We investigate the analytic classification of two dimensional neighborhoods of an elliptic curve with torsion normal bundle. We provide the complete analytic classification for those neighborhoods in the simplest formal class and we indicate how to generalize this construction to general torsion case.
Accepted:
Online First:
Published online:
DOI: 10.1007/s10240-022-00133-z
Frank Loray 1; Frédéric Touzet 1; Sergei M. Voronin 1
@article{PMIHES_2022__136__149_0,
author = {Frank Loray and Fr\'ed\'eric Touzet and Sergei M. Voronin},
title = {Two dimensional neighborhoods of elliptic curves: analytic classification in the torsion case},
journal = {Publications Math\'ematiques de l'IH\'ES},
pages = {149--224},
year = {2022},
publisher = {Springer International Publishing},
address = {Cham},
volume = {136},
doi = {10.1007/s10240-022-00133-z},
mrnumber = {4517646},
zbl = {1510.32026},
language = {en},
url = {https://pmihes.centre-mersenne.org/articles/10.1007/s10240-022-00133-z/}
}
TY - JOUR AU - Frank Loray AU - Frédéric Touzet AU - Sergei M. Voronin TI - Two dimensional neighborhoods of elliptic curves: analytic classification in the torsion case JO - Publications Mathématiques de l'IHÉS PY - 2022 SP - 149 EP - 224 VL - 136 PB - Springer International Publishing PP - Cham UR - https://pmihes.centre-mersenne.org/articles/10.1007/s10240-022-00133-z/ DO - 10.1007/s10240-022-00133-z LA - en ID - PMIHES_2022__136__149_0 ER -
%0 Journal Article %A Frank Loray %A Frédéric Touzet %A Sergei M. Voronin %T Two dimensional neighborhoods of elliptic curves: analytic classification in the torsion case %J Publications Mathématiques de l'IHÉS %D 2022 %P 149-224 %V 136 %I Springer International Publishing %C Cham %U https://pmihes.centre-mersenne.org/articles/10.1007/s10240-022-00133-z/ %R 10.1007/s10240-022-00133-z %G en %F PMIHES_2022__136__149_0
Frank Loray; Frédéric Touzet; Sergei M. Voronin. Two dimensional neighborhoods of elliptic curves: analytic classification in the torsion case. Publications Mathématiques de l'IHÉS, Volume 136 (2022), pp. 149-224. doi: 10.1007/s10240-022-00133-z
[1.] Bifurcations of invariant manifolds of differential equations, and normal forms of neighborhoods of elliptic curves, Funkc. Anal. Prilož., Volume 10 (1976), pp. 1-12 | MR | Zbl
[2.] Complex fibre bundles and ruled surfaces, Trans. Am. Math. Soc., Volume 85 (1957), pp. 181-207 | DOI | Zbl
[3.] Compact leaves of codimension one holomorphic foliations on projective manifolds, Ann. Sci. Éc. Norm. Supér., Volume 51 (2018), pp. 1457-1506 | MR | DOI | Zbl | Numdam
[4.] Les fonctions résurgentes. Tome I. Les algèbres de fonctions résurgentes, 81, Université de Paris-Sud, Département de Mathématique, Orsay, 1981, p. 5 (247 pp.) | Zbl | MR
[5.] Les fonctions résurgentes. Tome II. Les fonctions résurgentes appliquées à l’itération, 81, Université de Paris-Sud, Département de Mathématique, Orsay, 1981, p. 6 (pp. 248–531) | Zbl | MR
[6.] M. Falla Luza and F. Loray, Projective structures and neighborhoods of rational curves, | arXiv
[7.] X. Gong and L. Stolovitch, Equivalence of neighborhoods of embedded compact complex manifolds and higher codimension foliations, | arXiv
[8.] Über Modifikationen und exzeptionelle analytische Mengen, Math. Ann., Volume 146 (1962), pp. 331-368 | MR | DOI | Zbl
[9.] Ample Subvarieties of Algebraic Varieties, 156, Springer, Berlin, 1970, p. xiv+256 pp. (notes written in collaboration with C. Musili) | MR | Zbl
[10.] An application of Cartan’s equivalence method to Hirschowitz’s conjecture on the formal principle, Ann. Math., Volume 189 (2019), pp. 979-1000 | MR | DOI | Zbl
[11.] Imbeddings of positive type of elliptic curves into complex surfaces, Tr. Mosk. Mat. Obŝ., Volume 45 (1982), pp. 37-67 | MR | Zbl
[12.] A theorem of completeness of characteristic systems for analytic families of compact submanifolds of complex manifolds, Ann. Math., Volume 75 (1962), pp. 146-162 | MR | DOI | Zbl
[13.] Higher codimensional Ueda theory for a compact submanifold with unitary flat normal bundle, Nagoya Math. J., Volume 238 (2020), pp. 104-136 | MR | DOI | Zbl
[14.] Pseudo-groupe d’une singularité de feuilletage holomorphe en dimension deux, Ens. Mat. (Soc. Bras. Mat.), Volume 36 (2021), pp. 53-274 | Zbl | MR
[15.] Two dimensional neighborhoods of elliptic curves: formal classification and foliations, Mosc. Math. J., Volume 19 (2019), pp. 1-36 | MR | Zbl
[16.] Travaux d’Écalle et de Martinet-Ramis sur les systèmes dynamiques, Astérisque, Volume 92 (1982), pp. 59-73 (Bourbaki Seminar, Vol. 1981/1982) | Zbl | MR | Numdam
[17.] Problèmes de modules pour des équations différentielles non linéaires du premier ordre, Publ. Math. Inst. Hautes Études Sci., Volume 55 (1982), pp. 63-164 | Zbl | MR | Numdam | DOI
[18.] Classification analytique des équations différentielles non linéaires résonnantes du premier ordre, Ann. Sci. Éc. Norm. Supér. (4), Volume 16 (1983), pp. 571-621 | DOI | Zbl | MR | Numdam
[19.] Neighborhoods of the Riemann sphere in complex surfaces, Funkc. Anal. Prilozh., Volume 27 (1993), pp. 29-41 | MR | Zbl
[20.] Neighborhoods of Riemann curves in complex surfaces, Funkc. Anal. Prilozh., Volume 29 (1995), pp. 25-40 | MR | Zbl
[21.] On foliations in neighborhoods of elliptic curves, Arnold Math. J., Volume 2 (2016), pp. 195-199 | MR | DOI | Zbl
[22.] Ueda Theory: Theorems and Problems, 81, 1989 (vi+123 pp.) | Zbl | MR
[23.] J. V. Pereira and O. Thom, On the formal principle for curves on projective surfaces, | arXiv
[24.] Solution complète au problème de Siegel de linéarisation d’une application holomorphe au voisinage d’un point fixe (d’après J.-C. Yoccoz), Astérisque, Volume 206 (1992), pp. 273-310 (Séminaire Bourbaki, Vol. 1991/92) | Zbl | MR | Numdam
[25.] Zero-type embeddings of the sphere into complex surfaces, Mosc. Univ. Math. Bull., Volume 37 (1982), pp. 34-39 | Zbl
[26.] Introduction to Complex Analysis. Part II. Functions of Several Variables, 110, Am. Math. Soc., Providence, 1992 Translated from the third (1985) Russian edition by J. S. Joel | Zbl | MR
[27.] Functional invariants of typical germs of semihyperbolic mappings, Chelyab. Fiz.-Mat. Zh., Volume 2 (2017), pp. 447-455 | MR | Zbl
[28.] The dual boundary complex of the character variety of a punctured sphere, Ann. Fac. Sci. Toulouse Math., Volume 25 (2016), pp. 317-361 | MR | DOI | Zbl
[29.] Y. T. Siu, Every Stein subvariety admits a Stein neighborhood, Invent. Math., 38 (1976/77), 89–100. | MR
[30.] Analytical classification of singular saddle-node vector fields, J. Dyn. Control Syst., Volume 10 (2004), pp. 577-605 | MR | DOI | Zbl
[31.] O. Thom, Formal classification of two-dimensional neighborhoods of genus curves with trivial normal bundle, | arXiv
[32.] Compactifications of and , Tohoku Math. J., Volume 31 (1979), pp. 81-90 | MR | Zbl | DOI
[33.] T. Ueda, On the neighborhood of a compact complex curve with topologically trivial normal bundle, J. Math. Kyoto Univ., 22 (1982/83), 583–607. | MR
[34.] Local structure of analytic transformations of two complex variables. I, J. Math. Kyoto Univ., Volume 26 (1986), pp. 233-261 | MR | Zbl
[35.] Local structure of analytic transformations of two complex variables. II, J. Math. Kyoto Univ., Volume 31 (1991), pp. 695-711 | MR | Zbl
[36.] Analytic classification of germs of conformal mappings , Funkc. Anal. Prilozh., Volume 15 (1981), pp. 1-17 | MR | DOI | Zbl
[37.] Analytic classification of germs of holomorphic vector fields with a degenerate elementary singular point, Vestnik Chelyab. Univ. Ser. 3 Mat. Mekh. Inform., Volume 3 (2003), pp. 16-41 | MR
[38.] Sectorial normalization of semihyperbolic mappings, Vestn. Chelyab. Gos. Univ. Mat. Mekh. Inform., Volume 28 (2013), pp. 94-113 132 (Russian) | MR
[39.] Théorème de Siegel, nombres de Bruno et polynômes quadratiques, Petits diviseurs en dimension 1, Astérisque, Volume 231 (1995), pp. 3-88 | MR | Numdam
Cited by Sources: