Article
Singularities of solutions of time dependent Hamilton-Jacobi equations. Applications to Riemannian geometry
Publications Mathématiques de l'IHÉS, Volume 133 (2021), pp. 327-366

If U:[0,+[×M is a uniformly continuous viscosity solution of the evolution Hamilton-Jacobi equation

t U+H(x, x U)=0,
where M is a not necessarily compact manifold, and H is a Tonelli Hamiltonian, we prove the set Σ(U), of points in ]0,+[×M where U is not differentiable, is locally contractible. Moreover, we study the homotopy type of Σ(U). We also give an application to the singularities of the distance function to a closed subset of a complete Riemannian manifold.

Received:
Accepted:
Online First:
Published online:
DOI: 10.1007/s10240-021-00125-5

Piermarco Cannarsa 1; Wei Cheng 1; Albert Fathi 1

1
@article{PMIHES_2021__133__327_0,
     author = {Piermarco Cannarsa and Wei Cheng and Albert Fathi},
     title = {Singularities of solutions of time dependent {Hamilton-Jacobi} equations. {Applications} to {Riemannian} geometry},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {327--366},
     year = {2021},
     publisher = {Springer International Publishing},
     address = {Cham},
     volume = {133},
     doi = {10.1007/s10240-021-00125-5},
     zbl = {1473.35104},
     language = {en},
     url = {https://pmihes.centre-mersenne.org/articles/10.1007/s10240-021-00125-5/}
}
TY  - JOUR
AU  - Piermarco Cannarsa
AU  - Wei Cheng
AU  - Albert Fathi
TI  - Singularities of solutions of time dependent Hamilton-Jacobi equations. Applications to Riemannian geometry
JO  - Publications Mathématiques de l'IHÉS
PY  - 2021
SP  - 327
EP  - 366
VL  - 133
PB  - Springer International Publishing
PP  - Cham
UR  - https://pmihes.centre-mersenne.org/articles/10.1007/s10240-021-00125-5/
DO  - 10.1007/s10240-021-00125-5
LA  - en
ID  - PMIHES_2021__133__327_0
ER  - 
%0 Journal Article
%A Piermarco Cannarsa
%A Wei Cheng
%A Albert Fathi
%T Singularities of solutions of time dependent Hamilton-Jacobi equations. Applications to Riemannian geometry
%J Publications Mathématiques de l'IHÉS
%D 2021
%P 327-366
%V 133
%I Springer International Publishing
%C Cham
%U https://pmihes.centre-mersenne.org/articles/10.1007/s10240-021-00125-5/
%R 10.1007/s10240-021-00125-5
%G en
%F PMIHES_2021__133__327_0
Piermarco Cannarsa; Wei Cheng; Albert Fathi. Singularities of solutions of time dependent Hamilton-Jacobi equations. Applications to Riemannian geometry. Publications Mathématiques de l'IHÉS, Volume 133 (2021), pp. 327-366. doi: 10.1007/s10240-021-00125-5

[1.] P. Albano; P. Cannarsa; K. T. Nguyen; C. Sinestrari Singular gradient flow of the distance function and homotopy equivalence, Math. Ann., Volume 356 (2013), pp. 23-43 | MR | DOI | Zbl

[2.] M. Bardi; I. Capuzzo-Dolcetta Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations, Birkhäuser, Boston, 1997 | DOI | Zbl

[3.] G. Barles Solutions de viscosité des équations de Hamilton-Jacobi, Springer, Paris, 1994 | Zbl

[4.] M. Berger A Panoramic View of Riemannian Geometry, Springer, Berlin, 2003 | Zbl | DOI

[5.] P. Bernard Existence of C 1,1 critical sub-solutions of the Hamilton-Jacobi equation on compact manifolds, Ann. Sci. Éc. Norm. Supér., Volume 40 (2007), pp. 445-452 | DOI | Zbl | Numdam

[6.] G. Buttazzo; M. Giaquinta; S. Hildebrandt One-Dimensional Variational Problems, 15, Oxford Univ. Press, New York, 1998 | Zbl

[7.] P. Cannarsa; R. Peirone Unbounded components of the singular set of the metric projection in 𝐑 n , Trans. Am. Math. Soc., Volume 353 (2001), pp. 4567-4581 | DOI | Zbl

[8.] P. Cannarsa; C. Sinestrari Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control, 58, Birkhäuser, Boston, 2004 | Zbl | DOI

[9.] P. Cannarsa; W. Cheng; A. Fathi On the topology of the set of singularities of a solution to the Hamilton–Jacobi equation (Sur la topologie des singularités d’une solution de l’équation de Hamilton–Jacobi), C. R. Acad. Sci. Paris, Ser. I, Volume 355 (2017), pp. 176-180 | DOI | Zbl

[10.] F. H. Clarke Methods of Dynamic and Nonsmooth Optimization, 57, SIAM, Philadelphia, 1989 | DOI | Zbl

[11.] L. C. Evans Partial Differential Equations, 19, Am. Math. Soc., Providence, 1998 | Zbl

[12.] A. Fathi Regularity of C 1 solutions of Hamilton-Jacobin equation, Ann. Fac. Sci. Toulouse Math., Volume 12 (2003), pp. 479-516 | MR | Numdam | Zbl | DOI

[13.] A. Fathi Weak KAM Theorem in Lagrangian Dynamics, 2005 (Preliminary Version 10)

[14.] A. Fathi Weak KAM from a PDE point of view: viscosity solutions of the Hamilton-Jacobi equation and Aubry set, Proc. R. Soc. Edinb., Sect. A, Volume 120 (2012), pp. 1193-1236 | MR | Zbl | DOI

[15.] A. Fathi, Viscosity solutions of the Hamilton-Jacobi equation on a noncompact manifold, 2020.

[16.] A. Fathi; A. Figalli Optimal transportation on non-compact manifolds, Isr. J. Math., Volume 175 (2010), pp. 1-59 | MR | DOI | Zbl

[17.] A. Fathi; A. Figalli; L. Rifford On the Hausdorff dimension of the Mather quotient, Commun. Pure Appl. Math., Volume 62 (2009), pp. 445-500 | MR | DOI | Zbl

[18.] H. Gluck; D. Singer Scattering of geodesic fields, Ann. Math., Volume 108 (1978), pp. 347-372 | MR | DOI | Zbl

[19.] H. Ishii A short introduction to viscosity solutions and the large time behavior of solutions of Hamilton–Jacobi equations, Y. Achdou et al., Hamilton-Jacobi Equations: Approximations, Numerical Analysis and Applications, 2074, Springer, Berlin, 2013 | Zbl

[20.] W. P. A. Klingenberg Riemannian Geometry, 1, de Gruyter, Berlin, 1995 | DOI | Zbl

[21.] A. Lieutier Any open bounded subset of 𝐑 k has the same homotopy type as its medial axis, Comput. Aided Des., Volume 36 (2004), pp. 1029-1046 | DOI

[22.] M. Zavidovique Strict sub-solutions and Mañé potential in discrete weak KAM theory, Comment. Math. Helv., Volume 87 (2012), pp. 1-39 | MR | DOI | Zbl

Cited by Sources: