For both the cubic Nonlinear Schrödinger Equation (NLS) as well as the modified Korteweg-de Vries (mKdV) equation in one space dimension we consider the set of pure -soliton states, and their associated multisoliton solutions. We prove that (i) the set is a uniformly smooth manifold, and (ii) the states are uniformly stable in , for each .
One main tool in our analysis is an iterated Bäcklund transform, which allows us to nonlinearly add a multisoliton to an existing soliton free state (the soliton addition map) or alternatively to remove a multisoliton from a multisoliton state (the soliton removal map). The properties and the regularity of these maps are extensively studied.
Accepted:
Online First:
Published online:
DOI: 10.1007/s10240-024-00148-8
Herbert Koch 1; Daniel Tataru 1
@article{PMIHES_2024__140__155_0,
author = {Herbert Koch and Daniel Tataru},
title = {Multisolitons for the cubic {NLS} in 1-d and their stability},
journal = {Publications Math\'ematiques de l'IH\'ES},
pages = {155--270},
year = {2024},
publisher = {Springer International Publishing},
address = {Cham},
volume = {140},
doi = {10.1007/s10240-024-00148-8},
mrnumber = {4824748},
zbl = {1559.35329},
language = {en},
url = {https://pmihes.centre-mersenne.org/articles/10.1007/s10240-024-00148-8/}
}
TY - JOUR AU - Herbert Koch AU - Daniel Tataru TI - Multisolitons for the cubic NLS in 1-d and their stability JO - Publications Mathématiques de l'IHÉS PY - 2024 SP - 155 EP - 270 VL - 140 PB - Springer International Publishing PP - Cham UR - https://pmihes.centre-mersenne.org/articles/10.1007/s10240-024-00148-8/ DO - 10.1007/s10240-024-00148-8 LA - en ID - PMIHES_2024__140__155_0 ER -
%0 Journal Article %A Herbert Koch %A Daniel Tataru %T Multisolitons for the cubic NLS in 1-d and their stability %J Publications Mathématiques de l'IHÉS %D 2024 %P 155-270 %V 140 %I Springer International Publishing %C Cham %U https://pmihes.centre-mersenne.org/articles/10.1007/s10240-024-00148-8/ %R 10.1007/s10240-024-00148-8 %G en %F PMIHES_2024__140__155_0
Herbert Koch; Daniel Tataru. Multisolitons for the cubic NLS in 1-d and their stability. Publications Mathématiques de l'IHÉS, Volume 140 (2024), pp. 155-270. doi: 10.1007/s10240-024-00148-8
[1.] The inverse scattering transform-Fourier analysis for nonlinear problems, Stud. Appl. Math., Volume 53 (1974), pp. 249-315 | MR | Zbl | DOI
[2.] On the nonlinear stability of mKdV breathers, J. Phys. A, Volume 45 (2012), pp. 1751-8113 | MR | Zbl | DOI
[3.] Nonlinear stability of MKdV breathers, Commun. Math. Phys., Volume 324 (2013), pp. 233-262 | MR | Zbl | DOI
[4.] Dynamics of complex-valued modified KdV solitons with applications to the stability of breathers, Anal. PDE, Volume 8 (2015), pp. 629-674 | MR | Zbl | DOI
[5.] Scattering and inverse scattering for first-order systems. II, Inverse Probl., Volume 3 (1987), pp. 577-593 | MR | Zbl | DOI
[6.] A robust inverse scattering transform for the focusing nonlinear Schrödinger equation, Comm. Pure Appl. Math., Volume 72 (2019), pp. 1722-1805 | MR | Zbl | DOI
[7.] Long time asymptotic behavior of the focusing nonlinear Schrödinger equation, Ann. Inst. H. Poincaré C Anal. Non Linéaire, Volume 35 (2018), pp. 887-920 | MR | Numdam | Zbl | DOI
[8.] Spectral analysis of Darboux transformations for the focusing NLS hierarchy, Engl. J. Anal. Math., Volume 93 (2004), pp. 139-197 | MR | Zbl | DOI
[9.] A priori bounds and weak solutions for the nonlinear Schrödinger equation in Sobolev spaces of negative order, J. Funct. Anal., Volume 254 (2008), pp. 368-395 | MR | Zbl | DOI
[10.] Stability of multi-solitons in the cubic NLS equation, J. Hyperbolic Differ. Equ., Volume 11 (2014), pp. 329-353 | MR | Zbl | DOI
[11.] The asymptotic stability of solitons in the cubic NLS equation on the line, Appl. Anal., Volume 93 (2014), pp. 791-822 | MR | Zbl | DOI
[12.] Applications of a commutation formula, Duke Math. J., Volume 45 (1978), pp. 267-310 | MR | Zbl | DOI
[13.] A steepest descent method for oscillatory Riemann-Hilbert problems. Asymptotics for the MKdV equation, Ann. Math. (2), Volume 137 (1993), pp. 295-368 | MR | Zbl | DOI
[14.] Hamiltonian Methods in the Theory of Solitons, Springer, Berlin, 1987, p. x+592 (Translated from the Russian by A. G. Reyman [A. G. Reĭman]) | MR | Zbl | DOI
[15.] Soliton Equations and Their Algebro-Geometric Solutions. Vol. I, 79, Cambridge University Press, Cambridge, 2003, p. xii+505 | MR | Zbl | DOI
[16.] The defocusing NLS equation and its normal form, EMS Series of Lectures in Mathematics, European Mathematical Society (EMS), Zürich, 2014, p. x+166 | MR | Zbl
[17.] On the hierarchies of higher order mKdV and KdV equations, Cent. Eur. J. Math., Volume 8 (2010), pp. 500-536 | MR | Zbl
[18.] B. Harrop-Griffith, R. Killip and M. Visan, Sharp wellposednes for the cubic NLS and mKdV in , Forum Math. Pi, 12 (2024). | MR
[19.] Orbital stability of localized structures via Bäcklund transformations, Differ. Integral Equ., Volume 26 (2013), pp. 303-320 | MR | Zbl
[20.] On the stability of -solitons in integrable systems, Nonlinearity, Volume 20 (2007), pp. 879-907 | MR | Zbl | DOI
[21.] Low regularity conservation laws for integrable PDE, Geom. Funct. Anal., Volume 28 (2018), pp. 1062-1090 | MR | Zbl | DOI
[22.] Conserved energies for the cubic nonlinear Schrödinger equation in one dimension, Duke Math. J., Volume 167 (2018), pp. 3207-3313 | MR | Zbl | DOI
[23.] Method for solving Korteweg–de Vries equation, Phys. Rev. Lett., Volume 19 (1967), pp. 1095-1098 | Zbl | DOI
[24.] Integrals of nonlinear equations of evolution and solitary waves, Commun. Pure Appl. Math., Volume 21 (1968), pp. 467-490 | MR | Zbl | DOI
[25.] Darboux transformation and multi-dark soliton for -component nonlinear Schrödinger equations, Nonlinearity, Volume 28 (2015), pp. 3243-3261 | MR | Zbl | DOI
[26.] Eight lectures on integrable systems, Integrability of Nonlinear Systems (Pondicherry, 1996), 495, Springer, Berlin, 1997, pp. 256-296 (Written in collaboration with P. Casati, G. Falqui and M. Pedroni.) | MR | Zbl | DOI
[27.] Darboux Transformations and Solitons, Springer, Berlin, 1991, p. x+120 | MR | Zbl | DOI
[28.] Bäcklund transformation and -stability of NLS solitons, Int. Math. Res. Not., Volume 9 (2012), pp. 2034-2067 | MR | Zbl
[29.] Multiple pole solutions of the nonlinear Schrödinger equation, Phys. D, Volume 25 (1987), pp. 330-346 | MR | Zbl | DOI
[30.] A unified approach to Darboux transformations, Inverse Problems, Volume 25 (2009) (22) | MR | Zbl | DOI
[31.] Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Ž. Èksper. Teoret. Fiz., Volume 61 (1971), pp. 118-134 | MR
[32.] Direct and inverse scattering transforms with arbitrary spectral singularities, Commun. Pure Appl. Math., Volume 42 (1989), pp. 895-938 | MR | Zbl | DOI
[33.] -Sobolev space bijectivity of the scattering and inverse scattering transforms, Commun. Pure Appl. Math., Volume 51 (1998), pp. 697-731 | MR | Zbl | DOI
Cited by Sources: