Article
Multisolitons for the cubic NLS in 1-d and their stability
Publications Mathématiques de l'IHÉS, Volume 140 (2024), pp. 155-270

For both the cubic Nonlinear Schrödinger Equation (NLS) as well as the modified Korteweg-de Vries (mKdV) equation in one space dimension we consider the set 𝐌 N of pure N-soliton states, and their associated multisoliton solutions. We prove that (i) the set 𝐌 N is a uniformly smooth manifold, and (ii) the 𝐌 N states are uniformly stable in H s , for each s>-1 2.

One main tool in our analysis is an iterated Bäcklund transform, which allows us to nonlinearly add a multisoliton to an existing soliton free state (the soliton addition map) or alternatively to remove a multisoliton from a multisoliton state (the soliton removal map). The properties and the regularity of these maps are extensively studied.

Received:
Accepted:
Online First:
Published online:
DOI: 10.1007/s10240-024-00148-8

Herbert Koch 1; Daniel Tataru 1

1
@article{PMIHES_2024__140__155_0,
     author = {Herbert Koch and Daniel Tataru},
     title = {Multisolitons for the cubic {NLS} in 1-d and their stability},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {155--270},
     year = {2024},
     publisher = {Springer International Publishing},
     address = {Cham},
     volume = {140},
     doi = {10.1007/s10240-024-00148-8},
     mrnumber = {4824748},
     zbl = {1559.35329},
     language = {en},
     url = {https://pmihes.centre-mersenne.org/articles/10.1007/s10240-024-00148-8/}
}
TY  - JOUR
AU  - Herbert Koch
AU  - Daniel Tataru
TI  - Multisolitons for the cubic NLS in 1-d and their stability
JO  - Publications Mathématiques de l'IHÉS
PY  - 2024
SP  - 155
EP  - 270
VL  - 140
PB  - Springer International Publishing
PP  - Cham
UR  - https://pmihes.centre-mersenne.org/articles/10.1007/s10240-024-00148-8/
DO  - 10.1007/s10240-024-00148-8
LA  - en
ID  - PMIHES_2024__140__155_0
ER  - 
%0 Journal Article
%A Herbert Koch
%A Daniel Tataru
%T Multisolitons for the cubic NLS in 1-d and their stability
%J Publications Mathématiques de l'IHÉS
%D 2024
%P 155-270
%V 140
%I Springer International Publishing
%C Cham
%U https://pmihes.centre-mersenne.org/articles/10.1007/s10240-024-00148-8/
%R 10.1007/s10240-024-00148-8
%G en
%F PMIHES_2024__140__155_0
Herbert Koch; Daniel Tataru. Multisolitons for the cubic NLS in 1-d and their stability. Publications Mathématiques de l'IHÉS, Volume 140 (2024), pp. 155-270. doi: 10.1007/s10240-024-00148-8

[1.] M. J. Ablowitz; D. J. Kaup; A. C. Newell; H. Segur The inverse scattering transform-Fourier analysis for nonlinear problems, Stud. Appl. Math., Volume 53 (1974), pp. 249-315 | MR | Zbl | DOI

[2.] M. A. Alejo; C. Muñoz On the nonlinear stability of mKdV breathers, J. Phys. A, Volume 45 (2012), pp. 1751-8113 | MR | Zbl | DOI

[3.] M. A. Alejo; C. Muñoz Nonlinear stability of MKdV breathers, Commun. Math. Phys., Volume 324 (2013), pp. 233-262 | MR | Zbl | DOI

[4.] M. A. Alejo; C. Muñoz Dynamics of complex-valued modified KdV solitons with applications to the stability of breathers, Anal. PDE, Volume 8 (2015), pp. 629-674 | MR | Zbl | DOI

[5.] R. Beals; R. R. Coifman Scattering and inverse scattering for first-order systems. II, Inverse Probl., Volume 3 (1987), pp. 577-593 | MR | Zbl | DOI

[6.] D. Bilman; P. D. Miller A robust inverse scattering transform for the focusing nonlinear Schrödinger equation, Comm. Pure Appl. Math., Volume 72 (2019), pp. 1722-1805 | MR | Zbl | DOI

[7.] M. Borghese; R. Jenkins; K. McLaughlin Long time asymptotic behavior of the focusing nonlinear Schrödinger equation, Ann. Inst. H. Poincaré C Anal. Non Linéaire, Volume 35 (2018), pp. 887-920 | MR | Numdam | Zbl | DOI

[8.] R. C. Cascaval; F. Gesztesy; H. Holden; Y. Latushkin Spectral analysis of Darboux transformations for the focusing NLS hierarchy, Engl. J. Anal. Math., Volume 93 (2004), pp. 139-197 | MR | Zbl | DOI

[9.] M. Christ; J. Colliander; T. Tao A priori bounds and weak solutions for the nonlinear Schrödinger equation in Sobolev spaces of negative order, J. Funct. Anal., Volume 254 (2008), pp. 368-395 | MR | Zbl | DOI

[10.] A. Contreras; D. Pelinovsky Stability of multi-solitons in the cubic NLS equation, J. Hyperbolic Differ. Equ., Volume 11 (2014), pp. 329-353 | MR | Zbl | DOI

[11.] S. Cuccagna; D. E. Pelinovsky The asymptotic stability of solitons in the cubic NLS equation on the line, Appl. Anal., Volume 93 (2014), pp. 791-822 | MR | Zbl | DOI

[12.] P. A. Deift Applications of a commutation formula, Duke Math. J., Volume 45 (1978), pp. 267-310 | MR | Zbl | DOI

[13.] P. Deift; X. Zhou A steepest descent method for oscillatory Riemann-Hilbert problems. Asymptotics for the MKdV equation, Ann. Math. (2), Volume 137 (1993), pp. 295-368 | MR | Zbl | DOI

[14.] L. D. Faddeev; L. A. Takhtajan Hamiltonian Methods in the Theory of Solitons, Springer, Berlin, 1987, p. x+592 (Translated from the Russian by A. G. Reyman [A. G. Reĭman]) | MR | Zbl | DOI

[15.] F. Gesztesy; H. Holden Soliton Equations and Their Algebro-Geometric Solutions. Vol. I, 79, Cambridge University Press, Cambridge, 2003, p. xii+505 | MR | Zbl | DOI

[16.] B. Grébert; T. Kappeler The defocusing NLS equation and its normal form, EMS Series of Lectures in Mathematics, European Mathematical Society (EMS), Zürich, 2014, p. x+166 | MR | Zbl

[17.] A. Grünrock On the hierarchies of higher order mKdV and KdV equations, Cent. Eur. J. Math., Volume 8 (2010), pp. 500-536 | MR | Zbl

[18.] B. Harrop-Griffith, R. Killip and M. Visan, Sharp wellposednes for the cubic NLS and mKdV in H s (𝐑), Forum Math. Pi, 12 (2024). | MR

[19.] A. Hoffman; C. E. Wayne Orbital stability of localized structures via Bäcklund transformations, Differ. Integral Equ., Volume 26 (2013), pp. 303-320 | MR | Zbl

[20.] T. Kapitula On the stability of N-solitons in integrable systems, Nonlinearity, Volume 20 (2007), pp. 879-907 | MR | Zbl | DOI

[21.] R. Killip; M. Vişan; X. Zhang Low regularity conservation laws for integrable PDE, Geom. Funct. Anal., Volume 28 (2018), pp. 1062-1090 | MR | Zbl | DOI

[22.] H. Koch; D. Tataru Conserved energies for the cubic nonlinear Schrödinger equation in one dimension, Duke Math. J., Volume 167 (2018), pp. 3207-3313 | MR | Zbl | DOI

[23.] M. D. Kruskal; C. S. Gardner; J. M. Green; R. M. Miura Method for solving Korteweg–de Vries equation, Phys. Rev. Lett., Volume 19 (1967), pp. 1095-1098 | Zbl | DOI

[24.] P. D. Lax Integrals of nonlinear equations of evolution and solitary waves, Commun. Pure Appl. Math., Volume 21 (1968), pp. 467-490 | MR | Zbl | DOI

[25.] L Ling; L.-C. Zhao; B. Guo Darboux transformation and multi-dark soliton for N-component nonlinear Schrödinger equations, Nonlinearity, Volume 28 (2015), pp. 3243-3261 | MR | Zbl | DOI

[26.] F. Magri Eight lectures on integrable systems, Integrability of Nonlinear Systems (Pondicherry, 1996), 495, Springer, Berlin, 1997, pp. 256-296 (Written in collaboration with P. Casati, G. Falqui and M. Pedroni.) | MR | Zbl | DOI

[27.] V. B. Matveev; M. A. Salle Darboux Transformations and Solitons, Springer, Berlin, 1991, p. x+120 | MR | Zbl | DOI

[28.] T. Mizumachi; D. Pelinovsky Bäcklund transformation and L 2 -stability of NLS solitons, Int. Math. Res. Not., Volume 9 (2012), pp. 2034-2067 | MR | Zbl

[29.] E. Olmedilla Multiple pole solutions of the nonlinear Schrödinger equation, Phys. D, Volume 25 (1987), pp. 330-346 | MR | Zbl | DOI

[30.] A. Tuncay; C. van der Mee A unified approach to Darboux transformations, Inverse Problems, Volume 25 (2009) (22) | MR | Zbl | DOI

[31.] V. E. Zakharov; A. B. Shabat Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Ž. Èksper. Teoret. Fiz., Volume 61 (1971), pp. 118-134 | MR

[32.] X. Zhou Direct and inverse scattering transforms with arbitrary spectral singularities, Commun. Pure Appl. Math., Volume 42 (1989), pp. 895-938 | MR | Zbl | DOI

[33.] X. Zhou L 2 -Sobolev space bijectivity of the scattering and inverse scattering transforms, Commun. Pure Appl. Math., Volume 51 (1998), pp. 697-731 | MR | Zbl | DOI

Cited by Sources: