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ABSTRACT

We study Liouville first passage percolation metrics associated to a Gaussian free field h mollified by the two-
dimensional heat kernel pt in the bulk, and related star-scale invariant metrics. For γ ∈ (0,2) and ξ = γ

dγ
, where dγ is

the Liouville quantum gravity dimension defined in Ding and Gwynne (Commun. Math. Phys. 374:1877–1934, 2020),
we show that renormalized metrics (λ−1

t eξpt∗hds)t∈(0,1) are tight with respect to the uniform topology. We also show that
subsequential limits are bi-Hölder with respect to the Euclidean metric, obtain tail estimates for side-to-side distances, and
derive error bounds for the normalizing constants λt .
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1. Introduction and main statement

We consider the problem of rigorously constructing a metric for Liouville quantum

gravity (LQG), a random geometry formally given by reweighting Euclidean space by eγ h,
where h is a Gaussian free field. LQG was originally introduced in the physics literature
by Polyakov in 1981 [40]. In its mathematical form, the LQG measure is a special case
of Gaussian multiplicative chaos, introduced in [29]. In the last two decades, there has been

� J. Ding was partially supported by NSF grant DMS-1757479 and an Alfred Sloan fellowship.
�� J. Dubédat was Partially supported by NSF grant DMS-1512853.

� � � A. Dunlap was partially supported by an NSF Graduate Research Fellowship.

© IHES and Springer-Verlag GmbH Germany, part of Springer Nature 2020
https://doi.org/10.1007/s10240-020-00121-1

http://crossmark.crossref.org/dialog/?doi=10.1007/s10240-020-00121-1&domain=pdf


354 JIAN DING, JULIEN DUBÉDAT, ALEXANDER DUNLAP, HUGO FALCONET

an explosion of interest in the probability community towards rigorously constructing
the relevant objects. In particular, the LQG measure was constructed rigorously in the
regime γ ≤ 2, via a renormalization procedure, in [21]. Other relevant work in this area
includes [2, 3, 41–44, 48].

Much remains open regarding the construction of the LQG metric. When γ =√
8/3, LQG is intimately connected with the Brownian map [31, 32, 35] and a metric

for LQG has been constructed in [36–38]. Substantial work has also been devoted to
understanding the distance exponents for natural discrete LQG metrics; see [1, 11, 12,
15, 27, 28]. In [14, 16] some non-universality results were established for first-passage
percolation distance exponents for metrics of the form eγφδ ds, where φδ is discretization
of a log-correlated Gaussian field. This indicates that precisely understanding such expo-
nents must involve rather fine information about the structure of the particular field in
question.

The present study concerns the tightness of Liouville first-passage percolation
(LFPP) metrics, which are natural smoothed LQG metrics. This proves the existence of
subsequential limiting metrics. Given this, it remains to show that such limiting metrics
are unique in law for each γ ∈ (0,2) in order to complete the construction of the LQG
metric in this regime. After this paper was posted, the latter task was carried out in the
series of works [19, 23–26], thus completing the construction. The present study follows
three main tightness results for discretized or smoothed LQG metrics. In [9], tightness
of LFPP metrics (on a discrete lattice) was proved in the small noise regime for which
γ is very small. In [18], tightness was shown for metrics arising in the same way from
�-scale invariant fields, still in the small noise regime. In [10], tightness was shown for all
γ < 2 for the Liouville graph distance, which is a graph metric equal to the least number
of Euclidean balls of a given LQG measure necessary to cover a path between a pair of
points.

We consider a smoothed Gaussian field

(1.1) φδ(x) := √
π

∫ 1

δ2

∫
R2

p t
2
(x − y)W(dy, dt)

for x ∈ R2 and δ ∈ (0,1), where pt(x − y) := 1
2π t

e−
|x−y|2

2t and W is a space–time white
noise. This approximation is natural since it can be uniformly compared on a compact
domain with a Gaussian free field h mollified by the heat kernel defined on a slightly larger
domain, viz. φ√

t and pt/2 ∗ h (where ∗ denotes the convolution operator) are comparable.
Furthermore, this approximation provides some nice invariance and scaling properties
on the full plane.

For γ ∈ (0,2), we will use the notation

(1.2) ξ := γ /dγ

where dγ is the “Liouville quantum gravity dimension” defined in [12]. It is known (see
Theorem 1.2 and Proposition 1.7 in [12]) that the function γ �→ γ /dγ is strictly increasing
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and continuous on (0,2). Therefore, in this article we will be interested in the range
ξ ∈ (0, (2/d2)

−), where (2/d2)
− = limγ↑2 γ /dγ .

We consider the length metric eξφδ ds (equivalently, the metric whose Riemannian
metric tensor is given by e2ξφδ ds2), restricted to the unit square [0,1]2. We recall that
a length metric is a metric such that the distance between two points is given by the
infimum over the arc lengths of paths connecting the two points. We denote by λδ the
median of the left–right distance of [0,1]2 for the metric eξφδds. Our main theorem is the
following.

Theorem 1. — 1. If γ ∈ (0,2), then
(
λ−1

δ eξφδ ds
)
δ∈(0,1)

is tight with respect to the

uniform topology on the space of continuous functions [0,1]2 ×[0,1]2 → R+. Furthermore,

any subsequential limit is almost surely bi-Hölder with respect to the Euclidean metric on

[0,1]2.

2. Let K = [0,1]2. If h is a Gaussian free field with zero boundary conditions on a bounded

open domain D containing K (extended to zero outside of D), then the internal metrics

(λ−1√
δ
e
ξp δ

2
∗h

ds)δ∈(0,1) on K are tight with respect to the uniform topology of continuous func-

tions K × K → R+.

Furthermore, the normalizing constants (λδ)δ∈(0,1) satisfy

λδ = δ1−ξQe
O

(√
| log δ|

)
(1.3)

where Q = 2
γ

+ γ

2 .

A year after our article was posted, the subsequent work [13] proved a similar
result to ours when ξ ≥ (2/d2)

−. However, in that case the tightness does not hold in the
uniform topology and the Beer topology on lower semicontinuous functions was used.

In order to establish the tightness of the family of renormalized metrics
(dφδ

)δ∈(0,1) := (λ−1
δ eξφδ ds)δ∈(0,1), we prove a number of uniform estimates for that fam-

ily (which also hold when the approximation is the GFF mollified by the heat kernel).
Such estimates that are closed under weak convergence also apply to subsequential lim-
its. Let us summarize these properties. Let D denote the family of laws of dφδ

, δ ∈ (0,1)

(i.e. seen as random continuous functions on ([0,1]2)2), and D denotes its closure under
weak convergence (i.e., D also includes the laws of all subsequential limits).

1. Under any P ∈D, d is P-a.s. a length metric. This is clear for the renormalized
metrics dφδ

by definition, and the property of being a length metric extends to
limits. (See [6, Exercise 2.4.19].)

2. If d is a metric on R2 and R is a rectangle, we denote by d(R) the left–right
length of R for d . We have the following tail estimates. There exists c,C > 0
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such that for s > 2, uniformly in P ∈D we have

ce−Cs2 ≤ P
(
d(R) ≤ e−s

) ≤ Ce−cs2
,(1.4)

ce−Cs2 ≤ P (d(R) ≥ es) ≤ Ce
−c s2

log s .(1.5)

The upper bounds are proved in Section 4, while the lower bounds are conse-
quences of the Cameron–Martin theorem, considering shifts of the field at the
coarsest scale as in [18, Section 5.4].

3. If d is a metric on R2 and R is a rectangle, we denote by Diam(R, d) the diam-
eter of R for d . We have the following uniform first moment bound:

(1.6) sup
P∈D

E (Diam(R, d)) < ∞.

This is shown in the course of the proof of Proposition 27 below.
4. Under any P ∈D, d is P-a.s. bi-Hölder with respect to the Euclidean metric and

we have the following bounds for exponents: for α < ξ(Q − 2), β > ξ(Q + 2),
and R a rectangle, the families

(1.7)
(

sup
x,x′∈R

|x − x′|α
d(x, x′)

)
L(d)∈D

and
(

sup
x,x′∈R

d(x, x′)
|x − x′|β

)
L(d)∈D

are tight. Here L(d) means the law of d . These properties are shown in Propo-
sition 28 below.

Let us also mention that subsequential limits are consistent with the Weyl scal-
ing: for a function f in the Cameron–Martin space of the Gaussian free field h, for
any coupling (h, d) associated to a subsequential limit of the sequence of laws of

((h, λ−1√
δ
e
ξp δ

2
∗h

ds))δ>0, the couplings (h, d) and (h + f , eξ f · d) are mutually absolutely con-
tinuous with respect to each other and the associated Radon–Nikodým derivative is the
one of the first marginal. This can be proved using similar arguments to those of [18,
Section 7]. An analogue of this property for the Liouville measure together with the con-
servation of the Liouville volume average is enough to characterize the Liouville measure,
as seen by Shamov in [48].

It may be interesting to draw a parallel between our work and those in random
planar maps, since both aim to obtain the scaling limits of random metrics and the lim-
iting objects are related for γ = √

8/3. We start with a brief overview on the conver-
gence of random planar maps. Chassaing and Schaeffer [7] identified n1/4 as the proper
scaling and compute certain limiting functionals for random quadrangulations. Marck-
ert and Mokkadem [34] established limit theorems (in a sense weaker than Gromov–
Hausdorff) and introduced the Brownian map. Le Gall [30] showed tightness for rescaled
2p-angulations in the Gromov–Hausdorff topology and shows that the limiting topology
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is the same as the Brownian map. Le Gall and Paulin [33] showed that the limiting topol-
ogy is that of the 2-sphere and Le Gall studied properties of geodesics in [31]. Finally, Le
Gall [32] (resp. Miermont [35]) proved the uniqueness of subsequential limits of uniform
triangulations and 2p-angulations (resp. quadrangulations). In both cases, the proof relied
on a careful study of geodesics and in particular on confluence properties, together with
a rough bound quantifying an approximate equivalence of the two metrics to match.

In our framework, an important result was obtained in [12], where the authors
identified the exponent of LFPP distances to be 1 − ξQ + o(1). By contrast, in the ran-
dom planar map setting, the normalization is exactly n1/4 and Chassaing and Schaeffer
[7] obtained the convergence in law of some observables. In our case, the tightness of
any observable renormalized by its median is far from obvious. This is a common feature
of some concentration problems for extrema of random fields. As an analogy, one can
consider the problem of the tightness of the maxima of branching random walks (BRW),
where, also by subadditivity, the expected value of the maxima of BRW on a d-ary tree
at level n is of order (x∗ + o(1))n for some x∗ (which depends on the rate function of the
distribution of the increments). A powerful and well-understood method in proving tight-
ness for BRW is by an explicit truncated second moment estimate which computes the
expected maxima up to additive O(1) constant (see [4] for maxima of BRW and [5] for
maxima of discrete GFF). In contrast, in our setup, explicit computation on the distance
seems really difficult; in fact it remains a major challenge to compute the value of the dis-
tance exponent, let alone computing the distance up to constant. In order to circumvent
this difficulty, we had to build our proof by exploring delicate intrinsic structure of the
distance. We point out here that it was shown in [1] that for γ ∈ (0,2), 1 − ξQ ≥ 0 (and
it is believed to be > 0), therefore the normalization λδ should be thought as small.

Furthermore, in our setting where the metrics are on a compact subset of C, we
can directly use the uniform topology instead of working with the Gromov–Hausdorff
topology (note that the former is stronger than the latter). In this paper, we show tight-
ness for the full subcritical range γ ∈ (0,2) of renormalized side-to-side crossing lengths,
point-to-point distance and metrics. Limiting metrics are bi-Hölder with respect to the
Euclidean metric.

1.1. Strategy of the proof and comparison with previous works. — In contrast with previous
works on the LQG measure, the variational problem defining the LQG metric means
that most direct computations are impossible, and in particular most of techniques used
in the theory of Gaussian multiplicative chaos and LQG measure are unavailable. This
necessitates the more intricate multiscale geometric arguments that we employ.

Our tightness proof relies on two key ingredients, a Russo–Seymour–Welsh argu-
ment and multiscale analysis. In both parts we extend and refine many arguments used
in the previous works [9, 10, 18] on the tightness of various types of LQG metrics.

Russo–Seymour–Welsh. — The RSW argument relates, to within a constant factor, quan-
tiles of the left–right LFPP crossing distances of a “portrait” rectangle and of a “land-
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scape” rectangle. (By a crossing distance we simply mean the distance between two op-
posite sides of a rectangle.) In [9, 10], these crossings are referred to as “easy” and “hard”
respectively. The utility of such a result is that crossings of larger rectangles necessarily
induce easy crossings of subrectangles, while hard crossings of smaller rectangles can be
glued together to create crossings of larger rectangles. Thus, multiscale analysis argu-
ments can establish lower bounds in terms of easy crossings and upper bounds in terms
of hard crossings. RSW arguments then allow these bounds to be compared.

RSW arguments originated in the works [45–47] for Bernoulli percolation, and
have since been adapted to many percolation settings. The work [9] introduced an RSW
result for LFPP in the small noise regime based on an RSW result for Voronoi percolation
devised by Tassion [49]. Tassion’s result is beautiful but intricate, and becomes quite
complex when it is adapted to take into account the weights of crossing in the first-passage
percolation setting, as was done in [9].

The RSW approach of this paper is based on the much simpler approach intro-
duced in [18], which relies on an approximate conformal invariance of the field. (We
recall that the Gaussian free field is exactly conformally invariant in dimension 2, and
that the LQG measure enjoys an exact conformal covariance.) Roughly speaking, the
conformal invariance argument relies on writing down a conformal map between the
portrait and landscape rectangles, and analyzing the effect of such a map on crossings
of the rectangle. We note that the approximate conformal invariance used in this paper
relies in an important way on the exact independence of different “scales” of the field,
which is manifest in the independence of the white noise at different times in the expres-
sion (1.1). Thus, the argument we use here is not immediately applicable to mollifications
of the Gaussian free field by general mollifiers (for example, the common “circle-average
approximation” of the GFF). The RSW argument of [18] was also adapted in [10] to the
Liouville graph distance case.

Tail estimates. — Once the RSW result is established, we derive tail estimates with respect
to fixed quantiles. The lower tail estimate is unconditional, while the upper tail estimate
depends on a quantity �n measuring the concentration at the current scale, which will
later be uniformly bounded by an inductive argument.

Multiscale analysis. — With RSW and tail estimates in hand, we turn to the multiscale
analysis part of the paper. This argument turns on the Condition (T) formulated in (5.2)
below, which, informally, states that the arclength of the crossing is not concentrated on
a small number of subarcs of small Euclidean diameter. The argument of [10] requires
similar input, which is a key role of the subcriticality γ < 2. While [10] relies directly on
certain scaling symmetries of the Liouville graph distance to use subcriticality, the present
work relies on the characterization of the Hausdorff dimension dγ obtained in [12], along
with some weak multiplicativity arguments and concentration obtained from percolation
arguments.
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Condition (T). — Our formulation of Condition (T), which has not appeared in previous
works, precisely captures the property of the metric needed to obtain the tightness of the
left–right crossing distances, the existence of the exponent, and the tail estimates (via a
uniform bound on the �n).

Condition (T) makes sense for LFPP with any underlying field and any parame-
ter ξ . In particular, this condition or a variant thereof could possibly hold for LFPP for
some ξ > 2/d2. Therefore, a byproduct of the present work is a simple criterion (that im-
plies, as noted above, tightness of the crossing distances, existence of exponents, and tail
estimates) that may be applicable more generally.

The utility of Condition (T) is that it allows us to use an Efron–Stein argument to
obtain a contraction in an inductive bound on the crossing distance logarithm variance.
Informally, since the crossing distance feels the effect of many different subboxes, the
subbox crossing distances are effectively being averaged to form the overall crossing dis-
tance. This yields a contraction in variance. (Of course, the coarse scales also contribute
to the variance, and hence the variance of the crossing distance does not decrease as the
discretization scale decreases but rather stays bounded.)

The way we verify Condition (T) is quite rough: we bound the field uniformly over
a coarse grained geodesic by the supremum of the field over the unit square. It turns
out that this bound together with the identification of the exponent 1 − ξQ is enough to
establish the condition.

Tightness of the metrics. — Once the tightness of the left–right crossing distance is estab-
lished, we turn to the tightness of the diameter and of the metric itself. This is done by
a chaining argument, and requires again ξ < 2/d2. The diameter is not expected to be
tight when ξ > 2/d2, since there are points that become infinitely distant from the bulk
of the space as the discretization scale goes to 0.

2. Description and comparison of approximations

We recall that a white noise W on Rd is a random Schwartz distribution such that
for every smooth and compactly supported test function f , 〈W, f 〉 is a centered Gaussian
variable with variance ‖f ‖L2(Rd ) (see e.g. [8]). The main approximation of the Gaussian
free field that we consider in this paper is defined for δ ∈ (0,1) by

(2.1) φδ(x) := √
π

∫ 1

δ2

∫
R2

p t
2
(x − y)W(dy, dt)

where pt(x − y) := 1
2π t

e−
|x−y|2

2t and W is a space–time white noise on [0,1] × R2. This
approximation is different than the one considered in [18] which is

φ̃δ(x) :=
∫ 1

δ

∫
R2

k

(
x − y

t

)
t−3/2W(dy, dt)
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for a smooth nonnegative bump function k, radially symmetric and with compact sup-
port. Up to a change of variable in t, the difference is essentially replacing p1 by k. Both
fields are normalized in such a way that E(φ0(x)φ0(y)) = − log |x − y| + g(x, y) with g

continuous (see e.g. Section 2 in [18]): this is the reason for the factor
√

π in (2.1).
Let us mention that �-scale invariant Gaussian fields with compactly-supported

bump function k

1. are invariant under Euclidean isometries,
2. have finite-range correlation at each scale,
3. and have convenient scaling properties.

The Gaussian field φδ introduced above satisfies 1 and 3 but not 2. Because of the lack
of finite-range correlation, we will also use a field ψδ (defined in the next section) which
satisfies 1 and 2 such that supn≥0

∥∥φ0,n − ψ0,n

∥∥
L∞([0,1]2)

has Gaussian tails, where we use
the notation φ0,n for φδ with δ = 2−n.

2.1. Basic properties of φδ and ψδ .

Scaling property of φδ . — We use the scale decomposition

φ :=
∑
n≥0

φn where φn(x) = √
π

∫ 2−2n

2−2(n+1)

∫
R2

p t
2
(x − y)W(dy, dt)

If we denote by Cn the covariance kernel of φn, so Cn(x, x′) = E(φn(x)φn(x
′)), then we

have

Cn(x, x′) =
∫ 2−2n

2−2(n+1)

1
2t

e−
|x−x′|2

2t dt = C0(2nx,2nx′).

Therefore, the law of (φn(x))x∈[0,1]2 is the same as (φ0(2nx))x∈[0,1]2 . Because of the 1
2t

above,
we choose δ2 and not δ in (2.1) so that the pointwise variance φδ is log δ−1. Similarly, for
0 < a < b and x ∈ R2, set

(2.2) φa,b(x) := √
π

∫ b2

a2

∫
R2

p t
2
(x − y)W(dy, dt)

and note that we have the scaling identity φa,b(r·) (d)= φa/r,b/r(·). Indeed, we have

E(φa,b(rx)φa,b(rx
′)) = π

∫ b2

a2

∫
R2

p t
2
(rx − y)p t

2
(y − rx′)dydt

= π

∫ b2

a2
pt(r(x − x′))dt =

∫ b2

a2

1
2t

e−
r2|x−x′|2

2t dt,
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and by the change of variable t = r2u, this gives

∫ b2

a2

1
2t

e−
r2|x−x′|2

2t dt =
∫ (b/r)2

(a/r)2

1
2t

e−
|x−x′|2

2t dt = E(φa/r,b/r(x)φa/r,b/r(x
′)).

We will use the notation φk,n when a = 2−n and b = 2−k for 0 ≤ k ≤ n.

Maximum and oscillation of φδ . — We have the same estimates for the supremum of the
field φ0,n as those for the �-scale invariant case considered in [18] (it is essentially a union
bound combined with a scaling argument). The following proposition corresponds to
Lemma 10.1 and Lemma 10.2 in [18].

Proposition 2 (Maximum bounds). — We have the following tail estimates for the supremum of

φ0,n over the unit square: for a > 0, n ≥ 0,

(2.3) P
(

max
[0,1]2

|φ0,n| ≥ a(n + C
√

n)

)
≤ C4ne

− a2
log 4 n

as well as the following moment bound: if γ < 2, then

(2.4) E(eγ max[0,1]2 |φ0,n|) ≤ 4γ n+O(
√

n)

We will also need some control on the oscillation of the field φ0,n. We introduce
the following notation for the L∞-norm on a subset of Rd . If A is a subset of Rd and
f : A → Rm, we set

(2.5)
∥∥f

∥∥
A

:= sup
x∈A

|f (x)|

We introduce the following notation to describe the oscillation of a smooth field φ: if
A ⊂ R2 we set

(2.6) oscA(φ) := diam(A)‖∇φ‖A ,

so that if A is convex then supx,y∈A |φ(x) − φ(y)| ≤ oscA(φ) and

max
P∈Pn,P⊂[0,1]2

oscP(φ0,n) ≤ C2−n
∥∥∇φ0,n

∥∥
[0,1]2 ,

where Pn denotes the set of dyadic blocks at scale n, viz.

(2.7) Pn := {2−n([i, i + 1] × [j, j + 1]) : i, j ∈ Z}.
In order to simplify the notation P ∈Pn, P ⊂ [0,1]2 later on, we also set

(2.8) P1
n := {P ∈Pn : P ⊂ [0,1]2}.
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Proposition 3 (Oscillation bounds). — We have the following tail estimates for the oscillation of

φ0,n: there exists C > 0, σ 2 > 0, so that, for all x, ε > 0, n ≥ 0,

(2.9) P
(

2−n
∥∥∇φ0,n

∥∥
[0,1]2 ≥ x

)
≤ C4ne

− x2

2σ2

as well as the following moment bound: for a > 0, there exists ca > 0 so that for n ≥ 0,

(2.10) E
(

e
anε2−n‖∇φ0,n‖[0,1]2

)
≤ ecan

1
2 +ε+O(n2ε)

Proof. — Inequality (2.9) was obtained between Equation (10.3) and Equation
(10.4) in [18]. Now, we prove (2.10). Set an := anε, On = 2−n

∥∥∇φ0,n

∥∥
[0,1]2 , and take

xn = anσ
2 + ασ

√
n with α > 0 so that α2

2 = log 4. We have, using (2.9),

∫ ∞

eanxn

P
(
eanOn ≥ x

)
dx =

∫ ∞

anxn

P
(
eanOn ≥ es

)
esds ≤ C4n

∫ ∞

anxn

e
− s2

2a2
n σ2 esds

By a change of variable (s ↔ anσ s + (anσ)2), we get

∫ ∞

anxn

e
− s2

2a2
n σ2 esds = anσ e

1
2 a2

n σ 2
∫ ∞

xn
σ

−anσ

e−
s2
2 ds = anσ e

1
2 a2

n σ 2
∫ ∞

α
√

n

e−
s2
2 ds

since xn = anσ
2 + ασ

√
n. Using that

∫ ∞
a

e−bx2
dx ≤ (2ab)−1e−ba2

, we get∫ ∞
eanxn P

(
eanOn ≥ x

)
dx ≤ eO(n2ε). The result follows from writing E(eanOn) ≤ eanxn +∫ ∞

eanxn P(eanOn ≥ x)dx. �

Definition of ψδ . — We fix a smooth, nonnegative, radially symmetric bump function �

such that 0 ≤ � ≤ 1 and � is equal to one on B(0,1) and to zero outside B(0,2). We
also fix small constants r0 > 0 and ε0 > 0. We will specify these constants later on. In
particular, ε0 appears in the main proof in (5.11) and its final effect is in (5.16). All other
constants C, c will implicitly depend on r0 and ε0. Then, we introduce for each δ ∈ [0,1],
the field

ψδ(x) :=
∫ 1

δ2

∫
R2

�σt
(x−y)p t

2
(x−y)W(dy, dt) =

∫ 1

δ2

∫
R2

pTr
t
2
(x − y)W(dy, dt)(2.11)

where σt = r0

√
t| log t|ε0, �σt

(·) := �(·/σt) and pTr
t
2

:= p t
2
�σt

.

Thanks to the truncation, the fields (ψδ)δ∈[0,1] have finite correlation length
8r0 supt∈[0,1]

√
t| log t|ε0 .



TIGHTNESS OF LIOUVILLE FIRST PASSAGE PERCOLATION FOR γ ∈ (0,2) 363

Decomposition in scales and blocks of ψδ . — We have the scale decomposition

ψ(x) :=
∫ 1

0

∫
R2

pTr
t
2
(x − y)W(dy, dt)(2.12)

=
∞∑

k=1

∑
P∈Pk

∫ 2−2k+2

2−2k

∫
P

pTr
t
2
(x − y)W(dy, dt) =

∑
k≥1

∑
P∈Pk

ψk,P(x)

where ψk,P is defined for P ∈ Pk by ψk,P(x) := ∫ 2−2k+2

2−2k

∫
P pTr

t
2
(x − y)W(dy, dt) and thus has

correlation length less than Ckε02−k . In particular, a fixed block field is only correlated
with fewer than Ck2ε0 other block fields at the same scale. In fact, when we apply the
Efron–Stein inequality (see (5.9)) we will use the following decomposition:

ψ0,n = ψ0,K +
∑
P∈PK

ψK,n,P(x)(2.13)

where ψK,n,P(x) :=
∫ 2−2K+2

2−2n

∫
P

pTr
t
2
(x − y)W(dy, dt).

We note that there is a formal conflict in notation between (2.2) and (2.13), but it will
always be clear from context whether the second subscript is a number or an element of
Pk (a set), so confusion should not arise.

Variance bounds for φδ and ψδ . — Later on we will need the following lemma.

Lemma 4. — There exists C > 0 so that for δ ∈ [0,1] and x, x′ ∈ R2, we have

(2.14) Var
(
φδ(x) − φδ(x

′)
) + Var

(
ψδ(x) − ψδ(x

′)
) ≤ C

|x − x′|
δ

.

Proof. — We start by estimating the first term. Using the inequality 1 − e−z ≤ z ≤√
z for z ∈ [0,1] and 1 − e−z ≤ 1 ≤ √

z for z ≥ 1 we get

Var
(
φδ(x) − φδ(x

′)
) = C

∫ 1

δ2

(
p t

2
∗ p t

2
(0) − p t

2
∗ p t

2
(x − x′)

)
dt

= C
∫ 1

δ2

(
pt(0) − pt(x − x′)

)
dt

= C
∫ 1

δ2

1
t
(1 − e−

|x−x′|2
2t )dt

≤ C|x − x′|
∫ 1

δ2

dt

t3/2
= C

|x − x′|
δ

.
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Similarly, for the second term, we have

Var
(
ψδ(x) − ψδ(x

′)
) = C

∫ 1

δ2

(
pTr

t
2

∗ pTr
t
2
(0) − pTr

t
2

∗ pTr
t
2
(x − x′)

)
dt.

Set pTr
t
2

∗ pTr
t
2

=: pt(x)qt(x). Using the identity pt/2(y)pt/2(x − y) = pt(x)pt/4(y − x/2) we get

qt(x) =
∫

R2

pt/2(y)pt/2(x − y)

pt(x)
�σt

(y)�σt
(x − y)dy

=
∫

R2
pt/4(y − x/2)�σt

(y)�σt
(x − y)dy.

We rewrite the variance in terms of qt : replacing x − x′ by z we look at

Var
(
ψδ(x) − ψδ(x

′)
)

= C
∫ 1

δ2
(pt(0)qt(0) − pt(z)qt(z))dt

= C
∫ 1

δ2
pt(0)(qt(0) − qt(z))dt + C

∫ 1

δ2
qt(z)(pt(0) − pt(z))dt.

We deal with these two terms separately. For the second one, since 0 ≤ � ≤ 1, we
have 0 ≤ qt ≤ 1. Therefore, following what we did for φδ above we directly have
0 ≤ ∫ 1

δ2 qt(z)(pt(0) − pt(z))dt ≤ C |z|
δ

. For the first term, since pt(0) = Ct−1, it is enough
to get the bound

√
t|qt(0) − qt(z)| ≤ C|z| to complete the proof of the lemma. Changing

variables, we have

qt(z) = C
∫

R2
e−2|y|2�σt

(
√

ty + z/2)�σt
(
√

ty − z/2)dy.

Therefore, using that 0 ≤ � ≤ 1,

|qt(z) − qt(0)| ≤ C
∫

R2
e−2|y|2|�σt

(
√

ty + z/2) − �σt
(
√

ty)|dy

+ C
∫

R2
e−2|y|2 |�σt

(
√

ty − z/2) − �σt
(
√

ty)|dy

≤ C|z|
∫

R2
e−2|y|2 ∥∥∇�σt

∥∥
R2 dy ≤ C

|z|
σt

‖∇�‖R2

∫
R2

e−2|y|2dy.

Since σt = r0
√

t| log t|ε0 , we see that supt∈[0,1]
√

t

σt
< ∞, and the result follows. �
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2.2. Comparison between φδ and ψδ . — The following proposition justifies the intro-
duction of the field ψδ .

Proposition 5. — There exist C > 0 and c > 0 such that for all x > 0, we have

(2.15) P
(

sup
n≥0

∥∥φ0,n − ψ0,n

∥∥
[0,1]2 ≥ x

)
≤ Ce−cx2

.

Proof. — For k ≥ 1, we introduce the quantity Dk(x) := φk−1,k(x) − ψk−1,k(x). The
proof follows from an adaptation of Lemma 2.7 in [17] as soon as we have the estimates

(2.16) Var Dk(x) ≤ Ce−ck2ε0

and

(2.17) Var
(
φk(x) − φk(y)

) + Var
(
ψk(x) − ψk(y)

) ≤ 2k|x − y|.

(The estimate (2.16) is weaker than that used in [17, Lemma 2.7] but still much stronger
than required for the proof given there.) Note that (2.17) follows from Lemma 4 and for
(2.16) we proceed as follows: first note that

E
((

φk−1,k(x) − ψk−1,k(x)
)2

)
=

∫ 2−2k+2

2−2k

∫
R2

p t
2
(y)2(1 − �σt

(y))2dydt.

For every y, we have pt/2(y)(1 −�σt
(y)) ≤ (2π t)−1e−σ 2

t /t since 0 ≤ �σt
≤ 1 and �σt

(y) = 1
for |y| ≤ σt . Therefore,

E
((

φk−1,k(x) − ψk−1,k(x)
)2

)
≤

∫ 2−2k+2

2−2k

e−
σ2

t
t

2π t

∫
R2

p t
2
(y)dydt ≤ Ce−ck2ε0

. �

Let us point out that in fact
∑

n≥0 E(
∥∥φn,n+1 − ψn,n+1

∥∥
[0,1]2) < ∞ holds but we

won’t use it. Since we will be working with two different approximations of the Gaus-
sian free field, we introduce here some notation, referring to one field or the other. We
will denote by Ra,b := [0, a] × [0, b] the rectangle of size (a, b). We define

(2.18) Xa,b := sup
n≥0

∥∥φ0,n − ψ0,n

∥∥
Ra,b

and Xa := Xa,a for the supremum norm of the difference between the two fields on vari-
ous rectangles.
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2.3. Length observables. — The symbol L(n)

a,b(φ) (and similarly L(n)

a,b(ψ)) will refer to
the left–right distance of the rectangle Ra,b for the length functional eξφ0,nds:

(2.19) L(n)

a,b(φ) := inf
π

∫
π

eξφ0,nds,

where ds refers to the Euclidean length measure and the infimum is taken over all smooth
curves π connecting the left and right sides of Ra,b. We will sometimes consider a geodesic
associated to this variational problem. Such a path exists by the Hopf–Rinow theorem
and a compactness argument.

We introduce some notation for the quantiles associated to this observable:

�
(n)

a,b(φ, p) (similarly �
(n)

a,b(ψ, p)) is such that P
(

L(n)

a,b(φ) ≤ �
(n)

a,b(φ)
)

= p. For high quantiles,

we introduce �̄
(n)

a,b(φ, p) := �
(n)

a,b(φ,1 − p). Note that �
(n)

a,b(φ, p) is increasing in p whereas
�̄

(n)

a,b(φ, p) is decreasing in p. Note that both are well-defined, i.e., there are no Dirac deltas
in the law of L(n)

a,b. This follows from an application of the Cameron–Martin formula. We
will also need the notation

�n(φ, p) := max
k≤n

�̄k(φ, p)

�k(φ, p)
(2.20)

where �k(φ, p) := �
(k)
1,1(φ, p) and �̄k(φ, p) := �̄

(k)
1,1(φ, p).

The following inequalities are straightforward:

(2.21) e−ξXa,bL(n)

a,b(ψ) ≤ L(n)

a,b(φ) ≤ eξXa,bL(n)

a,b(ψ)

Therefore, using Proposition 5 (and a union bound, if necessary), we obtain that for some
C > 0 (depending only on a and b), for any ε > 0 we have

e−ξC
√

| log ε/C|�̄(n)

a,b(ψ, p + ε) ≤ �̄
(n)

a,b(φ, p) ≤ eξC
√

| log ε/C|�̄(n)

a,b(ψ, p − ε)

e−ξC
√

| log ε/C|�(n)

a,b(ψ, p − ε) ≤ �
(n)

a,b(φ, p) ≤ eξC
√

| log ε/C|�(n)

a,b(ψ, p + ε)

In particular, there exists Cp > 0 such that, uniformly in n,

(2.22)
�n(ψ, p/2) ≥ √

Cp

−1
�n(φ, p), �̄n(ψ, p/2) ≤ √

Cp�̄n(φ, p) and

�n(ψ, p/2) ≤ Cp�n(φ, p).

Now, we discuss how the scaling property of the field φ translates at the level of
lengths. We will use the following equality in law: for a, b > 0 and 0 ≤ m ≤ n,

(2.23) L(m,n)

a,b (φ)
(d)= 2−mL(n−m)

a·2m,b·2m(φ).
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Finally, for a rectangle P with two marked opposite sides, we define L(n)(P, φ) to
be the crossing distance between the two marked sides under the field eξφ0,n . The marked
sides will be clear from context: if we call P a “long rectangle,” then we mean that the
marked sides are the two shorter sides, so that L(n)(P, φ) is the distance across P “the long
way.”

2.4. Outline of the proof and roles of φδ and ψδ . — The key idea of the proof is to
obtain a self-bounding estimate associated to a measure of concentration of some ob-
servables, say rectangle crossing lengths. This is naturally expected because of the tree
structure of our model. We introduce a general condition, which we call Condition (T),
(see (5.2)) which ensures a contraction in the self-bounding estimate (5.19), which relates
a measure of concentration at scale n, the variance, with the measure of concentration
that we inductively bound, �n−K (see (2.20)), which is at a smaller scale.

We then prove that this condition, which depends only on ξ and on the field con-
sidered, is satisfied when ξ ∈ (0, (2/d2)

−). This proof uses a result taken from [12] about
the existence of an exponent for circle average Liouville first passage percolation and
this is the reason we don’t consider the simpler �-scale invariant field with compactly-
supported kernel but the field φδ , which can be compared to the circle average process
by a result obtained in [11].

The roles of φδ and ψδ in the proof are the following.

1. Prove Russo–Seymour–Welsh estimates for φ.
2. Prove tail estimates w.r.t. low and high quantiles for both φ and ψ :

a) Lower tails: Use directly the RSW estimates together with a Fernique-type
argument for the field ψ with local independence properties.

b) Upper tails: use a percolation/scaling argument, percolation using ψ and
scaling using φ.

3. Concentration of the log of the left–right distance: use Efron–Stein for the
field ψ (because of the local independence properties at each scale). This gives
the same result for φ.

4. To conclude for the concentration of diameter and metric, this is essentially a
chaining/scaling argument using only the field φ.

3. Russo–Seymour–Welsh estimates

3.1. Approximate conformal invariance. — In order to establish our RSW result, we
first show an approximate conformal invariance property of the field. The arguments in
this section are similar to those of [18, Section 3.1]. The difference is that the Gaussian
kernel has infinite support.

Recall that φδ(x) = ∫ 1
δ2

∫
R2 p t

2
(x− y)W(dy, dt) where pt(x− y) = 1

2π t
e−

|x−y|2
2t . Consider

a conformal map F between two bounded, convex, simply-connected open sets U and
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V such that |F′| ≥ 1 on U, ‖F′‖U < ∞ and ‖F′′‖U < ∞. (We point out here that the
assumption |F′| ≥ 1 will be obtained later on by starting from a very small domain; this
is exactly the content of Lemma 11.) We consider another field φ̃δ(x) = ∫ 1

δ2

∫
R2 p t

2
(x −

y)W̃(dy, dt) where W̃ is a white noise that we will couple with W in order to compare
φδ and φ̃δ ◦ F. The coupling goes as follows: for y ∈ U, t ∈ (0,∞), let y′ = F(y) ∈ V and
t′ = t|F′(y)|2 and set W̃(dy′, dt′) = |F′(y)|2W(dy, dt). That is, for every L2 function ω on
V × (0,∞), ∫

ω(y′, t′)W̃(dy′, dt′) =
∫

ω(F(y), t|F′(y)|2) ∣∣F′(y)
∣∣2

W(dy, dt)

and both sides have variance ‖ω‖2
L2 . The rest of the white noises are chosen to be inde-

pendent, i.e., W|Uc×(0,∞), W|U×(0,∞) and W̃|Vc×(0,∞) are jointly independent.

Lemma 6. — Under this coupling, we can compare the two fields φ̃δ(F(x)) and φδ(x) on a

compact, convex subset K of U as follows,

(3.1) φ̃δ(F(x)) − φδ(x) = φ
(δ)

L (x) + φ
(δ)

H (x),

where φ
(δ)

L (L for low frequency noise) is a smooth Gaussian field whose L∞-norm on K has uniform

Gaussian tails, and φ
(δ)

H (H for high frequency noise) is a smooth Gaussian field with uniformly bounded

pointwise variance (in δ and x ∈ K). Furthermore, φ
(δ)

H is independent of (φδ,φ
(δ)

L ).

This aforementioned independence property will be crucial for our argument.

Proof. — Step 1: Decomposition. For fixed F and small δ, we decompose φδ(x) −
φ̃δ(F(x)) = φ

(δ)

1 (x) + φ
(δ)

2 (x) + φ
(δ)

3 (x), where

φ
(δ)

1 (x) =
∫

U

∫ |F′(y)|−2

δ2

(
p t

2
(x−y) − p t

2 |F′(y)|2

(
F(x)−F(y)

) ∣∣F′(y)
∣∣2

)
W(dy, dt)

=
∫

U

∫ |F′(y)|−2

δ2

(
p t

2
(x − y) − p t

2

(
F(x) − F(y)

F′(y)

))
W(dy, dt)

φ
(δ)

2 (x) =
∫

Uc

∫ 1

δ2
p t

2
(x − y)W(dy, dt) −

∫
Vc

∫ 1

δ2
p t

2

(
F(x) − y

)
W̃(dy, dt)

+
∫

U

∫ 1

|F′(y)|−2
p t

2
(x − y)W(dy, dt)

φ
(δ)

3 (x) = −
∫

U

∫ δ2

δ2|F′(y)|−2
p t

2

(
F(x) − F(y)

F′(y)

)
W(dy, dt)

Remark also that φ
(δ)

3 is independent of φδ , φ
(δ)

1 , and φ
(δ)

2 .
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Step 2: Conclusion, assuming uniform estimates. We will estimate φ
(δ)

i , i = 1,2,3,
over K. In what follows, we take x, x′ ∈ K. We assume first the following uniform esti-
mates:

E((φ
(δ)

1 (x) − φ
(δ)

1 (x′))2) ≤ C
∣∣x − x′∣∣ ,

E((φ
(δ)

2 (x) − φ
(δ)

2 (x′))2) ≤ C
∣∣x − x′∣∣ , E

(
φ

(δ)

3 (x)
)

≤ C.

An application of Kolmogorov’s continuity criterion and Fernique’s theorem give uni-
form Gaussian tails for φ

(δ)

1 and φ
(δ)

2 . We then set φ
(δ)

H := φ
(δ)

3 and φ
(δ)

L := φ
(δ)

1 + φ
(δ)

2 .
Step 3: Uniform estimates.
First term. We prove that E((φ

(δ)

1 (x) − φ
(δ)

1 (x′))2) ≤ C |x − x′| by controlling
∫ 1

0

∫
U

(
p t

2
(x − y) − p t

2

(
F(x) − F(u)

F′(y)

)

− p t
2

(
x′ − y

) + p t
2

(
F(x′) − F(u)

F′(y)

))2

dydt

By introducing p(x) = e−
|x|2

2 and by a change of variable t ↔ 2t2, it is equivalent (up to a
multiplicative constant) to bound from above the quantity

∫ 1

0

dt

t3

∫
U

(
p

(
x − y

t

)
− p

(
F(x) − F(y)

tF′(y)

)
(3.2)

− p

(
x′ − y

t

)
+ p

(
F(x′) − F(y)

tF′(y)

))2

dy.

We will estimate this term by considering the case where t ≤ √|x − x′| and the case where
t ≥ √|x − x′|.

Step 3.(A): Case t ≥ √|x − x′|. Using the identity |x − y|2 + |x′ − y|2 = 1
2 |x − x′|2 +

2|y − x+x′
2 |2 and the inequality 1 − e−z ≤ z, we get

∫
U

(
p

(
x − y

t

)
− p

(
x′ − y

t

))2

dy ≤ Ct2(1 − e
− |x−x′|2

4t2 ) ≤ C
∣∣x − x′∣∣2

.(3.3)

Similarly,
∫

U

(
p

(
F(x) − F(y)

tF′(y)

)
− p

(
F(x′) − F(y)

tF′(y)

))2

dy(3.4)

≤ C
∣∣F(x) − F(x′)

∣∣2 ≤ C
∣∣x − x′∣∣2

,

where the constant C depends on ‖F′‖U. Then the corresponding part in (3.2) is bounded
from above by |x − x′|2 ∫ 1√

|x−x′|
dt

t3
≤ C|x − x′|.
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Step 3.(B): For t ≤ √|x − x′|, using the Taylor inequality |F(x) − F(y) − F′(y)(x −
y)| ≤ 1

2 ‖F′′‖U |x − y|2 and the mean value inequality (as we have assumed that K is con-
vex), ∣∣∣∣p

(
x − y

t

)
− p

(
F(x) − F(y)

tF′(y)

)∣∣∣∣(3.5)

≤ C
|x − y|2

t

( |x − y|
t

+ |x − y|2
t

)
e
− 1

2t2
infα∈(0,1)

∣∣∣α(x−y)+(1−α)
F(x)−F(y)

F′(y)
∣∣∣2
.

Step 3.(B): case (a). If y ∈ B(x, ε) for ε small enough (depending only on ‖F′′‖U), we
have, using again |F(x) − F(y) − F′(y)(x − y)| ≤ 1

2 ‖F′′‖U |x − y|2, uniformly in α ∈ (0,1),
∣∣∣∣α(x − y) + (1 − α)

F(x) − F(y)

F′(y)

∣∣∣∣ ≥ |x − y| − 1
2

∥∥F′′∥∥
U

|x − y|2 ≥ 1
2
|x − y|.

Therefore, for such y’s we have, coming back to (3.5),
∣∣∣∣p

(
x − y

t

)
− p

(
F(x) − F(y)

tF′(y)

)∣∣∣∣ ≤ C
|x − y|3

t2
e
− |x−y|2

4t2 .

For this case we get the bound
∫

B(x,ε)

(
p

(
x − y

t

)
− p

(
F(x) − F(y)

tF′(y)

))2

dy

≤ C
∫

B(x,ε)

|x − y|6
t4

e
− |x−y|2

2t2 = Ct−2E(|Bt2|6) ≤ Ct4,

where Bt denotes a two-dimensional Gaussian variable with covariance matrix t times

the identity. This term contributes to (3.2) as C
∫ √

|x−x′|
0

dt

t3
t4 ≤ C|x − x′|.

Step 3.(B): case (b). Now, for t ≤ √|x − x′| and y ∈ U \ B(x, ε) we write

∫ √
|x−x′|

0

dt

t3

∫
U\B(x,ε)

p

(
x − y

t

)2

dy ≤ C
∫ √

|x−x′|

0

dt

t
P(|Bt2 | > ε)

≤ C
∫ √

|x−x′|

0

dt

t
e
− ε2

2t2 ≤ C
∣∣x − x′∣∣ ,

and similarly

∫ √
|x−x′|

0

dt

t3

∫
U\B(x,ε)

p

(
F(x) − F(y)

tF′(y)

)2

dy ≤ C
∣∣x − x′∣∣ ,

where the constant C depends on ‖F′‖U and ‖(F−1)′‖U.
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Applying Step 3.(A) and then Step 3.(B) twice (once for x and then again for x′) to
(3.2), we get E((φ

(δ)

1 (x) − φ
(δ)

1 (x′))2) ≤ C |x − x′|.
Second term. We want to prove here that E((φ

(δ)

2 (x) − φ
(δ)

2 (x′))2) ≤ C |x − x′|.
Note that three terms contribute to δφ2. The third one is a nice Gaussian field indepen-
dent of δ. The first two terms are similar, so we will just focus on the first one, namely
φ

(δ)

2,1(x) := ∫
Uc

∫ 1
δ2 p t

2
(x − y)W(dy, dt). We have, similarly to (3.2) and (3.3),

E
((

φ
(δ)

2,1(x) − φ
(δ)

2,1(x
′)
)2

)

=
∫ 1

δ2

∫
Uc

(
p t

2
(x − y) − p t

2
(x′ − y)

)2
dydt

≤ C
∫ 1

0

dt

t3

∫
Uc

(
p

(
x − y

t

)
− p

(
x′ − y

t

))2

dy

≤ C
∫ √

|x−x′|

0

dt

t3

∫
Uc

p

(
x − y

t

)
+ p

(
x′ − y

t

)
dy + C|x − x′|.

The remaining term can be controlled as follows (noting the symmetry between x and x′):
∫ √

|x−x′|

0

dt

t

∫
Uc

1
t2

e
− |x−y|2

2t2 dy ≤ C
∫ √

|x−x′|

0

dt

t
P(|Bt2| > d)

≤ C
∫ √

|x−x′|

0

dt

t
e
− d2

2t2 ≤ C
∣∣x − x′∣∣ ,

where d = d(K,Uc). Thus E((φ
(δ)

2 (x) − φ
(δ)

2 (x′))2) ≤ C |x − x′|.
Third term. We give here a bound on the pointwise variance of φ

(δ)

3 . By using∣∣∣F(x)−F(y)

F′(y)

∣∣∣ ≥ |x−y|
C we get E(φ

(δ)

3 (x)2) ≤ ∫ δ2

cδ2
dt

t

∫
R2

e
− |x−y|2

Ct

t
dy ≤ C. �

3.2. Russo–Seymour–Welsh estimates. — The main result of this section is the follow-
ing RSW estimate. It shows that appropriately-chosen quantiles of crossing distances of
“long” and “short” rectangles at the same scale can be related by a multiplicative factor
that is uniform in the scale. This is the equivalent of Theorem 3.1 from [18] but with the
field mollified by the heat kernel instead of a compactly-supported kernel. It holds for
any fixed ξ > 0.

Proposition 7 (RSW estimates for φδ). — If [A,B] ⊂ (0,∞), there exists C > 0 such that

for (a, b), (a′, b′) ∈ [A,B] with a

b
< 1 < a′

b′ , for n ≥ 0 and ε < 1/2, we have,

�
(n)

a′,b′(φ, ε/C) ≤ C�
(n)

a,b(φ, ε)eC
√

log |ε/C|;(3.6)

�̄
(n)

a′,b′(φ,3εC) ≤ C�̄
(n)

a,b(φ, ε)eC
√

log |ε/C|.(3.7)
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The following corollary then follows from Propositions 5 and 7.

Corollary 8 (RSW estimates for ψδ). — Under the same assumptions as used in Proposition 7,

we have

(3.8) �
(n)

a′,b′(ψ, ε/C) ≤ C�
(n)

a,b(ψ, ε)eC
√

log |ε/C|

and

(3.9) �̄
(n)

a′,b′(ψ,3εC) ≤ C�̄
(n)

a,b(ψ, ε)eC
√

log |ε/C|.

We point out that the constants C in (3.8) and (3.9) are not equal to those in (3.6)
and (3.7). The remaining parts of the section will only deal with approximations associ-
ated with φ so we will omit this dependence in the various observables.

We describe below the main lines of the argument. Consider Ra,b and Ra′,b′ , two
rectangles with respective side lengths (a, b) and (a′, b′) satisfying a

b
< 1 < a′

b′ . Suppose
that we could take a conformal map F : Ra,b → Ra′,b′ mapping the long left and right
sides of Ra,b to the short left and right sides of Ra′,b′ . (This is not in fact possible since
there are only three degrees of freedom in the choice of a conformal map, but for the
sake of illustration we will consider this idealized setting first.) Then the proof goes as
follows.

Take a geodesic π̃ for φ̃0,n for the left–right crossing of Ra,b. Then, using the cou-
pling (3.1), we have

Lφ0,n(Ra′,b′) ≤ Lφ0,n(F(π̃)) =
∫ T

0
eξφ0,n(F(π̃(t)))|F′(π̃(t))| · |π̃ ′(t)|dt

≤ ∥∥F′∥∥
Ra,b

∫
π̃

eξ(φ̃0,n+δφL+δφH)ds

≤ ∥∥F′∥∥
Ra,b

e
ξ‖δφL‖Ra,b

∫
π̃

eξ φ̃0,n eξδφHds.

It is essential that π̃ is φ̃0,n measurable and φ̃0,n is independent of δφH. Then, we can use
the following lemma.

Lemma 9. — If � is a continuous field and � is an independent continuous centered Gaussian

field with pointwise variance bounded above by σ 2 > 0, then we have, as long as ε is sufficiently small

compared to σ 2,

1. �1,1(� + �,ε) ≤ e
√

2σ 2 log ε−1
�1,1(�,2ε);

2. �̄1,1(� + �,2ε) ≤ e
√

2σ 2 log ε−1
�̄1,1(�, ε).

Proof. — Fix s := √
2σ 2 log ε−1 throughout the proof. Let π(�) be a geodesic as-

sociated with the left–right crossing length for the field �, and define the measure μ on
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π(�) by μ(ds) = L1,1(�)−1e�ds, so
∫

π(�)
e�ds = 1. Conditionally on �, using Jensen’s in-

equality with α = s

2σ 2 = √
(log ε−1)/(2σ 2), which is greater than 1 for small enough ε,

and Chebyshev’s inequality, we have

P
(∫

π(�)

e�+�ds > esL1,1(�) | �

)
≤ P

(∫
π(�)

eα�dμ ≥ eαs | �

)
(3.10)

≤ e
1
2 α2σ 2

e−αs = e
− s2

2σ2 = ε.

To bound from above L1,1(�+�), we take a geodesic for � and use the moment estimate
(3.10). We start with the left tail. Still with s := √

2σ 2 log ε−1, we have

P
(
L1,1(�) ≤ �1,1(� + �,ε)e−s

)
≤ P

(
L1,1(� + �) ≤ esL1,1(�),L1,1(�) ≤ �1,1(� + �,ε)e−s

)
+ P

(
L1,1(� + �) > esL1,1(�)

)

≤ P
(
L1,1(� + �) ≤ �1,1(� + �,ε)

) + P
(∫

π(�)

e�+�ds > esL1,1(�)

)

≤ 2ε.

For the right tail, we have similarly that

P
(
L1,1(� + �) ≥ �̄1,1(�, ε)es

)
≤ P

(
L1,1(� + �) ≥ �̄1,1(�, ε)es, �̄1,1(�, ε) ≥ L1,1(�)

)
+ P

(
L1,1(�) ≥ �̄1,1(�, ε)

)
≤ P

(
L1,1(� + �) ≥ esL1,1(�)

) + ε ≤ 2ε,

which concludes the proof of the lemma. �

The previous reasoning does not apply directly to rectangle crossing lengths but
provides the following proposition. Recall that K is a compact subset of U. Let A,B be
two boundary arcs of K and denote by L the distance from A to B in K for the metric
eξφ0,nds; we denote A′ := F(A), B′ := F(B), K′ := F(K), and L′ is the distance from A′ to
B′ in K′ for eξ φ̃0,nds. Recall that we have |F′| ≥ 1 on U. In the application we will achieve
this by scaling U to be sufficiently small.

Proposition 10. — We have the following comparisons between quantiles. There exists C > 0
such that

1. if for some l > 0 and ε < 1/2, P (L ≤ l) ≥ ε, then P (L′ ≤ l ′) ≥ ε/4 with l ′ =
‖F′‖K eC

√|log ε/2C|.
2. if for some l > 0 and ε < 1/2, P (L ≤ l) ≥ 1 − ε, then P (L′ ≤ l ′) ≥ 1 − 3ε with

l ′ = ‖F′‖K eC
√|log ε/2C|.
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FIG. 1. — Illustration of Lemma 12

Now, we want to prove a similar result for rectangle crossing lengths. We will need
the three following lemmas that were used in [18]. The first one is a geometrical con-
struction, the second one is a complex analysis result and the last one comes essentially
from [39] together with an approximation argument. In these lemmas, by “crossings” we
mean continuous path from marked sides to marked sides.

Lemma 11 (Lemma 4.8 of [18]). — If a and b are two positive real numbers with a < b, there

exists j = j(b/a) and j rectangles isometric to [0, a/2]× [0, b/2] such that if π is a left–right crossing

of the rectangle [0, a] × [0, b], at least one of the j rectangles is crossed in the thin direction by a subpath

of that crossing.

Lemma 12 (Step 1 in the proof of Theorem 3.1 in [18]). — If a/b < 1 and a′/b′ > 1, there

exists m, p ≥ 1 and two ellipses Ep,E′ with marked arcs (AB), (CD) for Ep and (A′B′), (C′D′) for

E′ such that:

1. Any left–right crossing of [0, a/2p] × [0, b/2p] is a crossing of Ep.

2. Any crossing of E′ is a left–right crossing of [0, a′] × [0, b′].
3. When dividing the marked sides of Ep into m subarcs of equal length, for any pair of such

subarcs (one on each side), there exists a conformal map F : Ep → E′ and the pair of subarcs

is mapped to subarcs of the marked sides of E′.
4. For each pair, the associated map F extends to a conformal equivalence U → V where

Ep ⊂ U, E′ ⊂ V and |F′| ≥ 1 on U.

We refer the reader to Figure 1 for an illustration.

Lemma 13 (Positive association and square-root-trick). — If k ≥ 2 and (R1, . . . ,Rk) denote

a collection of k rectangles, then, for (x1, . . . , xk) ∈ (0,∞)k , we have

P
(
L(n)(R1) > x1, . . . ,L(n)(Rk) > xk

)
≥ P

(
L(n)(R1) > x1

) · · ·P (
L(n)(Rk) > xk

)
.
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An easy consequence of this positive association is the so-called “square-root-trick”:

max
i≤k

P
(
L(n)(Ri) ≤ xi

) ≥ 1 − (
1 − P

(∃i ≤ k : L(n)(Ri) ≤ xi

))1/k
.

The main result of this section, Proposition 7, is a rephrasing of the following one.

Proposition 14. — We have the following comparisons between quantiles. If a/b < 1 and

a′/b′ > 1, there exists C > 0 such that, for any ε ∈ (0,1/2),

1. if P
(

L(n)

a,b ≤ l
)

≥ ε, then P
(

L(n)

a′,b′ ≤ CleC
√|log ε/C|) ≥ ε/C,

2. and if P
(

L(n)

a,b ≤ l
)

≥ 1 − ε, then P
(

L(n)

a′,b′ ≤ CleC
√|log ε/C|) ≥ 1 − 3ε1/C.

Proof. — We provide first a comparison between low quantiles and then a compar-
ison between high quantiles.

Step 1: Comparison of small quantiles. Suppose P(L(n)

a,b ≤ l) ≥ ε. By Lemma 11 and
union bound, P(L(n)

a/2,b/2 ≤ l) ≥ ε/j. Furthermore, by iterating, we have P(L(n)

a/2p,b/2p ≤ l) ≥
ε/jp. Under this event, by Lemma 12, there exists a crossing of Ep between two subarcs
of Ep (one on each side) hence with probability at least ε/(jpm2), one of these crossings
has length at most l. By the left tail estimate Proposition 10 and Lemma 12, we obtain a
C > 0 (depending also on ‖F′‖Ep

) such that for all ε, l > 0:

P
(

L(n)

a,b ≤ l
)

≥ ε ⇒ P
(

L(n)

a′,b′ ≤ CleC
√|log ε/(2Cjpm2)|) ≥ ε/(4jpm2),

hence the first assertion.
Step 2: Comparison of high quantiles. Now suppose P(L(n)

a,b ≤ l) ≥ 1 − ε. By
Lemma 11 (to start with a crossing at a lower scale) and Lemma 13 (square-root-trick),
we have P(L(n)

a/2,b/2 ≤ l) ≥ 1 − ε1/j . Furthermore, by iterating, we have P(L(n)

a/2p,b/2p ≤ l) ≥
1 − ε1/jp . On the event {L(n)

a/2p,b/2p ≤ l}, the ellipse Ep from Lemma 12 has a crossing of
length ≤ l between two marked arcs. Again by subdividing each its marked arcs into m

subarcs and applying the square-root trick, we see that for at least one pair of subarcs,
there is a crossing of length ≤ l with probability ≥ 1 − εj−pm−2

. Combining with the right-
tail estimate Proposition 10 and Lemma 12, we get:

(3.11) P
(

L(n)

a,b ≤ l
)

≥ 1 − ε ⇒ P
(

L(n)

a′,b′ ≤ CleC
√|log ε/C|) ≥ 1 − 3ε1/C,

which completes the proof. �

Remark 15. — The importance of the Russo–Seymour–Welsh estimates comes
from the following: percolation arguments/estimates work well when taking small quan-
tiles associated with short crossings and high quantiles associated with long crossings.
Thanks to the RSW estimates, we can instead keep track only of low and high quantiles
associated to the unit square crossing, �n(p) and �̄n(p).
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4. Tail estimates with respect to fixed quantiles

Lower tails. — This is where we take r0 small enough (recall the definition (2.11)) to
obtain some small range of dependence of the field ψ so that a Fernique-type argument
works.

Proposition 16 (Lower tail estimates for ψ ). — We have the following lower tail estimate: for p

small enough, but fixed, there is a constant C so that for all s > 0,

(4.1) P
(

L(n)
1,3(ψ) ≤ e−s�n(ψ, p)

)
≤ Ce−cs2

.

Proof. — The RSW estimate (3.8) gives

(4.2) P
(

L(n)
3,3(ψ) ≤ l

)
≤ ε ⇒ P

(
L(n)

1,3(ψ) ≤ lC−1e−Cξ
√

| log Cε|
)

≤ Cε

Now, if L(n)
3,3(ψ) is less than l, then both [0,1] × [0,3] and [2,3] × [0,3] have a left–

right crossing of length ≤ l and the restrictions of the field to these two rectangles are
independent (if r0 defined in (2.11) is small enough). Consequently,

(4.3) P
(

L(n)
3,3(ψ) ≤ l

)
≤ P

(
L(n)

1,3(ψ) ≤ l
)2

Take p0 small, such that C2p0 < 1 where C is the constant in (4.2) and set r
(n)
0 :=

�
(n)
3,3(ψ, p0). (This is not related to r0, defined previously.) For i ≥ 0, set

pi+1 := (Cpi)
2(4.4)

r
(n)

i+1 := r
(n)

i C−1 exp(−Cξ
√| log(Cpi)|)(4.5)

By induction we get, for i ≥ 0,

(4.6) P(L(n)
3,3(ψ) ≤ r

(n)

i ) ≤ pi

Indeed, the case i = 0 follows by definition and then notice that the RSW estimate (4.2)
under the induction hypothesis implies that P(L(n)

3,3(ψ) ≤ r
(n)

i ) ≤ pi ⇒ P(L(n)
1,3(ψ) ≤ r

(n)

i+1) ≤
Cpi which gives, using (4.3), P(L(n)

3,3(ψ) ≤ r
(n)

i+1) ≤ P(L(n)
1,3(ψ) ≤ r

(n)

i+1)
2 ≤ (Cpi)

2 = pi+1.
From (4.4) we get pi = (p0C2)2i

C−2 and from (4.5) we have the lower bound, for
i ≥ 1,

r
(n)

i ≥ �
(n)
3,3(ψ, p0)C−ie−Cξ

∑i−1
k=0

√
| log(Cpk)| ≥ �

(n)
3,3(ψ, p0)e

−Cie−Cξ
√

| log p0C2|2i/2
.

Our estimate (4.6) then takes the form, for i ≥ 0,

P
(

L(n)
3,3(ψ) ≤ �

(n)
3,3(ψ, p0)e

−Cie−ξC
√

| log p0C2|2i/2
)

≤ (
p0C2

)2i

C−2.
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This can be rewritten, taking i = �2 log2 s�, as

P
(

L(n)
3,3(ψ) ≤ �

(n)
3,3(ψ, p0)C−1e−C log se−ξ s

)
≤ e−cs2

for s > 2 with absolute constants. We obtain the statement of the proposition by using
again the RSW estimates. �

Using the comparison result between φ and ψ (Proposition 5), we get the following
corollary.

Corollary 17 (Lower tail estimates for φ). — For p small enough, but fixed, for all s > 0 we

have a constant C < ∞ so that

(4.7) P
(

L(n)
1,3(φ) ≤ e−s�n(φ, p)

)
≤ Ce−cs2

.

Upper tails. — The proof for the upper tails is similar to the one of Proposition 5.3 in
[18]. The main difference is that we have to switch between φ and ψ , so that we can
use the independence properties of ψ together with the scaling properties of φ. Before
stating the proposition, we refer the reader to (2.20) for the definition of �n(φ, p). In
contrast with the lower tails estimates which are relative to �n(φ, p), we do not know
how to prove (at least a priori) the analogous result for the upper tails with �̄n(φ, p) only.
However, we can prove it by replacing �̄n(φ, p) by �n(φ, p)�n(φ, p) and this is the content
of the following proposition.

Proposition 18 (Upper tail estimates for φ). — For p small enough, but fixed, we have a constant

C < ∞ so that for all n ≥ 0 and s > 2,

(4.8) P
(

L(n)
3,1(φ) ≥ es�n(φ, p)�n(φ, p)

)
≤ Ce

c s2
log s .

Proof. — The proof uses percolation and scaling arguments. A percolation argu-
ment is used to build a crossing of a larger rectangle from smaller annular circuits, and
then a scaling argument is used to relate quantiles of these annular crossings to crossing
quantiles of the larger rectangle.

Step 1: Percolation argument. To each unit square P of Z2, we associate the four
crossings of long rectangles of size (3,1) surrounding P, each comprising three squares on
one side of the eight-square annulus surrounding P, as illustrated in Figure 2. We define
S(n)(P,ψ) to be the sum of the four crossing lengths, and declare the site P to be open
when the event {S(n)(ψ,P) ≤ 4�̄

(n)
3,1(ψ, p)} occurs. This occurs with probability at least 1−

ε(p), where ε(p) goes to zero as p goes to zero (recall that P(L(n)
3,1(ψ) ≤ �̄

(n)
3,1(p)) = 1 − p).

Using a highly supercritical finite-range site percolation estimate to obtain exponential
decay of the probability of a left–right crossing (which is standard technique in classical
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FIG. 2. — Four blue rectangles are surrounding the square P. Left–right geodesics associated to the long and short rectangles
surrounding P are drawn in green and brown respectively. Any geodesic πn, here in red, which intersects P has to cross the
green circuit and to induce a short crossing of one of the four rectangles (Color figure online)

percolation theory [20]; see also for example the proof of Proposition 4.2 in [10]) together
with the Russo–Seymour–Welsh estimates (to come back to �̄n(ψ, p)), we have

P
(

L(n)

3k,k(ψ) ≥ Ck2�̄n(ψ, p)
)

≤ Ce−ck.

Therefore, using this bound together with Proposition 5 to bound X3k,k (recalling the
definition (2.18)),

P
(

L(n)

3k,k(φ) ≥ eξC
√

kCpCk2�̄n(φ, p/2)
)

≤ P
(

eξX3k,k L(n)

3k,k(ψ) ≥ eξC
√

kCpCk2�̄n(φ, p/2)
)

≤ P
(

X3k,k ≥ C
√

k
)

+ P
(

L(n)

3k,k(ψ) ≥ CpCk2�̄n(φ, p/2)
)

≤ Ce−ck + P
(

L(n)

3k,k(ψ) ≥ Ck2�̄n(ψ, p)
)

≤ Ce−ck.

Note that we used the bound �̄n(ψ, p) ≤ Cp�̄n(φ, p/2) from (2.22) in the third inequality;
here Cp is defined as in (2.22).

Step 2: Decoupling and scaling. In this step, we give a rough bound of the coarse
field φ0,m, to obtain spatial independence of the remaining field between blocks of size
2−m. When an event occurs on one block with high enough probability, the percolation
argument of Step 1 then provides, with very high probability, a left–right path of such
events occurring simultaneously. Since L(n)

3,1(φ) ≤ eξ maxR3,1 φ0,mL(m,n)
3,1 (φ), the scaling prop-

erty of the field φ, i.e. L(m,n)
3,1 (φ)

(d)= 2−mL(n−m)

3·2m,2m(φ), gives

P
(

L(n)
3,1(φ) ≥ eξ s

√
mec

√
2m

�̄n−m(φ, p)
)

≤ P
(

max
R3,1

φ0,m ≥ Cm + s
√

m

)
+ P

(
2−mL(n−m)

3·2m,2m(φ) ≥ ec
√

2m

�̄n−m(φ, p)
)

≤ Ce−cs2 + Ce−c2m

,
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where the first term of the second expression is bounded by taking a = C + sm−1/2 in
Proposition 2 and the second bound follows from the result obtained in Step 1 with
k = 2m, taking a slightly larger c in exp(c

√
2m) to absorb the factor eCm.

Step 3: We derive an a priori bound �n(φ, p) ≥ 2−2ξk�n−k(φ, p)e−C
√

k . (Note that the
argument below will be optimized in (5.31).) For each dyadic block of size 2−k visited by
πn(φ), one of the four rectangles of size 2−k(1,3) around P has to be crossed by πn(φ).
Therefore, since πn(φ) has to visit at least 2k dyadic blocks of size 2−k , we have

L(n)
1,1(φ) ≥ 2keξ inf[0,1]2 φ0,k min

P∈Pk,P∩πn(φ)�=∅
min
1≤i≤4

L(k,n)(RS
i (P),φ),

where (RS
i (P))1≤i≤4 denote the four long rectangles of size 2−k(1,3) surrounding P. Us-

ing the supremum tail estimate (2.3) and the left tail estimates (4.7), we get �n(φ, p) ≥
2−2ξk�n−k(φ, p)e−C

√
k . Indeed,

P
(

eξ inf[0,1]2 φ0,k min
P∈Pk,P∩πn(φ)�=∅

min
1≤i≤4

2kL(k,n)(RS
i (P),φ)≤2−2ξk�n−k(φ, p)e−C

√
k

)

≤ P
(

inf
[0,1]2

φ0,k ≤ −k log 4 − C
√

k

)

+ P
(

min
P∈Pk,P∩πn(φ)�=∅

min
1≤i≤4

2kL(k,n)(RS
i (P),φ) ≤ �n−k(φ, p)e−C

√
k

)

and each term is less than p/2 if C is large enough, depending on p. Therefore, we have

�̄n−m(φ, p) ≤ �n−m(φ, p)�n−m(φ, p) ≤ 22ξmeC
√

m�n−m(φ, p)�n(φ, p).

Now, by coming back to the partial result obtained in Step 2 and by taking s2 = 2m for
s ∈ [1,2n/2], we get

P
(

L(n)
3,1(φ) ≥ ecs

√
log secs�n(φ, p)�n(φ, p)

)
≤ e−cs2

.

Step 4: Now we consider large tails, so we assume s ≥ 2
n
2 . By a direct comparison

with the supremum, we have �n(φ, p) ≥ 2−ξ(2n+C
√

n) (later on we will use a more precise
estimate from [12], see (5.5)). Moreover, bounding from above the left–right distance by
taking a straight path from left to right and then using a moment method analogous to

the one in (3.10), we get P
(

L(n)
1,1(φ) ≥ eξ s

)
≤ e

− s2
2(n+1) log 2 . Altogether,

P
(

L(n)
1,1(φ) ≥ �n(φ, p)�n(φ, p)eξ s

)
≤ P

(
L(n)

1,1(φ) ≥ �n(φ, p)eξ s
)

≤ e
− (s−n log 4−C

√
n)2

2(n+1) log 2 ≤ eCse
−c s2

log s ,
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where we used �n(φ, p) ≥ 1 in the first inequality and the bound �n(φ, p) ≥ 2−ξ(2n+C
√

n)

together with the tail estimate P
(

L(n)
1,1(φ) ≥ eξ s

)
≤ e

− s2
2(n+1) log 2 in the second one. The last

inequality follow since s ≥ 2
n
2 .

Combining the tail estimate of Step 3, valid for s ∈ [1,2n/2], and the one of Step 4,
valid for s ≥ 2n/2, completes the proof. �

Using again the comparison between φ and ψ given in Proposition 5, we get the
following corollary.

Corollary 19 (Upper tail estimates for ψ ). — For p small enough, but fixed, we have, for all

n ≥ 0 and s > 2,

(4.9) P
(

L(n)
3,1(ψ) ≥ es�n(ψ, p)�n(ψ, p)

)
≤ Ce

c s2
log s .

5. Concentration

5.1. Concentration of the log of the left–right crossing length.

Condition (T). — Denote by πn(ψ) the left–right geodesic of the unit square associated
to the field ψ0,n. If there are multiple such geodesics, let πn(ψ) be chosen among them
in some measurable way, for example by taking the uppermost geodesic. By πK

n (ψ) its
K-coarse graining which we define as

(5.1) πK
n (ψ) := {P ∈PK : P ∩ πn(ψ) �= ∅},

recalling the definition (2.7) of PK. Let ψ0,n(P) denote the value of the field ψ0,n taken at
the center of a block P. We introduce the following condition: there exist constants α > 1,
c > 0 so that for K large we have

(5.2) sup
n≥K

E

⎛
⎜⎝

⎛
⎜⎝

∑
P∈πK

n (ψ) e2ξψ0,K(P)

(∑
P∈πK

n (ψ) eξψ0,K(P)

)2

⎞
⎟⎠

α⎞
⎟⎠

1/α

≤ e−cK. (Condition (T))

The importance of Condition (T) comes from the following theorem.

Theorem 20. — If ξ is such that Condition (T) above is satisfied, then (log L(n)
1,1(φ) −

logλn(φ))n≥0 is tight, where λn(φ) denotes the median of L(n)
1,1.

It is not expected that the weight is approximately constant over the crossing (since
there may be some large level lines of the field that the crossing must cross). Condition (T),
however, roughly requires that the length of the crossing is supported by a number of
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coarse blocks that grows at least like some small but positive power of the total number
of coarse blocks. Note that the fraction in Condition (T) is the �2 norm of the vector of
crossing weights on each block divided by the square of the �1 norm of the same, and
thus controlling it amounts to an anticoncentration condition for this vector.

The core of this section is the proof of Theorem 20. Before proving it, let us al-
ready jump to the important following proposition. Here we use the assumption that
ξ ∈ (0,2/d2), although the formulation of Condition (T) is designed so that it could also
hold for larger ξ .

Proposition 21. — If γ ∈ (0,2), then ξ := γ

dγ
satisfies Condition (T).

Proof. — Step 1: Supremum bound. Taking the supremum over all blocks of size
2−K in [0,1]2, we get∑

P∈πK
n (ψ) e2ξψ0,K(P)

(∑
P∈πK

n (ψ) eξψ0,K(P)

)2 ≤ eξ maxP∈PK ψ0,K(P)∑
P∈πK

n (ψ) eξψ0,K(P)
≤ eξ maxP∈PK φ0,K(P)∑

P∈πK
n (ψ) eξψ0,K(P)

eξX1,

recalling the definition of X1 below (2.18).
Step 2: We give a lower bound of the denominator of the right-hand side. By taking

the concatenation of straight paths in each box of πK
n (ψ), we get a left–right crossing of

[0,1]2. Denote this crossing by �n,K,ψ . We have,
∑

P∈πK
n (ψ)

eξψ0,K(P) ≥ e−ξX1
∑

P∈πK
n (ψ)

eξφ0,K(P)(5.3)

≥ e−ξX1 exp(−ξ max
P∈P1

K

oscP(φ0,K))2KL(K)(φ,�n,K,ψ)

≥ e−ξX1 exp(−ξ max
P∈P1

K

oscP(φ0,K))2KL(K)

1,1 (φ),

where oscP was defined in (2.6) and P1
K was defined in (2.8).

Step 3: Combining the two previous steps, we have
∑

P∈πK
n (ψ) e2ξψ0,K(P)

(∑
P∈πK

n (ψ) eξψ0,K(P)

)2 ≤ e
ξ maxP∈P1

K
φ0,K(P)

2KL(K)

1,1 (φ)
e2ξX1e

ξ maxP∈P1
K

oscP(φ0,K)
.

Now, we take α > 1 close to 1. Using Hölder’s inequality with 1
r
+ 1

s
= 1 and r close to 1,

together with Cauchy–Schwarz, we get

E

⎛
⎜⎝

⎛
⎜⎝

∑
P∈πK

n (ψ) e2ξψ0,K(P)

(∑
P∈πK

n (ψ) eξψ0,K(P)

)2

⎞
⎟⎠

α⎞
⎟⎠

1/α
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≤ 2−KE

(
eαξ maxP∈PK φ0,K(P)

(L(K)

1,1 (φ))α
e2αξX1e

αξ maxP∈P1
K

oscP(φ0,K)

)1/α

≤ 2−KE
(

e
αrξ maxP∈P1

K
φ0,K(P)

)1/αr

E
((

L(K)

1,1 (φ)
)−2αs

)1/2αs

× E
(
e8αsξX1

)1/4αs
E

(
e
4αsξ maxP∈P1

K
oscP(φ0,K)

)1/4αs

.

Therefore, using (2.4) for the maximum, (4.7) for the left–right crossing, Proposition 5 to
bound X1 and (2.10) for the maximum of oscillations, we finally get, when αrξ < 2 (recall
that αr can be taken arbitrarily close to 1),

(5.4) E

⎛
⎜⎝

⎛
⎜⎝

∑
P∈πK

n (ψ) e2ξψ0,K(P)

(∑
P∈πK

n (ψ) eξψ0,K(P)

)2

⎞
⎟⎠

α⎞
⎟⎠

1/α

≤ 2−K22ξK�
(K)

1,1 (φ, p)−1eC
√

K.

Step 4: Lower bound on quantiles. For γ ∈ (0,2), Q := 2
γ

+ γ

2 > 2. Using Propo-
sition 3.17 from [12] (circle average LFPP) and Proposition 3.3 from [11] (comparison
between φδ and circle average), we have, if p is fixed and ε ∈ (0,Q − 2), for K large
enough,

(5.5) �
(K)

1,1 (φ, p) ≥ 2−K(1−ξQ+ξε).

Step 5: Conclusion. Using the results from the two previous steps, we finally get

E

⎛
⎜⎝

⎛
⎜⎝

∑
P∈πK

n (ψ) e2ξψ0,K(P)

(∑
P∈πK

n (ψ) eξψ0,K(P)

)2

⎞
⎟⎠

α⎞
⎟⎠

1/α

≤ 2−ξ(Q−2−ε)KeC
√

K,

which completes the proof. �

Now, we come back to the proof of Theorem 20. We first derive a priori estimates
on the quantile ratios.

Lemma 22. — Let Z be a random variable with finite variance and p ∈ (0,1/2). If a pair

(�̄(Z, p), �(Z, p)) satisfies �̄(Z, p) ≥ �(Z, p), P(Z ≥ �̄(Z, p)) ≥ p and P(Z ≤ �(Z, p)) ≥ p,

then, we have:

(5.6) (�̄(Z, p) − �(Z, p))2 ≤ 2
p2

Var Z.

Proof. — If Z′ is an independent copy of Z, notice that for l ′ ≥ l we have 2Var(Z) =
E((Z′ − Z)2) ≥ E(1Z′≥l′1Z≤l(Z′ − Z)2) ≥ P(Z ≥ l ′)P(Z ≤ l)(l ′ − l)2. �
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In the following lemma, we derive an a priori bound on the variance of log L(n)
1,1(φ).

Lemma 23. — For all n ≥ 0 we have the bound

Var log L(n)
1,1(φ) ≤ ξ 2(n + 1) log 2

Proof. — Denote by L(n)
1,1(Dk) the left–right distance of [0,1]2 for the length metric

eξφk
0,nds, where φk

0,n is piecewise constant on each dyadic block of size 2−k where it is equal
to the value of φ0,n at the center of this block. (We do not assign an independent meaning
to the notation Dk .) Note that we have

e
−C2−k‖∇φ0,n‖[0,1]2 L(n)

1,1 ≤ L(n)
1,1(Dk) ≤ L(n)

1,1e
C2−k‖∇φ0,n‖[0,1]2 ,

which gives almost surely that L(n)
1,1(φ) = limk→∞ L(n)

1,1(Dk). By dominated convergence we
have

Var log L(n)
1,1(φ) = lim

k→∞
Var log L(n)

1,1(Dk).

Now, log L(n)
1,1(Dk) is a ξ -Lipschitz function of p = 4k Gaussian variables denoted by

Y = (Y1, ...,Yp), where on Rp we use the supremum metric. We can write Y = AN for
some symmetric positive semidefinite matrix A and standard Gaussian vector N on R4k

.
Then log L(n)

1,1(Dk) = f (Y) = f (AN) which is ξσ -Lipschitz as a function of N where
σ = max(|A1|, ..., |Ap|). By the Gaussian concentration inequality of [17, Lemma 2.1],
applied as in [10, Lemma 5.8], since the pointwise variance of the field is (n + 1) log 2 we
have

Var log L(n)
1,1(Dk) ≤ max(Var(Y1), ...,Var(Yp)) = ξ 2(n + 1) log 2. �

Before stating the following lemma, we refer the reader to the definition of quantile
ratios in (2.20).

Lemma 24 (A priori bound on the quantile ratios). — Fix p ∈ (0,1/2). There exists a constant

Cp depending only on p such that for all n ≥ 1,

(5.7) �n(ψ, p) ≤ eCp
√

n.

Proof. — By using Lemma 23 we get Var(log L(k)
1,1(ψ)) ≤ Ck for all 1 ≤ k ≤ n and

an absolute constant C > 0. This implies the same bound for ψ by Proposition 5. Using
then Lemma 22 with Zk = log L(k)

1,1(ψ) for k ≤ n, we finally get the bound maxk≤n
�̄k(ψ,p)

�k(ψ,p)
≤

eCp
√

n. �
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Proof of Theorem 20. — The proof is divided in five steps. K will denote a large pos-
itive number to be fixed at the last step.

Step 1. Quantiles-variance relation/setup. We aim to get an inductive bound on
�n(ψ, p). We will therefore bound �̄n(ψ,p/2)

�n(ψ,p/2)
in term of �’s at lower scales. p will be fixed

from now on, small enough so that we have the tail estimates from Section 4 for φ with p

and for ψ with p/2. The starting point is the bound

(5.8)
�̄n(ψ, p/2)

�n(ψ, p/2)
≤ e

Cp

√
Var log L(n)

1,1(ψ)
.

Step 2. Efron–Stein. Using the Efron–Stein inequality with the block decomposition
of ψ0,n introduced in (2.13), defining the length with respect to the unresampled field
Ln(ψ) = L(n)

1,1(ψ), we get

Var log L(n)
1,1(ψ) ≤ E

((
log LK

n (ψ) − log Ln(ψ)
)2

+
)

(5.9)

+
∑
P∈PK

E
((

log LP
n (ψ) − log Ln(ψ)

)2

+
)

,

where in the first term (resp. second term) we resample the field ψ0,K (resp. ψK,n,P) to get
an independent copy ψ̃0,K (resp. ψ̃K,n,P) and we consider the left–right distance LK

n (ψ)

(resp. LP
n (ψ)) of the unit square associated to the field ψ0,n − ψ0,K + ψ̃0,K (resp. ψ0,n −

ψK,n,P + ψ̃K,n,P).
Step 3. Analysis of the first term. For the first term, using Gaussian concentration

as in the proof of Lemma 23, we get

(5.10) E((log LK
n (ψ) − log Ln(ψ))2) = 2E(Var(log Ln(ψ)|ψ0,n − ψ0,K)) ≤ CK.

Step 4. Analysis of the second term. For P ∈ PK, if LP
n (ψ) > Ln(ψ), the block P is

visited by the geodesic πn(ψ) associated to Ln(ψ). Define

(5.11) PK := {Q ∈PK : d(P,Q) ≤ CKε02−K},
where we recall that ε0 is associated with the range of dependence of the resampled field
ψ̃K,n,P through (2.11) (see also the subsection following this definition). Here, d(P,Q) is
the L∞-distance between the sets P and Q.

We upper-bound LP
n (ψ) by taking the concatenation of the part of πn(ψ) outside

of PK together with four geodesics associated to long crossings in rectangles comprising a
circuit around PK (for the field ψ0,n which coincides with the field ψP

0,n outside of PK). We
get, introducing the rectangles (Qi(P))1≤i≤4 of size 2−K(CKε0,3) surrounding PK (PK and
its 3 · 2−K neighborhood form an annulus, and gluing the four crossings gives a circuit in
this annulus) and using the inequality log x ≤ x − 1,

(5.12)
(
log LP

n (ψ) − log Ln(ψ)
)
+ ≤ (LP

n (ψ) − Ln(ψ))+
L(n)

1,1(ψ)
≤ 4

max1≤i≤4 L(n)(Qi(P),ψ)

L(n)
1,1(ψ)

.
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FIG. 3. — Illustration of the geodesics used in the upper bound of Step 4

• We recall the notation φ0,K(P) to denote the value of the field φ0,K at the center
of P. We bound from above each term in the maximum of (5.12) as follows:

L(n)(Qi(P),ψ) ≤ eξXL(n)(Qi(P),φ)

≤ eξXeξφ0,K(P)eξ oscPK (φ0,K)L(K,n)(Qi(P),φ)

≤ e2ξXeξψ0,K(P)eξ oscPK (φ0,K)L(K,n)(Qi(P),φ),

where the oscillation osc is defined in (2.6) and PK is defined in (5.11).
For a rectangle Q of size 2−K, with corners in 2−KZ2, we denote by (RL

i (Q))1≤i≤4

the four long rectangles of size 2−K(3,1) surrounding Q. We can upper-bound the rect-
angle crossing lengths associated to the Qi(P)’s by gluing O(Kε0) rectangle crossings of
size 2−K(3,1), which include an annulus around each block Q of size 2−K(1,1) (with
corners in 2−KZ2) in the shaded region AK of Figure 3. We get

max
1≤i≤4

L(K,n)(Qi(P),φ) ≤ CKε0 max
Q∈AK,1≤i≤4

L(K,n)(RL
i (Q),φ)

and we end up with the following upper bound:
(
log LP

n (ψ) − log Ln(ψ)
)
+(5.13)

≤ e2ξX eξψ0,K(P)

L(n)
1,1(ψ)

eξ oscPK (φ0,K)CKε0 max
Q∈AK,1≤i≤4

L(K,n)(RL
i (Q),φ).

• We lower-bound the denominator of (5.13) as follows. If P ∈ PK is visited by a
πn(ψ) geodesic, then there are at least two short disjoint rectangle crossings among the
four surrounding P. Therefore, if we denote by P̂ the box containing P at its center whose
size is three times that of P,
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πn(ψ)∩P̂

eξψ0,nds ≥ 2 min
1≤i≤4

L(n)(RS
i (P),ψ) ≥ e−ξX min

1≤i≤4
L(n)(RS

i (P),φ)

≥ e−ξXeξφ0,K(P)e−ξ oscP̂(φ0,K) min
1≤i≤4

L(K,n)(RS
i (P),φ)

≥ e−2ξXeξψ0,K(P)e−ξ oscP̂(φ0,K) min
1≤i≤4

L(K,n)(RS
i (P),φ),

where (RS
i (P))1≤i≤4 denote the four short rectangles of size 2−K(1,3) surrounding P.

Summing over all P’s and taking uniform bounds for the rectangle crossings at higher
scales,

L(n)
1,1(ψ) =

∑
P∈PK

∫
P∩πn(ψ)

eξψ0,nds ≥ 1
9

∑
P∈PK

∫
P̂∩πn(ψ)

eξψ0,nds

≥ 1
9

e−2ξX

(
min
P∈P1

K

min
1≤i≤4

L(K,n)(RS
i (P),φ)

)

×
⎛
⎝ ∑

P∈PK,P∩πn(ψ) �=∅
eξψ0,K(P)e−ξ oscP̂(φ0,K)

⎞
⎠ .

Therefore, taking a uniform bound for the oscillation, we get

L(n)
1,1(ψ) ≥ 1

9
e−2ξX

⎛
⎝ ∑

P∈πK
n (ψ)

eξψ0,K(P)e−ξ oscP̂(φ0,K)

⎞
⎠ min

P∈P1
K,1≤i≤4

L(K,n)(RS
i (P),φ)(5.14)

≥ 1
9

e−2ξXe
−ξ maxP∈P1

K
oscP̂(φ0,K)

min
P∈P1

K,1≤i≤4
L(K,n)(RS

i (P),φ)(5.15)

×
∑

P∈πK
n (ψ)

eξψ0,K(P).

• We recall that (RL
i (P))1≤i≤4 denote the four rectangles of size 2−K(3,1) surround-

ing P. Gathering inequalities (5.13) and (5.15), we have∑
P∈PK

E
((

log LP
n (ψ) − log Ln(ψ)

)2

+
)

≤ CK2ε0E

⎛
⎜⎝

∑
P∈πK

n (ψ) e2ξψ0,K(P)

(∑
P∈πK

n (ψ) eξψ0,K(P)

)2

(
maxP∈P1

K,1≤i≤4 L(K,n)(RL
i (P),φ)

minP∈P1
K,1≤i≤4 L(K,n)(RS

i (P),φ)

)2

× e
Cξ maxP∈P1

K
oscPK (φ0,K)

e8ξX

⎞
⎟⎠ .
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• Condition (T) gives us a α > 1 and c > 0 so that for K large enough, for n ≥ K,

E

⎛
⎜⎝

⎛
⎜⎝

∑
P∈πK

n (ψ) e2ξψ0,K(P)

(∑
P∈πK

n (ψ) eξψ0,K(P)

)2

⎞
⎟⎠

α⎞
⎟⎠

1/α

≤ e−cK.

Then, by using the gradient estimate (2.10) and recalling the definition of PK in (5.11),
we have

(5.16) E
(

e
C maxP∈P1

K
oscPK (φ0,K)

)
≤ E

(
e
CKε0 2−K‖∇φ0,K‖[0,1]2

)
≤ eCK

1
2 +ε0

.

It is for the second inequality that in (2.11) we take ε0 to be small in the definition of
ψ ; ε0 < 1/2 is sufficient. Furthermore, using our tail estimates with regard to upper and
lower quantiles for φ (see (4.7) and (4.8), and the scaling property (2.23), for β > 1 so that
1
α

+ 1
β

= 1, we get

(5.17) E

⎛
⎝

(
maxP∈P1

K,1≤i≤4 L(K,n)(RL
i (P),φ)

minP∈P1
K,1≤i≤4 L(K,n)(RS

i (P),φ)

)2β
⎞
⎠

1
β

≤ �2
n−K(φ, p)eCK

1
2 +ε0

.

Note that we could have a log K term instead of the Kε0 in (5.17). Altogether, by applying
Hölder inequality and Cauchy–Schwarz, we get

∑
P∈PK

E
((

log LP
n (ψ) − log Ln(ψ)

)2

+
)

≤ e−cKeCK
1
2 +ε0

�2
n−K(φ, p)(5.18)

≤ e−cKeCK
1
2 +ε0

Cp�
2
n−K(ψ, p/2),

where we used (2.22) in the last inequality to get �2
n−K(φ, p) ≤ Cp�

2
n−K(ψ, p/2).

Step 5. Conclusion. Gathering the bounds obtained in Step 3 (inequality (5.10)) and
Step 4 (inequality (5.18)), we get, coming back to the inequality (5.9), for K large enough,

(5.19) Var log L(n)
1,1(ψ) ≤ C1K + e−C2K�2

n−K(ψ, p/2).

Now, we will show that this bound together with the a priori bound on the quantile
ratios (Lemma 24) is enough to conclude first that �∞(ψ, p/2) < ∞ and then that
supn≥0 Var log L(n)

1,1(ψ) < ∞, using the tail estimates (4.7) and (4.9).
Coming back to Step 1 (equation (5.8)) and using (5.19), we get the inductive in-

equality (5.20) below for K large enough and n ≥ K, and (5.21) below by the a priori
bound on the quantile ratios Lemma 24:

�̄n(ψ, p/2)

�n(ψ, p/2)
≤ e

Cp

√
Var log L(n)

1,1(ψ) ≤ eCp

√
C1K+e−C2K�2

n−K(ψ,p/2);(5.20)

�K(ψ, p/2) ≤ eC̃p

√
K.(5.21)
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From now on, we take K large enough but fixed so that

(5.22) e−C2K(eC̃p

√
K + eCp

√
2C1K)2 ≤ C1K.

Set

(5.23) �Rec := �K(ψ, p/2) ∨ eCp

√
2C1K,

so that �K(ψ, p/2) ≤ �Rec. This is the initialization of the induction. Now, assume that
�n−1(ψ, p/2) ≤ �Rec. In particular, �n−K(ψ, p/2) ≤ �Rec and using (5.20)

�̄n(ψ, p/2)

�n(ψ, p/2)
≤ eCp

√
C1K+e−C2K�2

Rec

The right-hand side is smaller than eCp

√
2C1K and therefore than �Rec. Indeed, by (5.23),

(5.21) and (5.22),

e−C2K�2
Rec ≤ e−C2K(�K(ψ, p/2) + eCp

√
2C1K)2

≤ e−C2K(eC̃p

√
K + eCp

√
2C1K)2 ≤ C1K.

Therefore,

�n(ψ, p/2) = �n−1(ψ, p/2) ∨ �̄n(ψ, p/2)

�n(ψ, p/2)
≤ �Rec.

Therefore, �∞(ψ, p/2) < ∞ thus �∞(φ, p) < ∞ and by the tail estimates (4.7) and (4.8),
the sequence (log L(n)

1,1(φ) − logλn(φ))n≥0 is tight. �

5.2. Weak multiplicativity of the characteristic length and error bounds. — Henceforth, we
will only consider the case ξ = γ

dγ
for γ ∈ (0,2) and the field φ0,n. All observables will

be assumed to be taken with respect to φ and we will drop the additional notation used
to differ between φ and ψ . In this case, we saw that there exists a fixed constant C > 0
so that for all n ≥ 0, �̄

(n)
3,1(p) ≤ C�̄

(n)
1,3(p), C−1�

(n)
3,1(p) ≤ �

(n)
1,3(p) and with the tail estimates,

E(L(n)
3,1) ≤ CE(L(n)

1,3). All these characteristic lengths are uniformly comparable. We will
take λn to denote one of them, say the median of L(n)

1,1.
In the next elementary lemma, we prove that a sequence satisfying a certain quan-

titative weak multiplicative property has an exponent, and we quantify the error.

Lemma 25. — Consider a sequence of positive real numbers (λn)n≥1. If there exists C > 0 such

that for all n ≥ 1, k ≥ 1 we have

(5.24) e−C
√

kλnλk ≤ λn+k ≤ eC
√

kλnλk,

then there exists ρ > 0 such that λn = ρn+O(
√

n).



TIGHTNESS OF LIOUVILLE FIRST PASSAGE PERCOLATION FOR γ ∈ (0,2) 389

Proof. — We introduce the sequence (an)n≥0 such that λ2n+1 = (λ2n)2 ean . By iterat-
ing, we get

λ2n+1 = (λ2n)2 ean = (λ2n−1)4 e2an−1+an = · · · = λ2n+1

1 e2na0+2n−1a1+···+2an−1+an .

The condition (5.24) gives that the sequence
(
2−n/2an

)
n≥0

is bounded, therefore the series∑
k≥0

ak

2k converges and |∑k≥n
ak

2k | ≤ 2 (supk≥0 2−k/2|ak|) 2−n/2. In particular there exists
ρ > 0 such that

λ2n+1 = e
2n+1

(
logλ1+ 1

2
∑n

k=0
ak

2k

)
= e

2n+1
(

logλ1+ 1
2

∑∞
k=0

ak

2k

)
e
−2n

∑
k≥n+1

ak

2k = ρ2n

eO(2n/2).

Now that we have the existence of an exponent, we prove the upper bound of Lemma 25.
There exist C1,C2 > 0 such that we have the following upper bounds:

λ2k ≤ ρ2k

eC12k/2
,(5.25)

λn+k ≤ λnλke
C2

√
k.(5.26)

Take C3 large enough so that (C1 +C2)
2 + (C1 +C2)C3 ≤ C2

3 and λ1 ≤ ρeC3 . We want to
prove by induction that for all n ≥ 1, λn ≤ ρneC3

√
n. The assumption on C3 implies that this

holds for n = 1. By induction (in a dyadic fashion), take n ∈ [2k,2k+1). We decompose n as
n = 2k +nk with nk ∈ [0,2k). We have, by using (5.26), (5.25) and the induction hypothesis,

λn ≤ λ2kλnk
eC22k/2 ≤ (ρ2k

eC12k/2
)(ρnk eC3

√
nk)eC22k/2

= ρne(C1+C2)2k/2+C3
√

nk ≤ ρneC3
√

n,

since by the assumption on C3 we have
(
(C1 + C2)2k/2 + C3

√
nk

)2 = (C1 +C2)
22k + (C1 +C2)C32k/2√nk + C2

3nk

≤ C2
3(2

k + nk) = C2
3n.

The proof of the lower bound is similar. �

In the next proposition we prove that the characteristic length λn satisfies the weak
multiplicativity property (5.24) and we identify the exponent by using the results of [12].

Proposition 26. — For ξ satisfying Condition (T), there exists C > 0 such that for all n ≥ 1,

k ≥ 1 we have

(5.27) e−C
√

kλnλk ≤ λn+k ≤ eC
√

kλnλk.

Furthermore, when γ ∈ (0,2) and ξ = γ /dγ , we have

(5.28) λn = 2−n(1−ξQ)+O(
√

n).
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Proof. — Let us assume first that (5.27) holds. Then, by using Lemma 25, there
exists ρ > 0 such that we have λn = ρn+O(

√
n). Similarly to (5.5), for each fixed small

δ > 0, for k large enough we have,

(5.29) λk ≤ 2−k(1−ξQ−δ).

The proof of (5.29) follows the same lines as the one of (5.5). Combining (5.29) and (5.5)
we get ρ = 2−(1−ξQ). Now, we prove that the characteristic length satisfies (5.27).

Step 1: Weak submultiplicativity. Let πk be such that L(k)(πk) = L(k)
1,1. If P ∈Pk is vis-

ited by πk , consider the concatenation S(k,n+k)(P) of four geodesics for eξφk,n+k ds associated
to the rectangles of size 2−k(3,1) surrounding P. Each geodesic is in the long direction
of its rectangle so that this concatenation is a circuit. By scaling, E(L(k,n+k)(S(k,n+k)(P))) =
2−k+2E(L(n)

3,1). Note that the collection π k
k (φ) = {P ∈ Pk : P ∩ πk �= ∅} is measurable with

respect to φ0,k , which is independent of φk,n+k . Set �k,n := ⋃
P∈π k

k (φ) S(k,n+k)(P). Note that
�k,n contains a left–right crossing of [0,1]2 whose length is bounded above by

L(n+k)(�k,n) =
∑

P∈π k
k (φ)

L(n+k)(S(k,n+k)(P))

≤
∑

P∈π k
k (φ)

L(k,n+k)(S(k,n+k)(P))eξφ0,k(P)eξ oscP̂(φ0,k),

where P̂ denotes the box containing P at its center whose side length is three times that
of P. Since L(n+k)

1,1 ≤ L(n+k)(�k,n), by independence we have

E(L(n+k)
1,1 ) ≤ 4E(L(n)

3,1)E

⎛
⎝ ∑

P∈π k
k (φ)

2−keξφ0,k(P)eξ oscP̂(φ0,k)

⎞
⎠ .

If P is visited, then one of the four rectangles of size 2−k(1,3) in P̂ surrounding P contains
a short crossing, denoted by π̃k(P) and we have∫

πk

eξφ0,k 1πk∩P̂ds ≥ L(k)(π̃k(P)) ≥ 2−keξ infP̂ φ0,k ≥ 2−keξφ0,k(P)e−ξ oscP̂(φ0,k),

hence
∑

P∈π k
k (φ)

2−keξφ0,k(P)eξ oscP̂(φ0,k) ≤
∑

P∈π k
k (φ)

e2ξ oscP̂(φ0,k)

∫
πk

eξφ0,k 1πk∩P̂ds.

Taking the supremum of the oscillation over all blocks,

∑
P∈π k

k (φ)

e2ξ oscP̂(φ0,k)

∫
πk

eξφ0,k 1πk∩P̂ds ≤ 9e
2ξ2−k‖∇φ0,k‖[0,1]2 L(k)

1,1.
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Altogether, by Cauchy–Schwarz,

E(L(n+k)
1,1 ) ≤ 36E(L(n)

3,1)E((L(k)
1,1)

2)1/2E(e
4ξ2−k‖∇φ0,k‖[0,1]2 )1/2.

When ξ satisfies Condition (T), by using the uniform bounds for quantile ratios together
with the upper tail estimates (4.8) and the gradient estimate (2.10) we get λn+k ≤ eC

√
kλnλk .

Step 2: Weak supermultiplicativity. We argue here that

(5.30) λn+k ≥ e−C
√

kλnλk.

Using a slightly easier argument than (5.15) (since we just have the field φ here), we have

L(n+k)
1,1 ≥ e

−ξ maxP∈P1
k

oscP̂(φ0,k)

(
min

P∈P1
k ,1≤i≤4

L(k,k+n)(RS
i (P))

) ∑
P∈π k

n+k

eξφ0,k(P),

where π k
n+k denotes the k-coarse grained approximation of πn+k , the left–right geodesic of

[0,1]2 for the field φ0,n+k , and where we recall that (RS
i (P))1≤i≤4 denote the four rectan-

gles of size 2−k(1,3) surrounding P. Furthermore, by using a similar argument to (5.3),
we have ∑

P∈π k
n+k

eξφ0,k(P) ≥ e−ξ maxP∈Pk
oscP(φ0,k)2kL(k)

1,1.

Altogether, we get the following weak supermultiplicativity,

(5.31) L(n+k)
1,1 ≥ L(k)

1,1

(
min

P∈P1
k ,1≤i≤4

2kL(k,k+n)(RS
i (P))

)
e−2ξ maxP∈Pk

oscP(φ0,k)

When ξ satisfies Condition (T), by scaling and the tail estimates (4.7),
P(minP∈P1

k ,1≤i≤4 2kL(k,k+n)(RS
i (P)) ≥ λne

−C
√

k) ≥ 1 − e−ck . Furthermore, using the gradient

estimates (2.9), we get P(2−k
∥∥∇φ0,k

∥∥
[0,1]2 ≥ C

√
k) ≥ 1 − e−ck for C large enough. There-

fore, with probability ≥ 1/2, L(n)
1,1 ≤ e−C

√
kλnλk hence the bound λn+k ≥ e−C

√
kλkλn. �

5.3. Tightness of the log of the diameter.

Proposition 27. — If γ ∈ (0,2) and ξ = γ /dγ then
(
log Diam

([0,1]2, λ−1
n eξφ0,nds

))
n≥0

is tight.

Proof. — Step 1: Chaining. By a standard chaining argument, (see (6.1) in [18] for
more details), we have

(5.32) Diam
([0,1]2, eξφ0,nds2

) ≤ C
n∑

k=0

max
P∈Ck

L(n)(P) + C × 2−neξ sup[0,1]2 φ0,n,

where Ck is a collection of no more than C4k long rectangles of side length 2−k(3,1).
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Using the bound for the maximum (2.4), when ξ < 2, we have E(2−neξ sup[0,1]2 φ0,n) ≤
2−n22ξneC

√
n.

Fix 0 ≤ k ≤ n and P ∈ Ck . We can bound L(n)(P) by taking a left–right geodesic πk,n

for φk,n. Therefore,

L(n)(P) ≤ L(n)(πk,n) ≤ eξ max[0,1]2 φ0,k L(k,n)(P),

and consequently,

(5.33) max
P∈Ck

L(n)(P) ≤ eξ max[0,1]2 φ0,k max
P∈Ck

L(k,n)(P).

Using independence, the maximum bound (2.4), scaling of the field φ and the tail
estimates (4.8), we get

(5.34) E
(

eξ max[0,1]2 φ0,k max
P∈Ck

L(k,n)(P)

)
≤ 2−k22ξkeC

√
kλn−ke

Ck
1
2 +ε

for some fixed small ε > 0 (again, the term kε could in fact be log k). Taking the expec-
tation in (5.32), using (5.33) and (5.34), we obtain the following bound for the expected
value of the diameter,

(5.35) E(Diam([0,1]2, eξφ0,nds)) ≤ C
n∑

k=0

2−k22ξkλn−ke
Ck

1
2 +ε

.

Step 2: Right tail. By Proposition 26, λn−k ≤ λn
eC

√
k

λk
≤ λn2k(1−ξQ)eC

√
k . Together with

(5.35), this implies that

E(Diam([0,1]2, eξφ0,nds)) ≤ C
n∑

k=0

2−k22ξkλn−ke
Ck

1
2 +ε

≤ λnC
∞∑

k=0

2−kξ(Q−2)eCk
1
2 +ε

.

Since Q > 2, Markov’s inequality gives P
(
Diam([0,1]2, λ−1

n eξφ0,nds) ≥ es
) ≤ Ce−s.

Step 3: Left tail. Finally, since the diameter of the square [0,1]2 is larger than the
left–right distance, by our tail estimates (4.7), we get P

(
Diam([0,1]2, λ−1

n eξφ0,nds) ≤ e−s
) ≤

P
(

L(n)
1,1 ≤ λne

−s

)
≤ Ce−cs2

. �
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5.4. Tightness of the metrics.

Proposition 28. — If γ ∈ (0,2) and ξ = γ /dγ then the sequence of metrics
(
λ−1

n eξφ0,nds
)

n≥0
is tight. Moreover, if we define

Cn
α := sup

x,x′∈[0,1]2

|x − x′|α
d0,n(x, x′)

and Cn
β := sup

x,x′∈[0,1]2

d0,n(x, x′)
|x − x′|β

then, for α > ξ(Q + 2) and β < ξ(Q − 2), the sequence (Cn
α,Cn

β)n≥0 is tight.

Henceforth, we use the notation d0,n for the renormalized metric λ−1
n eξφ0,nds re-

stricted to [0,1]2.

Proof. — The proof has two parts. In the first part we show the tightness of the
metrics in the space of continuous function from [0,1]2 ×[0,1]2 → R+ and in the second
part we show that subsequential limits are metrics. A byproduct result of the argument is
explicit bi-Hölder bounds.

Part 1. Upper bound on the modulus of continuity. We suppose γ ∈ (0,2). We
start by proving that for every 0 < β < ξ(Q − 2), if ε > 0, there exists a large Cε > 0 so
that for every n ≥ 0

(5.36) P
(∃x, x′ ∈ [0,1]2 : d0,n(x, x′) ≥ Cε|x − x′|β) ≤ ε,

i.e.
(∥∥d0,n

∥∥
Cβ([0,1]2×[0,1]2)

)
n≥0

is tight, where the Cβ -norm is defined for f : [0,1]2 ×
[0,1]2 → R as

∥∥f
∥∥

Cβ ([0,1]2×[0,1]2)

:= ∥∥f
∥∥

[0,1]2×[0,1]2 + sup
(x,y)�=(x′,y′)∈[0,1]2×[0,1]2

|f (x, y) − f (x′, y′)|
|(x, y) − (x′, y′)|β .

By a union bound it suffices to estimate P(∃x, x′ : |x − x′| < 2−n, d0,n(x, x′) ≥ es|x −
x′|β) and

n∑
k=0

P
(∃x, x′ : 2−k ≤ |x − x′| ≤ 2−k+1, d0,n(x, x′) ≥ es|x − x′|β) .

Step 1: We start with the term P(∃x, x′ : 2−k ≤ |x − x′| ≤ 2−k+1, d0,n(x, x′) ≥ es|x −
x′|β). We use the chaining argument (5.32) at scale k which gives

sup
2−k≤|x−x′|≤2−k+1

d0,n(x, x′) ≤ Cλ−1
n

n∑
i=k

max
P∈Ci

L(n)(P) + Cλ−1
n × 2−ne

ξ sup
[0,1]2

φ0,n

.
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Taking the expected value and using the same bounds as those obtained in the proof of
Proposition 27, we get

E

(
sup

2−k≤|x−x′|≤2−k+1

d0,n(x, x′)

)
≤

n∑
i=k

2−iξ(Q−2)eCi
1
2 +ε ≤ C2−kξ(Q−2)eCk

1
2 +ε

.

Therefore, using Markov’s inequality we get the bound

n∑
k=0

P
(∃x, x′ : 2−k ≤ |x − x′| ≤ 2−k+1, d0,n(x, x′) ≥ es|x − x′|β)

≤
n∑

k=0

P

(
sup

2−k≤|x−x′|≤2−k+1

d0,n(x, x′) ≥ es2−kβ

)
≤ e−s

n∑
k=0

2kβ2−kξ(Q−2).

The series is convergent since ξ(Q − 2) − β > 0.
Step 2: We bound from above P(∃x, x′ |x − x′| < 2−n, d0,n(x, x′) ≥ es|x − x′|β) using

a bound on the supremum of the field. Indeed, for such x and x′, note that

es|x − x′|β ≤ d0,n(x, x′) ≤ λ−1
n eξ sup[0,1]2 φ0,n |x − x′|

Writing β = ξ(Q − 2) − εξ for some ε > 0, it follows that 1 − β = (1 − ξQ + 2ξ) +
εξ > 0 since the LFPP exponent 1 − ξQ ≥ −2ξ by a simple uniform bound. Therefore,
|x − x′|β−1 ≥ 2n(1−β) and λ−1

n 2n(1−β) = 2n(2ξ+εξ+o(1)). Altogether, this probability is bounded
from above by P(sup[0,1]2 φ0,n ≥ n log 4 + εn log 2 + o(n) + ξ−1s) and using (2.3) gives a
uniform tail estimate.

Therefore, we obtain the tightness of
(
d0,n

)
n≥0

as a random element of C([0,1]2 ×
[0,1]2,R+) and every subsequential limit is (by Skorohod’s representation theorem) a
pseudo-metric.

Part 2. Lower bound on the modulus of continuity. We prove that if α > ξ(Q+2)

and ε > 0 then there exists a small constant cε > 0 such that for every n ≥ 0,

(5.37) P
(∃x, x′ ∈ [0,1]2 : d0,n(x, x′) ≤ cε|x − x′|α) ≤ ε.

Similarly as before, by union bound it is enough to estimate the term

(5.38) P(∃x, x′ ∈ [0,1]2 : |x − x′| < 2−n, d0,n(x, x′) ≤ e−ξ s|x − x′|α)
and the term

(5.39)
n∑

k=0

P

⎛
⎜⎝∃x, x′ : 2−k ≤ |x − x′| ≤ 2−k+1, d0,n(x, x′) ≤ e−ξ s|x − x′|α︸ ︷︷ ︸

:=Ek,n,s

⎞
⎟⎠ .
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Step 1: We give an upper bound for (5.39). Fix x, x′ ∈ [0,1]2 such that 2−k ≤ |x −
x′| ≤ 2−k+1. Note that any path from x to x′ crosses one of the rectangles in the collection
{RS

i (P) : P ∈P1
k+2,1 ≤ i ≤ 4}. Hence, under the event Ek,n,s, there exists x, x′ such that

(5.40) 2−kα ≥ d0,n(x, x′) ≥ λ−1
n 2−keξ inf[0,1]2 φ0,k

(
min

P∈P1
k+2,1≤i≤4

2kL(k,n)(RS
i (P))

)
.

Since α = ξ(Q + 2) + ξδ for a small δ > 0, by using Proposition 26 we get

(5.41) 2−kαλn2k ≤ 2−kαλkλn−ke
C

√
k ≤ 2−k(α−ξQ)λn−ke

C
√

k = 2−k(2+δ)ξ (λn−k2−ξδkeC
√

k)

Now, using (5.40), (5.41) and scaling, we get

P
(
Ek,n,s

) ≤ P

(
eξ inf[0,1]2 φ0,k

(
min

P∈P1
k+2,1≤i≤4

2kL(k,n)(RS
i (P))

)
≤ 2−kαλn2ke−ξ s

)

≤ P

(
sup
[0,1]2

|φ0,k| ≥ k log 4 + kδ log 2 + s/2

)

+ P

(
min

P∈P1
k+2,1≤i≤4

L(n−k)(RS
i (P)) ≤ λn−k2−kδξ eC

√
ke−ξ s/2

)

≤ Ce−cke−cs,

where we used in the last inequality the supremum bounds (2.3) and the left tail estimate
(4.7).

Step 2: Finally, we control (5.38). We write

P(∃x, x′ : |x − x′| < 2−n, d0,n(x, x′) ≤ e−ξ s|x − x′|α)

≤ P
(

inf
|x−x′|≤2−n

d0,n(x, x′)
|x − x′|α ≤ e−ξ s

)

≤ P
(

λ−1
n eξ inf[0,1]2 φ0,n inf

|x−x′|≤2−n
|x − x′|1−α ≤ e−ξ s

)
.

We recall that α > ξQ + 2ξ , and in particular α > 1: indeed, 1 − ξQ ≤ 2ξ follows from
a comparison with the infimum of the field. In this case, inf|x−x′|≤2−n |x − x′|1−α = 2−n(1−α),
and by Proposition 26,

2−n(1−α)λ−1
n ≥ 2−n(1−α)2n(1−ξQ)e−C

√
n = 2n(α−ξQ)e−C

√
n
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Therefore, since α − ξQ = 2ξ + δξ for some δ > 0, we have for n large that

P
(

λ−1
n eξ inf[0,1]2 φ0,n inf

|x−x′|≤2−n
|x − x′|1−α ≤ e−ξ s

)

≤ P

(
sup
[0,1]2

|φ0,n| ≥ n log 4 + n
δ

2
log 2 + s

)

Using (2.3) completes the proof. �
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Appendix A

A.1 Comparison with the GFF mollified by the heat kernel

Let h be a GFF with Dirichlet boundary condition on a domain D and U ⊂⊂ D be a
subdomain of D. We recall that we denote by pt the two-dimensional heat kernel at time t

i.e. pt(x) = 1
2π t

e−
|x|2
2t . The goal of this section is to obtain a uniform estimate to conclude on

the tightness of the renormalized metric associated to p t
2
∗ h assuming the one associated

to φ√
t . In particular, the second assertion of Theorem 1 is a corollary of the following

proposition.

Proposition 29. — There exist constants C, c > 0 such that for all t ∈ (0,1/2), there is a

coupling of h and ϕt

(d)= φ√
t such that for all x ≥ 0, we have

P
(∥∥∥ϕt − p t

2
∗ h

∥∥∥
U

≥ x
)

≤ Ce−cx2
.
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Mollification of the GFF by the heat kernel. — The covariance of the Gaussian field p t
2
∗ h is

given for x, x′ ∈ U by

E
(

p t
2
∗ h(x) p t

2
∗ h(x′)

)
=

∫
D

∫
D

p t
2
(x − y)GD(y, y′)p t

2
(y′ − x′)dydy′,

where GD is the Green function associated to the Laplacian operator on D. For an open
set A, we denote by pA

t (x, y) the transition probability density of a Brownian motion killed
upon exiting A.

White noise representation. — Take a space–time white noise W and define the field ηt on
U by

ηt(x) :=
∫ ∞

0

∫
D

p t
2
∗ pD

s
2
(x, y)W(dy, ds)(A.1)

where p t
2
∗ pD

s
2
(x, y) :=

∫
D

p t
2
(x − y′)pD

s
2
(y′, y)dy′,

so that (ηt(x))x∈U
(d)= (p t

2
∗ h(x))x∈U. Indeed, by Fubini, we have

E(ηt(x)ηt(x
′))

=
∫ ∞

0

∫
D

p t
2
∗ pD

s
2
(x, y) p t

2
∗ pD

s
2
(x′, y)dyds

=
∫ ∞

0

∫
D

∫
D

∫
D

p t
2
(x − y′)pD

s
2
(y′, y) p t

2
(x′ − y′′) pD

s
2
(y′′, y)dydy′dy′′ds

=
∫

D

∫
D

p t
2
(x − y′)

(∫ ∞

0

∫
D

pD
s
2
(y′, y)pD

s
2
(y, y′′)dyds

)
p t

2
(x′ − y′′)dy′dy′′

=
∫

D

∫
D

p t
2
(x − y′)GD(y′, y′′)p t

2
(y′′ − x′)dy′dy′′.

Coupling. — Note that for t ∈ (0,1/2) φ√
t(x) = ∫ 1

t

∫
R2 p s

2
(x − y)W(dy, ds)

(d)= ϕt(x), where
we set

ϕt(x) :=
∫ 1−t

0

∫
R2

p t+s
2
(x − y)W(dy, ds).

Furthermore, we can decompose ϕt(x) = ϕ1
t (x) + ϕ2

t (x), where

ϕ1
t (x) :=

∫ 1−t

0

∫
D

p t+s
2
(x − y)W(dy, ds);(A.2)

ϕ2
t (x) :=

∫ 1−t

0

∫
Dc

p t+s
2
(x − y)W(dy, ds).(A.3)
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Recalling the definition of η in (A.1), we introduce η1
t and η2

t so that

ηt(x) =
∫ 1−t

0

∫
D

p t
2
∗ pD

s
2
(x, y)W(dy, ds) +

∫ ∞

1−t

∫
D

p t
2
∗ pD

s
2
(x, y)W(dy, ds)(A.4)

=: η1
t (x) + η2

t (x).

Therefore, under this coupling (viz. using the same white noise W), we have

(A.5) ϕ1
t (x) − η1

t (x) =
∫ 1−t

0

∫
D

(
p t+s

2
(x − y) − p t

2
∗ pD

s
2
(x, y)

)
W(dy, ds).

Comparison between kernels. — We will consider x, y ∈ U, subdomain of D. Set d :=
d(U,Dc) > 0.

p t
2
∗pD

s
2
(x, y) :=

∫
D

p t
2
(x−y′)pD

s
2
(y′, y)dy′ =

∫
D

p t
2
(x−y′)p s

2
(y′−y)qD

s
2
(y′, y)dy′,

where qD
t (x, x′) is the probability that a Brownian bridge between x and x′ with lifetime t

stays in D. Therefore, using Chapman–Kolmogorov,

p t
2
∗ pD

s
2
(x, y) − p t+s

2
(x, y) = −

∫
Dc

p t
2
(x − y′)p s

2
(y′ − y)dy′

+
∫

D
p t

2
(x − y′)p s

2
(y′ − y)(qD

s
2
(y′, y) − 1)dy′.

Note that the first term can be bounded by using that |y − y′| ≥ d for y ∈ U and y′ ∈ Dc.
For the second term, we can split the integral over D in two parts: one over the ε-
neighborhood of ∂D (within D), denoted by (∂D)ε, and one over its complement. To give
an upper bound on the first, we use that for y ∈ U and y′ ∈ (∂D)ε, |y − y′| ≥ d(U, (∂D)ε).
Finally, we bound the second part by using a uniform estimate on the probability that a
Brownian bridge between a point in U and a point D \ (∂D)ε exits D in time less than
s/2. (Note that 1 − qD

s
2
(y, y′) is the probability that a Brownian bridge between y and y′

with time length s/2 exits D.) Therefore, we get that uniformly in x, y ∈ U and t,

(A.6) |p t
2
∗ pD

s
2
(x, y) − p t+s

2
(x, y)| ≤ Ce−

c
s .

Comparison between ϕt and p t
2
∗ h. — By the triangle inequality,

(A.7)
∥∥∥ϕt − p t

2
∗ h

∥∥∥
U

≤ ∥∥ϕ1
t − η1

t

∥∥
U

+ ∥∥ϕ2
t

∥∥
U

+ ∥∥η2
t

∥∥
U

.

We look for a uniform right tail estimate (in t) of each term in the right-hand side of (A.7).
In order to do so, we will use the Kolmogorov continuity criterion. Therefore, we derive
below some pointwise and difference estimates.
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First term. We derive first a pointwise estimate. For x ∈ U, using the kernel
comparison (A.6), there exists some C′ > 0 such that, uniformly in t,

Var
((

η1
t (x) − ϕ2

t (x)
)2

)
=

∫ 1−t

0

∫
D

(
p t

2
∗ pD

s
2
(x, y) − p t+s

2
(x, y)

)2
dyds

≤ C
∫ 1−t

0
e−

c
s ds ≤ C′.

We now give a difference estimate: introducing �t(x) := ϕ1
t (x) − η1

t (x), for x, x′ ∈ U,

E
((

�t(x) − �t

(
x′))2) =

∫ 1−t

0

∫
D

((
p t+s

2
(x − y) − p t

2
∗ pD

s
2
(x, y)

)

− (
p t+s

2

(
x′ − y

) − p t
2
∗ pD

s
2

(
x′, y

)))2
dyds,

which is uniformly bounded in t ∈ (0,1/2) by a quantity of size O(|x − x′|). (By splitting
the integral at

√|x − x′|, one can use (A.6) for the small values of s and gradient estimates
for both kernels for larger values of s.)

Second term. We recall here that ϕ2
t (x) is defined for x ∈ U by

ϕ2
t (x) =

∫ 1−t

0

∫
Dc

p t+s
2
(x − y)W(dy, ds)

(d)=
∫ 1

t

∫
Dc

p s
2
(x − y)W(dy, ds).

We have, for x, x′ ∈ U, with d := d(U,Dc),

E
((

ϕ2
t (x) − ϕ2

t (x
′)
)2

)

≤
∫ 1

t

∫
Dc

(
p s

2
(x − y) − p s

2
(x′ − y)

)2
dyds

≤
∫ 1

√
|x−x′|

∫
R2

(
p s

2
(x − y) − p s

2
(x′ − y)

)2
dyds

+
∫ √

|x−x′|

0

∫
Dc

(
p s

2
(x − y) − p s

2
(x′ − y)

)2
dyds

≤ 2
∫ 1

√
|x−x′|

(
ps(0) − ps(x − x′)

)
ds + 4

∫ √
|x−x′|

0
p s

2
(d)ds ≤ C|x − x′|,

where we use 1 − e−z ≤ z in the last inequality. Similarly, we can prove that there exists
C > 0 independent of t such that E(φt(x)

2) ≤ C.
Third term. We recall here that η2

t (x) is defined for x ∈ U by η2
t (x) = ∫ ∞

1−t

∫
D p t

2
∗

pD
s
2
(x, y)W(dy, ds). Similarly, there exists C > 0 such that for t ∈ (0,1/2), x, x′ ∈ U, we
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have

E
((

η2
t (x) − η2

t (x
′)
)2

)
≤

∫ ∞

1/2

∫
D

(
p t

2
∗ pD

s
2
(x, y) − p t

2
∗ pD

s
2
(x′, y)

)2
dyds

≤ C|x − x′|.
Furthermore, the pointwise variance is uniformly bounded.

Result. Altogether, coming back to (A.7) and combining Kolmogorov continuity
criterion with Fernique’s theorem (see Section 1.3 in [22]), we get the following tail esti-
mate on the above coupling: there exist C, c > 0 such that for all t ∈ (0,1/2), x ≥ 0, we
have

P
(∥∥∥ϕt − p t

2
∗ h

∥∥∥
U

≥ x
)

≤ Ce−cx2
.

A.2 Approximations for δ ∈ (0,1)

We explain here how results obtained along the sequence {2−n : n ≥ 0} can be extended
to δ ∈ (0,1). For each δ ∈ (0,1), let n ≥ 0 and r ∈ [0,1] such that δ = 2−(n+r). Then by
decoupling the field φ0,r , using a uniform estimate for r ∈ [0,1] and a scaling argument,
we generalize our previous results obtained along the sequence 2−n to δ ∈ (0,1).

Decoupling low frequency noise. — Note that there exists C > 0 such that for n ≥ 0 and
r ∈ [0,1] we have

(A.8) e−Cλn ≤ λn+r ≤ λne
C.

Indeed, note that a.s. e−ξ inf[0,1]2 φ0,r L(r,n+r)
1,1 ≤ L(n+r)

1,1 ≤ eξ sup[0,1]2 φ0,r L(r,n+r)
1,1 . Furthermore, with

high probability sup[0,1]2 |φ0,r| ≤ Cr ≤ C. Then, note that L(r,n+r)
1,1

(d)= 2−rL(n)
2r ,2r and a.s.

L(n)
1,2 ≤ L(n)

2r ,2r ≤ L(n)
2,1. By the tightness result, there exists a constant C > 0 such that uni-

formly in n, with high probability, L(n)
1,2 ≥ e−Cλn and L(n)

2,1 ≤ eCλn, therefore, with high
probability, e−Cλn ≤ L(r,n+r)

1,1 ≤ eCλn, hence (A.8).

Weak multiplicativity. — In this paragraph, we will use the notation λδ from the introduc-
tion. We recall that writing λn instead of λ2−n was an abuse of notation. Now we prove
that there exists C > 0 such that for δ, δ′ ∈ (0,1) we have

(A.9) C−1e−C
√

| log δ∨δ′|λδλδ′ ≤ λδδ′ ≤ CeC
√

| log δ∨δ′|λδλδ′ .

Similarly as (A.8), there exists C > 0 such that for r, r′ ∈ [0,1], n, n′ ≥ 0,

(A.10) e−Cλ2−n−n′ ≤ λ2−n−r−n′−r′ ≤ λ2−n−n′ eC.
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For δ, δ′ ∈ (0,1), let n, n′ ≥ 0 and r, r′ ∈ [0,1] such that δ = 2−(n+r), δ′ = 2−(n′+r′). Note
that n = [− log2 δ]. Using the weak multiplicativity for powers of 2, we have

(A.11) e−C
√

n∧n′
λ2−nλ2−n′ ≤ λ2−n−n′ ≤ λ2−nλ2−n′ eC

√
n∧n′

.

Without loss of generality, we consider just the upper bound in (A.9). The lower bound
follows along the same lines. By using first (A.10) and then (A.11) we get

λδδ′ = λ2−n−r−n′−r′ ≤ λ2−n−n′ eC ≤ λ2−nλ2−n′ eC
√

n∧n′
eC.

Now, the result follows by using (A.8):

λ2−nλ2−n′ eC
√

n∧n′ ≤ λ2−n−rλ2−n′−r′ eC
√

n+r∧n′+r′e2C = λδλδ′eC
√

log |δ∨δ′|e2C.

Tail estimates and tightness of metrics. — Using the same argument as in the two previous
paragraphs and the tail estimates obtained along the sequence {2−n : n ≥ 1}, we have the
following tail estimates for crossing lengths of the rectangles [0, a] × [0, b]: there exists
c,C > 0 (depending only on a, b and γ ) such that for s > 2, uniformly in δ ∈ (0,1), we
have

P
(
λ−1

δ L(δ)

a,b ≥ es
)

≤ Ce
−c s2

log s ;(A.12)

P
(
λ−1

δ L(δ)

a,b ≤ e−s
)

≤ Ce−cs2
.(A.13)

Furthermore, the sequence of metrics (λ−1
δ eξφδds)δ∈(0,1) on [0,1]2 is tight.
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