This paper is the sequel to (Colin et al. in Publ. Math. Inst. Hautes Études Sci., 2024), and is devoted to proving some of the technical parts of the HF=ECH isomorphism.
Accepted:
Online First:
Published online:
DOI: 10.1007/s10240-024-00146-w
Vincent Colin 1; Paolo Ghiggini 1; Ko Honda 1
@article{PMIHES_2024__139__189_0,
author = {Vincent Colin and Paolo Ghiggini and Ko Honda},
title = {The equivalence of {Heegaard} {Floer} homology and embedded contact homology via open book decompositions {II}},
journal = {Publications Math\'ematiques de l'IH\'ES},
pages = {189--348},
year = {2024},
publisher = {Springer International Publishing},
address = {Cham},
volume = {139},
doi = {10.1007/s10240-024-00146-w},
mrnumber = {4750570},
zbl = {1557.57018},
language = {en},
url = {https://pmihes.centre-mersenne.org/articles/10.1007/s10240-024-00146-w/}
}
TY - JOUR AU - Vincent Colin AU - Paolo Ghiggini AU - Ko Honda TI - The equivalence of Heegaard Floer homology and embedded contact homology via open book decompositions II JO - Publications Mathématiques de l'IHÉS PY - 2024 SP - 189 EP - 348 VL - 139 PB - Springer International Publishing PP - Cham UR - https://pmihes.centre-mersenne.org/articles/10.1007/s10240-024-00146-w/ DO - 10.1007/s10240-024-00146-w LA - en ID - PMIHES_2024__139__189_0 ER -
%0 Journal Article %A Vincent Colin %A Paolo Ghiggini %A Ko Honda %T The equivalence of Heegaard Floer homology and embedded contact homology via open book decompositions II %J Publications Mathématiques de l'IHÉS %D 2024 %P 189-348 %V 139 %I Springer International Publishing %C Cham %U https://pmihes.centre-mersenne.org/articles/10.1007/s10240-024-00146-w/ %R 10.1007/s10240-024-00146-w %G en %F PMIHES_2024__139__189_0
Vincent Colin; Paolo Ghiggini; Ko Honda. The equivalence of Heegaard Floer homology and embedded contact homology via open book decompositions II. Publications Mathématiques de l'IHÉS, Volume 139 (2024), pp. 189-348. doi: 10.1007/s10240-024-00146-w
[0.] V. Colin, P. Ghiggini and K. Honda, Embedded contact homology and open book decompositions, Geom. Topol., to appear.
[I.] V. Colin, P. Ghiggini and K. Honda, The equivalence of Heegaard Floer homology and embedded contact homology via open book decompositions I, Publ. Math. Inst. Hautes Études Sci., (2024). | DOI | MR
[II.] V. Colin, P. Ghiggini and K. Honda, The equivalence of Heegaard Floer homology and embedded contact homology via open book decompositions II, Publ. Math. Inst. Hautes Études Sci., (2024), this paper. | DOI | MR
[III.] V. Colin, P. Ghiggini and K. Honda, The equivalence of Heegaard Floer homology and embedded contact homology III: from hat to plus, Publ. Math. Inst. Hautes Études Sci., (2024). | DOI | MR
[BH.] Definition of cylindrical contact homology in dimension three, J. Topol., Volume 11 (2018), pp. 1001-1052 | MR | Zbl | DOI
[Bo1.] A Morse Bott approach to contact homology, from: “Symplectic and contact topology: interactions and perspectives, Fields Inst. Comm., 35, Am. Math. Soc., Providence, 2003, pp. 55-77 | MR | Zbl
[Bo2.] F. Bourgeois, A Morse-Bott approach to contact homology, Ph.D. Thesis, 2002. | MR
[BEHWZ.] Compactness results in symplectic field theory, Geom. Topol., Volume 7 (2003), pp. 799-888 | MR | DOI | Zbl
[EES.] The contact homology of Legendrian submanifolds in , J. Differ. Geom., Volume 71 (2005), pp. 177-305 | MR | Zbl
[Gr.] Pseudo holomorphic curves in symplectic manifolds, Invent. Math., Volume 82 (1985), pp. 307-347 | MR | Zbl | DOI
[HLS.] On genericity for holomorphic curves in four-dimensional almost complex manifolds, J. Geom. Anal., Volume 7 (1997), pp. 149-159 | MR | DOI | Zbl
[HWZ1.] Properties of pseudoholomorphic curves in symplectisations. I. Asymptotics, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 13 (1996), pp. 337-379 | MR | DOI | Zbl | Numdam
[Hör.] The analysis of linear partial differential operators I, Springer, Berlin, 1990, p. xii+440 pp. (ISBN: 3-540-52343-X) | MR | Zbl
[HKM.] K. Honda, W. Kazez and G. Matić, Contact structures, sutured Floer homology, and TQFT, preprint (2008), | arXiv
[Hu1.] An index inequality for embedded pseudoholomorphic curves in symplectizations, J. Eur. Math. Soc., Volume 4 (2002), pp. 313-361 | MR | DOI | Zbl
[Hu2.] The embedded contact homology index revisited, New perspectives and challenges in symplectic field theory, CRM Proc. Lecture Notes, 49, Am. Math. Soc., Providence, 2009, pp. 263-297 | MR | Zbl | DOI
[HT1.] Gluing pseudoholomorphic curves along branched covered cylinders I, J. Symplectic Geom., Volume 5 (2007), pp. 43-137 | MR | DOI | Zbl
[HT2.] Gluing pseudoholomorphic curves along branched covered cylinders II, J. Symplectic Geom., Volume 7 (2009), pp. 29-133 | MR | Zbl | DOI
[HT3.] Proof of the Arnold chord conjecture in three dimensions 1, Math. Res. Lett., Volume 18 (2011), pp. 295-313 | MR | Zbl | DOI
[IP1.] Relative Gromov-Witten invariants, Ann. Math. (2), Volume 157 (2003), pp. 45-96 | MR | Zbl | DOI
[IP2.] The symplectic sum formula for Gromov-Witten invariants, Ann. Math. (2), Volume 159 (2004), pp. 935-1025 | MR | Zbl | DOI
[IS.] S. Ivashkovich and V. Shevchishin, Gromov compactness theorem for -complex curves with boundary, Int. Math. Res. Not. (2000), 1167–1206. | MR
[LR.] Symplectic surgery and Gromov-Witten invariants of Calabi-Yau 3-folds, Invent. Math., Volume 145 (2001), pp. 151-218 | MR | Zbl | DOI
[Li.] A cylindrical reformulation of Heegaard Floer homology, Geom. Topol., Volume 10 (2006), pp. 955-1097 | MR | DOI | Zbl
[M.] D. McDuff, Comparing absolute and relative Gromov-Witten invariants, preprint (2008).
[MS.] -holomorphic curves and symplectic topology, 52, Am. Math. Soc., Providence, 2004 | MR | Zbl
[Pa.] Exploded fibrations, Proceedings of Gökova Geometry-Topology Conference 2006, 52–90, Gökova Geometry/Topology Conference (GGT), 2007, pp. 52-90 (Gökova) | MR | Zbl
[Se.] A long exact sequence for symplectic Floer cohomology, Topology, Volume 42 (2003), pp. 1003-1063 | MR | DOI | Zbl
[We1.] C. Wendl, Finite energy foliations and surgery on transverse links, Ph.D. Thesis, 2005. | MR
[We2.] Automatic transversality and orbifolds of punctured holomorphic curves in dimension four, Comment. Math. Helv., Volume 85 (2010), pp. 347-407 | MR | Zbl | DOI
Cited by Sources: