In this paper we prove the generalised André-Pink-Zannier conjecture (an important case of the Zilber-Pink conjecture) for all Shimura varieties of abelian type. Questions of this type were first asked by Y. André in 1989. We actually prove a general statement for all Shimura varieties, subject to certain assumptions that are satisfied for Shimura varieties of abelian type and are expected to hold in general. We also prove another result, a $p$-adic Kempf-Ness theorem, on the relation between good reduction of homogeneous spaces over $p$-adic integers with Mumford stability property in $p$-adic geometric invariant theory.
Accepted:
Online First:
Published online:
DOI: 10.1007/s10240-025-00154-4
Rodolphe Richard 1; Andrei Yafaev 1
@article{PMIHES_2025__141__249_0,
author = {Rodolphe Richard and Andrei Yafaev},
title = {Generalised {Andr\'e-Pink-Zannier} conjecture for {Shimura} varieties of {Abelian} type},
journal = {Publications Math\'ematiques de l'IH\'ES},
pages = {249--331},
year = {2025},
publisher = {Springer International Publishing},
address = {Cham},
volume = {141},
doi = {10.1007/s10240-025-00154-4},
zbl = {08054051},
language = {en},
url = {https://pmihes.centre-mersenne.org/articles/10.1007/s10240-025-00154-4/}
}
TY - JOUR AU - Rodolphe Richard AU - Andrei Yafaev TI - Generalised André-Pink-Zannier conjecture for Shimura varieties of Abelian type JO - Publications Mathématiques de l'IHÉS PY - 2025 SP - 249 EP - 331 VL - 141 PB - Springer International Publishing PP - Cham UR - https://pmihes.centre-mersenne.org/articles/10.1007/s10240-025-00154-4/ DO - 10.1007/s10240-025-00154-4 LA - en ID - PMIHES_2025__141__249_0 ER -
%0 Journal Article %A Rodolphe Richard %A Andrei Yafaev %T Generalised André-Pink-Zannier conjecture for Shimura varieties of Abelian type %J Publications Mathématiques de l'IHÉS %D 2025 %P 249-331 %V 141 %I Springer International Publishing %C Cham %U https://pmihes.centre-mersenne.org/articles/10.1007/s10240-025-00154-4/ %R 10.1007/s10240-025-00154-4 %G en %F PMIHES_2025__141__249_0
Rodolphe Richard; Andrei Yafaev. Generalised André-Pink-Zannier conjecture for Shimura varieties of Abelian type. Publications Mathématiques de l'IHÉS, Volume 141 (2025), pp. 249-331. doi: 10.1007/s10240-025-00154-4
[1.] -Functions and Geometry. A Publication of the Max-Planck-Institut für Mathematik, 1989 (Bonn) | Zbl
[2.] M. Bate, B. Martin, G. Röhrle and R. Tange, Complete reducibility and separability, Trans. Am. Math. Soc., 362 (2010).
[3.] Linear Algebraic Groups, 126, 1991 | DOI | Zbl
[4.] N. Bourbaki, Lie groups and Lie algebras. Chapters 4–6, 2002.
[5.] N. Bourbaki, Algèbre. Chapitre 8, 2012.
[6.] Groupes réductifs sur un corps local, 41, 1972 | Zbl | Numdam
[7.] J.-F. Burnol, Remarques sur la stabilité en arithmétique, Int. Math. Res. Not., 6 (1992).
[8.] Hecke operators and equidistribution of Hecke points, Invent. Math., Volume 144 (2001), pp. 327-351 | MR | DOI | Zbl
[9.] Applications of the hyperbolic Ax–Schanuel conjecture, Compos. Math., Volume 154 (2018), pp. 1843-1888 | MR | Zbl | DOI
[10.] Variétés de Shimura: interprétation modulaire, et techniques de construction de modèles canoniques, automorphic forms, representations and -functions, Proc. Symp. Pure Math., Volume XXXIII (1979), pp. 247-289 | Zbl | DOI
[11.] Preuve des conjectures de Tate et de Shafarevitch, Séminaire Bourbaki: Volume 1983/84, Exposés 615-632, 1985, p. 17 (no. 121-122, Talk no. 616, http://www.numdam.org/item/SB_1983-1984__26__25_0/) | Zbl | Numdam | MR
[12.] Groupes algébriques. Tome I: Géométrie algébrique, généralités, groupes commutatifs, 1970 | Zbl
[13.] M. Demazure and A. Grothendieck, Séminaire de Géomtrie algébrique de Bois-Marie 3(1): Schémas en goupes.
[14.] Élements de géométrie algébrique: étude locale des schémas et des morphismes de schémas, Deuxième partie, 24, 1965 | Zbl | Numdam
[15.] Élements de géométrie algébrique: étude locale des schémas et des morphismes de schémas, Troisième partie, 28, 1966 | Zbl | Numdam
[16.] Élements de géométrie algébrique: étude locale des schémas et des morphismes de schémas, Quatrième partie, 32, 1967, pp. 5-361 | Zbl | Numdam
[17.] Subvarieties of Shimura varieties, Ann. Math., Volume 157 (2003), pp. 621-645 | MR | DOI | Zbl
[18.] Ergodic theoretic proof of equidistribution of Hecke points, Ergod. Theory Dyn. Syst., Volume 26 (2005), pp. 163-167 (Cambridge University Press, Cambridge) | MR | Zbl | DOI
[19.] Fundamental Algebraic Geometry, 123, Am. Math. Soc., Providence, 2005 | Zbl
[20.] Geometric Invariant Theory, 34, 1994 | Zbl
[21.] The Classification of the Finite Simple Groups, Number 3, Part I, Chapter A: Almost Simple X-Groups, 40, 1998
[22.] Algebraic Geometry, 52, Springer, New York, 1977 (Corrected eighth printing, 1997) | Zbl | DOI
[23.] S. Herpel, On the smoothness of centralizers in reductive groups, Trans. Am. Math. Soc., 365 (2013).
[24.] Open mapping theorem for topological groups, Topol. Proc., Volume 31 (2007), pp. 533-551 | MR | Zbl
[25.] Instability in invariant theory, Ann. Math., Volume 108 (1968), pp. 299-316 | MR | DOI | Zbl
[26.] The length of vectors in representation spaces, Algebraic Geometry (Proc. Summer Meeting, Univ. Copenhagen, Copenhagen, 1978), 732, 1979, pp. 233-243 | Zbl | DOI
[27.] On -independence of algebraic monodromy groups in compatible systems of representations, Invent. Math., Volume 107 (1992), pp. 603-636 | MR | Zbl | DOI
[28.] Refinements of the Tate conjecture for Abelian varieties, Abelian Varieties, 1993, pp. 211-223 | Zbl
[29.] Completely reducible Lie subalgebras, Transform. Groups, Volume 12 (2007), pp. 127-135 | MR | Zbl | DOI
[30.] Linearity properties of Shimura varieties. I, J. Algebraic Geom., Volume 7 (1998), pp. 539-567 | MR | Zbl
[31.] Abelian varieties—Galois representation and properties of ordinary reduction, Compos. Math., Volume 97 (1995), pp. 161-171 | MR | Zbl | Numdam
[32.] On subgroups of , Invent. Math., Volume 88 (1987), pp. 257-275 | MR | DOI | Zbl
[33.] M. Orr, The André-Pink conjecture: Hecke orbits and weakly special subvarieties (La conjecture d’André-Pink: orbites de Hecke et sous-variétés faiblement spéciales), PhD thesis, Université Paris Sud, 2013, https://tel.archives-ouvertes.fr/tel-00879010/document.
[34.] Families of Abelian varieties with many isogenous fibres, J. Reine Angew. Math., Volume 705 (2015), pp. 211-231 | MR | DOI | Zbl
[35.] A combination of the conjectures of Mordell-Lang and André-Oort, Geometric Methods in Algebra and Number Theory, 235, 2005, pp. 251-282 | DOI | Zbl
[36.] Algebraic Groups and Number Theory, 1994 (Academic press) | Zbl
[37.] R. Richard, Sur quelques questions d’équidistribution en géométrie arithmétique, Thèse de doctorat, université de Rennes-1, 2009, available at https://tel.archives-ouvertes.fr/tel-00438515.
[38.] R. Richard, Résultat géométrique sur les représentations de groupes réductifs sur un corps ultramétrique in Homogeneous Dynamics and Unlikely Intersections, | arXiv
[39.] Topological and equidistributional refinement of the André-Pink-Zannier conjecture at finitely many places, C. R. Math. Acad. Sci. Paris, Volume 357 (2019), pp. 231-235 | MR | DOI | Zbl
[40.] R. Richard and A. Yafaev, Height functions on Hecke orbits and the generalised André-Pink-Zannier conjecture, Compos. Math., to appear, | arXiv
[41.] Stabilité analytique et convergence locale de translatées en dynamique homogène -arithmétique, C. R. Math. Acad. Sci. Paris, Volume 357 (2019), pp. 241-246 | MR | Zbl | DOI
[42.] Conjugacy classes of -tuples in Lie algebras and algebraic groups, Duke Math. J., Volume 57 (1988), pp. 1-35 | MR | DOI | Zbl
[43.] A Course in -Adic Analysis, 198, Springer, New York, 2000 (xvi+437) | DOI | Zbl
[44.] J.-P. Serre, Sur les groupes de congruence des variétés abéliennes, Article 62, Œuvres II (1960–1971), 1964.
[45.] Cohomologie Galoisienne, 1994 | DOI | Zbl
[46.] Complète réductibilité, Séminaire Bourbaki. Vol. 2003/2004, 299, 2005 | Zbl
[47.] Un critère d’indépendance pour une famille de représentations -adiques, Comment. Math. Helv., Volume 88 (2013), pp. 1-12 | MR | DOI | Zbl
[48.] J.-P. Serre, Œuvres/Collected Papers. IV. 1985–1998, Corrected Second Printing 2003 of the First Edition 2000, Springer Collected Works in Mathematics.
[49.] Geometric reductivity over arbitrary base, Adv. Math., Volume 26 (1977), pp. 225-274 | MR | DOI | Zbl
[50.] Linear Algebraic Groups, 9, Birkhäuser Boston, Inc., Boston, 1998 (xiv+334) | DOI | Zbl
[51.] The Stacks Project Authors, The Stacks project, https://stacks.math.columbia.edu.
[52.] Reductive groups over local fields, Automorphic Forms, Representations and $L$ L -Functions, XXXIII, 1979, pp. 29-69 | Zbl | DOI
[53.] E. Ullmo, Points rationnels des variétés de Shimura, Int. Math. Res. Not., 76 (2004).
[54.] Generalised Tate, Mumford-Tate and Shafarevich conjectures, Ann. Sci. Qué., Volume 37 (2013), pp. 255-284 | Zbl
[55.] Galois orbits and equidistribution of special subvarieties: towards the André-Oort conjecture, Ann. Math. (2), Volume 180 (2014), pp. 823-865 | MR | Zbl | DOI
[56.] The Restricted Burnside Problem, 8, 1990 | Zbl
[57.] A. Yafaev, Sous-variétés des variétés de Shimura, Thèse de doctorat, université de Rennes, 1, 2000, https://theses.hal.science/tel-04391600.
Cited by Sources:
