between U,
and U;. This allows us to extend ¢ to fj(Ug) by ¢(y) := fi o 1//(f0 (»)) which artificially
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gives
fO:(//‘l ofioy on ﬁo.

On the other hand, coming back to fo2 and flg, the fact that ¥ (y(fp)) = y(f1) for each
vy € L with y(fy) € Uy implies that

(3.4) fi=v o fifow on UonA(fy).

Since Assumption (2) guarantees that the points of the blender lie in the small Julia set
which is not contained in an analytic subset of Uy, [45], then Uy N {y(fy) |y e L}is
not contained in an analytic subset and the equality (3.4) holds throughout U,. i

To emphasize the dependency of ¢ on fi, in what follows we will denote by v,
the corresponding map for f € M where f stays fixed.

Lemma 3.21. — The closure L of L is an unbranched lamination. In particular, y f
extends to a conjugacy between Ji(fo) and Ji(f).

Proof. — Let fi € M and let U;, i € {0, 1}, be as in Lemma 3.20. Let (y,),s0 and
(Pn)n>0 be two sequences in £ which converge toward two maps from M to P*, y and
p respectively. Assume further that y(f]) = p(f1). Our first aim is to show that y = p
on M.

Let N > 0 be such that there exists y € fl‘N(y(fl)) NU;. For n > 0 large enough,

let y, € Uy (resp. z, € Uy) be such that le(y,,) =v.(f1), le(zn) = pa(f1) and

lim y, = lim z, = y.
n—oo

n—oo

The point (4) in Definition 3.19 gives the existence of two sequences (¥,),>0 and

(Pu)n=0 in L such that FN(?n) = Yns FN(ﬁn) = pa and Yu(f1) = Ju> Pu(fi) = 22- Up
to a subsequence, we can assume that (¥,),>0 and (p,),>0 converge to two maps y
and p. Since, by Lemma 3.20 ¢ £, (7,(fy)) = 72 (f1) and ¥, (pa(f)) = pu(f1) we have
Ui V() = ¥ (p(fp)) and thus ¥(fy) = p(fy) by injectivity of ¢, . By applying FV, we
also have y(fy) = p(fy). The same arguments with an arbitrary map f € M give y = p.
This proves that £ is unbranched. B B
From this, we can define, for every y € L, yr(y(fy)) := y(f). Since L is un-
branched, it extends ¢ s as a conjugacy between Ji(fy) and Jp(f). |

The extension of ¢ ¢ to a neighborhood of Ji(fy) comes from the following partial
generalization of [22] to higher dimensions.

Proposition 3.22. — Let fy and f; be two endomorphisms of P* of degree d > 2.
Assume there exist an open set Vi and a continuous map : Vo U Ji(fo) — P* such that

® U\ 7. 18 @ homeomorphism from Ji(fy) to Ji(fi) such that y o foy = fi oy on Ji(fo),

o Vo N Ji(fo) # @ and v, is holomorphic.
Assume also that the exceptional set E(fy) of fo is disjoint from Ji.(fy). Then, there exist two
open neighborhoods Ny c Ng of Ji(fo) such that
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i .ﬁ)(Nl) c NQ’ _ o
e s extends to a holomorphic map  on Ny such that fy o = o f on Nj.

As a first step, we show that the set of points where  admits a local holomorphic
extension is invariant under the dynamics. To this end, we need to lift small paths via f
in a controlled way. This is done through the following two elementary lemmas, where
we denote by C the critical set of fj, set 4 := f(C) its set of critical values, and define

B:= f71(4).

Lemma 3.23. — Let y € P\ B, and let y': [0,1] — P* \ A4 be a path such that
¥ (0) = foy(y). Then there exists a unique path y: [0, 1] — P*\ B such that y(0) = y and
Joly(8)) =y'(¢) forall ¢ € [0, 1].

Proof. — 'This comes from the fact that fj: P*\ B — P¥\ 4is a covering map. O

Lemma 3.24. — Let y € P* and let V be a neighborhood of y. There exists a connected
open neighborhood V, (resp. W,) of y (resp. of fo(y)) such that
o V,CVand W, cC fo(V),
o ify": [0,1] = W)\ Aisapathand z € fo‘l(y’(())) NV, then there exists a path y in
V, with y(0) = z and fy(y(¢)) = y'(¢) forall ¢ € [0, 1].

Notice that in the following proof we use a Lojasiewicz type inequality but the
fact that f is finite and open is sufficient.

Proof. — Let V, ¥V be a connected open neighborhood of y such that fo‘1 (fo))Nn
av, = o, i.e., dist(@V},,fo‘l(fg(y))) = a with a > 0. A Lojasiewicz type inequality ([45,

Corollary 4.12] when k = 2) gives that there exists a constant ¢ > 0, depending only on
fo, such that

dist(fy(9%y), fo(»)) 2 ca’".

Since fj is an open mapping, there exists € > 0 such that e < ca® and W, .= B(fy(y),€) C
fo(Vy). In particular, f,(V)) N W, = @. Hence, if y': [0,1] — W, \ 4 is a path and
z € j%‘l(y’(())) N ¥, then by Lemma 3.23 we can lift y’ to a path y in P* such that
¥(0) = z. Since y'([0, 1]) € W, and f,(3V;) N W, = @, we must have y([0,1]) c V,. O

Lemma 3.25. —  The set of points y in Ji(fy) where  admits a holomorphic extension
in a neighborhood of y is fy-invariant.

Proof. — Let y € Ji(fp) be such a point and let ¥ be a neighborhood of y where
¥ extends holomorphically. The interesting case is when y is a critical point of f. Let
V, and W, be the connected open neighborhood of y and f(y) respectively given by
Lemma 3.24. Let z € W, \ 4 and let z; and zg be two points in f()_l (2) N V. The goal is
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to show that fi(¥(z1)) = fi(¥(29)) since in that case, we can define y on W, \ 4 using
local inverse branches of f; and the definition will extend to W,

Since y is in Ji(fy), the same holds for fy(y). The fact that J;(fp) is nowhere
pluripolar [45] implies the existence of w € (W, N Ji(fy)) \ 4. Let ¥’ be a simple path in
W, \ 4 between z and w. By Lemma 3.24, it admits two lifts y; and yg in ¥, such that
71(0) = 21 and y9(0) = z9. The end points w; := y1(1) and wg := y9(1) are preimages
of w and thus are in J;(fj). Since y’ is simple, by analytic continuation there exist a
connected neighborhood Q of y/([0, 1]) and two holomorphic maps, g; and gg, from Q
to ¥, such that for i € {1, 2},

e g; is an inverse branch of fj, i.e., fy o g; = Idg,

e vi(t) = gi(y'(¢)) forall ¢ € [0, 1].
Since ¥\ 7,(5) conjugates fy to fi on Ji(fp), we have fi oy o g;i =y on QN Ji(fy) for
i € {1,2}. Hence, the fact that Q N J;(fp) is not pluripolar and the connectedness of
Q implies that fj oy o g1 = f] oy 0 gg on Q. In particular f1(¢(z1)) = fi(¥(g1(2))) =
S1(W(g2(2))) = f1(¥(22)). O

From this, the proof of Proposition 3.22 is identical to the one of [22, Lemma 3]
but we include it here for completeness.

Proof of Proposition 3.22. — Since Ji(fy) N E(fy) = @, there exists N > 1 such
that Jx(fy) C fON(Ul). Hence, Lemma 3.25 implies that for all y € Ji(fy) there is a
holomorphic extension ¢, of ¢ in a neighborhood of y. In particular, there exists r, > 0
such that y, is defined on B(y, 3r,). Observe that if y,z € Ji(fy) are such that r, < r,
and B(y,r,) N B(z,r,) # @ then B(y,r,) C B(z,3r,). In particular, by non-pluripolarity
of B(y, 1)) N Ji(fo), we have that ¢, = ¢, on B(y,r,). Hence, ¢ has a holomorphic
extension ¢ on

No:= | ] BG,m).
i)

By continuity of fj, there exists an open neighborhood Ny ¢ Ny of Ji(fy) such that
Jo(N1) € Ny. We can also assume that each connected component of N; intersects
Ji(fy). If N is such connected component then fj oy = ¥ o fj on N n Ji(fy) by
definition of ¢ and thus by analytic continuation fj o = o fj on N. i

This allows us to complete to proof of Theorem 3.4.

Proof of Theorem 3.4. — Let M be an analytic subset of Q satisfying (). Let f and
/1 be two elements of M. By Lemma 3.20 and Lemma 3.21, there exists a map v, given
on Ji(fo) by the unbranched holomorphic motion £, which satisfies the assumptions of
Proposition 3.22. Observe that we use Assumption (9) here, which ensures that i (fj)
is disjoint from the exceptional set E(fy). Hence, there are two neighborhoods Ny ¢ Ny
of Ji(fy) and a holomorphic map ¢ on Ny such that f; o = ¢ o fj on Ny. This directly
implies that all the periodic points in J;(fj) can be followed holomorphically on M and
that their multipliers are constant on M. i
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4. Existence of a suitable open subset in Endl{;

The aim of this section is to prove the following existence statement.

Theorem 4.1. — There exist (a,€,03,...,0%) € (Rog)* and a small perturbation
fe€ Polys of the map fy : C¥ — C* given by

folz,w,98, ..., 1) = (™42 + ew, a(w? - 1),03y3, ..., Tk yt)

such that f admits a neighborhood Q in Ends which satisfies all the assumptions described in
Section 3.2.

Remark 4.2. — Since the map f in Theorem 4.1 belongs to Polys, the result also
provides a non-empty open subset of Polyg satisfying all the assumptions of Section 3.2.

The structure of the section is as follows. In Section 4.1, we recall elementary
results about the dynamics of w — a(w? — 1) when |a| is large. In Section 4.2, we
begin to study the 2-dimensional case which is the most important one. In particular,
Lemma 4.5 and Lemma 4.6 settle the blender property for the repelling hyperbolic
set A. Observe that for d = 2, it is delicate to obtain a saddle point and a repelling
hyperbolic set which form a heterodimensional cycle. This explains why we have to
work with the second or the fourth iterates of our maps. Section 4.2 is also devoted to
the study of the degeneracy of these maps when the parameter a goes to infinity. This
is the key ingredient to check Assumption (10) of Section 3.2, which is by far the most
difficult to obtain. The case of higher dimension is considered in Section 4.3 where the
parameters are chosen more carefully, in particular to linearize in family the dynamics
near the two periodic points p and r. Section 4.4 is devoted to establishing point (iii) in
Assumption (10). Finally, we prove Theorem 4.1 in Section 4.5.

4.1. Dynamics of a(w? — 1). — For a € C* we consider the polynomial map
go(w) := a(w?—1). For |a| large enough, ¢, is hyperbolic with a Cantor set as Julia set. In
what follows, we will construct a blender for a map of the form (z, w) — (g(z, w), ¢} (w)).
To this end, we need to consider open sets with specific (but simple) combinatorics.

From now on, we fix a € C* with |a| > 10.

Lemma 4.3. — There exists a neighborhood Uy (resp. U_) of 1 (resp. —1) such that
qaU, 15 a biholomorphism between U, and Dg, and

D(1,la|™") c U, c D(x1,8|al™h).
In particular, q, admits a unique fixed point w(a) € U-.
This implies that the Julia set of ¢, is a Cantor set, equal to J;, = N,>0 ¢, " (UsUU-).

Its dynamics corresponds to a (one-sided) full 2-shift. However, our construction will
not use the entire J,, but two smaller hyperbolic sets.
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The first one is simply the unique fixed point @(a) € U-. For the second one, let
g+: Dg — U, and g_: Dg — U- be the two inverse branches of ¢, obtained in Lemma 4.3.
From this point, we define the following open sets:

[ ] V_ = g_(U+) and V+ = g+(U_),

o V:=q2(V)NV,, Vo = q;2(V )NV, Vg := ¢ 2(Vo)NV_and V== ¢; 2(V_)NV_.
They satisfy ¢2(V_) = ¢2(V,) = Dg and ¢ (V;) = Dg for i € {1,2,8,4}. The definition of
V; ensures that the associated maximal invariant sets are equal, i.e.,

4
(4.1) E:=( g vuv)=) q;“"(U V)

n>0 n>0 i=1

It is also a Cantor set where ¢2 is conjugate to a full 2-shift. Observe that if {+, -} is
the alphabet for ¢, 7, then qgl 5 corresponds to the 2-shift associated to {+—, —+}. This
alternation will play an important role in the proof of Theorem 4.1. In particular, the
second coordinates of r in Assumption (6) will be the point w(a) which is the unique

2-periodic point of ¢, in Vy c V_. We will need the following simple fact in the proof
of Lemma 4.14.

Lemma 4.4. — If a is real then the 2-periodic point wo(a) € V_ is also real. Actually,
the two inverse branches, g,: Dg — U, and g_: Dg — U- map real points into R. In particular,
wy(a) := (gv o g-) (wo(a)), are real for all I > 0.

Proof. — This simply comes from the fact that g.(w) = £4/1 + w/a and wq(a) =
lim, 00 (g- © g¢)"(0). O

All the subsets defined in this section depend on a. If necessary, we will write
U.(a), V.(a), V;(a) or E(a) to emphasize on these dependencies.

4.2. Perturbations of product maps and the IFS at infinity. — The construction in
Theorem 4.1 starts from a skew product

Fa(z,w) = (az + ew + Bzw, g (w)),

where 1 = (a,a,8,€). Such a map does not extend to P2. The case of Endf} with a
general £ > 2 will be considered in Section 4.3. Several objects denoted with stylized
uppercase letters in this section (e.g. F,, P(1), R(1)) will corresponds to lowercase
letters in Section 4.3 (e.g. fi, p(1), r(2)).

A first observation is that F,, o, 4,¢) and Fq,0,p,¢) are globally conjugate if € # 0 #
€' by (z,w) — (Cz,w) for some C # 0. The role of the parameter € # 0 is just to rescale
the dynamics in order to have the blender property above D.

If w(a) denotes the unique fixed point of ¢, in U-(a) then F,; has a fixed point

—ew(a)
a+pw(a)-1
which is repelling in a vertical direction and whose multiplier in the horizontal direction

is @ + Bw(a), very close to @ — B when |a] is large. On the other hand, by the choice of
the sets V;(a) and V_(a), the dynamics in the horizontal direction of the second iterate

P (1) = ,w(a)|,
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?}2 is mainly a dilatation of factor @® — 82 on C x (V,.(a) UV_(a)). Hence, in what follows
we will choose @ and 8 in order to have |a — 8| < 1, which implies that P (1) is saddle,
and |2 — 82| > 1 which ensures the existence of a repelling hyperbolic set A(2) for ?}2.
This hyperbolic set will have a blender property if @, 8 and € are well chosen and it
will project on E(a). In order to check transversality properties, we will make a goes to
infinity. In this situation, the set E(a) degenerates to {—1, 1} and the dynamics on A(1)
degenerates to (the inverse of) an iterated function system (IFS) with 2 generators.
To be more precise, the second iterate of 7, is

7—;2(2, w) = (z(a2 +af(w+ q.(w)) +,82wqa(w))
+ e(aw + ¢, (w) +Bwqa(w)), qag(w)).
In particular, since

Vi(a) C qu(V-) = Ui(a) € D(1,8lal™") and

V_(a) C gu(V:) = U-(a) € D(~1,8a|™"),
if 1 := (a,B,€) € C® and R > 0 are fixed then for |a| > 10 large enough, flg(z, w)

is arbitrarily close to (q)}(z), g2(w)) (resp. (¢)T(z),q3(w))) on Dp X Vi(a) (resp. on
Dg x V_(a)) where

¢r(2)=(@*-pHz-e(B+1-0), ¢:()=(a*-pHz-eB+a-1).
From this, we define
14 = ¢} o ¢}, boi=¢;0 ¢}, ¢34 = ¢} o¢; and ¢, ;5 :=¢7 0]

in order to have 7"/14(z, w) = (¢, 1(2), g (w)) on Dg x Vi(a).

Now, we fix a small real 4 > 0 and take a( := £(1 + 4) and B¢ = 247 where
¢ € S'. This gives ag — B = £(1 — 4) and thus the fixed point P (a, g, By, €) is saddle
for |a| large enough. On the other hand, cx% —,83 = 2(1 + 24 - 84?) which has modulus

larger than 1 if 4 < 2/8. For the constant ¢ € S}, following [38, Lemma 4.4], we will
take £ = /™% in order to have a blender property for A(1). The following result can be
seen as the counterpart in our context of this lemma using the vocabulary of [81].

Lemma 4.5. — Let { = ¢™* and ey = (20(¢ — 1))71. Let A € (0,1/10] be small
enough and let set 1 := (g, By, €9) where

g = {(1 +A) and Bo = QAQV
Then, there exist four open sets H;, j € {1,2,8,4} such that

4
Dy = UHj, ¢,1,(H;) ¢ Dy and D c H;.
=1
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Proof. — For A = (£,0,€p), an easy computation gives

1+ i—1
¢1,0,(2) =~z + 90’ P93, (2) = —z+ 90

1-i 1+
¢3,/i1(z) = _Z+W and ¢4,/il(z) = —7z — W

Moreover, if we define

Hj=[D4/3U{Z€|D2;

arg(z§_2j+1)| < n/8},

then ¢, 7 (H;) C Dy. Actually, this comes from the inequalities 126173 —v/2/20| < 2 and
|V2/20] < 1. Since this inclusion is stable under small perturbjltions, if 4€(0,1/10]
is small enough and j € {1,2, 3,4} then ¢;.1,(H;) € Do when 1o = (£(1 + 4),24¢, €)).
On the other hand, Dg = szl H; and D cC ﬁ‘;:l H; follow from the definition of H;. O

Since the properties in Lemma 4.5 are stable under perturbations of the iy

they persist in a small neighborhood of 2y = (ag, B0, €9). From now on, we denote
by M such small neighborhood of 1 which is connected and where, moreover, for all
A=(a,B,e)eM

(4.2) 1/20 < |e| < 1/10, |e-B| <1 and |e?|-|B%|>1+4
In particular, if R := 4~1, the maps ¢/ii satisfies Dy C ¢§(IDR).

The next step is to define the hyperbolic set A with the blender property which
appears in Assumptions (2) and (4).

Lemma 4.6. — There exist p > 100 and 6 > 100 such that, if |a| > & then for every
(a, B, €) € M the map F,, with A := (a,a, B, €), satisfies the following properties.

e On both Dg X V_(a) and Dg x V,(a) the map 7—;2 is injective, contracts the cone field
C, and is expanding. Moreover

Dx X (Us(a) UU-(a)) C F(Dg X Vi(a)).

In particular, the set A(1) = ,=0 ﬁ‘Q”(DR x (V_(a) U Vi(a))) is a hyperbolic
repelling invariant set for 7—}2.
o Forie{1,2,38,4}, any vertical graph in H; x V;(a) tangent to the cone C, intersects
A(Q).
Moreover, both statements are stable under small C1-perturbations of F;.

Proof — Let 1 = (,,€) be in M. The key ingredient is that if |a| is large
enough then ?}2 is arbitrarily close to the product map (qu—%, g2) on Dg x Vi(a) and ?}4 is
arbitrarily close to (¢ 15 g5 on H;xV;(a). This gives that 9’-;2 is expanding on Dg X V. (a)
and also injective since ¢ is injective on V..(a). Moreover, ¥ contracts the cone field C,
on Dg X V. (a) for |a| large since the derivative of 7-;2 in the vertical direction is bounded
from below by |a|? while the derivative in the horizontal direction is uniformly bounded
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from above on Dy x V.(a). Hence, for every p > 0 there exists § > 0 such that ?}2
contracts the cone field C, on Dg X V.(a) as soon as |a| > 6.

We also have Dg x (Uy(a) U U-_(a)) C 7—;2([[])3 X V.(a)) since Uy (a) UU_(a) C
D3 = ¢2(Vs(a)) and Dy C ¢/’-§([DR). From this, it is classical that A(2) = (,s0 7—:1‘2"([[])13 X
(V_(a) U V,(a))) is a hyperbolic repelling set for 7-;2. Actually, it is easy to see that A(2)
is homeomorphic, via the second canonical projection, to the corresponding set E(a)
for q;f defined by (4.1) which is a Cantor set. Observe that, as in (4.1), we also have
AQ) = N0 Fy (D % (U, Vj(@).

The second statement is the counterpart of [38, Lemma 4.5] or [81, Proposi-
tion 3.3] in our setting and we only sketch the proof. Let H;, j € {1,2,3,4}, be the
four open subsets of Dg defined in Lemma 4.5. Recall that Dy = U?:] H;,D c Hj; and

¢;1(H;) C Dy, where this last inclusion comes from our choice of M. In particular,

there exists r > 0 such that Uj:l ¢;1(H;) C Dg_, and thus, if |a] is large enough and we
set 7'?14(% w) = (Fi(z,w), s (w)) then

4 4
| JF @ x V() < | H;.
j=1 j=1

Let n > 0 denote the Lebesgue number of this open cover. If p > 0 is large enough then
the projection on the first coordinate of a vertical graph tangent to C, has diameter less
than n. Hence, if jj € {1,2,3,4} and I'y c Hj, x V;,(a) is a vertical graph tangent to C,
then 7‘;4(F0) contains a vertical graph I'y in Hj, x V}, (a) for some j; € {1,2, 3,4} which
is tangent to C,. By induction, we obtain a sequence of vertical graph ', C 7—;4”(1“()) in
some H;, x V;, (a) and thus Iy intersects ,»0 fl“‘”(IDR X (Lf;:1 Vi(a))) = A(1). mi

By construction, each point in A(1) is associated to a unique word w in X :=
{-1, 1}N. To be more precise, let g; +: Dg x Dg — Dg X Vi(a) and gy _: Dg x Dg —
Dg x V_(a) be the two inverse branches of 7"}. If we identify the symbol + with 1 and —
with =1 then a word w = (w,),50 € £ := {1, 1}V induces a dynamical system (&} Wn=0
where

n  —
81w = 8100 ° 0 8w,

Since the maps g, . are contracting, the sequence ( 21w )nz0 has a limit, denoted by
x,(1), which is independent of y € Dg x Dg. The hyperbolic set A(21) corresponds
exactly to {x,(1) ; w € £} and the repelling point R(1) in Assumption (6) is, in this
situation, x,(1) where w = (—1),s¢. Observe that x,(21) depends holomorphically on A
and continuously on w with respect to the product topology on X.

In order to check Assumption (10), we are interested in parameters A = (a, @, 8, €)

and w € X where x,(1) is a preimage of R(1) lying on W;(ﬁ) oe with an additional

condition on the multipliers. Here, we consider the local unstable manifold in Dy X
D(-1,1/2), which is a vertical graph, see Lemma 4.8 below. In what follows, we will

study the degeneracy of these relations x,,(1) € W (). loc when |a| tends to infinity. The
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general picture is that A(1) degenerates to the limit set of the IF'S generated by two affine
maps and W (1), loc COTIVETEES [0 2 vertical linear hypersurface. To study this degeneracy,
we introduce the set D(oo,7) := {0} U{a € C; |a| > 1/r} and we fixe p > 100 and

¢ > 100 as in Lemma 4.6

Lemma4.7. — Foreach w € %, the map x., extends holomorphically to D(oo, 1/p) X M.
If 2 = (a, B, €), then this extension is given by

% (00, 1) = (2, (), wp),

where

(4.3) 20(2) = epu + (1= @)hy,(w) |,

I-p
with p := (a? = B2) ™1 and hy,(u) = 3 450 wop™. Moreover, the map x,, depends continuously
on w with respect to the product topology on X.

Proof. — When a converges to infinity, the maps g; .+ converge to (¢; ,, 1) where

4.4) b (2) =pz+vy and & (2) = pz+v-,
with 4 = (a, B, €), 1 := (a? = B2)"! and v, := ue(B = (1 - @)). Hence, since the maps
g1,+ and ¢; , are contractions, the point x,,(1) converges to (z,(4),wy) where

Zw(/T) = }H}c;lo g/i’w() - e f/’i’wn—l ('y)

for any y € Dg. This gives the desired extension (which is holomorphic by the Riemann
extension theorem).
Moreover, the definition of 4, in (4.4) ensures that

(1) = ) Vuu".

n>0

Using the definition of v., this gives

(D) = eﬂ( +(1-a)ho(p),

I—p

where b, (1) 1= 320 Walt".
The continuity of w + x, follows again from the fact that g, . are two
contractions. O

On the other hand, %, contracts C, on CxD(-1, 1/2) thus when a goes to infinity,
the unstable manifold W} (@), loc COMVETEES (02 vertical line. More precisely, we have

the following result in family.

Lemma 4.8. — There exists a closed analytic subvariety W of D(c0, 1/ p) X M x
Dg x D(—1, 1/2) that is vertical (i.e., its closy\re in a neighborhood of D(c0, 1/p) X M X Dp X
D(-1,1/2) is disjoint from D(oco,1/p) x M x (0Dg) x D(-1,1/2)). More precisely, W
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corresponds to a family of analytic sets (W), cp(oo1)p)xir SUch that Wy is tangent to C,, and,
denoting A = (a, @, B, €), satisfies

° Wig(/l),loc l.f(l # o,

e {e= g} ifa= o

Proof. — For this proof, if a # co then we denote by G,: D(-1,1/2) — C the
inverse branch of ¢,(w) = a(w? — 1) defined by G,(w) = —\/1 + w/a. Hence, the inverse
branch G,: Cx D(-1,1/2) - Cx U_(a) of F; when A = (a,a,f,¢€) is

72— €Gy(w)

e = G

G, (w)|.
Both definitions can be extended holomorphically to a = co with Ge(w) := —1, but G,
can no longer be seen as an inverse branch there. For n > 1, we define

W, = {(4,z,w) € D(c0,1/p) x M x C x D(=1,1/2) ; w0 G (z,w) =0},

where  is the projection onto the first coordinate. Outside {a = oo}, W, is the graph
transform of Wy := D(co, 1/p) x M x {0} x D(=1,1/2) by F*(4, 2z, w) := (1, F' (2, w))

and thus, the fibers have to converge to W (). loc” Since the fibers of W}, are tangent to

C, and ¥, contracts this cone, the unstable manifolds are also tangent to C,,. Thus, they
have to be vertical in Dg x D(-1, 1/2) since P (1) € D4 x D(=1,1/2) and p > 100.
Above {a = oo}, the fibers of W, are the vertical lines {z = w B (0)}, where

Jape(z) = (@ — B)z — €. As this map is a contraction whose fixed point is a—;ﬁ’ these
€

a-p-1J-°

The fact that each fiber of W, is a graph tangent to C,, ensures that the sequence

lines converge to {z =

(Wy)us1 lies in a compact family of closed analytic subsets of D(eo, 1/p) x M x Dg x Dg.
Any limit value W of this sequence (which is actually unique by the discussion above)
provides the desired set in the statement. i

These information help us to understand the relation x,,(1) € W, ). oc” The

following result will in particular imply Assumption (5).

Lemma 4.9. — Let (ag,Bo,€y) be as in Lemma 4.5. There exists a non-empty
connected open neighborhood M of (o0, @y, By, €¢) in D(o0, 1/8) X M such that for each w € %,
the analytic set

X, = {/l € D(c0, 1/6) X M ; x,(1) € W;u),m}

is a (possibly empty) hypersurface and each irreducible component of X, that intersects M also

intersects {co} X M.

Proof. — It is clear that X, is an analytic set of codimension at most 1 (if not
empty). Let assume that for some w € £ we have X, = D(c0, 1/8§) x M. In particular,
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with @ = oo we have for all (a, 8, €) € M, and after simplification by e, that

(b)) =

where u = (a2 = 2)~1. As M is open and as the radius of convergence of 4, is 1, this
equality should hold for all (a,8) € C2 with |a? — 82| > 1 which is impossible with
a =2 and B = 1 since the right hand side diverges.

Observe that we have proved the stronger result that the intersections between
each X, and {co} x M are proper. This will allow us to prove the second statement
by contradiction. Assume there exist a sequence (w,),s0 in £ and a sequence (4,),>0
in M converging toward 1« = (o0, B0, €0) such that 2, belongs to an irreducible
component C,, of X,, which is disjoint from {co} x M. Up to a subsequence, (w,),>0
converges to some we € X. By Lemma 4.7, w — x,, is continuous, thus X,,, converges
to X, and C,, converges to a union of irreducible components C,_ of X,_. Since
Ay € Cy,, we must have A € C,_, i.e., C, N {0} X M # @. The fact that C,, is disjoint
from {oo} x M then contradicts the persistence of proper intersections (see e.g. [27,

Section 12.3]). i

u

The next step is to check that we have a dense set of maps where points (i), (i1)
and (iv) in Assumption (10) are simultaneously satisfy. We denote by y (1) (resp.
X 1)) the eigenvalue of Dp 1)y (resp. Dqg(/l)?;z) with the smallest modulus. A first
observation, already made in Remark 38.15, is that the condition (x (1), ¥ #(1)) = C*
2ind |t This

Xy
is fulfilled by a dense subsets of (6, ) € R%2. Hence, in order to have (i), (ii) and (iv)

in Assumption (10) simultaneously it is sufficient to have the “transversality” property
described in Lemma 4.11 below, between two families of hypersurfaces (Y;:)cs1 ,er

and (X,)eex. If £ € ST and ¢ € R, we set

Yy 0= {/1 € D(o0, 1/8) X M 5 x®(a) = ZX;(M}-

is equivalent to 1, # and ¢ being independent over Q, where yg(1) = ¢

Observe that x g(4,0,8,¢) = a? - B2 and X P(a,0,p,e) = @ — B near a = o so Yy, is actually
a hypersurface. The family (Y;,),cs1 ;g defined a (possibly singular) foliation which
is not holomorphic. On the other hand, (X,),cs is parametrized by a Cantor set and
depends continuously on w. Furthermore, the blender property of A(1) ensures that
(X)wes covers D(o0, 1/6) X M. Actually, many points belong to two X, and X, at the
same time, which will greatly simplify the verification of Assumption (10).

Lemma 4.10. —  Possibly by reducing M, for each A € M

(] W;(/l),loc C D1/4 XD(—I, 1/2),

o there exist two words w,w’ € X such that w + w and A € X, N X,

Proof. — The first point follows from the facts that £(1) € Dyjy x D(-1,1/2)

and that W (). oc is almost a straight vertical graph when |a| is large.
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For the second point, observe that both V3(a) and V;(a) are contained in
D(-1,1/2) hence, since each H; in Lemma 4.5 contains D;;4 C D, the local stable
manifold W* intersects Hg X V3(a) and Hy X V;(a) in two vertical graphs tangent

P(A),loc
to C,. By Lemma 4.6, there exist two intersections between W2 and A(Q). i

P (1), loc

Lemma 4.11. — Let M be as in Lemma 4.10. Let w,’ € £, 1 € M and (£,t) €
S! x R. If there exist irreducible components Z,, and Z,, of X, and X, respectively such that
A€Zy=2Zy CYrythenw=0w'

Proof. — In this situation, by Lemma 4.9, Z,, intersects {oo} x M. As we have
seen in the proof of Lemma 4.9, a point A = (o0, @, 8,€) € {00} X M is in X,, if and only if

B B B €
en{ T2+ (1= ot = 75—,
where p = (o - p2)7! :X%I(A)
that on Z,, := Z,, N {0} x M, which has dimension at least 2, A, (1) = ko (). If 0 # o’

then these two power series are different and u has to be constant on Z,,. On the other
> -1
and

and 4, (¢) = X ,50 wap™. The relation Z,, = Z,, implies

hand, Z, c Y, hence yg1) = Z;X;’(/l) on Z,. Since y g(wape = @? - B2 =pu

X P(ape) = @ — B, both are constant on Z,, and thus a, B are also constant. This

contradicts the fact that Z,, has dimension at least 2. Hence, w = «’. O
4.3. Higher dimensions and degrees. — The next step is to move to higher di-
mensions and higher degrees. Let £ > 2 and d > 2. We denote by [yg : --- : ;] the

homogeneous coordinates on P*¥ and we will mainly work in the affine chart yy = 1.
Since the two first coordinates are the most important for the dynamics, we take the
convention of notation that

z=y1, w=y9 and y = (y3,...,9)-
Recall that N¥ := (k + 1)(k;d) is the dimension of the set of £ + 1 homogeneous poly-

nomials of degree d. We choose coordinates in CVi such that, if o = (03, ...,0%) and
7= (13,..., ;) are in C¥~2 then the parameter A = (a,a, B8, €,0,7,0) € cNi corresponds
to the map

k
4.5) filz,w,y) = |az+ew+Przw+w Z T19is §a(W), 0398, . . ., Tk Ik |-

i=3

Observe that, when 7 = 0 then this map is a product map, acting by F4,.,5,¢) on (2, w)
and by a diagonal matrix on y. When 7 # 0 then it is a skew product of C x CF-1,
In what follows, we will take o with |o;| > 1 very large with respect to a, 8 and € in
order to ensure a dominated splitting. The choice of o will also depend on a in order
to obtain non-resonance conditions for the periodic points p and r. The parameter 7
will be chosen very small at the end and its only role will be to obtain the point (iii) in
Assumption (10).
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To be more explicit, let (a, @, B, €) be in the set M given by Lemma 4.9, let r = 0
and let o = (03, . ..,01) € CF2 be such that each |o;| > 1 is large. In this situation, the
corresponding map f; has a fixed saddle point p(1) = (P(2),0), a period 2 repelling
point r(1) = (R(1), 0) and a repelling hyperbolic set

A = ) f72" (D x (V-(a) U Vi(a)) x DF )

n>0

which is equal to the product of the hyperbolic set of F(4,4,5,¢) with {0}. If each |o;| > 11is
large enough then the cone field C, := {(uy, ..., u;) € C*; pluy| < maxge,; <4 |u|}, where
p is given by Lemma 4.6, is contracted by f; (resp. ff) on Dg x (U-(a) U U, (a)) x D¥~2
(resp. D X (V-(a) U Vi(a)) x D¥~2) and thus A(2) has the following blender property:
for each i € {1,2,8,4}, any vertical graph in D x V;(a) x D*¥=2 tangent to C, intersects
A(2). Moreover, a simple computation gives that the critical set of f; is disjoint from
Drx(U-(a)UU,(a))xD*~2 and that the stable manifold of p(1) is equal to Cx{(w@(a), 0)},
where @(a) is the unique fixed point of ¢, in U_(a).

We also need non-resonance conditions for p(1) and r(1) and for that we will
choose (a,a, B,€) € M and o more carefully. When |a| is very large then the eigenvalues
of Dy(a) fo are close to @ = 8, —2a and 73, . . ., 0. Those ofD,(,l)ff are close to a? — g2,
—44? and o-%, e, U;f. In both cases, only the first two ones depend on a. Hence, we
can first fix a1, B and € then a; € R, then o1 = (07)3<;<¢ € (R_)*~2 in order to have
(al,al,ﬁl,el) € M and fOl‘f;ll, /11 = (al,ozl,,Bl, €1,071, O) € CNj

(1) the eigenvalues of p(A) satisfy the strong Sternberg condition of order 3,

(2) maxge;ex lol < Jay] < minge,ey lo[2/4, (

(3) there is no resonance between the eigenvalues of D,(, ) ffl and they are all differ-
ent.

A first remark is that we choose @ in R, and o) in (R_)*~2 only to have specific cone

contractions for Lemma 4.14. For the other properties, recall that there is a resonance
between & complex numbers (771, ...,n;) if there exist j € {1,..., k} and a multi-index
N = (N, ..., N;) of non-negative integers such that Zle N; > 2 and |Hf=1 nfv’| = |n;l.
Notice that for repelling or attracting periodic points, the eigenvalues have no resonance
for an open and dense set of parameters, provided there are no persistence relations
between them, which is the case here. In this situation, the periodic point can be
holomorphically linearized, with a linearization which depends holomorphically in the
parameters. This can be seen in the proof of Lattes in [66] for £ = 2 and Berger and
Reinke deal with a much more general setting in [9]. Observe that we also ask for
different eigenvalues in order to locally follow the associated eigenspaces.

In the saddle case, the absence of resonance is no longer an open condition and
in particular, it might be not possible to holomorphically linearized in family. Thus,
we use the work of Sell [77] in order to have C!-linearization in family. The strong
Sternberg condition of order 3 comes from [77] and is implied by the non-existence
of resonance with multi-index N = (N, ..., N;) with Zle N; < 3 which is an open
and dense property. The condition (2) above ensures that the spectral spreads as
defined in [77] satisfy p~ = 1 and p* < 2. Hence, [77, Theorem 7] implies that the
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dynamics near p(1) can be C!-linearized for A in a small neighborhood of 1 and with
a linearization which depends continuously in the C!-topology on A.
Since all the properties above are stable under small C!-perturbations there exists
a small connected open neighborhood M of 1; in CNi such that p(1), r(1) and A(Q)
can be followed holomorphically and, for each 1 € M, in addition to the linearization
properties of p(1) and r(1) we just mentioned, we also have the following properties.
o If we set U. := Us(ay), Vs := Va(ay), Us := Dg x Uy x D=2 and V. := Dy x
V. x D2 then f; (resp. ]3 ) contracts to cone field C, on U, U U_ (resp. on
YV, UV)and U, UU_- C ff (V:) with ff injective and expanding on V, and
on V_.
e The critical set of f is disjoint from U, U U_.
e Using inverse branches, each point in A(2) corresponds to a unique coding
w € X and (1 - x,(1))wes gives the holomorphic motion of A(1).
e Foreach i € {1,2,8,4}, any vertical graph in D x V;(a;) x Df~2 tangent to C,
intersects A(1).
e p(1) is saddle and W* 30, loc

vertical graph tangent to C,,. In particular, as in Lemma 4.10, w* intersects

p(1), loc
A(Q) at two different points.

e The stable manifold Wp(/l) contains a subset close to Dg X {(@w(a;),0)} and in

particular it intersects any vertical graphs in U_ tangent to C,,.
e (1) is a repelling 2-periodic point in A(1) with & different eigenvalues.

is a hypersurface intersecting D14 X V- x D¥"2 as a

In particular, we can define for w € =

Xy {/l eEM; x,()eW ﬁ(/l) [0(},

and for (£, 1) € S'XR, if x, (1) (resp. xp(a)) is the eigenvalue ofDr(,l)f/l2 (resp. Dyay )
with the smallest modulus,

i;év,t = {/l S ﬂ; Xr(d) = {X‘tb(/l)}'

The following result is deduced from its counterpart on M.

Lemma 4.12. — For each w € X the set X, is a (possible empty) hypersurface of M.
Moreover, there exists a connected open neighborhood M’ C M of Ay such that if (¢, t) are in
S! xR and A € M’ is a regular point of Y ¢t then there is w € X such that A belongs to an
irreducible component of X, which is not included in Y ;.

Proof. — The first point is a direct consequence of Lemma 4.9 since if X, = M
then X,, = D(co, 1/6) x M.

Exactly as in the proof of Lemma 4.9, there exists a connected open neighborhood
A, in M such that if an irreducible component of X, intersects M’ then it also intersects
M x {(c1,0)}. N

Let (£,£) € S! x R and A € M’ be a regular point of ¥;,. As we have already
seen, there exists two different coding w, w’ € T such that 1 € X,NX,. Let Z, and
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Z . be irreducible components of X, and X respectively containing 4. Assume by
contradiction that both X, and X, are contained in Y[ ;- As A is a regular point of Y( ¢
this implies that Z,, = Z,, C Y“ Hence, since Z,, intersects M x {(c1, 0)}, a similar
result holds on M which is not possible by Lemma 4.11. i

As a consequence, generically p(1) has plenty of homoclinic points.

Lemma 4.13. —  The set of parameters in M where Assumption (8) holds is open
and dense.

Proof. — This set is clearly open. It remains to prove that it is dense. Notice that
the set 2’ of w € X coding for a point with dense orbit in A(2) is dense in £ and does
not depend on 1. As each X,, is a hypersurface, the set |, s, X, is dense in M. Let
w e, e X, and let T be a small neighborhood of x,,(1) in W* ). loc . For n > 1 large

enough its image ff"(F) contains a vertical graph in Z/_ and thus, as we have seen when

M was chosen, it intersects Ws( e As the graph is vertical, the intersection is transverse.
Moreover, we obtain in this way several different intersection points. Actually, the
orbit of x4 is dense in A(2) and, by the blender property, the projection on the first
coordinate of this set contains D. This, combined with the fact that the graphs above are

tangent to C, with p > 100, ensures that several of these intersection points are different

from p(2).
Finally, all the dynamics above stay in 2_ which is disjoint from the critical set
of f1, by assumption on M. i

4.4. Tangencial dynamics. — In this part, we will prove that a property, which is
robust in the C1- topology and which implies (iii) in Assumption (10), holds generically
in the open set M c C" i obtained in Section 4.3.

To fix some notations, let 1 € M and F, := f)L . Since A(Q) is a hyperbolic set for
F, with a dominated splitting, to each history x(1) = (x,),<0 in the natural extension
A() is associated a strong unstable subspace E** . This subspace is simply obtained by

£(1)°
(4.6) E”f‘/l) = lim D,  F}E’ = lim(Dyx_Fyo---0D, ,F))E°.
n—oo n—oo
where E? = {(uy,...,u;) € C*; u; = 0}. The strong unstable manifold can be con-

structed in a similar way using graph transform but we will not use it. These objects
depend continuously on ¥ and holomorphically on A € M. Actually, this is true as long
as the hyperbolic set can be followed, a remark that will be used in Lemma 4.14.

Observe that the natural extension A(1) of A(1) corresponds to the two-sided
full shift encoded by = := {~1, 1}2. For / e Nand n € Z, we set w,(l) = 1 if n < and
wn(l) = -1 otherwise. If w(l) := (wa(1))nen and (1) = (wn({))uez then x, 1) (1) € A1)
is a preimage of (1) by Fj and x;(7)(1) € A(Q) is a history of Xu(1) ().
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Lemma 4.14. — The set T defined by
T := {/l €M ; Ez;‘(o) ) contains an eigenvector of Dy A)F/l}

is a proper analytic subset of M.

Proof. — First, recall that the eigenvalues of D,;)F; are all different thus we can
follow the corresponding eigenspaces holomorphically in 1. Hence, the fact that T is

analytic comes from the holomorphic dependency of El, on . It remains to prove

properness, i.e., to find 1 € M outside T'. Observe that as soon as k > 8, the parameter
k

A1 = (a1, a1,B1,€1,01,0) € CY defined in Section 4.3 is in T since fa, is a product

map on C2 x C¥=2, We perturb it as a skew product of C x C*~1

k
Sz, w,y) = a1z +eqw +ﬂ12w+wZTi)’i19a1(w),0-3)’3’---,O-kyk )
i=3

k . .
where )'2 = (al,Cl’l,B],El,O'l,T],O) € CNd’ with T = (Ti)3SiSk € (R>0)k_2 is small

enough to have 19 € M. We will deform f;, along a path (f(;))c[0,1; of maps of the
form (4.5) such that f,(1) = f, and f, (o) does not satisfies the property defining T'.
Observe that the path y may go outside M but the hyperbolic set A can be followed all
along v, which is sufficient.

For ¢ € [0, 1] we define y(¢) := (ay, |a;]e?* 8@ 181, |e;|e 8 oy, 11,0). This
path is chosen in such a way that y(0) = (ay, |a1],0, |€1], 01,11, 0) is in ([RJ,)N;c and that
the map F,(, is still expanding on V, U V_ with V, UV_ c E,,)(Vi) N Fyy (V-)
since (a1, 81, €1) satisfies (4.2). In particular, the hyperbolic set A can be followed in a
neighborhood of this path.

From this, an important remark is that, by Lemma 4.4, r(y(0)) = (29, wg, 0)
with wy real close to —1 and, for I > 1, x,;)(y(0)) = (2, w;,0) with w; real close to
1. Moreover, if (z,w) € Dg x (V- U V) with w real then D, 4, 0)F, ) = (4;,;) is a real
matrix with 4; ; = 0if i # j and i # 1, and, with the notation w’ := ¢,, (w),

9 9
A1y = laql?, Agg =4ajww’, A1 = ler|(laq] +2a1w),

A4;; = 0-1.2 and 41 ; = 1;(la|w + ow’)
fori e {3,...,k}. From this, using that r(y(0)) = (2, wo, 0) with w close to ~1 and w,
close to 1, it is easy to see that the eigenvectors associated to r(y(0)) are proportional to
e1 and to ¢; + bje; where b; > 0 for each i € {2,...,k}. Here, (eq,...,e;) is the canonical
basis of C*. On the other hand, for each > 1, %,(1)(7(0)) = (2, wy, 0) with w; real close
to I and w close to —1. Hence, a vector of the form ¢; + ¢;e; with —1 < ¢; < 0 is send by
D(;,.1,,0)Fy0) on a vector proportional to ¢; + ¢/e; with
B |1 2ei + 7 (| | + o))

¢ = 5 L ifie{(3,... k
g;

la11%co + le1](Ja1| + 2ay ;)

ch =
2~ ’

2
4a1w1wl
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In particular, since a; and every o; are very large and |a;| < 2, |e;] > 1/20, each

¢; satisfies —1 < ¢/ < 0. This implies that the subspace E”;f‘(o) (y(0))? which by (4.6) is

equal to

lim (wam(y(onFy(O) o-roDy,., <y<0>>Fv<0>)Ev’

n—o0

is generated by (e; + d;eq)9<;< with d; < 0. Hence, it contains none of the eigenvectors
of D, (,(0))Fy(0) described above. This conclude the proof. i

4.5. Verification of the assumptions. — We have now all the ingredients to prove

Theorem 4.1. Let A1, M, U, U., V. and V. be as in Section 4.3. Recall that fa, isof
the form

k
f,(z,w,y) = (aqz +eiw+Blzw+w Z Ti9i, §a(W), 0898, ..., OrYk |-
i=3
As we have said in the discussion in Section 4.3 where M was chosen, for each 1 € M
the map f) satisfies several assumptions of Section 3.2. More precisely, if p > 0 and
R > 0 as in Lemma 4.6, then we already know that Assumptions (1), (3) and (4) hold
in M. This is also true for Assumption (2) except on the point about the small Julia set
Jk, which is not necessarily well-defined for f;, and for Assumption (6) except the part
about the domain of linearization. For this last point, since the map ];2 restricted to V_
is expanding and injective with 2_ in its image so, if 2, : U- — V_ denotes its inverse
then we can extend the linearization §, on Y- in an injective way using the dynamics,
i.e, if x € U_ then §,(x) := (D,(,l)ff)” 06, o ki (x) for n > 1 large enough. We will
come back to the small Julia set of Assumption (2) later.
Assumption (5) is just a reformulation of the fact that X,, is a proper analytic
subset of M and thus, it holds on M by Lemma 4.12.
For the other assumptions, we consider a perturbation fj in M’ of /1, defined by

f/"l'(z7 ZU,)’) = f;ll(z’ wd’) + c(zd7 wd,)’g, s ,)’Z),

where ¢ € C* is very close to 0. Observe that fj is a regular polynomial endomorphism
of C* which is a skew product of C x C*¥~! above a product map of C¥~1. This implies
that the small Julia set /i (f7) is exactly the closure of the repelling periodic points of
fi- Actually, this was proved by Jonsson [63] when £ = 2 where the key ingredient is
a fibered formula for the equilibrium measure. This formula has been generalized in
higher dimension by [40, Corollary 1.2] and thus the result of Jonsson also holds for fj.
In particular, since the repelling periodic points are dense in the hyperbolic set A(1),
this gives that A(1) ¢ Ji(f7). As this property persists under small perturbations (see
e.g. [38, Lemma 2.8]), Assumption (2) holds in a small neighborhood of f; in Endfy.
Moreover, one part of the critical set of f; comes from the dynamics on the basis C*~1.
A simple computation gives that the remaining part of this critical set is

ay + cdzd‘l}
- b

Cy = {(z,w,y) eCt; w=
B
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which is always transverse to fibers of the form {w = w(, y = y9} except when d > 3
and wy = —a1/B1. The stable manifold I/VI;‘(D of the saddle point p(2) is an attracting

basin in the invariant fiber {w = wy, y = 0} where wy ~ —1 is the unique fixed point of
w > g, (w) + cw? in U_ and thus by a classical result of Fatou it has to intersect C; in a
point of infinite orbit. Furthermore, since wy ~ —1 and —a /8 has large modulus, they
cannot be equal. This gives a transverse intersection between W; D and the critical set.

The skew product structure of f; and the fact that {w = wg, y = 0} is not a critical fiber
ensures that the images of this transverse intersection remain transverse. This shows
Assumption (7) is satisfied in a small neighborhood of f;.

Observe that by Lemma 4.13 and Lemma 4.14, there exists near A a small
non-empty open set Q in Endg NM’ where, in addition to all the assumptions above,
Assumption (8) holds and which is disjoint from the set 7" defined in Lemma 4.14.
Moreover, as by [43, Corollary C] when £ = 2 and [35, Lemma 5.4.5] for £ > 2 the
exceptional set is generically empty (or reduced to the hyperplane at infinity in the case of
regular polynomial endomorphisms of C*, with the same proof than [35, Lemma 5.4.5)),
we can also assume that it is the case for maps in Q, i.e., that Assumption (9) holds on Q.

Hence, all assumptions of Section 3.2 are satisfied on Q, except possibly Assump-
tion (10). Let Q" a non-empty open subset of Q. Let 17 € Q' be a regular point of
the foliation (?M)(“)EglxR defined just before Lemma 4.12. This lemma implies that
there exists ' = (w}),>0 € 2 such that 1’ € X, and X, is not contained in some
7“. In particular, if @ = (w,),50 is very close to ' then X, intersects Q' and is not
contained in some ¥ ;. We defined such w by

w, ifn < Ny,
wy, =11 it Ny <n < Ny + Ny,
-1 ifn>N]+NQ,

where N and Ng are two very large positive integers. The first condition ensures that
w is close enough to w’. The third one that the corresponding point x,(1) € A(1) is a
preimage by ff(N“LNQH) of the repelling periodic point r(1). This gives point (i)) of
Assumption (10) with m := 2(N; + Ny + 1) forevery 1 € Q' n X.. By definition of X.,

x,(A) € Wp”( ).doc O this set and thus (i) also holds. The fact that X, is not contained

in some ?,Z,t implies that (iv) is satisfied on a dense subset of @’ N X,,. Finally, recall
Q’ is disjoint from the set T defined in Lemma 4.14. Recall that this implies that if
w(1) == (wu(1))ys0 € T and the history @(1) := (w,(1))pez € {~1,1}% are defined
by w,(1) = 1if n < 1 and w,(1) = -1 otherwise then the image by Dxm(l)(ﬂ)ff of

the strong unstable subspace EZ'fm ) associated to x;(1)(4) is a generic hyperplane

for D,(,l)jjf, i.e., does not contain any eigenvector of Dr(,l)ff. On the other hand, if
1 € & n X, and if E denotes the tangent space of at x, (1) then E is in the

2(N1+
P

I/V[;u(/l), loc

cone C, and Dy 1) ) (
wa(,l)ff(N”Nz”)E is also a generic hyperplane for Dr(/l)ff' Thus, the point (iii) of

Assumption (10) is satisfied forall 1 € Q' N X..

MIE is very close to E)’:f‘(l 2 if Ny is large enough. Hence,
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In conclusion, the open set Q verifies all the assumptions of Section 3.2.

5. The fundamental height inequalities

5.1. Adelic metrics, height functions. — Let X be a projective variety, and let
Ly, ..., L; be Q-line bundles on X, all defined over a number field K.

For any i, assume L; is equipped with an adelic continuous metric {|| - ||,,: }ream
and we denote L; := (L;, {|| - ls}oea ). Assume also L, is semi-positive. Fix a place
v € Mk. Denote by X" the Berkovich analytification of X at the place v. We also let
¢1(L;), be the curvature form of the metric || - ||,; on L.

For any closed subvariety Y of dimension g, as observed by Chambert-Loir [26],
the arithmetic intersection number (L ... L,|Y) is symmetric and multilinear with

respect to the L;’s and is defined inductively by

q
(Lo...L,|Y) = (Ly...L,|div(s) nY) + Z 1y /Y 10g||s||;(1)/\cl(l,l~),,,
j=1

Z}EMK v

for any global section s € HY(X, Ly). In particular, if L is the trivial bundle and || - ||,0
is the trivial metric at all places but v, this gives

q
(L() e LAY) = nvo L . log ||S||;01,0 /\ 1 (Li)vo~
j=1

al

%0
When L is a big and nef @-line bundle endowed with a semi-positive continuous adelic
metric L, following Zhang [89], we can define A7 (Y') as

(Z|r)
}l* = ’
1) = DK - Q) degy (D)

where degy (L) = (L|Y)? is the volume of the line bundle L restricted to Y.

Recall that a sequence (x;); of points of ¥ (Q) is generic if for any closed subvariety
W c Y defined over K, there is iy > 1 such that O(x;) "W = @ forall i > iy. By Zhang’s
inequalities [89], if 27 > 0 on X (Q), if we let

ey(L) :==sup inf _ hy(x),
ZCY xe(Y\Z)(Q)

where Z ranges on strict subvarieties of ¥ defined over Q, then we have

€1 (Z)

- 1
(5.1) ey (L) = hy(Y) > o

In particular, there is a generic sequence (x;); of closed points of ¥ (Q) such that

1
(b.2) liminf Az (x;) > hz(Y) > | liminf 27 (x;).
1—00 q ]—)00
Let X be a projective variety defined on a number field K and let Z be an ample
line bundle on X endowed with an adelic semi-positive metric. Let m > 1 be an integer
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and forl < i < m, l_et pi + X™ — X be the projection onto the i-th factor. Let
m = pi(L) +-- +I’7n(L)-

We will use the next lemma.

Lemma 5.1. — For any subvariety Y C X defined over K, we have
by (Y™ =m - hy(Y).

Proof. — Form =1, orif ¢ = dimY = 0 there is nothing to prove. We can
assume that L is very ample. Fix m > 2 and set ¢ :=dimY > 1. Forany 1 <i < m and
any line bundles M9, ..., M, on X™, we have

(i)™ - 1 (Mys9) o1 (Mym) - (Y™} = 0
In particular,

degy, () = () (G107 (@ g3+ D) ),
hence

degy, (Y™) = (9;”) deg, (¥) degy,_, (¥"7").

Similarly, as the arithmetic intersection product is multilinear and symmetric, if we let
7 : X™ — X™ 1 he the cancellation of the ith variable, we have

(7 )= (o)

i=

Let s1,...,5.41 be sections of L such that div(s;) N---Ndiv(s,.1)NY = @ andlet Zy := Y
and for 1 < j < ¢, Z; := Z;,_1 ndiv(s;). Following [26], as Y™ =p N (Y) na7l(ymh,
we have

—g+1 1
Z*Lq+ L q(m )‘Y’")

=D __1 {orme .
= (o m L () g 2)
m—1
e o [ toglisillz,a D eI,
veMy (Ym)n

which rewrites as
q+1 q(m 1)
(il miL \Y’")
(m _ _ _
= (i I e ) 2)

edeg, (1) Y, [ logliil, (D

ve Mk U
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Similarly, for any 1 < j < ¢ — 1 one can write

q j+2 xg(m=-1)| _ _ _
( i Ly, |7y ](Ym 1) Np; 1(Zj—l))

= (7m0 7))

1
+degL (Y™ 1 Z n,,/ log||s]||chl(L)v AR

veMi

Summing up over the ¢ + 1 terms we get

—q+1 1 —q+1
(;‘Lq+ . q(m )‘Y”’) deg; (Y™ h. (Lq+

Y).
Y).

Together with the above, this gives

(Lqm+1 Y’") = (qqm++ll) deg;, | (Y”“l) . (I_,{H1

Since by definition,

)
"2 = Al 1) deg, (1)
(qu+l Ym)
and Az, (Y™) = [K:Q](gm+ 1)deg, (Y™)’
the proof is complete. i

5.2. Dynamics over number fields. — Let X be a projective variety, f : X —» X
a morphism and L be an ample line bundle on X, all defined over a number field K.
Recall that we say (X, f, L) is a polarized endomorphism of degree d > 1 if f*L ~ L®?, i.e.
f*L is linearly equivalent to L&?. Let k := dim X.

It is known that polarized endomorphisms defined over the field K admit a
canonical metric. This is an adelic semi-positive continuous metric on L, which can be
built as follows: let 2 — Spec(€k) be an Ok-model of X and £ be a model of L
endowed with a model metric, for example .Z = *Opn (1), where ¢ : X < P¥ is an
embedding inducing L and Opn (1) is the naive metrization. We then can define L as

L := lim %(f”)*ﬂk.

This metrization induces the canonical height h rof f: for any closed point x € X (@) and
any section o € H’(X, L) which does not vanish at x, we let

7 — ; -1
b () = e o T dena) > D mloglleMll;

veEMy yeO(x)

where O(x) is the Galois orbit of x in X. The function Ef : X(Q) — R satisfies
Zf of =d- Zf, Ef > 0 and Zf(x) = 0 if and only if x is preperiodic under iteration of f,
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i.e. if there are n > m > 0 such that f"(x) = f™(x). Note that &7 can also be defined as

() = lim s (/" (6),

where iy ; is any Weil height function on X associated with the ample line bundle L.
If Y is a subvariety of dimension ¢ > 0 defined over Q, we define

Gy
(¢ + D[K:Q]degy(L)

(observe that when Y = {x} has dimension 0, both definitions coincide i.e. both defini-
tions of % s coincide). This satisfies Ef (fu(Y)) = dh 7(Y), where f.(Y) is the image of Y
by f counted with multiplicity as a cycle on X. In particular, if Y is preperiodic under
iteration of f, i.e. if there are n > m > 0 such that f*(Y) = f™(Y), then Zf(Y) =0.

hp(Y) = hp(Y) =

5.3. Canonical height and height on the base. — We now let (X, f, L,Y) be a
dynamical pair of degree d > 2 parametrized by a smooth projective variety §, with
regular part Sg. Let YO .= 7r|5/1(S?/). We also assume (X, f, £), Y and S are all defined
over a number field K. In what follow, we fix an embedding ¢ : K < C for which we
define the different bifurcation currents.

Definition 5.2. — Let m > dim S. If the measure iy y is non-zero, we define the
m-higher order canonical height 77;”;34 (Y) of the family Y, relative to M, as

volj(,’“ (V)
dim Ylml . deg(fm/z/t(y) .

7 (m) —
H" (V) =

Otherwise, we let (ﬁ](‘"j\)/t Y) :=0.

Remark 5.3

(1) Observe that both Vol}m) (Y) and deg}m/i/((y ) are geometric quantities that do

not depend on the choice of a place (hence we can take another embedding
t: K= C).

(2) If dim § = 1, we have 7?}”(3/) = ;;fn(Yﬂ)’ see Section 1.1 for the definition of
the geometric canonical height,

(3) The quantity 7’:{;”;\)4 (Y) is well-defined by Proposition 1.7 and satisfies

?71(,"5\)4 (Y) > 0 forall m > dim § if and only if uz, y is non-zero.

We prove here the following which is inspired from [48, Theorem 1.4 and
Proposition 10.1] and [46, Theorem 1.6]:
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Theorem 5.4. —  Assume that iz, y is non-zero. Let m > dim S and M be any ample
Q-line bundle on S of volume 1. Then, for any 0 < & < 7-( H (™ (y ), there is a non-empty Zariski
open subset U c (Y'"™)0 and a constant € > 1 dependmg only on (X, f, L), Y, M, mand &
such that

m

Z b, (3) + C,

h m <
sm(Tm (%)) < ‘H(’") (y) 2

forany x = (x1,...,%n) € UQ).

As explained in the introduction, one can use the theory of adelic line bundles on
quasi-projective varieties set up by Yuan and Zhang [88] to obtain such an inequality
(see Theorem 6.2.2 therein). The hypothesis that u 7,y is non zero in Theorem 5.4 is

equivalent to the non degeneracy of Y™ in [88, Theorem 6.2.2]. However, the proof
we give here allows us to have explicit constants in the inequality.

Proof. — Fix0 < e < '7-(('") (Y) and C > 1. Take n > 1 such that d"( (m) w(Y) -
€/2) > land C < d"¢/4. Choose integers M, N > 1 such that

N(d"ﬁf(%(y) - c) SM> Nd”(ﬁ}j’j\)/[(y) - 5/2).

We use Lemma 1.8: increasing n if necessary, if Mn(m) = (F,,(’">)*(¢,§’"))*y[ml, we
deduce from Lemma 1.9 that the quantity

({yn(m)} . (Ncl(L[”’]))dimy[m])

i Y0 ()~ (Ver (20 ™ e G, )

is bounded from below by 77 (d”?-((m) (Y)-C) > 1. Let Y, = Wy Yy, £, =
(F)* L™y, and My, == ([ © ;b,(lm)) M)| . By construction, the line bundles £,
and M, are nef on Y, and the above mequahty implies

((NLn)dimyn) > dim)/n((MM,,) - (N £,)"m y,,—l)

by the projection formula. We thus can apply Siu’s bigness criterion [67, Theo-
rem 2.2.15] and find that N.£, — M M,, is a big line bundle on Y,. In particular, _there
exist £ > 1 and a non-empty Zariski open set U, c Y, such that for any x € U, (Q),

by, o(N£,-mm,) (%) = =Cy

for some constant C; depending only on n. Now we use successively functorial properties
of Weil height functions, see e.g. [56]. First, we find that for any y € U, (Q),

Ry e (N -1 M) (9)
= ¢(Nhyint, zim (F" () = Mbs,pa(xpm) 0 Ua () +O(1).
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Since F, = (fl™h" o ¥{™ on the non-empty Zariski open set U, N (y\™)~1((Ym1)0),
since ¥, is an isomorphism from U, N (l//,(l””)—l((y[m])o) to its image U := zﬁ,(lm) (U) N
(Y["1)0 and since Y™ is a subvariety of X[l we deduce that, for any x € U (Q),

kv - M) Wy (%))
= €( Nyt gt (F"(2)) = M pa (xim) () + O(1).

In particular, the above gives
M
hxim i ((FI)"(x)) > w s m(mm) (%)) = Co
> & (H" (V) = 2/2) hs i (xpm) (5)) = C

for any x € U(Q), where Cy is a constant depending on z. This rewrites as

1
dn

for any x € U'(Q), where C3 depends on n. We now use an estimate of Call and
Silverman [24, Theorem 3.1]: there is a constant C4 > 0 depending only on (X, f, £)

and M such that for any x € X°(Q),

Ffyi (¥) = b, £ (0)] < Ca s () + 1),

By functorial properties of heights

hactm o () (0)) = (H () = 2/2) s pa (rimy () = Cs,

m
byt g (%) = Y hx £ (x)) +0(1),  x=(x1,..., %) € XI"(@),
j=1
and the construction of the canonical height gives

h%x) (x) = Zhﬁm)(x, x=(x1,..., %) € XI"(@),

since 71 (x) = 7 (x;) for any i by construction. Applying this inequality to (£1™1)"(x)
and using that oz (f"(x:)) = d"hy, , (x;) for any i, we find

5~ ~ e C Cy
Dk, (5) 2 (wf,mm =5 = = | s m(atmy (2) = C3 = —,
j=1
forany x = (x1,...,4m) € U (Q). Up to increasing n, we can assume Cy < d"&/2, which
gives the expected inequality. i

As an immediate application of Theorem 5.4, we have

Corollary 5.5. — Fix m > dim § and assume Vol(m) (Y) > 0. Let M be any ample
Q-line bundle on S of volume 1 and let 0 < & < ?{(m) (Y). There is a non-empty Zariski open
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subset U c Y° and a constant C > 1 depending only on (X, f, L), Y, M, m and & such that

ks pm(m(x)) < %i{fm (x)+C, xeUQ).
H" ()

Proof. — Fix Mand 0 < ¢ < 7{('") (Y) and let B be the set of points x € Y
such that

hs m(n(x)) > ALA“ (x)+C
$,M ;nj\)/((y)_ f()

where C is the constant given by Theorem 5.4. We deduce that
V (%1, -y xm) € B hg p(mpmy (2) > —= o (x) +C,
(m)(y)_gzz; (x5) N

so that 8!™! is necessarily contained in a strict Zariski closed subset of Y™ by Theo-
rem 5.4, hence B is contained in a strict Zariski closed subset of V. O

5.4. General dynamical heights as moduli heights. — Let (X, f, L, Y) be a dynamical
pair of degree d > 2 parametrized by a smooth projective variety .S, with regular part
Sg, all defined over a number field K.

When Z is a subvariety of $¥, we let Y, := ﬂ|}l(Z) and we define (Xz, fz, Lz)
as the family of polarized endomorphisms induced by restriction of (X, f, £) to Xz :=
1 1(2).

We prove here the following

Theorem 5.6. — let (X, f, L), S and Y be all defined over a number field K. Fix an
embedding ¢ : K — C for which we define the different bifurcation currents and assume that
ur,y # 0. Then, there is a non-empty Zariski open subset U C Sg such that for any ample height
h on U, there are constants Cy, Cy > 0 and C3, Cy € R such that

C1h(t) + C3 < hy(Y;) < Coh(2) + Cy  forall t € U(Q).

Moreover, for any archimedean place v € My, any irreducible component Z of Sg \ U satisfies

(dim Z) _
Tfyv A[Z]=0.

We are now in position to prove Theorem A.

Proof of Theorem A. — We work at the archimedean place of Q. It follows from
Proposition 2.8 (or from Theorem C) that the bifurcation measure pu s cy is non-
Zero on %f(@), hence it is suflicient to apply Theorem 5.6 to conclude the proof of
Theorem A. i

The proof of Theorem 5.6 splits into two distinct parts that are summarized in
two Propositions below. We first use Zhang’s inequalities over number fields to deduce
the following from Corollary 5.5:
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_ Proposition 5.7. — Let M be an ample Q-line bundle on S of volume 1 and assume
Vol}dlms) (Y) > 0. There are constants C, > O and Cy > 1 depending only on (X, f, L,Y)

and M and a non-empty Zariski open subset V- C SJ()/ defined over Q such that
/ZS,M(t) < C]Eﬁ(Yt)+CQ, t e V(@)
Moreover, for any irreducible component Z of Sg \ V, we have Volg, (Yz) = 0.

Proof. — Let ¢ :=dimY,. Fix0 <& < ﬁ;d/i\i(ns)(y). Let U be the Zariski open
subset in Corollary 5.5, let ¥ be the set of ¢ € n(U) so that U; :=UN Y, is non-empty a
Zariski open subset of ¥;. The set ¥ is a Zariski open subset of $Y and for any ¢ € V' (Q),
we have

hsm(2) < AdLS(Zf,m +C), xe U@,
T(f,M(y) - &

Taking the infimum of Eﬁ (x) over x € U;(Q) and using Zhang’s inequalities (5.2) gives

dim § -~
hs (1) < =—————((g+ Dhg(¥) +C).
Him(Y)-¢

This is the wanted inequality, but we may have restricted too much the open set.
To conclude, we can proceed exactly the same way on any irreducible component

Z of Sg \ ¥, where Vol(fjimz) (Yz) > 0. In finitely many steps, we end with the expected
result. =

We now use another description of the height 4 7(Y;), when ¢ € Sg(@), using
Chow forms as in [57]. The next is probably well-known, but we include a proof for
the sake of completeness.

Lemma 5.8. — Let S be a projective variety, let & : Y — S be a surjective morphism,
both defined over a number field <. Let L be a relatively ample line bundle on Y endowed with
an adelic relatively semi-positive metrization. Let 8O C S be a Zariski open set such that n is flat
over Sg.

For any ample line bundle M on S, there are constants Cy, Co > O such that

h(Y)) < Crhs m(t) +Cy, ¢ € Sy (Q).

Proof. — Up to replacing £ by a large multiple and up to changing the metrization
on £, we may assume that there is an embedding ¢ : Y — [P’g such that £ = *Opn (1),
so that

h(Y,) = hpn (1.(Yy)),  forall ¢ € $5(Q),

where Apy is the naive height function on P¥. This is where Chow forms are used, to
give a different description of py (Y;), which makes easier the expected inequality.
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For any irreducible subvariety ¥ ¢ PV of dimension ¢ > 1, in the Grassmannian
G(N -k — 1, N) of linear subspaces of dimension N — £ — 1 of PV, the set

Zy ={VeGIN-k-1,N); VnY # o}

is an irreducible hypersurface. Moreover, in the Pliicker coordinates, we have Zy =
{Ry = 0}, where Ry is a homogeneous polynomial satisfying the following properties,
see, e.g., [28, 57]:

(1) if Y is defined over @, then Ry is also defined over Q,
(2) deg(Ry) = deg(Y),

3) hpn(Y) =h([ag : -+ : ay]), where ayg, ..., ay are the coeflicients of Ry.
Coming back to our situation, the above gives
h(Y) = h([ap(2) : -+ ay (D)), ¢ €85 (Q).
We now observe that the map 4 : ¢ € Sg — [ag(t) : -~ : ay(¢)] € PY is regular and

defined over Q, i.e. 4 € @[Sg]. This observation is true by construction of the Chow
form, see, e.g., [80, Section 3]. The lemma follows. m]

As an application of Call and Silverman’s fundamental work [24] and from
Lemma 5.8, we prove Theorem 5.6:

Proof of Theorem 5.6. — The left hand side inequality is proved in Proposition 5.7.
We now prove the right hand side inequality. Fix any closed point ¢ € §0(@). By Zhang’s
inequality (5.2), if (x;) is a generic sequence of closed points of ¥;(Q), we have

k;(Y;) <liminfh;(x;) and liminf & 7(x;) < & #(¥)).
Jj—ooo Jj—ooo

g+1

We now apply [24, Theorem 3.1]: there exists constants C, C’ > 0 depending only on
(X, f,L,Y) and on M such that

hy(x) = h g (x)| < Chp() +C,

for all x € ¥;(Q). The above implies
Ry (Y) < (g + DR p(Y) + Cha(2) + C'.

The conclusion follows from Lemma 5.8 above. O

6. Two dynamical equidistribution results

The purpose of this section is to state two arithmetic equidistribution’s theorems
on quasi-projective varieties. Equivalent statements were already obtained by Yuan
and Zhang using their theory of adelic line bundles on quasi-projective varieties ([88,
Theorems 6.2.3 and 6.3.5]). Nevertheless, for the sake of completeness, we choose to
follow the works of the first author [51] and Kithne [65] which are both of a more local
nature.
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6.1. Good height functions on quasi-projective varieties. — Let V be a smooth quasi-
projective variety defined over a number field K and let K — C be an embedding and
let & : V(Q) — R be a function. A sequence (F;); of Galois-invariant finite subsets of
v (Q) is

e generic if for any subvariety Z c V defined over K, there is iy such that ;N Z = @
for i > ip, and
o h-small if h(F) = #Lpi Ywer h(x) = 0, as i — co.

As in [51], we say & is a good height at the complex place if for any n > 0, there is
a projective model X, of ¥ together with a birational morphism ¢, : X,, — X, which is
an isomorphism above V and a big and nef Q-line bundle L, on X, endowed with an
adelic semi-positive continuous metrization L,, such that the following holds :

(1) Forany generic k-small sequence (F;); of Galois-invariant finite subsets of ¥ (Q),
the sequence &, ({F;};) := limsup, &7 ;L (Fy)) - hg (Xy) satisfies &,({F;}) — 0
as n — oo,

(2) the sequence of volumes vol(L,) converges to vol(£) > 0 as n — co and if ¢ (L,)
is the curvature form of L, on X,(C), then the sequence of finite measures
(vol(L,) ™ (Wa)sc1 (l_,,,)k)n converges weakly on ¥ (C) to a probability measure y,

3) If £ := dimV > 1, for any ample line bundle M, on X; and any adelic semi-
positive continuous metrization M on My, there is a constant C > 0 such
that

— \J (= \k+1-j
(vaaty) - (L) " <c,
forany2 < j<k+1andanyn > 0.
We say that vol(#) is the volume of & and that u is the measure induced by h over the
complex numbers.
The first author proved in [51, Theorem 1] the next result:

Theorem 6.1. —  For any h-small and generic sequence (Fy,)y of Galois-invariant finite
subsets of V(Q), the probability measure ug, on V(C) which is equidistributed on F,, converges
to p in the weak sense of measures, i.e. for any ¢ € €°(V (C)), we have

1
%%%Z‘P@):/ Qu.

6.2. A dynamical relative equidistribution Theorem. — When n : A — S is a
family of abelian varieties defined over a number field K, where S is a smooth projective
variety, and Y C A is a non-degenerate subvariety also defined over K, Kithne [65]
proposes and proves a Relative Equidistribution Conjecture which, in turn, says that if
there is a generic sequence {x;}; in ¥°(Q) with h a(x;) — 0, then the measure u,, on
YY(C) equidistributed on the Galois orbit O(x;) converges weakly on Y°(C) to a given
probability measure u.

We want here to prove the next dynamical generalization of Kithne’s Relative
Equidistribution Conjecture:
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Theorem 6.2 (Dynamical Relative Equidistribution). — Let (X, f, L) be a family of
polarized endomorphisms parametrized by a smooth projective variety S and let Y C X be a
Jamily of subvarieties of X. Assume 7y is non zero on ()

Then for any m > dim S and any ¢ € €°(Y'"H0(C), R) and any generic and ;l\f[m]'
small sequence {F;}; of Galois invariant subsets of (Y™)°(Q), we have

.1 1 = dim y/]
A o(x) = —/ eTom” -
i—oo #F; erE Vo 1(m)(y) (yIny0(C) flml

As mentioned above, we could also have used [88, Theorem 6.2.3]. To do
that, we need to check that ¥[™ is non-degenerate which, in turn, is equivalent to the
non-vanishing of the bifurcation measure ([88, Lemma 5.4.4]).

Proof. — We fix an archimedean place of K and a corresponding embedding
K < C. By Theorem 6.1, all there is to prove is that & is a good height function on

(Y10 and to show its induced measure on (Y[")%(C) is indeed T;l[lf]l‘y[m].

Let M be an ample Q-line bundle on § of volume 1 and let £y := £I™ +
M- The line bundle £ is ample on X[™. Recall Call and Silverman’s result [24,

Theorem 8.1] guarantees the existence of C > 1 such that
i (%) = hix, £ (x)] < Clhs(n(x)) + 1),

for all x € X°(Q). As in the proof of Theorem 5.4, using that Zf of =d- Zf, we deduce
that up to changing the constant C, we have

1
iyt (2) = =gt ((F)" ()| < (hs<nm]<x>>+1)

for any x € (X["1)%(Q) and any n > 0. As ((f[’”])”)*.ﬁo arLlml 4 Tl M this implies

< 2 (hs i) () +2),

1
gt () = =gt £, ((FI)" ()

for any x € (X["1)°(Q) and any # > 0. We now use Theorem 5.4: there is a non-empty
Zariski open set V c (Y™1)0 such that for any x € V(Q), we have

9 -~
hs(mtpm < ———\bsm 1).
(i (o) < (y)( i (3) +1)

We thus have a constant Cy > 0 such that for any x € V(Q) and any n > 0,

6.1) Byt (9~ o o ((F17) ()

< —(lzf[m1(x)+ 1).

We now use Lemma 1.8: let F,,y, : X, — X!l be such that F, = (£l oy, on
w1 (XY) with ¥, birational. We also let 7, : X, — § be the structure morphism induced

by 7t{m), i.e. such that 7, = 7, o ¥,. Choose a model metric M on M with hi; =0 on
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$(Q). We endow £ with a metrization L coming from the embedding ¢ : X — PN x §
for which (a multiple) of £ is t*Opn (1), where Opn (1) is the naive metrization. Define

Lo=I" + ()M
We then let Y, := y; ' (Y™]) and
1 I T
v, ﬁ(F”L )

_ - 1, —
L, = —(FnLO) + (O Mly, 120,
By construction the map F, is a generically finite morphism. Since £ is an adelic semi-

dr A

positive continuous ample line bundle, £, is thus an adelic semi-positive continuous
big and nef @-line bundle on Y,. Moreover, by construction, we have

— 1 m n
hy, 7,05 () = T, g, (£ (0)),
for any » > 0 and any x € (¥!"1)(Q). Note also that, by construction, 4
Y,(Q), so that [51, Lemma 6] gives
We combine this inequality with the inequality (6.1): this implies that for any generic
sequence {F;}; of Galois invariant subsets of (¥["1)?(Q) with hyimi (F;) — 0, we have

Co
an

vz, 2 0on

limsup(hy, 7, (03" (F)) = hy, 7, (%)) < Timsuphy, 7 (0" (F) <

We now let w and p be the respective curvature forms w := ¢;(£L]y) and p = ¢; (M) on
Y (C) and S(C) respectively. Then w is a smooth form on Y (C) representing ¢;(L|y),
and if we denote as before p; : Y™ — ¥ the projection onto the j-th factor of the

fiber-product, the curvature form of £, satisfies as forms on (Y["1)(C):

¢l (Zn)dimylmj
. . dim y[m]
_ g ndimY! 'lp;;(((f[m])")*(p’lk (W) +- -+ pp(w) + ﬂFm] (p)) )

so that, if wy, := pj(w) + -+ + p;, (), we have as measures on (WALDI(SF

— n . n dim y7]
W (e1 (T Tm ™) = gmndim ! ](«f“"])")*(wm ) )

Now, as d="((f™)")*w,, converges to T, fim] with a uniform convergence of local poten-
tials and as we have ((f[’"])”)*n*m] (p) = Tm) (p) by construction, the following holds in
the weak sense of measures on (Y1) (C):

. . dim yn ~ 1. m
g-ndimJy! ](((f[m])”)*(wm +7r’[‘m](p)) ) - T}*E,i?y[ |

Finally, the volume of £, can be computed as

m 1
degy, (£2) = Vol ) +0( 55 .
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Indeed, by definition of £y and by Lemma 1.2, we find
degy, (£a) = (a1 (L) - (y,})
— (d—n dim yn (Fn)*cl (-L())dim ylml {y[m]})

= (a7 I ey (£ gl ) 0(%)

= Vol (¥) + o(dln)

Our assumption that Vol(fm) () > 0 thus implies lim, . degy, (£,) = Vol(fm) (Y) > 0.

To prove that Zf[m] is a good height function on (¥["1)%(Q), the last thing to
check is condition (3) introduced in Section 6.1. Let nr, : Y, — S be the morphism
induced by 7, : Y™ — 8.

Let M be an ample adelic semi-positive continuous line bundle on Y. Then
YiMy is a big and nef Q-line bundle on Y, and ¢ M is a semi-positive adelically
metrized line bundle on Y,. Let & := d’lFff— v L. Then, there is D effective on §
such that d‘lﬂ*ﬁ <&< d‘lﬂ*ﬁ

By Constructlon we can assume there is a birational morphism ¢, : Y,,1 — Y,
with 7, 0 ¢,,1 = 7,41 and that Y ,.1 = ¢, 0 ¢,,1. Without loss of generality, we can also
assume i, = ¢ o --- o ¢, and there is a morphism g, : M,,; — Y; such that

$10 gn=Fyo ¢y and Fy o gy = Fypy on Yy

We have d~"g*(E) < d’(’”l)g;ﬂ’{D = d’(’”l)ﬂZHD. In particular, one sees that
— . o= 1 /= 1 1y, =

Lui1 =40 Ln = ﬁgn (8) + (dn+1 B ﬁ)ﬂnH(M)

| [
< WﬂrHl (D+M)

Hence L1 < ¢%, (L, +d~ "D 7i(D + M)). An immediate induction gives
(6.2) L, < ;l/n(Lo +— d (D + M))
Let P := dim Y™ and pick 0 < £ < P+ 1. Forall zn > 0, (6.2) gives
((waato))" (22w
)

e d P+1-¢
s((wf,(Mo)) - (Lo+ n[m]<D+M>)

. d P+1-¢
S((M())[ (L()Jr 1 [m](D+M))

y[m])’
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where we used the projection formula and that (¢,).(Y,) = Y ™. This proves hypothe-
sis (3) of Section 6.1 is satisfied as the last quantity is independent of z and the proof of
Theorem 6.1 is complete. i

6.3. Parametric equidistribution. — For any finite Galois invariant subset F C
$9(Q), we define hy y(F) as

1 —~
hyy(F) = g > by (Y0).

teF

As usual, we say a sequence F; of finite Galois invariant subsets of $°(Q) is 4 r,y-small it
hyy(F;) — 0.

Corollary 6.3. — Let (X, f, L,Y) be a dynamical pair parametrized by a smooth projec-
tive variety S with regular part S°, all defined over a number field K. Assume Vol}Ulim ) > 0.
Assume also there is a generic and hy y-small sequence {F;}; of finite Galois invariant subsets of
$9(Q). Then for any ¢ € €°(S(C), R), we have

.1 B HfY
lh—>r2! #Fl Z (p(t) B ‘/SO(C) ¢ Volf(y) '

tek;

Observe that this result corresponds to [88, Theorem 6.3.5]. Our approach is
based on Zhang inequalities over number fields and Theorem 6.2, whereas Yuan and
Zhang rely on properties of metrics on the Deligne pairing on adelic line bundles.

Proof. — Fix m > dim S and fix i and let ¢ € F;. Zhang’s inequalities (5.2) imply
there exists a generic sequence {xj(.t)}j of Yt[m] (Q) such that we have

lirjn_gp hf[m](xj(-t)) <(¢+ 1)Eﬁ[m1(1ﬁ[m]) :
For any i, j, we define a finite Galois invariant subset Z; of (Y["1)0(Q) by letting
Z = U o(x").
tekF;

By the above, and by Lemma 5.1, we deduce that
liggglfiifmz;ﬁ) < (g + Dby yin (F) = m(g + 1) - hy y (F).

Take &; > 0 such that &; — 0 as i - oo and such that (¢ + 1)2m - hry(F) < g; for any
i. Forany i > 1, there is an infinite sequence (j,(i + 1)),, extracted from (j, (7)), such

that, for any n > 0, we have Ef|m| (Z; (l.)) < 2¢;. We deduce there exists a sequence
{Z,}; of finite Galois invariant finite subsets of (¥!™1)%(Q) such that r(,,|(Z;) = F; and
such that for any ¢ € F;, we have O(xj(.g.)) C ﬂ[‘;]{t} for some j(i) > jo(i). Moreover, by
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construction we can choose Z; generic, and we have

As eg; — 0 and {Z  }:i is generic, Theorem 6.2 implies

#Z Z(le)_)/"tlh

X€Z;

0,an

where u, is a probability measure on (Y[™]),*" which satisfies

(T m))«(1y) = Mf,[y],u(Szf)’an)_l/lf,[y],v,
when v is archimedean. Let v, := (Jr[,,,])*(,u,,) and take ¢ € %,,O(S?’an, R). Then

#F, Z"D( Iy #F Z #0(x (t) Z @(7[m) (%))

tek; j(l)) xeo(x(l) )

1
=57 D e my (%))

XEZ;

We now use that v, = (7n)«() so that

‘/S‘(),an SDVv - ‘/(‘y[m])(),au (‘p ° ﬂ[m])ﬂv

Finally, if v is archimedean, since (7(,1)«(ty) = (,uf)[y],,,(kS'UO"m))_1 - fif.y.4, we have
Vy = (,uf,y,v(Sf’an))_l - pif,y,» and the proof is complete. |

7. Sparsity and uniformity: proof of the main results

We are now interested in applying all the above results in two specific situations,
where we study the variations of the dynamics of the critical set.

7.1. Sparsity of PCF maps of P¥. — We focus the family introduced in Section 2.1
(which plays the role of a universal family here), which is a family (P%, £, Op: (1)) of
degree d endomorphisms of P* parametrized by a projective model § of finite branched
cover of .4 ; with regular part (ng — if we follow the notations introduced above —
which is defined over Q, see Lemma 2.1.

The critical variety Crit(f) ¢ [P’k satisfies 7(Crit(f)) = §, where 7 : [P’k — S is
the canonical projection, and 7|cyy () is flat and projective over a Zariski open subset

e ///;. Moreover, for any ¢ € 89, the fiber Crit(f;) = ﬂ|(_ilit(f)(t) is the critical locus
of f;. Moreover, up to reducing the open set SV, we can assume Crit(f;) is irreducible

forall ¢ € 8.
We are now in position to prove Theorem B.
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Proof of Theorem B. — Recall that being PCF is a property which is invariant under
conjugacy, hence the set of PCF maps f € Ends is Zariski dense in Endf, if and only
if their conjugacy classes are Zariski dense in .# ;. To prove Theorem B, we proceed

by contradiction. Assume PCF maps are Zariski dense in Ends. Then they are Zariski
dense in U 5. In this case, those which are defined over Q are countable and Zariski
dense.

We thus can find a generic sequence (¢,),en of PCF parameters ¢, € (Llf(@). Note
here that the bifurcation measure p s ¢ of the family we consider is the pull-back of
the measure of the moduli space by the canonical projection IT : (Llf - M j which
is finite and whose image %dk contains a non-empty Zariski open subset of .///;. In
particular, u £,Crit 18 non-zero, and supp(u £,Crit) contains a non-empty analytic open
subset Q which contains no PCF parameters, by Theorem C.

Let now u, be the measure of ‘L(f(@) equidistributed on the Galois orbit O(t,) of
t,. By the parametric equidistribution Theorem (see Corollary 6.3), we have

1

:m Z 6t_>/“tf,Crit’ as n —> oo,

teO(t,)

Hau:

In particular, in the analytic topology of (L{(f (©), the support of us ¢,y is accumulated by
PCF classes. In particular, PCF parameters are dense in Q. This is a contradiction. O

7.2. Height gap and uniformity for regular maps of the affine space. — In this section,
we focus on the case when X = P* x.§ and where there is a hyperplane H,, ¢ P* such that
7Y (H.) = Hy, forall ¢ € $°. We call such a family of regular polynomial endomorphisms
of the affine space A¥, see [6]. Choosing an affine chart, we can assume the hyperplane
H,, is the hyperplane at infinity of A* in P¥. When (P* x 8, £, Opi (1)) is such a family
of regular polynomial endomorphisms, we let

1
Gy, (2) = Gy (2, 1) = lim ﬁlog 14" ()1,

forall z € C* and all ¢ € §°(C).

We let Y ¢ P* x § be an irreducible hypersurface that projects surjectively onto
S and which intersects properly Hy, x S. Up to reducing the Zariski open set $°, we can
assume Y is flat over $° and Y; # H,, for all ¢ € §°.

Definition 7.1. — The polynomial bifurcation measure ,u‘}(i of the pair (P* x
S, [ 0pi(1),Y) is the Monge—Ampere measure associated to the function Gr y : S 0(C) » R*
defined by

Gyt = [ G(dd G 1YL, res(@),

Le. ,u?? = (dchf,y)dimS as a measure on S°(C).
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The measure yl}i detects phenomena which occur in the affine space. However,
it does not in general allow to collect all the informations that y r y carries. However, as
measures on SV, we have

|
Hry = :u?(,)y'

We now prove here the following which is a sufficient condition to get a height
gap, and then to deduce uniformity in a Bogomolov-type statement. To pursue the
parallel with [88], this Theorem in turn says that if the Deligne pairing M relatively to
nly : Y — § of the adelic line bundle L 7 has strictly positive arithmetic volume, then
one has a uniform Bogomolov-type statement in the total space.

Theorem 7.2. — Let (P¥ x S, f,Opi (1)) be a family of regular polynomial endomor-
phisms of degree d of the affine space parametrized by S, and let Y c P* x S be an irreducible
hypersurface such that w|y : Y — S is surjective, all defined over a number field. Assume Y
intersects properly Hy, X S. Assume also

Then there exists Z C S Zariski-closed, € > 0, and an integer N > 1, such that for all
t € (SO\ Z)(Q), there exists a strict subvariety W, ¢ Y, with deg(W,) < N and such that

{z € Y(Q) : hyy(2) < &) C W,

Remark 7.3. — By Zhang’s inequalities (5.1), this in particular implies that

Zﬁ(mz%w, forall te (8°\ Z)(@).

The key ingredient is the next lemma, which is of purely complex analytic na-
ture. Again, in the parallel with [88], it says that if the Deligne pairing M has positive

. . —[m+1 ... . .
arithmetic volume, then L][(er ]| Y411 also has positive arithmetic volume.

Lemma 7.4. — Let (P* x S, f,O0pi (1)) be a complex family of regular polynomial
endomorphisms of the affine space of degree d parametrized by S of dimension m. Then

G rime11 (dd°G rims km+k—1/\ y[m+1] Z/G . pol‘
'/C‘k(m+l)><s f[ 1]( f[ l]) [ ] Ky f’y llfhy

Proof. — We denote by p; : (P¥)™1 x § — P* x § the projection onto the
i-th factor of the fiber product and by 7; : (P¥)™! x § — (P¥)™ x § the projection
consisting in forgetting the i-th factor. By construction fI™! and fI™+11 are families of
regular polynomial endomorphisms of the affine spaces A*™ and A*¥(m+1) respectively.
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Moreover, forany 1 <i < m+ 1, we have

m+1
Gf[m+1] = Z Gf opj = Gf o p;+ Gf[mj o m;.
j=1

Using that [Y[m+11] =piYI AR (Y]], we find
I ::/ Gf[ml](dchf[mH])kac—l A [y[m+]]]
Ck<"‘+1)><S
) / (G o p1) - (p}dd" Gy + 71 dd G )"+ 1 A [y 1]
Ck(m+1) g
Z/ (Gf Oﬁl) . ([)Tdchf)k_l A (ﬂ»idchf[m])km A [y[m+1]]
Ck(m+l)XS
* c -1 * c m n
=/Ck<m+l)xsp1(Gf(dd P! ALY A (G A 1Y)
=/ (/ G (dd*Gy) ! A [y;])(ddfcf[mj)km A [y}
Ckmx§ \J CE

=/ (Gry o mim) - (dd“G i)™ A [Y™].
Ckmx§

Claim. — For m > dim S, there is C(m) > 1 such that

e Gy A 1917

According to the Claim above, we find
1
I> LGf,y -,u??y,
which concludes the proof. i

All there is left to do is to prove the Claim.
Proof of the Claim. — We first prove that dd°Gy y = 7r*((a’d”Gf)’C A [y]) using a

slicing argument. Indeed, if ¢ is a smooth compactly supported (dim § - 1,dim § - 1)-
form on $°(C), we have

/ 7 ¢ A (dd°Gp)F A Y]
X(©)

=/ G/ (dd°Gp)F™ A Y] A" (dd°9)
X0 ()

-/ ( YR N | R
SOy \Jr-1{s}
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where ¢, : X; — X is the natural injection, so that ¢;[Y] = [Y;], hence
/ 7t - (dchf)k A[Y] = / Gry-dd'¢= dd°Gry A ¢.
X9(©C) $0(C) $0(C)

To conclude, we proceed as in the proof of Proposition 1.4. i

Now, when X is a projective variety and L is a line bundle on X, we denote by
L=V the induced line bundle on X%, i.e. L=V = Ty L+ + 1y L, where 7; : XN 5 X is

the canonical projection onto the i-th coordinate. We will also use the next Lemma due
to Gao, Ge and Kiithne [47, Lemma 4.3].

Lemma7.5. — Let X be an irreducible projective variety with a very ample line bundle
L, defined over an algebraically closed field K and N > 2. Let Z ¢ XV be a proper closed
subvariety. There exists a constant

B = B(N,dim X, deg,; (X),deg;an (Z)) > 0,
such that for any subset ¥ ¢ X (K) with N C Z(K), there exists a proper closed subvariety X'
of X with £ c X'(K) and deg; (X’) < B.

We are now in position to prove Theorem 7.2.

Proof of Theorem 7.2. — Forany v € My, recall that the Green function of £+ is

m+1

1 _ —
G, (x) 2= lim 3" —2log" [If" o i), x € AFD(@) x 5°(@).
j=1

One can show that for any x € AF"*D(Q) x §9(Q), we have

~ 1
b (= g 24 2y MGy (T (1),

veMy oeGal(L/K)

where L is any finite extension of K so that x € A¥™+1 (1) x §O(LL). In particular, for a
given place v € My, we deduce that

ny -~
(71) K] Z Gf[m+l]’v(o-(x)) < hf[m+l](x).
' oeGal(L/K)

We proceed by contradiction, assuming that there is a Zariski dense subset of small
points, i.e. for all £ > 0, the set

E, := {x SVAGRI(ME Zf[m+1l(x) < ‘9}

is Zariski dense in Y!"*11(Q). In particular, there exists a generic sequence (x,) €
(Y110 (Q) such that hpins1) (x22) — 0 as m — oco. Let now vy € My be an archimedean

place. Since we will now work only at the place v, we forget the subscript v in the rest
of the proof.



SPARSITY OF POSTCRITICALLY FINITE MAPS OF P AND BEYOND 89

By construction of the Green current T, ime] and of the Green function G :=

Gf[m+]], as measures on Ck(m+1) x SO(C), we have

T;[EZT]D_I A [y[m+l]] — (dchf[m+l])k(m+l)—l A [y[m+l]].

In particular, Lemma 7.4 says that

/ G *Hm+l > 07
(y[m+l])0(c)

where p,,1 = dellgl{lmm and (Y m+1])() (Ym0 A (Ak(meD) 5 gy

As G is continuous and non-negative on (Y1) (C), we deduce that there exists
a non-empty open analytic set Q € (Y!"*11)!(C) such that G > 0 on Q and such that
pn(Q) > 0. Let y : (¥Y"™11H(C) - R, be a smooth compactly supported function
with y =1l onQand 0 < y < 1. The function ¢ := G - y is thus continuous, compactly
supported, and G > ¢. We now apply the Equidistribution Theorem 6.1:

¢0}) = / ¢/1m+1~
(YIm+11)0(C)

In particular, there is no > 1 such that for any n > ng, we have

1
5 0.
Cdl’d(O(xn)) Z ¢O}) - 2 (Ym+11)0(C) Plmsi1 2 9 [)Gﬂm+l >

Moreover, for any finite extension L, of K with &, € Y!"*11(L,),

1 1
TR D Gpmn(o(an) = g IO > GO

oeGal(L,/K) y€0(xy)

1
lim —
n—co Card(O(x,)) €0 (xy)

]
* Card(0(xy)) 2, 90,

y€0(x,)
where we used that G > ¢. Together with (7.1), this gives

—~ 1y
e (50) 2 5 [ Gty >0

for any n > ng. This is a contradiction since & #inen) (%) — 0 as n — oo by hypothesis.
We have thus proved there exists €9 > 0 such that the set E,, is not Zariski dense

in Y ["+11(Q). In particular, there is a proper Zariski closed subset ¥ ¢ Y "+11 which is

defined over @ and that contains Eg,. If Z := Tmel] (V) ¢ § is a proper closed subvariety

of 8, then for any ¢ € (§V\ Z)(Q), we have hf[m+1] > o on ¥;"*1(Q). It is in particular
true on A := {(z,...,2) : z € Y,;(Q)}. Let € := g /(m + 1). This gives

m+1

Z il\ﬁ(Z) = il\f[m”fll('z’ 2 t) 2 €0,
j=1

which rewrites as ;;ft >e=¢gy/(m+1)on ¥;(Q).
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Assume now that 7(V) = § and let Z ¢ S be the proper closed subvariety of
S such that 7,417 is flat on each irreducible Lomponent of ¥ over §Y\ Z. Pick now
t € (8°\ Z)(Q). By definition, the line bundle Z; := Opi (1)]y, is very ample and the set
V, := V. n Y"1 is a proper closed subvariety of ¥,"*! with D := deg;, (V;) independent
of t. Let

X, = {z € Y,(Q) : Eﬁ(z) < 8}.
where € = gy/(m + 1) as above. The conclusion follows from Lemma 7.5. |

7.3. Uniformity in the moduli space @3. — As before, we focus on the good family
(P2, f,0pz2(1)) of degree d endomorphisms of P? which is defined over @ introduced

in Lemma 2.2 and let, as before, (VdQ be its maximal regular part (see Section 2.1).

We also study here the variation of the canonical height of the critical locus.
However, when f : A2 — A2 is a degree d regular polynomial endomorphism, L, is an
irreducible component of the critical locus of f and f induces an endomorphism of L,
we denote by f7_ . This induces a map

.2 1

defined by r(¢) = f; ... This map is well defined and surjective and, for every g € U,

the set r~1(g) consists of conjugacy classes of regular polynomial endomorphisms
whose restriction to L« are conjugate to g. It thus is a subvariety of (VdQ of dimension

dim @3 —dim ,///a,l > 0.

In the present situation, one sees that Crit(f;) decomposes as
Crit(f;) = Lo U Cy
where Cj, N A2 = {z € A? : det(D. f;) = 0} = Crit(f;) N A%2. We now let
C:={(2,t) eP*xV?:z€eCp).

The next key lemma is a consequence of Theorem C (see Theorem 4.1).

Lemma 7.6. — There exists a non-empty open set Q C (V;(C) that is contained in

supp( ul}og) In particular,

1
G“y~,up0 > 0.
s’ 1Y

Proof. — Write P := dim 7’3 for simplicity. First, as currents on C2¥ x (VdQ(C),
we have

ff|P| = ddfo|P| .

In particular, as measures on C2* x (V}(C) we also have

2P
T2, A [Crid?) = T2, A [e!)] = (a,’d Gfm) A [CIP1].
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By construction, the points of the support of f]?[’,;] A[Crit!?1] constructed in Theorem 4.1

belong to C2¥ X(Vf(C). In particular, they belong to the support of (dd‘Gfu:J )2P AlCtP.
poly)
fe’
We prove that the integral is strictly positive by contradiction. If the integral

vanishes, for any & > 0, the set of points ¢ € Q such that G y(#) < £ is dense in Q. As

We conclude by pushing forward this measure by 7[p) that there exists Q C supp(u

Gy,y = 0, this implies the continuous function Gy y : § 0(C) - R is constant equal to
zero on Q. This is a contradiction since (dd°Gy,y)* would be zero on Q. i

We are now in position to prove the following result.

Theorem 7.7. — Fix d > 2. There are constants B(d) > 1 and £(d) > 0 and a
non-empty Zariski open subset U C Polyj such for any f € U(Q), then

#{z € Cr(Q) : hy(2) < g(d)} < B(d).

Proof. — Let (P2, f, Op2(1)) be the family introduced in Lemma 2.2. Lemma 7.6
with Theorem 7.2 imply that there are & > 0, B > 1 and a non-empty Zariski open set
U C (V; such that for any ¢t €  (Q)

#2 € C1(@  hy(2) < &} < B,

Now, recall that if two maps f, g € Polyg(@) are conjugate by ¢ € Aut(A?), i.e. if
fop=¢og, thenhso¢p=h, and ¢_1(Cf) = C, so that
[z /@ :hy(2) <8f = o({2 € @ 1 hy(2) < 8.
As ¢ is an automorphism of P2, the conclusion follows. i
To conclude, it remains to prove Theorem D.

Proof of Theorem D. — Observe that the statement is a direct consequence of
Theorem 7.7 in Q: there exists a constant B(d) > 1, &(d) > 0 and a non-empty Zariski
open subset U C Poly(j such for any f € U(Q), we have

#{z € CH(D) : hy(2) < s(d)} < B(d).

As preperiodic points of f € U(Q) are those z € P2(Q) with Zf(z) = 0, this implies
# Preper(f) N Cr < B(d),
forany f € U(Q).
Now, let f; € U(C) with # Preper(fy) N Cr, > B(d) + 1. Write Preper(fy) N Cy, =
{#1,...,2n} and let n; > m; > 0 be minimal such that f" () = f" (%) for 1 <i < N.
For any i, the set

X; = {(f,2) € Poly’ xA?%, f"(z) = f™(z) and det(D,f) = 0}.
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is a closed subvariety of Polyg xA? which is defined over Q. For 1 < j < N, let

P Polyg x(AZ)N - Polyg xA2 be the map defined by pi(f,z1,...,25) = (f,2;) and
set

N
X = ﬂl’]l(X/)-
=1

J

Then X is a closed subvariety of Polyg x(A2)N which is defined over Q. Let
A= U{(f, z1,...,2n) € Poly, X(AQ)N Tz = zj}.

i*j

A is also a closed subvariety of Poly, x(A%)N. Our assumption on f; guarantees that
(fo,#15---,2n) € X(C) so that (X \ A)(C) # @. As X is defined over Q, this implies
(X \ A)(Q) # @. This is a contradiction. i
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