Article
Tightness of Liouville first passage percolation for γ(0,2)
Publications Mathématiques de l'IHÉS, Volume 132 (2020), pp. 353-403

We study Liouville first passage percolation metrics associated to a Gaussian free field h mollified by the two-dimensional heat kernel p t in the bulk, and related star-scale invariant metrics. For γ(0,2) and ξ=γ d γ , where d γ is the Liouville quantum gravity dimension defined in Ding and Gwynne (Commun. Math. Phys. 374:1877–1934, 2020), we show that renormalized metrics (λ t -1 e ξp t *h ds) t(0,1) are tight with respect to the uniform topology. We also show that subsequential limits are bi-Hölder with respect to the Euclidean metric, obtain tail estimates for side-to-side distances, and derive error bounds for the normalizing constants λ t .

Received:
Accepted:
Online First:
Published online:
DOI: 10.1007/s10240-020-00121-1
@article{PMIHES_2020__132__353_0,
     author = {Jian Ding and Julien Dub\'edat and Alexander Dunlap and Hugo Falconet},
     title = {Tightness of {Liouville} first passage percolation for $\gamma \in (0,2)$},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {353--403},
     year = {2020},
     publisher = {Springer Berlin Heidelberg},
     address = {Berlin/Heidelberg},
     volume = {132},
     doi = {10.1007/s10240-020-00121-1},
     language = {en},
     url = {https://pmihes.centre-mersenne.org/articles/10.1007/s10240-020-00121-1/}
}
TY  - JOUR
AU  - Jian Ding
AU  - Julien Dubédat
AU  - Alexander Dunlap
AU  - Hugo Falconet
TI  - Tightness of Liouville first passage percolation for $\gamma \in (0,2)$
JO  - Publications Mathématiques de l'IHÉS
PY  - 2020
SP  - 353
EP  - 403
VL  - 132
PB  - Springer Berlin Heidelberg
PP  - Berlin/Heidelberg
UR  - https://pmihes.centre-mersenne.org/articles/10.1007/s10240-020-00121-1/
DO  - 10.1007/s10240-020-00121-1
LA  - en
ID  - PMIHES_2020__132__353_0
ER  - 
%0 Journal Article
%A Jian Ding
%A Julien Dubédat
%A Alexander Dunlap
%A Hugo Falconet
%T Tightness of Liouville first passage percolation for $\gamma \in (0,2)$
%J Publications Mathématiques de l'IHÉS
%D 2020
%P 353-403
%V 132
%I Springer Berlin Heidelberg
%C Berlin/Heidelberg
%U https://pmihes.centre-mersenne.org/articles/10.1007/s10240-020-00121-1/
%R 10.1007/s10240-020-00121-1
%G en
%F PMIHES_2020__132__353_0
Jian Ding; Julien Dubédat; Alexander Dunlap; Hugo Falconet. Tightness of Liouville first passage percolation for $\gamma \in (0,2)$. Publications Mathématiques de l'IHÉS, Volume 132 (2020), pp. 353-403. doi: 10.1007/s10240-020-00121-1

[1.] M. Ang Comparison of discrete and continuum Liouville first passage percolation, Electron. Commun. Probab., Volume 24 (2019), p. 12 | MR | Zbl

[2.] J. Aru; E. Powell; A. Sepúlveda Critical Liouville measure as a limit of subcritical measures, Electron. Commun. Probab., Volume 24 (2019), p. 16 | MR | Zbl

[3.] N. Berestycki An elementary approach to Gaussian multiplicative chaos, Electron. Commun. Probab., Volume 22 (2017), p. 12 | MR | Zbl | DOI

[4.] M. Bramson; J. Ding; O. Zeitouni Convergence in law of the maximum of nonlattice branching random walk, Ann. Inst. Henri Poincaré Probab. Stat., Volume 52 (2016), pp. 1897-1924 | MR | Zbl | DOI

[5.] M. Bramson; J. Ding; O. Zeitouni Convergence in law of the maximum of the two-dimensional discrete Gaussian free field, Commun. Pure Appl. Math., Volume 69 (2016), pp. 62-123 | MR | Zbl | DOI

[6.] D. Burago; Y. Burago; S. Ivanov A Course in Metric Geometry, 33, Am. Math. Soc., Providence, 2001 | Zbl

[7.] P. Chassaing; G. Schaeffer Random planar lattices and integrated superBrownian excursion, Probab. Theory Relat. Fields, Volume 128 (2004), pp. 161-212 | MR | Zbl | DOI

[8.] G. Da Prato An Introduction to Infinite-Dimensional Analysis, Springer, Berlin, 2006 | Zbl

[9.] J. Ding; A. Dunlap Liouville first-passage percolation: subsequential scaling limits at high temperature, Ann. Probab., Volume 47 (2019), pp. 690-742 | MR | Zbl | DOI

[10.] J. Ding; A. Dunlap Subsequential scaling limits for Liouville graph distance, Commun. Math. Phys., Volume 376 (2020), pp. 1499-1572 | MR | Zbl | DOI

[11.] J. Ding; S. Goswami Upper bounds on Liouville first-passage percolation and Watabiki’s prediction, Commun. Pure Appl. Math., Volume 72 (2019), pp. 2331-2384 | MR | Zbl | DOI

[12.] J. Ding; E. Gwynne The fractal dimension of Liouville quantum gravity: universality, monotonicity, and bounds, Commun. Math. Phys., Volume 374 (2020), pp. 1877-1934 | MR | Zbl | DOI

[13.] J. Ding and E. Gwynne, Tightness of supercritical Liouville first passage percolation, | arXiv

[14.] J. Ding; F. Zhang Non-universality for first passage percolation on the exponential of log-correlated Gaussian fields, Probab. Theory Relat. Fields, Volume 171 (2018), pp. 1157-1188 | MR | Zbl | DOI

[15.] J. Ding; F. Zhang Liouville first passage percolation: geodesic length exponent is strictly larger than 1 at high temperatures, Probab. Theory Relat. Fields, Volume 174 (2019), pp. 335-367 | MR | Zbl | DOI

[16.] J. Ding; O. Zeitouni; F. Zhang On the Liouville heat kernel for k-coarse MBRW, Electron. J. Probab., Volume 23 (2018), pp. 1-20 | MR | Zbl | DOI

[17.] J. Ding; O. Zeitouni; F. Zhang Heat kernel for Liouville Brownian motion and Liouville graph distance, Commun. Math. Phys., Volume 371 (2019), pp. 561-618 | MR | Zbl | DOI

[18.] J. Dubédat; H. Falconet Liouville metric of star-scale invariant fields: tails and Weyl scaling, Probab. Theory Relat. Fields, Volume 176 (2020), pp. 293-352 | MR | Zbl | DOI

[19.] J. Dubédat; H. Falconet; E. Gwynne; J. Pfeffer; X. Sun Weak LQG metrics and Liouville first passage percolation, Probab. Theory Relat. Fields, Volume 178 (2020), pp. 369-436 | MR | Zbl | DOI

[20.] H. Duminil-Copin, Introduction to Bernoulli percolation. Lecture notes available on the webpage of the author, 2018.

[21.] B. Duplantier; S. Sheffield Liouville quantum gravity and KPZ, Invent. Math., Volume 185 (2011), pp. 333-393 | MR | Zbl | DOI

[22.] X. Fernique Regularité des trajectoires des fonctions aléatoires gaussiennes, École d’Été de Probabilités de Saint-Flour, IV-1974, 480, Springer, Berlin, 1975, pp. 1-96

[23.] E. Gwynne; J. Miller Confluence of geodesics in Liouville quantum gravity for γ(0,2), Ann. Probab., Volume 48 (2020), pp. 1861-1901 | MR | Zbl | DOI

[24.] E. Gwynne and J. Miller, Conformal covariance of the Liouville quantum gravity metric for γ(0,2), | arXiv

[25.] E. Gwynne and J. Miller, Existence and uniqueness of the Liouville quantum gravity metric for γ(0,2), | arXiv

[26.] E. Gwynne and J. Miller, Local metrics of the Gaussian free field, | arXiv

[27.] E. Gwynne; N. Holden; X. Sun A distance exponent for Liouville quantum gravity, Probab. Theory Relat. Fields, Volume 173 (2019), pp. 931-997 | MR | Zbl | DOI

[28.] E. Gwynne; N. Holden; X. Sun A mating-of-trees approach for graph distances in random planar maps, Probab. Theory Relat. Fields, Volume 177 (2020), pp. 1043-1102 | MR | Zbl | DOI

[29.] J.-P. Kahane Sur le chaos multiplicatif, Ann. Sci. Math. Qué., Volume 9 (1985), pp. 105-150 | MR | Zbl

[30.] J.-F. Le Gall The topological structure of scaling limits of large planar maps, Invent. Math., Volume 169 (2007), pp. 621-670 | MR | Zbl | DOI

[31.] J.-F. Le Gall Geodesics in large planar maps and in the Brownian map, Acta Math., Volume 205 (2010), pp. 287-360 | MR | Zbl | DOI

[32.] J.-F. Le Gall Uniqueness and universality of the Brownian map, Ann. Probab., Volume 41 (2013), pp. 2880-2960 | MR | Zbl

[33.] J.-F. Le Gall; F. Paulin Scaling limits of bipartite planar maps are homeomorphic to the 2-sphere, Geom. Funct. Anal., Volume 18 (2008), pp. 893-918 | MR | Zbl | DOI

[34.] J.-F. Marckert; A. Mokkadem Limit of normalized quadrangulations: the Brownian map, Ann. Probab., Volume 34 (2006), pp. 2144-2202 | MR | Zbl

[35.] G. Miermont The Brownian map is the scaling limit of uniform random plane quadrangulations, Acta Math., Volume 210 (2013), pp. 319-401 | MR | Zbl | DOI

[36.] J. Miller and S. Sheffield, Liouville quantum gravity and the Brownian map II: geodesics and continuity of the embedding, 2016, | arXiv

[37.] J. Miller and S. Sheffield, Liouville quantum gravity and the Brownian map III: the conformal structure is determined, 2016, | arXiv

[38.] J. Miller; S. Sheffield Liouville quantum gravity and the Brownian map I: the QLE (8/3,0) metric, Invent. Math., Volume 219 (2020), pp. 75-152 | MR | Zbl | DOI

[39.] L. D. Pitt Positively correlated normal variables are associated, Ann. Probab., Volume 10 (1982), pp. 496-499 | MR | Zbl

[40.] A. M. Polyakov Quantum geometry of bosonic strings, Phys. Lett. B, Volume 103 (1981), pp. 207-210 | MR | DOI

[41.] R. Rhodes; V. Vargas KPZ formula for log-infinitely divisible multifractal random measures, ESAIM Probab. Stat., Volume 15 (2011), pp. 358-371 | MR | Zbl | Numdam | DOI

[42.] R. Rhodes; V. Vargas Gaussian multiplicative chaos and applications: a review, Probab. Surv., Volume 11 (2014), pp. 315-392 | MR | Zbl | DOI

[43.] R. Rhodes; V. Vargas The tail expansion of Gaussian multiplicative chaos and the Liouville reflection coefficient, Ann. Probab., Volume 47 (2019), pp. 3082-3107 | MR | Zbl | DOI

[44.] R. Robert; V. Vargas Gaussian multiplicative chaos revisited, Ann. Probab., Volume 38 (2010), pp. 605-631 | MR | Zbl | DOI

[45.] L. Russo A note on percolation, Z. Wahrscheinlichkeitstheor. Verw. Geb., Volume 43 (1978), pp. 39-48 | MR | Zbl | DOI

[46.] L. Russo On the critical percolation probabilities, Z. Wahrscheinlichkeitstheor. Verw. Geb., Volume 56 (1981), pp. 229-237 | MR | Zbl | DOI

[47.] P. D. Seymour; D. J. A. Welsh Percolation probabilities on the square lattice, Ann. Discrete Math., Volume 3 (1978), pp. 227-245 | MR | Zbl | DOI

[48.] A. Shamov On Gaussian multiplicative chaos, J. Funct. Anal., Volume 270 (2016), pp. 3224-3261 | MR | Zbl | DOI

[49.] V. Tassion Crossing probabilities for Voronoi percolation, Ann. Probab., Volume 44 (2016), pp. 3385-3398 | MR | Zbl | DOI

Cited by Sources: