Article
Generalised André-Pink-Zannier conjecture for Shimura varieties of Abelian type
Publications Mathématiques de l'IHÉS, Volume 141 (2025), pp. 249-331

In this paper we prove the generalised André-Pink-Zannier conjecture (an important case of the Zilber-Pink conjecture) for all Shimura varieties of abelian type. Questions of this type were first asked by Y. André in 1989. We actually prove a general statement for all Shimura varieties, subject to certain assumptions that are satisfied for Shimura varieties of abelian type and are expected to hold in general. We also prove another result, a $p$-adic Kempf-Ness theorem, on the relation between good reduction of homogeneous spaces over $p$-adic integers with Mumford stability property in $p$-adic geometric invariant theory.

Received:
Accepted:
Online First:
Published online:
DOI: 10.1007/s10240-025-00154-4

Rodolphe Richard 1; Andrei Yafaev 1

1
@article{PMIHES_2025__141__249_0,
     author = {Rodolphe Richard and Andrei Yafaev},
     title = {Generalised {Andr\'e-Pink-Zannier} conjecture for {Shimura} varieties of {Abelian} type},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {249--331},
     year = {2025},
     publisher = {Springer International Publishing},
     address = {Cham},
     volume = {141},
     doi = {10.1007/s10240-025-00154-4},
     zbl = {08054051},
     language = {en},
     url = {https://pmihes.centre-mersenne.org/articles/10.1007/s10240-025-00154-4/}
}
TY  - JOUR
AU  - Rodolphe Richard
AU  - Andrei Yafaev
TI  - Generalised André-Pink-Zannier conjecture for Shimura varieties of Abelian type
JO  - Publications Mathématiques de l'IHÉS
PY  - 2025
SP  - 249
EP  - 331
VL  - 141
PB  - Springer International Publishing
PP  - Cham
UR  - https://pmihes.centre-mersenne.org/articles/10.1007/s10240-025-00154-4/
DO  - 10.1007/s10240-025-00154-4
LA  - en
ID  - PMIHES_2025__141__249_0
ER  - 
%0 Journal Article
%A Rodolphe Richard
%A Andrei Yafaev
%T Generalised André-Pink-Zannier conjecture for Shimura varieties of Abelian type
%J Publications Mathématiques de l'IHÉS
%D 2025
%P 249-331
%V 141
%I Springer International Publishing
%C Cham
%U https://pmihes.centre-mersenne.org/articles/10.1007/s10240-025-00154-4/
%R 10.1007/s10240-025-00154-4
%G en
%F PMIHES_2025__141__249_0
Rodolphe Richard; Andrei Yafaev. Generalised André-Pink-Zannier conjecture for Shimura varieties of Abelian type. Publications Mathématiques de l'IHÉS, Volume 141 (2025), pp. 249-331. doi: 10.1007/s10240-025-00154-4

[1.] Y. André G -Functions and Geometry. A Publication of the Max-Planck-Institut für Mathematik, 1989 (Bonn) | Zbl

[2.] M. Bate, B. Martin, G. Röhrle and R. Tange, Complete reducibility and separability, Trans. Am. Math. Soc., 362 (2010).

[3.] A. Borel Linear Algebraic Groups, 126, 1991 | DOI | Zbl

[4.] N. Bourbaki, Lie groups and Lie algebras. Chapters 4–6, 2002.

[5.] N. Bourbaki, Algèbre. Chapitre 8, 2012.

[6.] F. Bruhat; J. Tits Groupes réductifs sur un corps local, 41, 1972 | Zbl | Numdam

[7.] J.-F. Burnol, Remarques sur la stabilité en arithmétique, Int. Math. Res. Not., 6 (1992).

[8.] L. Clozel; H. Oh; E. Ullmo Hecke operators and equidistribution of Hecke points, Invent. Math., Volume 144 (2001), pp. 327-351 | MR | DOI | Zbl

[9.] C. Daw; J. Ren Applications of the hyperbolic Ax–Schanuel conjecture, Compos. Math., Volume 154 (2018), pp. 1843-1888 | MR | Zbl | DOI

[10.] P. Deligne Variétés de Shimura: interprétation modulaire, et techniques de construction de modèles canoniques, automorphic forms, representations and L-functions, Proc. Symp. Pure Math., Volume XXXIII (1979), pp. 247-289 | Zbl | DOI

[11.] P. Deligne Preuve des conjectures de Tate et de Shafarevitch, Séminaire Bourbaki: Volume 1983/84, Exposés 615-632, 1985, p. 17 (no. 121-122, Talk no. 616, http://www.numdam.org/item/SB_1983-1984__26__25_0/) | Zbl | Numdam | MR

[12.] M. Demazure; P. Gabriel Groupes algébriques. Tome I: Géométrie algébrique, généralités, groupes commutatifs, 1970 | Zbl

[13.] M. Demazure and A. Grothendieck, Séminaire de Géomtrie algébrique de Bois-Marie 3(1): Schémas en goupes.

[14.] J. Dieudonné; A. Grothendieck Élements de géométrie algébrique: étude locale des schémas et des morphismes de schémas, Deuxième partie, 24, 1965 | Zbl | Numdam

[15.] J. Dieudonné; A. Grothendieck Élements de géométrie algébrique: étude locale des schémas et des morphismes de schémas, Troisième partie, 28, 1966 | Zbl | Numdam

[16.] J. Dieudonné; A. Grothendieck Élements de géométrie algébrique: étude locale des schémas et des morphismes de schémas, Quatrième partie, 32, 1967, pp. 5-361 | Zbl | Numdam

[17.] B. Edixhoven; A. Yafaev Subvarieties of Shimura varieties, Ann. Math., Volume 157 (2003), pp. 621-645 | MR | DOI | Zbl

[18.] A. Eskin; H. Oh Ergodic theoretic proof of equidistribution of Hecke points, Ergod. Theory Dyn. Syst., Volume 26 (2005), pp. 163-167 (Cambridge University Press, Cambridge) | MR | Zbl | DOI

[19.] B. Fantechi; L. Göttsche; L. Illusie; S. Kleiman; N. Nitsure; A. Vistoli Fundamental Algebraic Geometry, 123, Am. Math. Soc., Providence, 2005 | Zbl

[20.] J. Fogarty; F. Kirwan; D. Mumford Geometric Invariant Theory, 34, 1994 | Zbl

[21.] D. Gorenstein; R. Lyons; R. Solomon The Classification of the Finite Simple Groups, Number 3, Part I, Chapter A: Almost Simple X-Groups, 40, 1998

[22.] R. Hartshorne Algebraic Geometry, 52, Springer, New York, 1977 (Corrected eighth printing, 1997) | Zbl | DOI

[23.] S. Herpel, On the smoothness of centralizers in reductive groups, Trans. Am. Math. Soc., 365 (2013).

[24.] K. H. Hofmann; S. A. Morris Open mapping theorem for topological groups, Topol. Proc., Volume 31 (2007), pp. 533-551 | MR | Zbl

[25.] G. Kempf Instability in invariant theory, Ann. Math., Volume 108 (1968), pp. 299-316 | MR | DOI | Zbl

[26.] G. Kempf; L. Ness The length of vectors in representation spaces, Algebraic Geometry (Proc. Summer Meeting, Univ. Copenhagen, Copenhagen, 1978), 732, 1979, pp. 233-243 | Zbl | DOI

[27.] M. Larsen; R. Pink On -independence of algebraic monodromy groups in compatible systems of representations, Invent. Math., Volume 107 (1992), pp. 603-636 | MR | Zbl | DOI

[28.] D. Masser; G. Wüstholz Refinements of the Tate conjecture for Abelian varieties, Abelian Varieties, 1993, pp. 211-223 | Zbl

[29.] G. McNinch Completely reducible Lie subalgebras, Transform. Groups, Volume 12 (2007), pp. 127-135 | MR | Zbl | DOI

[30.] B. Moonen Linearity properties of Shimura varieties. I, J. Algebraic Geom., Volume 7 (1998), pp. 539-567 | MR | Zbl

[31.] R. Noot Abelian varieties—Galois representation and properties of ordinary reduction, Compos. Math., Volume 97 (1995), pp. 161-171 | MR | Zbl | Numdam

[32.] M. Nori On subgroups of GL n (𝐅 p ), Invent. Math., Volume 88 (1987), pp. 257-275 | MR | DOI | Zbl

[33.] M. Orr, The André-Pink conjecture: Hecke orbits and weakly special subvarieties (La conjecture d’André-Pink: orbites de Hecke et sous-variétés faiblement spéciales), PhD thesis, Université Paris Sud, 2013, https://tel.archives-ouvertes.fr/tel-00879010/document.

[34.] M. Orr Families of Abelian varieties with many isogenous fibres, J. Reine Angew. Math., Volume 705 (2015), pp. 211-231 | MR | DOI | Zbl

[35.] R. Pink A combination of the conjectures of Mordell-Lang and André-Oort, Geometric Methods in Algebra and Number Theory, 235, 2005, pp. 251-282 | DOI | Zbl

[36.] V. Platonov; A. Rapinchuk Algebraic Groups and Number Theory, 1994 (Academic press) | Zbl

[37.] R. Richard, Sur quelques questions d’équidistribution en géométrie arithmétique, Thèse de doctorat, université de Rennes-1, 2009, available at https://tel.archives-ouvertes.fr/tel-00438515.

[38.] R. Richard, Résultat géométrique sur les représentations de groupes réductifs sur un corps ultramétrique in Homogeneous Dynamics and Unlikely Intersections, | arXiv

[39.] R. Richard; A. Yafaev Topological and equidistributional refinement of the André-Pink-Zannier conjecture at finitely many places, C. R. Math. Acad. Sci. Paris, Volume 357 (2019), pp. 231-235 | MR | DOI | Zbl

[40.] R. Richard and A. Yafaev, Height functions on Hecke orbits and the generalised André-Pink-Zannier conjecture, Compos. Math., to appear, | arXiv

[41.] R. Richard; T. Zamojski Stabilité analytique et convergence locale de translatées en dynamique homogène S-arithmétique, C. R. Math. Acad. Sci. Paris, Volume 357 (2019), pp. 241-246 | MR | Zbl | DOI

[42.] R. Richardson Conjugacy classes of n-tuples in Lie algebras and algebraic groups, Duke Math. J., Volume 57 (1988), pp. 1-35 | MR | DOI | Zbl

[43.] A. Robert A Course in p -Adic Analysis, 198, Springer, New York, 2000 (xvi+437) | DOI | Zbl

[44.] J.-P. Serre, Sur les groupes de congruence des variétés abéliennes, Article 62, Œuvres II (1960–1971), 1964.

[45.] J.-P. Serre Cohomologie Galoisienne, 1994 | DOI | Zbl

[46.] J.-P. Serre Complète réductibilité, Séminaire Bourbaki. Vol. 2003/2004, 299, 2005 | Zbl

[47.] J.-P. Serre Un critère d’indépendance pour une famille de représentations -adiques, Comment. Math. Helv., Volume 88 (2013), pp. 1-12 | MR | DOI | Zbl

[48.] J.-P. Serre, Œuvres/Collected Papers. IV. 1985–1998, Corrected Second Printing 2003 of the First Edition 2000, Springer Collected Works in Mathematics.

[49.] C. S. Seshadri Geometric reductivity over arbitrary base, Adv. Math., Volume 26 (1977), pp. 225-274 | MR | DOI | Zbl

[50.] T. A. Springer Linear Algebraic Groups, 9, Birkhäuser Boston, Inc., Boston, 1998 (xiv+334) | DOI | Zbl

[51.] The Stacks Project Authors, The Stacks project, https://stacks.math.columbia.edu.

[52.] J. Tits Reductive groups over local fields, Automorphic Forms, Representations and $L$ L -Functions, XXXIII, 1979, pp. 29-69 | Zbl | DOI

[53.] E. Ullmo, Points rationnels des variétés de Shimura, Int. Math. Res. Not., 76 (2004).

[54.] E. Ullmo; A. Yafaev Generalised Tate, Mumford-Tate and Shafarevich conjectures, Ann. Sci. Qué., Volume 37 (2013), pp. 255-284 | Zbl

[55.] E. Ullmo; A. Yafaev Galois orbits and equidistribution of special subvarieties: towards the André-Oort conjecture, Ann. Math. (2), Volume 180 (2014), pp. 823-865 | MR | Zbl | DOI

[56.] M. Vaughan-Lee The Restricted Burnside Problem, 8, 1990 | Zbl

[57.] A. Yafaev, Sous-variétés des variétés de Shimura, Thèse de doctorat, université de Rennes, 1, 2000, https://theses.hal.science/tel-04391600.

Cited by Sources: