Article
Ancient solutions and translators of Lagrangian mean curvature flow
Publications Mathématiques de l'IHÉS, Volume 140 (2024), pp. 1-35

Suppose that ℳ is an almost calibrated, exact, ancient solution of Lagrangian mean curvature flow in 𝐂 n . We show that if ℳ has a blow-down given by the static union of two Lagrangian subspaces with distinct Lagrangian angles that intersect along a line, then ℳ is a translator. In particular in 𝐂 2 , all almost calibrated, exact, ancient solutions of Lagrangian mean curvature flow with entropy less than 3 are special Lagrangian, a union of planes, or translators.

Received:
Accepted:
Online First:
Published online:
DOI: 10.1007/s10240-023-00143-5

Jason D. Lotay 1; Felix Schulze 1; Gábor Székelyhidi 1

1
@article{PMIHES_2024__140__1_0,
     author = {Jason D. Lotay and Felix Schulze and G\'abor Sz\'ekelyhidi},
     title = {Ancient solutions and translators of {Lagrangian} mean curvature flow},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {1--35},
     year = {2024},
     publisher = {Springer International Publishing},
     address = {Cham},
     volume = {140},
     doi = {10.1007/s10240-023-00143-5},
     mrnumber = {4824746},
     zbl = {1560.53077},
     language = {en},
     url = {https://pmihes.centre-mersenne.org/articles/10.1007/s10240-023-00143-5/}
}
TY  - JOUR
AU  - Jason D. Lotay
AU  - Felix Schulze
AU  - Gábor Székelyhidi
TI  - Ancient solutions and translators of Lagrangian mean curvature flow
JO  - Publications Mathématiques de l'IHÉS
PY  - 2024
SP  - 1
EP  - 35
VL  - 140
PB  - Springer International Publishing
PP  - Cham
UR  - https://pmihes.centre-mersenne.org/articles/10.1007/s10240-023-00143-5/
DO  - 10.1007/s10240-023-00143-5
LA  - en
ID  - PMIHES_2024__140__1_0
ER  - 
%0 Journal Article
%A Jason D. Lotay
%A Felix Schulze
%A Gábor Székelyhidi
%T Ancient solutions and translators of Lagrangian mean curvature flow
%J Publications Mathématiques de l'IHÉS
%D 2024
%P 1-35
%V 140
%I Springer International Publishing
%C Cham
%U https://pmihes.centre-mersenne.org/articles/10.1007/s10240-023-00143-5/
%R 10.1007/s10240-023-00143-5
%G en
%F PMIHES_2024__140__1_0
Jason D. Lotay; Felix Schulze; Gábor Székelyhidi. Ancient solutions and translators of Lagrangian mean curvature flow. Publications Mathématiques de l'IHÉS, Volume 140 (2024), pp. 1-35. doi: 10.1007/s10240-023-00143-5

[1.] V. I. Bogachev Gaussian Measures, 62, Am. Math. Soc., Providence, 1998 | MR | Zbl | DOI

[2.] S. Brendle Ancient solutions to the Ricci flow in dimension 3, Acta Math., Volume 225 (2020), pp. 1-102 | MR | Zbl | DOI

[3.] S. Brendle; K. Choi Uniqueness of convex ancient solutions to mean curvature flow in 𝐑 3 , Invent. Math., Volume 217 (2019), pp. 35-76 | MR | Zbl | DOI

[4.] K. Choi; R. Haslhofer; O. Hershkovits Ancient low entropy flows, mean convex neighborhoods, and uniqueness, Acta Math., Volume 228 (2022), pp. 217-301 | MR | Zbl | DOI

[5.] K. Choi; R. Haslhofer; O. Hershkovits; B. White Ancient asymptotically cylindrical flows and applications, Invent. Math., Volume 229 (2022), pp. 139-241 | MR | Zbl | DOI

[6.] T. H. Colding; W. P. Minicozzi Harmonic functions with polynomial growth, J. Differ. Geom., Volume 46 (1997), pp. 1-77 | MR | Zbl | DOI

[7.] T. H. Colding; W. P. Minicozzi Generic mean curvature flow I: generic singularities, Ann. Math. (2), Volume 175 (2012), pp. 755-833 | MR | Zbl | DOI

[8.] T. H. Colding; W. P. Minicozzi Complexity of parabolic systems, Publ. Math. Inst. Hautes Études Sci., Volume 132 (2020), pp. 83-135 | MR | Numdam | Zbl | DOI

[9.] T. H. Colding; W. P. Minicozzi Parabolic frequency on manifolds, Int. Math. Res. Not., Volume 2022 (2022), pp. 11878-11890 | MR | Zbl | DOI

[10.] P. Daskalopoulos; R. Hamilton; N. Sesum Classification of compact ancient solutions to the curve shortening flow, J. Differ. Geom., Volume 84 (2010), pp. 455-464 | MR | Zbl | DOI

[11.] Y. Ding An existence theorem of harmonic functions with polynomial growth, Proc. Am. Math. Soc., Volume 132 (2004), pp. 543-551 | MR | Zbl | DOI

[12.] S. Donaldson; S. Sun Gromov–Hausdorff limits of Kähler manifolds and algebraic geometry, II, J. Differ. Geom., Volume 107 (2017), pp. 327-371 | MR | Zbl | DOI

[13.] K. Ecker Logarithmic Sobolev inequalities on submanifolds of Euclidean space, J. Reine Angew. Math., Volume 522 (2000), pp. 105-118 | MR | Zbl

[14.] K. Ecker Regularity Theory for Mean Curvature Flow, 57, Birkhäuser Boston, Boston, 2004 | MR | Zbl | DOI

[15.] K. Ecker; G. Huisken Mean curvature evolution of entire graphs, Ann. Math. (2), Volume 130 (1989), pp. 453-471 | MR | Zbl | DOI

[16.] K. Fukaya Galois symmetry on Floer cohomology, Turk. J. Math., Volume 27 (2003), pp. 11-32 | MR | Zbl

[17.] R. S. Hamilton Harnack estimate for the mean curvature flow, J. Differ. Geom., Volume 41 (1995), pp. 215-226 | MR | Zbl | DOI

[18.] G. Huisken Asymptotic behavior for singularities of the mean curvature flow, J. Differ. Geom., Volume 31 (1990), pp. 285-299 | MR | Zbl | DOI

[19.] T. Ilmanen; A. Neves; F. Schulze On short time existence for the planar network flow, J. Differ. Geom., Volume 111 (2019), pp. 39-89 | MR | Zbl | DOI

[20.] D. Joyce Conjectures on Bridgeland stability for Fukaya categories of Calabi-Yau manifolds, special Lagrangians, and Lagrangian mean curvature flow, EMS Surv. Math. Sci., Volume 2 (2015), pp. 1-62 | MR | Zbl | DOI

[21.] D. Joyce; Y.-I. Lee; M.-P. Tsui Self-similar solutions and translating solitons for Lagrangian mean curvature flow, J. Differ. Geom., Volume 84 (2010), pp. 127-161 | MR | Zbl | DOI

[22.] B. Lambert; J. D. Lotay; F. Schulze Ancient solutions in Lagrangian mean curvature flow, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 22 (2021), pp. 1169-1205 | MR | Zbl

[23.] A. Neves Singularities of Lagrangian mean curvature flow: zero-Maslov class case, Invent. Math., Volume 168 (2007), pp. 449-484 | MR | Zbl | DOI

[24.] A. Neves Recent Progress on Singularities of Lagrangian Mean Curvature Flow, Surveys in Geometric Analysis and Relativity, 20, Int. Press, Somerville, 2011, pp. 413-438 | MR | Zbl

[25.] L. Simon Asymptotics for a class of nonlinear evolution equations, with applications to geometric problems, Ann. Math. (2), Volume 118 (1983), pp. 525-571 | MR | Zbl | DOI

[26.] K. Smoczyk, A canonical way to deform a Lagrangian submanifold, | arXiv

[27.] R. P. Thomas Moment maps, monodromy and mirror manifolds, Symplectic Geometry and Mirror Symmetry (2001), pp. 467-498 | MR | Zbl | DOI

[28.] R. P. Thomas; S.-T. Yau Special Lagrangians, stable bundles and mean curvature flow, Commun. Anal. Geom., Volume 10 (2002), pp. 1075-1113 | MR | Zbl | DOI

Cited by Sources: