Suppose that ℳ is an almost calibrated, exact, ancient solution of Lagrangian mean curvature flow in . We show that if ℳ has a blow-down given by the static union of two Lagrangian subspaces with distinct Lagrangian angles that intersect along a line, then ℳ is a translator. In particular in , all almost calibrated, exact, ancient solutions of Lagrangian mean curvature flow with entropy less than 3 are special Lagrangian, a union of planes, or translators.
Accepted:
Online First:
Published online:
DOI: 10.1007/s10240-023-00143-5
Jason D. Lotay 1; Felix Schulze 1; Gábor Székelyhidi 1
@article{PMIHES_2024__140__1_0,
author = {Jason D. Lotay and Felix Schulze and G\'abor Sz\'ekelyhidi},
title = {Ancient solutions and translators of {Lagrangian} mean curvature flow},
journal = {Publications Math\'ematiques de l'IH\'ES},
pages = {1--35},
year = {2024},
publisher = {Springer International Publishing},
address = {Cham},
volume = {140},
doi = {10.1007/s10240-023-00143-5},
mrnumber = {4824746},
zbl = {1560.53077},
language = {en},
url = {https://pmihes.centre-mersenne.org/articles/10.1007/s10240-023-00143-5/}
}
TY - JOUR AU - Jason D. Lotay AU - Felix Schulze AU - Gábor Székelyhidi TI - Ancient solutions and translators of Lagrangian mean curvature flow JO - Publications Mathématiques de l'IHÉS PY - 2024 SP - 1 EP - 35 VL - 140 PB - Springer International Publishing PP - Cham UR - https://pmihes.centre-mersenne.org/articles/10.1007/s10240-023-00143-5/ DO - 10.1007/s10240-023-00143-5 LA - en ID - PMIHES_2024__140__1_0 ER -
%0 Journal Article %A Jason D. Lotay %A Felix Schulze %A Gábor Székelyhidi %T Ancient solutions and translators of Lagrangian mean curvature flow %J Publications Mathématiques de l'IHÉS %D 2024 %P 1-35 %V 140 %I Springer International Publishing %C Cham %U https://pmihes.centre-mersenne.org/articles/10.1007/s10240-023-00143-5/ %R 10.1007/s10240-023-00143-5 %G en %F PMIHES_2024__140__1_0
Jason D. Lotay; Felix Schulze; Gábor Székelyhidi. Ancient solutions and translators of Lagrangian mean curvature flow. Publications Mathématiques de l'IHÉS, Volume 140 (2024), pp. 1-35. doi: 10.1007/s10240-023-00143-5
[1.] Gaussian Measures, 62, Am. Math. Soc., Providence, 1998 | MR | Zbl | DOI
[2.] Ancient solutions to the Ricci flow in dimension 3, Acta Math., Volume 225 (2020), pp. 1-102 | MR | Zbl | DOI
[3.] Uniqueness of convex ancient solutions to mean curvature flow in , Invent. Math., Volume 217 (2019), pp. 35-76 | MR | Zbl | DOI
[4.] Ancient low entropy flows, mean convex neighborhoods, and uniqueness, Acta Math., Volume 228 (2022), pp. 217-301 | MR | Zbl | DOI
[5.] Ancient asymptotically cylindrical flows and applications, Invent. Math., Volume 229 (2022), pp. 139-241 | MR | Zbl | DOI
[6.] Harmonic functions with polynomial growth, J. Differ. Geom., Volume 46 (1997), pp. 1-77 | MR | Zbl | DOI
[7.] Generic mean curvature flow I: generic singularities, Ann. Math. (2), Volume 175 (2012), pp. 755-833 | MR | Zbl | DOI
[8.] Complexity of parabolic systems, Publ. Math. Inst. Hautes Études Sci., Volume 132 (2020), pp. 83-135 | MR | Numdam | Zbl | DOI
[9.] Parabolic frequency on manifolds, Int. Math. Res. Not., Volume 2022 (2022), pp. 11878-11890 | MR | Zbl | DOI
[10.] Classification of compact ancient solutions to the curve shortening flow, J. Differ. Geom., Volume 84 (2010), pp. 455-464 | MR | Zbl | DOI
[11.] An existence theorem of harmonic functions with polynomial growth, Proc. Am. Math. Soc., Volume 132 (2004), pp. 543-551 | MR | Zbl | DOI
[12.] Gromov–Hausdorff limits of Kähler manifolds and algebraic geometry, II, J. Differ. Geom., Volume 107 (2017), pp. 327-371 | MR | Zbl | DOI
[13.] Logarithmic Sobolev inequalities on submanifolds of Euclidean space, J. Reine Angew. Math., Volume 522 (2000), pp. 105-118 | MR | Zbl
[14.] Regularity Theory for Mean Curvature Flow, 57, Birkhäuser Boston, Boston, 2004 | MR | Zbl | DOI
[15.] Mean curvature evolution of entire graphs, Ann. Math. (2), Volume 130 (1989), pp. 453-471 | MR | Zbl | DOI
[16.] Galois symmetry on Floer cohomology, Turk. J. Math., Volume 27 (2003), pp. 11-32 | MR | Zbl
[17.] Harnack estimate for the mean curvature flow, J. Differ. Geom., Volume 41 (1995), pp. 215-226 | MR | Zbl | DOI
[18.] Asymptotic behavior for singularities of the mean curvature flow, J. Differ. Geom., Volume 31 (1990), pp. 285-299 | MR | Zbl | DOI
[19.] On short time existence for the planar network flow, J. Differ. Geom., Volume 111 (2019), pp. 39-89 | MR | Zbl | DOI
[20.] Conjectures on Bridgeland stability for Fukaya categories of Calabi-Yau manifolds, special Lagrangians, and Lagrangian mean curvature flow, EMS Surv. Math. Sci., Volume 2 (2015), pp. 1-62 | MR | Zbl | DOI
[21.] Self-similar solutions and translating solitons for Lagrangian mean curvature flow, J. Differ. Geom., Volume 84 (2010), pp. 127-161 | MR | Zbl | DOI
[22.] Ancient solutions in Lagrangian mean curvature flow, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 22 (2021), pp. 1169-1205 | MR | Zbl
[23.] Singularities of Lagrangian mean curvature flow: zero-Maslov class case, Invent. Math., Volume 168 (2007), pp. 449-484 | MR | Zbl | DOI
[24.] Recent Progress on Singularities of Lagrangian Mean Curvature Flow, Surveys in Geometric Analysis and Relativity, 20, Int. Press, Somerville, 2011, pp. 413-438 | MR | Zbl
[25.] Asymptotics for a class of nonlinear evolution equations, with applications to geometric problems, Ann. Math. (2), Volume 118 (1983), pp. 525-571 | MR | Zbl | DOI
[26.] K. Smoczyk, A canonical way to deform a Lagrangian submanifold, | arXiv
[27.] Moment maps, monodromy and mirror manifolds, Symplectic Geometry and Mirror Symmetry (2001), pp. 467-498 | MR | Zbl | DOI
[28.] Special Lagrangians, stable bundles and mean curvature flow, Commun. Anal. Geom., Volume 10 (2002), pp. 1075-1113 | MR | Zbl | DOI
Cited by Sources: