Given an open book decomposition adapted to a closed, oriented 3-manifold , we define a chain map from a certain Heegaard Floer chain complex associated to to a certain embedded contact homology chain complex associated to , as defined in (Colin et al. in Geom. Topol., 2024), and prove that it induces an isomorphism on the level of homology. This implies the isomorphism between the hat version of Heegaard Floer homology of and the hat version of embedded contact homology of .
Accepted:
Online First:
Published online:
DOI: 10.1007/s10240-024-00145-x
Vincent Colin 1; Paolo Ghiggini 1; Ko Honda 1
@article{PMIHES_2024__139__13_0,
author = {Vincent Colin and Paolo Ghiggini and Ko Honda},
title = {The equivalence of {Heegaard} {Floer} homology and embedded contact homology via open book decompositions {I}},
journal = {Publications Math\'ematiques de l'IH\'ES},
pages = {13--187},
year = {2024},
publisher = {Springer International Publishing},
address = {Cham},
volume = {139},
doi = {10.1007/s10240-024-00145-x},
mrnumber = {4750569},
zbl = {1557.57017},
language = {en},
url = {https://pmihes.centre-mersenne.org/articles/10.1007/s10240-024-00145-x/}
}
TY - JOUR AU - Vincent Colin AU - Paolo Ghiggini AU - Ko Honda TI - The equivalence of Heegaard Floer homology and embedded contact homology via open book decompositions I JO - Publications Mathématiques de l'IHÉS PY - 2024 SP - 13 EP - 187 VL - 139 PB - Springer International Publishing PP - Cham UR - https://pmihes.centre-mersenne.org/articles/10.1007/s10240-024-00145-x/ DO - 10.1007/s10240-024-00145-x LA - en ID - PMIHES_2024__139__13_0 ER -
%0 Journal Article %A Vincent Colin %A Paolo Ghiggini %A Ko Honda %T The equivalence of Heegaard Floer homology and embedded contact homology via open book decompositions I %J Publications Mathématiques de l'IHÉS %D 2024 %P 13-187 %V 139 %I Springer International Publishing %C Cham %U https://pmihes.centre-mersenne.org/articles/10.1007/s10240-024-00145-x/ %R 10.1007/s10240-024-00145-x %G en %F PMIHES_2024__139__13_0
Vincent Colin; Paolo Ghiggini; Ko Honda. The equivalence of Heegaard Floer homology and embedded contact homology via open book decompositions I. Publications Mathématiques de l'IHÉS, Volume 139 (2024), pp. 13-187. doi: 10.1007/s10240-024-00145-x
[0.] V. Colin, P. Ghiggini and K. Honda, Embedded contact homology and open book decompositions, Geom. Topol., to appear.
[I.] V. Colin, P. Ghiggini and K. Honda, The equivalence of Heegaard Floer homology and embedded contact homology via open book decompositions I. Publ. Math. Inst. Hautes Études Sci., (2024), this paper. | DOI | MR | Zbl | Numdam
[II.] V. Colin, P. Ghiggini and K. Honda, The equivalence of Heegaard Floer homology and embedded contact homology via open book decompositions II, Publ. Math. Inst. Hautes Études Sci., (2024). | DOI | MR | Zbl | Numdam
[III.] V. Colin, P. Ghiggini and K. Honda, The equivalence of Heegaard Floer homology and embedded contact homology III: from hat to plus, Publ. Math. Inst. Hautes Études Sci., (2024). | DOI | MR | Numdam
[Abb1.] Finite energy surfaces and the chord problem, Duke Math. J., Volume 96 (1999), pp. 241-316 | MR | Zbl | DOI
[Abb2.] An Introduction to Compactness Results in Symplectic Field Theory, Springer, Heidelberg, 2014 | MR | Zbl | DOI
[Abo.] A geometric criterion for generating the Fukaya category, Publ. Math. Inst. Hautes Études Sci., Volume 112 (2010), pp. 191-240 | MR | Numdam | Zbl | DOI
[BEHWZ.] Compactness results in symplectic field theory, Geom. Topol., Volume 7 (2003), pp. 799-888 | MR | Zbl | DOI
[CV.] First steps in stable Hamiltonian topology, J. Eur. Math. Soc. (JEMS), Volume 17 (2015), pp. 321-404 | MR | Zbl | DOI
[CGH1.] Equivalence of Heegaard Floer homology and embedded contact homology via open book decompositions, Proc. Natl. Acad. Sci., Volume 108 (2011), pp. 8101-8105 | MR | Zbl | DOI
[CHL.] On the flux of pseudo-Anosov homeomorphisms, Algebr. Geom. Topol., Volume 8 (2008), pp. 2147-2160 | MR | Zbl | DOI
[DS.] Lefschetz pencils and the canonical class for symplectic four-manifolds, Topology, Volume 42 (2003), pp. 743-785 | MR | Zbl | DOI
[Dr.] Fredholm theory and transversality for noncompact pseudoholomorphic maps in symplectizations, Comm. Pure Appl. Math., Volume 57 (2004), pp. 726-763 | MR | Zbl | DOI
[EGH.] Y. Eliashberg, A. Givental and H. Hofer, Introduction to symplectic field theory, GAFA 2000, Geom. Funct. Anal., Special Volume, Part II (2000), 560–673. | MR
[Frau.] U. Frauenfelder, Floer homology of symplectic quotients and the Arnold-Givental conjecture, PhD Thesis, ETH, Zürich, 2003. | MR
[Gh.] Knot Floer homology detects genus-one fibred knots, Amer. J. Math., Volume 130 (2008), pp. 1151-1169 | MR | Zbl | DOI
[Gi.] Géométrie de contact: de la dimension trois vers les dimensions supérieures, Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002), Higher Ed. Press, Beijing, 2002, pp. 405-414 | MR | Zbl
[Ho.] Pseudoholomorphic curves in symplectizations with applications to the Weinstein conjecture in dimension three, Invent. Math., Volume 114 (1993), pp. 515-563 | MR | Zbl | DOI
[HLS.] On genericity for holomorphic curves in four-dimensional almost complex manifolds, J. Geom. Anal., Volume 7 (1997), pp. 149-159 | MR | DOI | Zbl
[HWZ1.] Properties of pseudoholomorphic curves in symplectisations. I. Asymptotics, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 13 (1996), pp. 337-379 | MR | Numdam | Zbl | DOI
[HWZ2.] Properties of pseudoholomorphic curves in symplectisation. IV. Asymptotics with degeneracies, Contact and Symplectic Geometry, Volume 8 (1996), pp. 78-117 | MR | Zbl
[HKM.] On the contact class in Heegaard Floer homology, J. Differential Geom., Volume 83 (2009), pp. 289-311 | MR | Zbl | DOI
[Hu1.] An index inequality for embedded pseudoholomorphic curves in symplectizations, J. Eur. Math. Soc. (JEMS), Volume 4 (2002), pp. 313-361 | MR | Zbl | DOI
[Hu2.] The embedded contact homology index revisited, new perspectives and challenges in symplectic field theory, CRM Proc. Lecture Notes, 49, Am. Math. Soc., Providence, 2009, pp. 263-297 | MR | Zbl | DOI
[Hu3.] Lecture notes on embedded contact homology, Contact and Symplectic Topology, 26, 2004 | Zbl
[HS1.] The periodic Floer homology of a Dehn twist, Algebr. Geom. Topol., Volume 5 (2005), pp. 301-354 | MR | Zbl | DOI
[HS2.] Rounding corners of polygons and the embedded contact homology of , Geom. Topol., Volume 10 (2006), pp. 169-266 (electronic) | MR | Zbl | DOI
[HT1.] Gluing pseudoholomorphic curves along branched covered cylinders I, J. Symplectic Geom., Volume 5 (2007), pp. 43-137 | MR | Zbl | DOI
[HT2.] Gluing pseudoholomorphic curves along branched covered cylinders II, J. Symplectic Geom., Volume 7 (2009), pp. 29-133 | MR | DOI | Zbl
[HT3.] Proof of the Arnold chord conjecture in three dimensions I, Math. Res. Lett., Volume 18 (2011), pp. 295-313 | MR | Zbl | DOI
[HT4.] Proof of the Arnold chord conjecture in three dimensions II, Geom. Topol., Volume 17 (2013), pp. 2601-2688 | MR | Zbl | DOI
[IP.] Relative Gromov-Witten invariants, Ann. of Math. (2), Volume 157 (2003), pp. 45-96 | MR | Zbl | DOI
[KrM.] Monopoles and Three-Manifolds, 10, Cambridge University Press, Cambridge, 2007 | MR | Zbl | DOI
[KMOS.] Monopoles and lens space surgeries, Ann. of Math. (2), Volume 165 (2007), pp. 457-546 | MR | Zbl | DOI
[KLT1.] HF=HM I: Heegaard Floer homology and Seiberg-Witten Floer homology, Geom. Topol., Volume 24 (2020), pp. 2829-2854 | MR | Zbl | DOI
[KLT2.] HF=HM II: Reeb orbits and holomorphic curves for the ech/Heegaard-Floer correspondence, Geom. Topol., Volume 24 (2020), pp. 2855-3012 | MR | Zbl | DOI
[KLT3.] HF=HM III: holomorphic curves and the differential for the ech/Heegaard Floer correspondence, Geom. Topol., Volume 24 (2020), pp. 3013-3218 | MR | Zbl | DOI
[KLT4.] HF=HM IV: the Seiberg-Witten Floer homology and ech correspondence, Geom. Topol., Volume 24 (2020), pp. 3219-3469 | MR | Zbl | DOI
[KLT5.] HF=HM V: Seiberg-Witten-Floer homology and handle addition, Geom. Topol., Volume 24 (2020), pp. 3471-3748 | MR | Zbl | DOI
[LT.] Periodic Floer homology and Seiberg-Witten Floer cohomology, J. Symplectic Geom., Volume 10 (2012), pp. 81-164 | MR | Zbl | DOI
[Li.] A cylindrical reformulation of Heegaard Floer homology, Geom. Topol., Volume 10 (2006), pp. 955-1097 | MR | DOI | Zbl
[Li2.] Correction to the article: a cylindrical reformulation of Heegaard Floer homology, Geom. Topol., Volume 18 (2014), pp. 17-30 | MR | Zbl | DOI
[M.] Singularities and positivity of intersections of -holomorphic curves, Holomorphic Curves in Symplectic Geometry, 117, Birkhäuser, Basel, 1994, pp. 191-215 (With an appendix by Gang Liu) | MR | DOI
[MS.] -Holomorphic Curves and Symplectic Topology, 52, Am. Math. Soc., Providence, 2004 | MR | Zbl
[MW.] The structure of branch points in minimal surfaces and in pseudoholomorphic curves, Ann. of Math. (2), Volume 141 (1995), pp. 35-85 | MR | Zbl | DOI
[Ni.] Knot Floer homology detects fibred knots, Invent. Math., Volume 170 (2007), pp. 577-608 | MR | Zbl | DOI
[OSz1.] Holomorphic disks and topological invariants for closed three-manifolds, Ann. of Math. (2), Volume 159 (2004), pp. 1027-1158 | MR | Zbl | DOI
[OSz2.] Holomorphic disks and three-manifold invariants: properties and applications, Ann. of Math. (2), Volume 159 (2004), pp. 1159-1245 | MR | Zbl | DOI
[Po.] Floer homology, Novikov rings and clean intersections, Northern California Symplectic Geometry Seminar, Amer. Math. Soc. Transl. Ser. 2, Volume 196 (1999), pp. 119-181 | MR | Zbl
[Ra.] J. Rasmussen, Floer homology and knot complements, Ph.D. thesis, 2003, | arXiv | MR
[Ru.] Real and Complex Analysis, McGraw-Hill, New York, 1987 | MR | Zbl
[SW.] An algorithm for computing some Heegaard Floer homologies, Ann. of Math. (2), Volume 171 (2010), pp. 1213-1236 | MR | Zbl | DOI
[Schm.] F. Schmäschke, Floer homology of Lagrangians in clean intersection, preprint (2016), | arXiv
[Se1.] A long exact sequence for symplectic Floer cohomology, Topology, Volume 42 (2003), pp. 1003-1063 | MR | DOI | Zbl
[Se2.] Fukaya Categories and Picard-Lefschetz Theory, European Mathematical Society (EMS), Zürich, 2008 | DOI | Zbl
[T1.] The Seiberg-Witten equations and the Weinstein conjecture, Geom. Topol., Volume 11 (2007), pp. 2117-2202 | MR | Zbl | DOI
[T2.] Embedded contact homology and Seiberg-Witten Floer cohomology I–V, Geom. Topol., Volume 14 (2010), pp. 2497-3000 | MR | Zbl | DOI
[T3.] The structure of pseudoholomorphic subvarieties for a degenerate almost complex structure and symplectic form on , Geom. Topol., Volume 2 (1998), pp. 221-332 | MR | DOI | Zbl
[TW.] On the existence of contact forms, Proc. Amer. Math. Soc., Volume 52 (1975), pp. 345-347 | MR | DOI | Zbl
[Wa1.] On the higher derivatives at the boundary in conformal mapping, Trans. Amer. Math. Soc., Volume 38 (1935), pp. 310-340 | MR | DOI | Zbl
[Wa2.] On differentiability at the boundary in conformal mapping, Proc. Amer. Math. Soc., Volume 12 (1961), pp. 614-620 | MR | DOI | Zbl
[We1.] Finite energy foliations on overtwisted contact manifolds, Geom. Topol., Volume 12 (2008), pp. 531-616 | MR | DOI | Zbl
[We2.] Automatic transversality and orbifolds of punctured holomorphic curves in dimension four, Comment. Math. Helv., Volume 85 (2010), pp. 347-407 | MR | Zbl | DOI
[We3.] C. Wendl, Punctured holomorphic curves with boundary on 3-manifolds: Fredholm theory and embeddedness, to appear.
Cited by Sources: