Article
Two dimensional neighborhoods of elliptic curves: analytic classification in the torsion case
Publications Mathématiques de l'IHÉS, Volume 136 (2022), pp. 149-224

We investigate the analytic classification of two dimensional neighborhoods of an elliptic curve with torsion normal bundle. We provide the complete analytic classification for those neighborhoods in the simplest formal class and we indicate how to generalize this construction to general torsion case.

Received:
Accepted:
Online First:
Published online:
DOI: 10.1007/s10240-022-00133-z

Frank Loray 1; Frédéric Touzet 1; Sergei M. Voronin 1

1
@article{PMIHES_2022__136__149_0,
     author = {Frank Loray and Fr\'ed\'eric Touzet and Sergei M. Voronin},
     title = {Two dimensional neighborhoods of elliptic curves: analytic classification in the torsion case},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {149--224},
     year = {2022},
     publisher = {Springer International Publishing},
     address = {Cham},
     volume = {136},
     doi = {10.1007/s10240-022-00133-z},
     mrnumber = {4517646},
     zbl = {1510.32026},
     language = {en},
     url = {https://pmihes.centre-mersenne.org/articles/10.1007/s10240-022-00133-z/}
}
TY  - JOUR
AU  - Frank Loray
AU  - Frédéric Touzet
AU  - Sergei M. Voronin
TI  - Two dimensional neighborhoods of elliptic curves: analytic classification in the torsion case
JO  - Publications Mathématiques de l'IHÉS
PY  - 2022
SP  - 149
EP  - 224
VL  - 136
PB  - Springer International Publishing
PP  - Cham
UR  - https://pmihes.centre-mersenne.org/articles/10.1007/s10240-022-00133-z/
DO  - 10.1007/s10240-022-00133-z
LA  - en
ID  - PMIHES_2022__136__149_0
ER  - 
%0 Journal Article
%A Frank Loray
%A Frédéric Touzet
%A Sergei M. Voronin
%T Two dimensional neighborhoods of elliptic curves: analytic classification in the torsion case
%J Publications Mathématiques de l'IHÉS
%D 2022
%P 149-224
%V 136
%I Springer International Publishing
%C Cham
%U https://pmihes.centre-mersenne.org/articles/10.1007/s10240-022-00133-z/
%R 10.1007/s10240-022-00133-z
%G en
%F PMIHES_2022__136__149_0
Frank Loray; Frédéric Touzet; Sergei M. Voronin. Two dimensional neighborhoods of elliptic curves: analytic classification in the torsion case. Publications Mathématiques de l'IHÉS, Volume 136 (2022), pp. 149-224. doi: 10.1007/s10240-022-00133-z

[1.] V. I. Arnol’d Bifurcations of invariant manifolds of differential equations, and normal forms of neighborhoods of elliptic curves, Funkc. Anal. Prilož., Volume 10 (1976), pp. 1-12 | MR | Zbl

[2.] M. F. Atiyah Complex fibre bundles and ruled surfaces, Trans. Am. Math. Soc., Volume 85 (1957), pp. 181-207 | DOI | Zbl

[3.] B. Claudon; F. Loray; J. V. Pereira; F. Touzet Compact leaves of codimension one holomorphic foliations on projective manifolds, Ann. Sci. Éc. Norm. Supér., Volume 51 (2018), pp. 1457-1506 | MR | DOI | Zbl | Numdam

[4.] J. Écalle Les fonctions résurgentes. Tome I. Les algèbres de fonctions résurgentes, 81, Université de Paris-Sud, Département de Mathématique, Orsay, 1981, p. 5 (247 pp.) | Zbl | MR

[5.] J. Écalle Les fonctions résurgentes. Tome II. Les fonctions résurgentes appliquées à l’itération, 81, Université de Paris-Sud, Département de Mathématique, Orsay, 1981, p. 6 (pp. 248–531) | Zbl | MR

[6.] M. Falla Luza and F. Loray, Projective structures and neighborhoods of rational curves, | arXiv

[7.] X. Gong and L. Stolovitch, Equivalence of neighborhoods of embedded compact complex manifolds and higher codimension foliations, | arXiv

[8.] H. Grauert Über Modifikationen und exzeptionelle analytische Mengen, Math. Ann., Volume 146 (1962), pp. 331-368 | MR | DOI | Zbl

[9.] R. Hartshorne Ample Subvarieties of Algebraic Varieties, 156, Springer, Berlin, 1970, p. xiv+256 pp. (notes written in collaboration with C. Musili) | MR | Zbl

[10.] J.-M. Hwang An application of Cartan’s equivalence method to Hirschowitz’s conjecture on the formal principle, Ann. Math., Volume 189 (2019), pp. 979-1000 | MR | DOI | Zbl

[11.] Y. S. Il’yashenko Imbeddings of positive type of elliptic curves into complex surfaces, Tr. Mosk. Mat. Obŝ., Volume 45 (1982), pp. 37-67 | MR | Zbl

[12.] K. Kodaira A theorem of completeness of characteristic systems for analytic families of compact submanifolds of complex manifolds, Ann. Math., Volume 75 (1962), pp. 146-162 | MR | DOI | Zbl

[13.] T. Koike Higher codimensional Ueda theory for a compact submanifold with unitary flat normal bundle, Nagoya Math. J., Volume 238 (2020), pp. 104-136 | MR | DOI | Zbl

[14.] F. Loray Pseudo-groupe d’une singularité de feuilletage holomorphe en dimension deux, Ens. Mat. (Soc. Bras. Mat.), Volume 36 (2021), pp. 53-274 | Zbl | MR

[15.] F. Loray; O. Thom; F. Touzet Two dimensional neighborhoods of elliptic curves: formal classification and foliations, Mosc. Math. J., Volume 19 (2019), pp. 1-36 | MR | Zbl

[16.] B. Malgrange Travaux d’Écalle et de Martinet-Ramis sur les systèmes dynamiques, Astérisque, Volume 92 (1982), pp. 59-73 (Bourbaki Seminar, Vol. 1981/1982) | Zbl | MR | Numdam

[17.] J. Martinet; J.-P. Ramis Problèmes de modules pour des équations différentielles non linéaires du premier ordre, Publ. Math. Inst. Hautes Études Sci., Volume 55 (1982), pp. 63-164 | Zbl | MR | Numdam | DOI

[18.] J. Martinet; J.-P. Ramis Classification analytique des équations différentielles non linéaires résonnantes du premier ordre, Ann. Sci. Éc. Norm. Supér. (4), Volume 16 (1983), pp. 571-621 | DOI | Zbl | MR | Numdam

[19.] M. B. Mishustin Neighborhoods of the Riemann sphere in complex surfaces, Funkc. Anal. Prilozh., Volume 27 (1993), pp. 29-41 | MR | Zbl

[20.] M. B. Mishustin Neighborhoods of Riemann curves in complex surfaces, Funkc. Anal. Prilozh., Volume 29 (1995), pp. 25-40 | MR | Zbl

[21.] M. B. Mishustin On foliations in neighborhoods of elliptic curves, Arnold Math. J., Volume 2 (2016), pp. 195-199 | MR | DOI | Zbl

[22.] A. Neeman Ueda Theory: Theorems and Problems, 81, 1989 (vi+123 pp.) | Zbl | MR

[23.] J. V. Pereira and O. Thom, On the formal principle for curves on projective surfaces, | arXiv

[24.] R. Pérez Marco Solution complète au problème de Siegel de linéarisation d’une application holomorphe au voisinage d’un point fixe (d’après J.-C. Yoccoz), Astérisque, Volume 206 (1992), pp. 273-310 (Séminaire Bourbaki, Vol. 1991/92) | Zbl | MR | Numdam

[25.] V. I. Savel'ev Zero-type embeddings of the sphere into complex surfaces, Mosc. Univ. Math. Bull., Volume 37 (1982), pp. 34-39 | Zbl

[26.] B. V. Shabat Introduction to Complex Analysis. Part II. Functions of Several Variables, 110, Am. Math. Soc., Providence, 1992 Translated from the third (1985) Russian edition by J. S. Joel | Zbl | MR

[27.] P. A. Shaĭkhullina; S. M. Voronin Functional invariants of typical germs of semihyperbolic mappings, Chelyab. Fiz.-Mat. Zh., Volume 2 (2017), pp. 447-455 | MR | Zbl

[28.] C. Simpson The dual boundary complex of the SL 2 character variety of a punctured sphere, Ann. Fac. Sci. Toulouse Math., Volume 25 (2016), pp. 317-361 | MR | DOI | Zbl

[29.] Y. T. Siu, Every Stein subvariety admits a Stein neighborhood, Invent. Math., 38 (1976/77), 89–100. | MR

[30.] L. Teyssier Analytical classification of singular saddle-node vector fields, J. Dyn. Control Syst., Volume 10 (2004), pp. 577-605 | MR | DOI | Zbl

[31.] O. Thom, Formal classification of two-dimensional neighborhoods of genus g2 curves with trivial normal bundle, | arXiv

[32.] T. Ueda Compactifications of 𝐂×𝐂 * and (𝐂 * ) 2 , Tohoku Math. J., Volume 31 (1979), pp. 81-90 | MR | Zbl | DOI

[33.] T. Ueda, On the neighborhood of a compact complex curve with topologically trivial normal bundle, J. Math. Kyoto Univ., 22 (1982/83), 583–607. | MR

[34.] T. Ueda Local structure of analytic transformations of two complex variables. I, J. Math. Kyoto Univ., Volume 26 (1986), pp. 233-261 | MR | Zbl

[35.] T. Ueda Local structure of analytic transformations of two complex variables. II, J. Math. Kyoto Univ., Volume 31 (1991), pp. 695-711 | MR | Zbl

[36.] S. M. Voronin Analytic classification of germs of conformal mappings (𝐂,0)(𝐂,0), Funkc. Anal. Prilozh., Volume 15 (1981), pp. 1-17 | MR | DOI | Zbl

[37.] S. M. Voronin; Yu. I. Meshcheryakova Analytic classification of germs of holomorphic vector fields with a degenerate elementary singular point, Vestnik Chelyab. Univ. Ser. 3 Mat. Mekh. Inform., Volume 3 (2003), pp. 16-41 | MR

[38.] S. M. Voronin; P. A. Fomina Sectorial normalization of semihyperbolic mappings, Vestn. Chelyab. Gos. Univ. Mat. Mekh. Inform., Volume 28 (2013), pp. 94-113 132 (Russian) | MR

[39.] J.-C. Yoccoz Théorème de Siegel, nombres de Bruno et polynômes quadratiques, Petits diviseurs en dimension 1, Astérisque, Volume 231 (1995), pp. 3-88 | MR | Numdam

Cited by Sources: