We study Liouville first passage percolation metrics associated to a Gaussian free field mollified by the two-dimensional heat kernel in the bulk, and related star-scale invariant metrics. For and , where is the Liouville quantum gravity dimension defined in Ding and Gwynne (Commun. Math. Phys. 374:1877–1934, 2020), we show that renormalized metrics are tight with respect to the uniform topology. We also show that subsequential limits are bi-Hölder with respect to the Euclidean metric, obtain tail estimates for side-to-side distances, and derive error bounds for the normalizing constants .
@article{PMIHES_2020__132__353_0,
author = {Jian Ding and Julien Dub\'edat and Alexander Dunlap and Hugo Falconet},
title = {Tightness of {Liouville} first passage percolation for $\gamma \in (0,2)$},
journal = {Publications Math\'ematiques de l'IH\'ES},
pages = {353--403},
year = {2020},
publisher = {Springer Berlin Heidelberg},
address = {Berlin/Heidelberg},
volume = {132},
doi = {10.1007/s10240-020-00121-1},
language = {en},
url = {https://pmihes.centre-mersenne.org/articles/10.1007/s10240-020-00121-1/}
}
TY - JOUR AU - Jian Ding AU - Julien Dubédat AU - Alexander Dunlap AU - Hugo Falconet TI - Tightness of Liouville first passage percolation for $\gamma \in (0,2)$ JO - Publications Mathématiques de l'IHÉS PY - 2020 SP - 353 EP - 403 VL - 132 PB - Springer Berlin Heidelberg PP - Berlin/Heidelberg UR - https://pmihes.centre-mersenne.org/articles/10.1007/s10240-020-00121-1/ DO - 10.1007/s10240-020-00121-1 LA - en ID - PMIHES_2020__132__353_0 ER -
%0 Journal Article %A Jian Ding %A Julien Dubédat %A Alexander Dunlap %A Hugo Falconet %T Tightness of Liouville first passage percolation for $\gamma \in (0,2)$ %J Publications Mathématiques de l'IHÉS %D 2020 %P 353-403 %V 132 %I Springer Berlin Heidelberg %C Berlin/Heidelberg %U https://pmihes.centre-mersenne.org/articles/10.1007/s10240-020-00121-1/ %R 10.1007/s10240-020-00121-1 %G en %F PMIHES_2020__132__353_0
Jian Ding; Julien Dubédat; Alexander Dunlap; Hugo Falconet. Tightness of Liouville first passage percolation for $\gamma \in (0,2)$. Publications Mathématiques de l'IHÉS, Volume 132 (2020), pp. 353-403. doi: 10.1007/s10240-020-00121-1
[1.] Comparison of discrete and continuum Liouville first passage percolation, Electron. Commun. Probab., Volume 24 (2019), p. 12 | MR | Zbl
[2.] Critical Liouville measure as a limit of subcritical measures, Electron. Commun. Probab., Volume 24 (2019), p. 16 | MR | Zbl
[3.] An elementary approach to Gaussian multiplicative chaos, Electron. Commun. Probab., Volume 22 (2017), p. 12 | MR | Zbl | DOI
[4.] Convergence in law of the maximum of nonlattice branching random walk, Ann. Inst. Henri Poincaré Probab. Stat., Volume 52 (2016), pp. 1897-1924 | MR | Zbl | DOI
[5.] Convergence in law of the maximum of the two-dimensional discrete Gaussian free field, Commun. Pure Appl. Math., Volume 69 (2016), pp. 62-123 | MR | Zbl | DOI
[6.] A Course in Metric Geometry, 33, Am. Math. Soc., Providence, 2001 | Zbl
[7.] Random planar lattices and integrated superBrownian excursion, Probab. Theory Relat. Fields, Volume 128 (2004), pp. 161-212 | MR | Zbl | DOI
[8.] An Introduction to Infinite-Dimensional Analysis, Springer, Berlin, 2006 | Zbl
[9.] Liouville first-passage percolation: subsequential scaling limits at high temperature, Ann. Probab., Volume 47 (2019), pp. 690-742 | MR | Zbl | DOI
[10.] Subsequential scaling limits for Liouville graph distance, Commun. Math. Phys., Volume 376 (2020), pp. 1499-1572 | MR | Zbl | DOI
[11.] Upper bounds on Liouville first-passage percolation and Watabiki’s prediction, Commun. Pure Appl. Math., Volume 72 (2019), pp. 2331-2384 | MR | Zbl | DOI
[12.] The fractal dimension of Liouville quantum gravity: universality, monotonicity, and bounds, Commun. Math. Phys., Volume 374 (2020), pp. 1877-1934 | MR | Zbl | DOI
[13.] J. Ding and E. Gwynne, Tightness of supercritical Liouville first passage percolation, | arXiv
[14.] Non-universality for first passage percolation on the exponential of log-correlated Gaussian fields, Probab. Theory Relat. Fields, Volume 171 (2018), pp. 1157-1188 | MR | Zbl | DOI
[15.] Liouville first passage percolation: geodesic length exponent is strictly larger than 1 at high temperatures, Probab. Theory Relat. Fields, Volume 174 (2019), pp. 335-367 | MR | Zbl | DOI
[16.] On the Liouville heat kernel for k-coarse MBRW, Electron. J. Probab., Volume 23 (2018), pp. 1-20 | MR | Zbl | DOI
[17.] Heat kernel for Liouville Brownian motion and Liouville graph distance, Commun. Math. Phys., Volume 371 (2019), pp. 561-618 | MR | Zbl | DOI
[18.] Liouville metric of star-scale invariant fields: tails and Weyl scaling, Probab. Theory Relat. Fields, Volume 176 (2020), pp. 293-352 | MR | Zbl | DOI
[19.] Weak LQG metrics and Liouville first passage percolation, Probab. Theory Relat. Fields, Volume 178 (2020), pp. 369-436 | MR | Zbl | DOI
[20.] H. Duminil-Copin, Introduction to Bernoulli percolation. Lecture notes available on the webpage of the author, 2018.
[21.] Liouville quantum gravity and KPZ, Invent. Math., Volume 185 (2011), pp. 333-393 | MR | Zbl | DOI
[22.] Regularité des trajectoires des fonctions aléatoires gaussiennes, École d’Été de Probabilités de Saint-Flour, IV-1974, 480, Springer, Berlin, 1975, pp. 1-96
[23.] Confluence of geodesics in Liouville quantum gravity for , Ann. Probab., Volume 48 (2020), pp. 1861-1901 | MR | Zbl | DOI
[24.] E. Gwynne and J. Miller, Conformal covariance of the Liouville quantum gravity metric for , | arXiv
[25.] E. Gwynne and J. Miller, Existence and uniqueness of the Liouville quantum gravity metric for , | arXiv
[26.] E. Gwynne and J. Miller, Local metrics of the Gaussian free field, | arXiv
[27.] A distance exponent for Liouville quantum gravity, Probab. Theory Relat. Fields, Volume 173 (2019), pp. 931-997 | MR | Zbl | DOI
[28.] A mating-of-trees approach for graph distances in random planar maps, Probab. Theory Relat. Fields, Volume 177 (2020), pp. 1043-1102 | MR | Zbl | DOI
[29.] Sur le chaos multiplicatif, Ann. Sci. Math. Qué., Volume 9 (1985), pp. 105-150 | MR | Zbl
[30.] The topological structure of scaling limits of large planar maps, Invent. Math., Volume 169 (2007), pp. 621-670 | MR | Zbl | DOI
[31.] Geodesics in large planar maps and in the Brownian map, Acta Math., Volume 205 (2010), pp. 287-360 | MR | Zbl | DOI
[32.] Uniqueness and universality of the Brownian map, Ann. Probab., Volume 41 (2013), pp. 2880-2960 | MR | Zbl
[33.] Scaling limits of bipartite planar maps are homeomorphic to the 2-sphere, Geom. Funct. Anal., Volume 18 (2008), pp. 893-918 | MR | Zbl | DOI
[34.] Limit of normalized quadrangulations: the Brownian map, Ann. Probab., Volume 34 (2006), pp. 2144-2202 | MR | Zbl
[35.] The Brownian map is the scaling limit of uniform random plane quadrangulations, Acta Math., Volume 210 (2013), pp. 319-401 | MR | Zbl | DOI
[36.] J. Miller and S. Sheffield, Liouville quantum gravity and the Brownian map II: geodesics and continuity of the embedding, 2016, | arXiv
[37.] J. Miller and S. Sheffield, Liouville quantum gravity and the Brownian map III: the conformal structure is determined, 2016, | arXiv
[38.] Liouville quantum gravity and the Brownian map I: the metric, Invent. Math., Volume 219 (2020), pp. 75-152 | MR | Zbl | DOI
[39.] Positively correlated normal variables are associated, Ann. Probab., Volume 10 (1982), pp. 496-499 | MR | Zbl
[40.] Quantum geometry of bosonic strings, Phys. Lett. B, Volume 103 (1981), pp. 207-210 | MR | DOI
[41.] KPZ formula for log-infinitely divisible multifractal random measures, ESAIM Probab. Stat., Volume 15 (2011), pp. 358-371 | MR | Zbl | Numdam | DOI
[42.] Gaussian multiplicative chaos and applications: a review, Probab. Surv., Volume 11 (2014), pp. 315-392 | MR | Zbl | DOI
[43.] The tail expansion of Gaussian multiplicative chaos and the Liouville reflection coefficient, Ann. Probab., Volume 47 (2019), pp. 3082-3107 | MR | Zbl | DOI
[44.] Gaussian multiplicative chaos revisited, Ann. Probab., Volume 38 (2010), pp. 605-631 | MR | Zbl | DOI
[45.] A note on percolation, Z. Wahrscheinlichkeitstheor. Verw. Geb., Volume 43 (1978), pp. 39-48 | MR | Zbl | DOI
[46.] On the critical percolation probabilities, Z. Wahrscheinlichkeitstheor. Verw. Geb., Volume 56 (1981), pp. 229-237 | MR | Zbl | DOI
[47.] Percolation probabilities on the square lattice, Ann. Discrete Math., Volume 3 (1978), pp. 227-245 | MR | Zbl | DOI
[48.] On Gaussian multiplicative chaos, J. Funct. Anal., Volume 270 (2016), pp. 3224-3261 | MR | Zbl | DOI
[49.] Crossing probabilities for Voronoi percolation, Ann. Probab., Volume 44 (2016), pp. 3385-3398 | MR | Zbl | DOI
Cited by Sources: