If is a uniformly continuous viscosity solution of the evolution Hamilton-Jacobi equation
Accepted:
Online First:
Published online:
DOI: 10.1007/s10240-021-00125-5
Piermarco Cannarsa 1; Wei Cheng 1; Albert Fathi 1
@article{PMIHES_2021__133__327_0,
author = {Piermarco Cannarsa and Wei Cheng and Albert Fathi},
title = {Singularities of solutions of time dependent {Hamilton-Jacobi} equations. {Applications} to {Riemannian} geometry},
journal = {Publications Math\'ematiques de l'IH\'ES},
pages = {327--366},
year = {2021},
publisher = {Springer International Publishing},
address = {Cham},
volume = {133},
doi = {10.1007/s10240-021-00125-5},
zbl = {1473.35104},
language = {en},
url = {https://pmihes.centre-mersenne.org/articles/10.1007/s10240-021-00125-5/}
}
TY - JOUR AU - Piermarco Cannarsa AU - Wei Cheng AU - Albert Fathi TI - Singularities of solutions of time dependent Hamilton-Jacobi equations. Applications to Riemannian geometry JO - Publications Mathématiques de l'IHÉS PY - 2021 SP - 327 EP - 366 VL - 133 PB - Springer International Publishing PP - Cham UR - https://pmihes.centre-mersenne.org/articles/10.1007/s10240-021-00125-5/ DO - 10.1007/s10240-021-00125-5 LA - en ID - PMIHES_2021__133__327_0 ER -
%0 Journal Article %A Piermarco Cannarsa %A Wei Cheng %A Albert Fathi %T Singularities of solutions of time dependent Hamilton-Jacobi equations. Applications to Riemannian geometry %J Publications Mathématiques de l'IHÉS %D 2021 %P 327-366 %V 133 %I Springer International Publishing %C Cham %U https://pmihes.centre-mersenne.org/articles/10.1007/s10240-021-00125-5/ %R 10.1007/s10240-021-00125-5 %G en %F PMIHES_2021__133__327_0
Piermarco Cannarsa; Wei Cheng; Albert Fathi. Singularities of solutions of time dependent Hamilton-Jacobi equations. Applications to Riemannian geometry. Publications Mathématiques de l'IHÉS, Volume 133 (2021), pp. 327-366. doi: 10.1007/s10240-021-00125-5
[1.] Singular gradient flow of the distance function and homotopy equivalence, Math. Ann., Volume 356 (2013), pp. 23-43 | MR | DOI | Zbl
[2.] Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations, Birkhäuser, Boston, 1997 | DOI | Zbl
[3.] Solutions de viscosité des équations de Hamilton-Jacobi, Springer, Paris, 1994 | Zbl
[4.] A Panoramic View of Riemannian Geometry, Springer, Berlin, 2003 | Zbl | DOI
[5.] Existence of critical sub-solutions of the Hamilton-Jacobi equation on compact manifolds, Ann. Sci. Éc. Norm. Supér., Volume 40 (2007), pp. 445-452 | DOI | Zbl | Numdam
[6.] One-Dimensional Variational Problems, 15, Oxford Univ. Press, New York, 1998 | Zbl
[7.] Unbounded components of the singular set of the metric projection in , Trans. Am. Math. Soc., Volume 353 (2001), pp. 4567-4581 | DOI | Zbl
[8.] Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control, 58, Birkhäuser, Boston, 2004 | Zbl | DOI
[9.] On the topology of the set of singularities of a solution to the Hamilton–Jacobi equation (Sur la topologie des singularités d’une solution de l’équation de Hamilton–Jacobi), C. R. Acad. Sci. Paris, Ser. I, Volume 355 (2017), pp. 176-180 | DOI | Zbl
[10.] Methods of Dynamic and Nonsmooth Optimization, 57, SIAM, Philadelphia, 1989 | DOI | Zbl
[11.] Partial Differential Equations, 19, Am. Math. Soc., Providence, 1998 | Zbl
[12.] Regularity of solutions of Hamilton-Jacobin equation, Ann. Fac. Sci. Toulouse Math., Volume 12 (2003), pp. 479-516 | MR | Numdam | Zbl | DOI
[13.] Weak KAM Theorem in Lagrangian Dynamics, 2005 (Preliminary Version 10)
[14.] Weak KAM from a PDE point of view: viscosity solutions of the Hamilton-Jacobi equation and Aubry set, Proc. R. Soc. Edinb., Sect. A, Volume 120 (2012), pp. 1193-1236 | MR | Zbl | DOI
[15.] A. Fathi, Viscosity solutions of the Hamilton-Jacobi equation on a noncompact manifold, 2020.
[16.] Optimal transportation on non-compact manifolds, Isr. J. Math., Volume 175 (2010), pp. 1-59 | MR | DOI | Zbl
[17.] On the Hausdorff dimension of the Mather quotient, Commun. Pure Appl. Math., Volume 62 (2009), pp. 445-500 | MR | DOI | Zbl
[18.] Scattering of geodesic fields, Ann. Math., Volume 108 (1978), pp. 347-372 | MR | DOI | Zbl
[19.] A short introduction to viscosity solutions and the large time behavior of solutions of Hamilton–Jacobi equations, Y. Achdou et al., Hamilton-Jacobi Equations: Approximations, Numerical Analysis and Applications, 2074, Springer, Berlin, 2013 | Zbl
[20.] Riemannian Geometry, 1, de Gruyter, Berlin, 1995 | DOI | Zbl
[21.] Any open bounded subset of has the same homotopy type as its medial axis, Comput. Aided Des., Volume 36 (2004), pp. 1029-1046 | DOI
[22.] Strict sub-solutions and Mañé potential in discrete weak KAM theory, Comment. Math. Helv., Volume 87 (2012), pp. 1-39 | MR | DOI | Zbl
Cited by Sources: