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ABSTRACT

We study Liouville first passage percolation metrics associated to a Gaussian free field /£ mollified by the two-
dimensional heat kernel p, in the bulk, and related star-scale invariant metrics. For y € (0,2) and § = dL, where d,, is

the Liouville quantum gravity dimension defined in Ding and Gwynne (Commun. Math. Phys. 374:1877-1934, 2020),
we show that renormalized metrics (A,"es/” *d5) 0.1y are tight with respect to the uniform topology. We also show that
subsequential limits are bi-Holder with respect to the Euclidean metric, obtain tail estimates for side-to-side distances, and
derive error bounds for the normalizing constants A,.
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1. Introduction and main statement

We consider the problem of rigorously constructing a metric for Liouville quantum
gravity (LQG), a random geometry formally given by reweighting Euclidean space by ¢"*,
where £ 1s a Gaussian free field. LQG was originally introduced in the physics literature
by Polyakov in 1981 [40]. In its mathematical form, the LOQG measure is a special case
of Gaussian multiplicative chaos, introduced in [29]. In the last two decades, there has been
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an explosion of interest in the probability community towards rigorously constructing
the relevant objects. In particular, the LQG measure was constructed rigorously in the
regime Y < 2, via a renormalization procedure, in [21]. Other relevant work in this area
includes [2, 3, 41-44, 48].

Much remains open regarding the construction of the LQG metric. When y =
V8/3, LQG is intimately connected with the Brownian map [31, 32, 35] and a metric
for LQG has been constructed in [36-38]. Substantial work has also been devoted to
understanding the distance exponents for natural discrete LQG metrics; see [1, 11, 12,
15, 27, 28]. In [14, 16] some non-universality results were established for first-passage
percolation distance exponents for metrics of the form e’? ds, where ¢ is discretization
of a log-correlated Gaussian field. This indicates that precisely understanding such expo-
nents must involve rather fine information about the structure of the particular field in
question.

The present study concerns the tightness of Liouville first-passage percolation
(LFPP) metrics, which are natural smoothed LQG metrics. This proves the existence of
subsequential limiting metrics. Given this, it remains to show that such limiting metrics
are unique in law for each y € (0, 2) in order to complete the construction of the LQG
metric in this regime. After this paper was posted, the latter task was carried out in the
series of works [19, 23-26], thus completing the construction. The present study follows
three main tightness results for discretized or smoothed LQG metrics. In [9], tightness
of LFPP metrics (on a discrete lattice) was proved in the small noise regime for which
y 18 very small. In [18], tightness was shown for metrics arising in the same way from
*-scale invariant fields, still in the small noise regime. In [10], tightness was shown for all
y < 2 for the Liouville graph distance, which is a graph metric equal to the least number
of Euclidean balls of a given LQG measure necessary to cover a path between a pair of
points.

We consider a smoothed Gaussian field

1
(1.1) ¢5(x) :=ﬁ/ /l)g(x—y)W(d%dt)
82 R?

X_TQ . . .
for x € R* and 8§ € (0, 1), where p,(x — y) := ﬁe*% and W is a space—time white

noise. This approximation is natural since it can be uniformly compared on a compact
domain with a Gaussian free field 42 mollified by the heat kernel defined on a slightly larger
domain, viz. ¢ ; and p;/o * h (where * denotes the convolution operator) are comparable.
Furthermore, this approximation provides some nice invariance and scaling properties
on the full plane.

For y € (0, 2), we will use the notation

(1.2) §=y/d,

where d,, is the “Liouville quantum gravity dimension” defined in [12]. It is known (see
Theorem 1.2 and Proposition 1.7 in [12]) that the function y + y /d, is strictly increasing
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and continuous on (0, 2). Therefore, in this article we will be interested in the range
§€(0,(2/dy)"), where (2/dy)™ =lim, 49y /d,.

We consider the length metric &% ds (equivalently, the metric whose Riemannian
metric tensor is given by ¢*%ds?), restricted to the unit square [0, 1]?. We recall that
a length metric is a metric such that the distance between two points is given by the
infimum over the arc lengths of paths connecting the two points. We denote by A; the
median of the left-right distance of [0, 117 for the metric ¢% ds. Our main theorem is the
following.

Theorem 1. — 1. If y € (0,2), then (k;leé%ds)(sé(o’l) us tight with respect to the
uniform topology on the space of continuous functions [0, 11° x [0, 11> — RT. Furthermore,
any subsequential limit s almost surely bi-Holder with respect to the Euclidean metric on
[0, 1]°.

2. Let K = [0, 11 If h is a Gaussian fiee field with zero boundary conditions on a bounded
open domain D containing K (extended to zero outside of D), then the internal metrics
(A%esﬁ%*hds)ge(o,l) on K are tight with respect to the uniform topology of continuous func-
tions K x K — R,

Furthermore, the normalizing constants (As)seo.1) satisfy
(1.3) 3 = 81-62,0(V1e%)

=247
w/zereQ—y—l— 5

A vyear after our article was posted, the subsequent work [13] proved a similar
result to ours when & > (2/d,)~. However, in that case the tightness does not hold in the
uniform topology and the Beer topology on lower semicontinuous functions was used.

In order to establish the tightness of the family of renormalized metrics
(dgy)sco.n) := (A &9 ds)sc0.1), we prove a number of uniform estimates for that fam-
ily (which also hold when the approximation is the GFF mollified by the heat kernel).
Such estimates that are closed under weak convergence also apply to subsequential lim-
its. Let us summarize these properties. Let D denote the family of laws of dy,, 6 € (0, 1)
(i.e. seen as random continuous functions on ([0, 1]?)%), and D denotes its closure under
weak convergence (i.e., D also includes the laws of all subsequential limits).

1. Under any P € D, d is P-a.s. a length metric. This is clear for the renormalized
metrics dy, by definition, and the property of being a length metric extends to
limits. (See [6, Exercise 2.4.19].)

2. If d is a metric on R? and R is a rectangle, we denote by d(R) the left-right
length of R for d. We have the following tail estimates. There exists ¢, G > 0
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such that for s > 2, uniformly in P € D we have
(1.4) @ <P(dR) <) <Ce,
2
(1.5) O < P(dR) > ¢') < Ce o,

The upper bounds are proved in Section 4, while the lower bounds are conse-
quences of the Cameron—Martin theorem, considering shifts of the field at the
coarsest scale as in [18, Section 5.4].

3. If d is a metric on R? and R is a rectangle, we denote by Diam (R, &) the diam-
eter of R for 4. We have the following uniform first moment bound:

(1.6) sup E (Diam(R, d)) < oo.
PcD
This is shown in the course of the proof of Proposition 27 below.
4. Under any P € D, d is P-a.s. bi-Holder with respect to the Euclidean metric and

we have the following bounds for exponents: for « < §(Q — 2), B > £(Q + 2),
and R a rectangle, the families

AT d(x, /
.7 (Sup |x x/l ) and <Sup (x x/))
x, ¥ €R d(x, X) L(d)eD x,xeR |X —X |l3 L(d)eD

are tight. Here £(d) means the law of d. These properties are shown in Propo-
sition 28 below.

Let us also mention that subsequential limits are consistent with the Weyl scal-
ing: for a function f/ in the Cameron—Martin space of the Gaussian free field 4, for
any coupling (%, d) associated to a subsequential limit of the sequence of laws of

((h, )\r/:gegp%*hds))bo, the couplings (4, d) and (h+ f, ¢/ - d) are mutually absolutely con-
tinuous with respect to each other and the associated Radon—Nikodym derivative is the
one of the first marginal. This can be proved using similar arguments to those of [18,
Section 7]. An analogue of this property for the Liouville measure together with the con-
servation of the Liouville volume average is enough to characterize the Liouville measure,
as seen by Shamov in [48].

It may be interesting to draw a parallel between our work and those in random
planar maps, since both aim to obtain the scaling limits of random metrics and the lim-
iting objects are related for y = 4/8/3. We start with a brief overview on the conver-
gence of random planar maps. Chassaing and Schaeffer [7] identified #'/* as the proper
scaling and compute certain limiting functionals for random quadrangulations. Marck-
ert and Mokkadem [34] established limit theorems (in a sense weaker than Gromov—
Hausdorfl) and introduced the Brownian map. Le Gall [30] showed tightness for rescaled
2p-angulations in the Gromov—Hausdorff topology and shows that the limiting topology
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is the same as the Brownian map. Le Gall and Paulin [33] showed that the limiting topol-
ogy is that of the 2-sphere and Le Gall studied properties of geodesics in [31]. Finally, Le
Gall [32] (resp. Miermont [35]) proved the uniqueness of subsequential limits of uniform
triangulations and 2p-angulations (resp. quadrangulations). In both cases, the proof relied
on a careful study of geodesics and in particular on confluence properties, together with
a rough bound quantifying an approximate equivalence of the two metrics to match.

In our framework, an important result was obtained in [12], where the authors
identified the exponent of LFPP distances to be 1 —£Q 4 o(1). By contrast, in the ran-
dom planar map setting, the normalization is exactly n'/* and Chassaing and Schaeffer
[7] obtained the convergence in law of some observables. In our case, the tightness of
any observable renormalized by its median is far from obvious. This is a common feature
of some concentration problems for extrema of random fields. As an analogy, one can
consider the problem of the tightness of the maxima of branching random walks (BRW),
where, also by subadditivity, the expected value of the maxima of BRW on a d-ary tree
at level n 1s of order (x* + o(1))n for some x* (which depends on the rate function of the
distribution of the increments). A powerful and well-understood method in proving tight-
ness for BRW is by an explicit truncated second moment estimate which computes the
expected maxima up to additive O(1) constant (see [4] for maxima of BRW and [5] for
maxima of discrete GFF). In contrast, in our setup, explicit computation on the distance
seems really difficult; in fact it remains a major challenge to compute the value of the dis-
tance exponent, let alone computing the distance up to constant. In order to circumvent
this difficulty, we had to build our proof by exploring delicate intrinsic structure of the
distance. We point out here that it was shown in [1] that for y € (0,2), 1 —£Q > 0 (and
it is believed to be > 0), therefore the normalization A5 should be thought as small.

Furthermore, in our setting where the metrics are on a compact subset of G, we
can directly use the uniform topology instead of working with the Gromov—-Hausdorff
topology (note that the former is stronger than the latter). In this paper, we show tight-
ness for the full subcritical range y € (0, 2) of renormalized side-to-side crossing lengths,
point-to-point distance and metrics. Limiting metrics are bi-Holder with respect to the
Euclidean metric.

1.1. Strategy of the proof and comparison with previous works. — In contrast with previous
works on the LOG measure, the variational problem defining the LOG metric means
that most direct computations are impossible, and in particular most of techniques used
in the theory of Gaussian multiplicative chaos and LQG measure are unavailable. This
necessitates the more intricate multiscale geometric arguments that we employ.

Our tightness proof relies on two key ingredients, a Russo-Seymour—Welsh argu-
ment and multiscale analysis. In both parts we extend and refine many arguments used
in the previous works [9, 10, 18] on the tightness of various types of LQOQG metrics.

Russo—Seymour—Welsh. — The RSW argument relates, to within a constant factor, quan-
tiles of the left-right LFPP crossing distances of a “portrait” rectangle and of a “land-
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scape” rectangle. (By a crossing distance we simply mean the distance between two op-
posite sides of a rectangle.) In [9, 10], these crossings are referred to as “easy” and “hard”
respectively. The utility of such a result is that crossings of larger rectangles necessarily
induce easy crossings of subrectangles, while hard crossings of smaller rectangles can be
glued together to create crossings of larger rectangles. Thus, multiscale analysis argu-
ments can establish lower bounds in terms of easy crossings and upper bounds in terms
of hard crossings. RSW arguments then allow these bounds to be compared.

RSW arguments originated in the works [45-47] for Bernoulli percolation, and
have since been adapted to many percolation settings. The work [9] introduced an RSW
result for LFPP in the small noise regime based on an RSW result for Voronoi percolation
devised by Tassion [49]. Tassion’s result is beautiful but intricate, and becomes quite
complex when it is adapted to take into account the weights of crossing in the first-passage
percolation setting, as was done in [9].

The RSW approach of this paper is based on the much simpler approach intro-
duced in [18], which relies on an approximate conformal invariance of the field. (We
recall that the Gaussian free field is exactly conformally invariant in dimension 2, and
that the LOQG measure enjoys an exact conformal covariance.) Roughly speaking, the
conformal invariance argument relies on writing down a conformal map between the
portrait and landscape rectangles, and analyzing the effect of such a map on crossings
of the rectangle. We note that the approximate conformal invariance used in this paper
relies in an important way on the exact independence of different “scales” of the field,
which is manifest in the independence of the white noise at different times in the expres-
sion (1.1). Thus, the argument we use here is not immediately applicable to mollifications
of the Gaussian free field by general mollifiers (for example, the common “circle-average
approximation” of the GFF). The RSW argument of [18] was also adapted in [10] to the
Liouville graph distance case.

Tail estimates. — Once the RSW result is established, we derive tail estimates with respect
to fixed quantiles. The lower tail estimate is unconditional, while the upper tail estimate
depends on a quantity A, measuring the concentration at the current scale, which will
later be uniformly bounded by an inductive argument.

Multiscale analysis. — With RSW and tail estimates in hand, we turn to the multiscale
analysis part of the paper. This argument turns on the Condition (T) formulated in (5.2)
below, which, informally, states that the arclength of the crossing is not concentrated on
a small number of subarcs of small Euclidean diameter. The argument of [10] requires
similar input, which is a key role of the subcriticality y < 2. While [10] relies directly on
certain scaling symmetries of the Liouville graph distance to use subcriticality, the present
work relies on the characterization of the Hausdorff dimension @, obtained in [12], along
with some weak multiplicativity arguments and concentration obtained from percolation
arguments.
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Condition (T). — Our formulation of Condition (T), which has not appeared in previous
works, precisely captures the property of the metric needed to obtain the tightness of the
left-right crossing distances, the existence of the exponent, and the tail estimates (via a
uniform bound on the A,).

Condition (T) makes sense for LFPP with any underlying field and any parame-
ter &. In particular, this condition or a variant thereof could possibly hold for LFPP for
some & > 2/d,. Therefore, a byproduct of the present work is a simple criterion (that im-
plies, as noted above, tightness of the crossing distances, existence of exponents, and tail
estimates) that may be applicable more generally.

The utility of Condition (T) is that it allows us to use an Efron—Stein argument to
obtain a contraction in an inductive bound on the crossing distance logarithm variance.
Informally, since the crossing distance feels the effect of many different subboxes, the
subbox crossing distances are effectively being averaged to form the overall crossing dis-
tance. This yields a contraction in variance. (Of course, the coarse scales also contribute
to the variance, and hence the variance of the crossing distance does not decrease as the
discretization scale decreases but rather stays bounded.)

The way we verify Condition (T) is quite rough: we bound the field uniformly over
a coarse grained geodesic by the supremum of the field over the unit square. It turns
out that this bound together with the identification of the exponent 1 — £Q) is enough to
establish the condition.

Tightness of the metrics. — Once the tightness of the left-right crossing distance is estab-
lished, we turn to the tightness of the diameter and of the metric itself. This is done by
a chaining argument, and requires again § < 2/dy. The diameter is not expected to be
tight when & > 2/d,, since there are points that become infinitely distant from the bulk
of the space as the discretization scale goes to 0.

2. Description and comparison of approximations

We recall that a white noise W on R? is a random Schwartz distribution such that
for every smooth and compactly supported test function /', (W, /) is a centered Gaussian
variable with variance [|f |2 (see e.g. [8]). The main approximation of the Gaussian
free field that we consider in this paper is defined for 6 € (0, 1) by

1
2.0) 000 =7 [ [ pie= W
52 JR
2
where p,(x — ) := Q%e_% and W is a space—time white noise on [0, 1] X R’. This

approximation is different than the one considered in [18] which is

1 —_—
Br(3) = / / k(—x y)t‘S/QW(d)/,dt)
s JR t
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for a smooth nonnegative bump function £, radially symmetric and with compact sup-
port. Up to a change of variable in ¢, the difference is essentially replacing p; by . Both
fields are normalized in such a way that E(¢y(x)¢o(»)) = —log|x — y| + g(x, ») with g
continuous (see e.g. Section 2 in [18]): this is the reason for the factor /7 in (2.1).

Let us mention that *-scale invariant Gaussian fields with compactly-supported
bump function &

1. are invariant under Euclidean isometries,
2. have finite-range correlation at each scale,
3. and have convenient scaling properties.

The Gaussian field ¢5 introduced above satisfies 1 and 3 but not 2. Because of the lack
of finite-range correlation, we will also use a field ¥s (defined in the next section) which
satisfies 1 and 2 such that sup, ||¢0,n — ‘//O,nHLoo .17 has Gaussian tails, where we use
the notation ¢, , for ¢s with § =27". ’

2.1. Basic properties of s and rs.

Scaling property of ¢s. — We use the scale decomposition
—2n
#i=3 ¢ where 90 =7 [ [ pa-pWiand)
n>0 272t R

If we denote by C, the covariance kernel of ¢,, so C,(x, x') = E(¢,(x)9,(x)), then we
have

2727[

=2

1
C,(x,x) = / —e o dt =Cy(2"x, 2"X).
2

—o+1) 21

Therefore, the law of (¢, (%)) .c(0.12 1s the same as (¢ (2"x)) cj0.172- Because of the ﬁ above,
we choose 8% and not 8 in (2.1) so that the pointwise variance ¢; is logd~". Similarly, for
0<a<bandxeR? set

b?
2.2 b= [ pc—nWea
a2 R?

and note that we have the scaling identity ¢, ,(r-) @ ®4/r.5):(-). Indeed, we have

»2
E(@. ()¢, () =7 f / pi(re=)pi(y — ) dyal
a® R?

b2 bQ 1 7’2|t—t/\2
= | pOx—x))di= / —e 7 df,
&2 2 2
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and by the change of variable ¢ = r*u, this gives

b2 1 _ 12\x—x/|2 (5/7)2 1 _ ‘t—r/|2 /
/2 Z€ u = / —¢ o dt = E(¢a/r,b/7‘(x)¢a/7‘,b/7(x ))
@ (

{1/7)2 Qt

We will use the notation ¢, when a=2"and b=2"*for 0 <k <n.

Maximum and oscillation of ¢s. — We have the same estimates for the supremum of the
field ¢, as those for the x-scale invariant case considered in [18] (it is essentially a union

bound combined with a scaling argument). The following proposition corresponds to
Lemma 10.1 and Lemma 10.2 in [18].

Proposition 2 (Maximum bounds). — We have the _following tail estimates for the supremum of
P, over the unit square: for a > 0, n> 0,

2
2.3 P <ma>; ol = aln+ cm) < Cgr i
(0,17
as well as the following moment bound: if y < 2, then
<2.4> E(gymaX[U,I]Q |¢O,7z‘) < 4yn+0(ﬁ)

We will also need some control on the oscillation of the field ¢, ,. We introduce
the following notation for the L>°-norm on a subset of R%. If A is a subset of R? and
J:A— R” we set

(2.5) IF] = sup [/ ()l

We introduce the following notation to describe the oscillation of a smooth field ¢: if
A C R* we set

(2.6) 0sca (@) 1= diam(A) [ V|| ,

so that if A is convex then SUP, Jea | (x) — P ()| < osca(¢p) and

max  oscp(¢y,) < C27" ||V¢0~" ” [0,112°

PeP,,PCl0,1]2

where P, denotes the set of dyadic blocks at scale 7, viz.
(2.7) Po=27", i+ 11 x[j,y+ 1D ¢,y € Z}.
In order to simplify the notation P € P,, P C [0, 1]° later on, we also set

(2.8) Pl:={PeP,:PClO0,1]%}.
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Proposition 3 (Oscillation bounds). — We have the following tail estimates for the oscillation of
@o.: there exists C. > 0, a2 > 0, so that, for all x,& > 0, n> 0,

xQ
2.9) P@ﬁﬂmmnmmzx)SCMfm

as well as the following moment bound: for a > 0, there exists ¢, > O so that for n > 0,
! ‘
(2.10) E (eansg—n“vqbo.”||WJQ) < ecan§+€+0(1125)

Progf: — Inequality (2.9) was obtained between Equation (10.3) and Equation
(10.4) in [18]. Now, we prove (2.10). Set a, := an®, O, = 27" HV¢0,71 and take

X, = a,0> + oo \/n with & > 0 so that “72 =log 4. We have, using (2.9),

H [0,1]%?

00 00 00 2
/ P (e””o” > x) dx = / P (e””o” > e‘y) gds < C4"/ e 2397 ¢ s

an X,
nn nXn UnXn

By a change of variable (s <> 4,05 + (,0)?), we get

o° 2 1o o [ 2 1o o [ 2
— 0 5 5T S
/ e 2o’ ¢'ds = a,0¢2™° / ¢ 2ds = a,0e2%° / ¢ Tds
Aniy 2 —a,0 ayn

since x, = a,0° + aoy/n. Using that faoo dx < 2ab)'e ™, we get
fe :ci P (e"”o" > x) dx < O The result follows from writing E(¢%Or) < ¢ +
Lo P(e"Or > x)d. O
Definition of 5. — We fix a smooth, nonnegative, radially symmetric bump function ®
such that 0 < ® < 1 and & is equal to one on B(0, 1) and to zero outside B(0, 2). We
also fix small constants 7 > 0 and &, > 0. We will specify these constants later on. In
particular, &y appears in the main proof in (5.11) and its final effect is in (5.16). All other

constants C, ¢ will implicitly depend on 7y and &. Then, we introduce for each § € [0, 1],
the field

1 1

(2.11) Vs (x) = f f ®,, (x—)p: (x—))W(dy, di) = / f P =) W(dy, di)
52 JR? s2 JrR2 ?

where atzroxﬁllogtle“, P, (-) :=P(-/o;) and p?:zpécbgt.

Thanks to the truncation, the fields (¥s)sc0.1; have finite correlation length
870 sup,¢(o.1] V1 log ¢|*°.
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Decomposition in scales and blocks of s. — We have the scale decomposition
1
212 v [ [ oW
o JR
9] 272k+2
=y > / / PEG= )W d) =) Y ip()
k=1 pep, Y27 P k=1 PeP;

where ¥ p is defined for P € Py by Yp(x) := [Zo [0 (x —y)W(dy, di) and thus has
2

correlation length less than C£©27* In particular, a fixed block field is only correlated
with fewer than Ck*" other block fields at the same scale. In fact, when we apply the
Efron—Stein inequality (see (5.9)) we will use the following decomposition:

(2.13) Vou=Yok+ Y Vkap(x)
PePx

9—2K+2

whete Y= [ [pre- W,
P 2

—2n

We note that there is a formal conflict in notation between (2.2) and (2.13), but it will
always be clear from context whether the second subscript is a number or an element of
Pi. (a set), so confusion should not arise.

Variance bounds for ¢s and 5. — Later on we will need the following lemma.
Lemma 4. — There exists C. > 0 so that for 8 € [0, 1] and x, ¥ € R, we have

|x — x|

(2.14) Var (¢s(x) — ¢5(x')) + Var (y5(x) — ¥5(x)) <C
Progf: — We start by estimating the first term. Using the inequality 1 —e¢ ™= <z <

Jzforze[0,1]and 1 —¢* <1 < /zfor z > 1 we get

1

Var (¢5(x) — ¢5() = C f (0@ = pypy =)
52
1
= c/ (1(0) — p(x — X)) dt
82

! 1 _\xfx/IQ
=C | —(1—¢ 7 )dt
52 t

o dt [x — &
<Clx—¥] —=C .
52 132 8
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Similarly, for the second term, we have
1
Var (5 (1) = ¥5()) = C / (P15 = pa e — 1)) .
52 N7

Set /)? * p? =: p,(x)¢,(x). Using the identity p,/o(»)pyo(x — ) = pi(x) pyya(y — x/2) we get

D2 prya(x — )
R2 ﬁz(x)

- / Pisy = 3/2) P, () Py, (x = ).
R?

9:(x) = Do, (9) P, (x — p)dy

We rewrite the variance in terms of ¢,: replacing x — x" by z we look at
Var (% (x) — ¥ (X/))

1
e f 0(0)q.(0) — pD (e
52

1 1
= C/ £:0)(q:(0) — ¢,(2))dt + C/ 7:(2) (p(0) — pi(2))dt.
52 52

We deal with these two terms separately. For the second one, since 0 < ® < 1, we
have 0 < ¢, < 1. Therefore, following what we did for ¢; above we directly have
0< fal, 7,(2) (p,(0) — p(2))dt < Clsil. For the first term, since ,(0) = C¢™', it is enough
to get the bound \/ﬂqt(O) — ¢,(2)| < Clz]| to complete the proof of the lemma. Changing

variables, we have

7(2) =G / e Dy, (Vi + 2/2) B0 (V1 — 2/ 2.
R?

Therefore, using that 0 < ® <1,

102 — g (0)] < C / |, (Vi + 2/2) — B0 (VD) |db

R?

e f D, (Vi — 2/2) — B ()
R?
og

—91y|2 |Z| o2
<Cl /Qe VP, | ey < C= VD e f .
R R

Since 0, = 1y+/1|1og ¢|**, we see that SUP (0.1 St 00, and the result follows. 0

oy
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2.2. Comparison between ¢s and Ys. — The following proposition justifies the intro-
duction of the field ;.

Proposition 3. — There exist C. > 0 and ¢ > 0 such that for all x > 0, we have

(2.15) P (su;o) (0 x) <Ce .

Progf: — For k > 1, we introduce the quantity D;(x) := @1 (x) — ¥ 1(x). The
proof follows from an adaptation of Lemma 2.7 in [17] as soon as we have the estimates

(2.16) Var D (x) < Ce*™
and
(2.17) Var (¢(x) — ¢.(»)) + Var (Y,(x) — ¥,(0)) < 2°|x — .

(The estimate (2.16) is weaker than that used in [17, Lemma 2.7] but still much stronger
than required for the proof given there.) Note that (2.17) follows from Lemma 4 and for
(2.16) we proceed as follows: first note that

272k+2

E (61400 — i u)’) = [
2

f 10D (1 = By, (1)) o

—2k R?

For every y, we have p,o(»)(1 — @, (»)) < (2nt)_1e_“f2/‘ since 0 < @, <1 and P,,(y) =1
for |y| < o,. Therefore,

0—2%+2  _ o
14 t

—9k 2wt

E <(¢k—1,k(9€) - wk—l,k(x))Q) = /
2

7628
/Rzpé(y)dydtf(}e o0

Let us point out that in fact anoE(‘ Dunt1 — Vot ”[o 1]2) < o0 holds but we
won’t use it. Since we will be working with two different approximations of the Gaus-

sian free field, we introduce here some notation, referring to one field or the other. We
will denote by R, ; := [0, a] x [0, 4] the rectangle of size (a, b). We define

(2.18) Xaoi=sup | fon = Voully,,

and X, := X, , for the supremum norm of the difference between the two fields on vari-
ous rectangles.



366 JIAN DING, JULIEN DUBEDAT, ALEXANDER DUNLAP, HUGO FALCONET

2.3. Length observables. — The symbol Lf:’i(qb) (and similarly LZLZ(l//)) will refer to
the left-right distance of the rectangle R, ; for the length functional ¢%ds:

(2.19) L")(¢) :=inf / P ds,

where ds refers to the Euclidean length measure and the infimum is taken over all smooth
curves 7w connecting the left and right sides of R,, ;. We will sometimes consider a geodesic
associated to this variational problem. Such a path exists by the Hopf~Rinow theorem
and a compactness argument.

We introduce some notation for the quantiles associated to this observable:

"¢, p) (similarly €}, p)) is such that P (L;f’;(gb) < zg'f;(@) = 4. For high quantiles,

we introduce £)(¢, p) := £")(¢, 1 — p). Note that £)(¢, p) is increasing in p whereas
Zfl",)) (¢, p) 1s decreasing in p. Note that both are well-defined, 1.e., there are no Dirac deltas

in the law of Li"; This follows from an application of the Cameron—Martin formula. We
will also need the notation

L, )
2.20 A, (¢, p) ;= max
(2.20) () ma; ©o.D

where €,(¢, p) :=€\" (¢, p) and €,(¢,p) =L (¢, p).

The following inequalities are straightforward:
(2.21) L) < L(@) < L)

Therefore, using Proposition 5 (and a union bound, if necessary), we obtain that for some
C > 0 (depending only on a and b), for any € > 0 we have

¢ FNIEIAGR W pt+ ) < U@ p) < EVIEIALT @ p—e)
¢ ECVNose /Gl (o — &) < €V (, p) < FOVIEETLD (yr, p o+ €)

In particular, there exists C, > 0 such that, uniformly in 7,

L /) =G, @b, L. p/2) < JCl(h.p) and
Arz(va/Q) S CjiAn((p’p)

Now, we discuss how the scaling property of the field ¢ translates at the level of

(2.22)

lengths. We will use the following equality in law: for @, b > 0 and 0 < m <,

(2.23) LY () 2 27"LI 0 (9).
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Finally, for a rectangle P with two marked opposite sides, we define L™ (P, ¢) to
be the crossing distance between the two marked sides under the field ¢%. The marked
sides will be clear from context: if we call P a “long rectangle,” then we mean that the
marked sides are the two shorter sides, so that L™ (P, ¢) is the distance across P “the long

b3

way.

2.4. Outline of the proof and roles of ¢s and ¥s. — The key idea of the proof is to
obtain a self-bounding estimate associated to a measure of concentration of some ob-
servables, say rectangle crossing lengths. This is naturally expected because of the tree
structure of our model. We introduce a general condition, which we call Condition (T),
(see (5.2)) which ensures a contraction in the self-bounding estimate (5.19), which relates
a measure of concentration at scale 7z, the variance, with the measure of concentration
that we inductively bound, A,_k (see (2.20)), which is at a smaller scale.

We then prove that this condition, which depends only on & and on the field con-
sidered, 1s satisfied when & € (0, (2/d5)™). This proof uses a result taken from [12] about
the existence of an exponent for circle average Liouville first passage percolation and
this is the reason we don’t consider the simpler *-scale invariant field with compactly-
supported kernel but the field ¢;, which can be compared to the circle average process
by a result obtained in [11].

The roles of ¢s and 15 in the proof are the following.

1. Prove Russo—Seymour—Welsh estimates for ¢.

2. Prove tail estimates w.r.t. low and high quantiles for both ¢ and :

a) Lower tails: Use directly the RSW estimates together with a Fernique-type
argument for the field ¥ with local independence properties.

b) Upper tails: use a percolation/scaling argument, percolation using ¥ and
scaling using ¢.

3. Concentration of the log of the left-right distance: use Efron—Stein for the
field ¥ (because of the local independence properties at each scale). This gives
the same result for ¢.

4. To conclude for the concentration of diameter and metric, this is essentially a
chaining/scaling argument using only the field ¢.

3. Russo—-Seymour—Welsh estimates

3.1. Approximate conformal invariance. — In order to establish our RSW result, we
first show an approximate conformal invariance property of the field. The arguments in
this section are similar to those of [18, Section 3.1]. The difference is that the Gaussian
kernel has infinite support.

2
Recall that ¢5(x) = [}, fye p1 (x—3)W(dy, db) where p(x—y) = 3-¢~ 5. Consider
a conformal map F between two bounded, convex, simply-connected open sets U and
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V such that [I'| > 1 on U, |||y < 0o and ||[F’|ly < oo. (We point out here that the
assumption |F'| > 1 will be obtained later on by starting from a very small domain; this
is exactly the content of Lemma 11.) We consider another field ¢s(x) = falz fR2 by (x —

9)W(dy, di) where W is a white noise that we will couple with W in order to compare
@5 and @5 o F. The coupling goes as follows: for y € U, ¢ € (0, 00), let y = F(y) € V and
! = t|F'(»)|* and set W(aj/, dt) = |F'(»)|?W(dy, dt). That is, for every 1? function @ on
V x (0, 00),

/ o(/, YWY, d) = / o (F@), IF ()% {F/@)\QW(dy, dt)

and both sides have variance ||a)||iQ. The rest of the white noises are chosen to be inde-
pendent, 1.e., Wiuex0,00)> WiUx(0,00) ad Wiyey 0,00y are jointly independent.

Lemma 6. — Under this coupling, we can compare the two fields (55 (F(x)) and ¢s(x) on a
compact, convex subset K of U as follows,

(3.1) b5 (F(x) — s (x) = B, (%) + o3 (x),

where ¢£8) (L for low frequency noise) is a smooth Gaussian field whose 1.>°-norm on K has uniform
Gaussian tails, and ¢$ ) (H for hugh frequency noise) is a smooth Gaussian field with uniformly bounded
pointwise variance (in 8 and x € K). Furthermore, d)](_f ) is independent of (¢s, ¢£8)).

This aforementioned independence property will be crucial for our argument.

3 Progf- — Step 1: Decomposition. For fixed I and small §, we decompose ¢5(x) —
@5 (F() = 91" () + 63" (1) + ¢5” (x), where

7ol (
NOE / /,; 2 (£ 6=) = 1, o (FO=F ) [FO)[) W(ep, )

Fol™ F(x) — F(y)
L e () s

ROE f pi(x—))W(dy, dt) — f s (FGo) — ) W(dy, di)
Ue J 52 V!

(3 82

+ / / Ly G=))W(dy, dby
UJ|Fo)|

(5) F(x) — FU))W . d
(0= //5‘|r/(})| ? ( F () (@4

Remark also that ¢ 5 1s independent of ¢, (5) and ¢>§5).
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Step 2: Conclusion, assuming uniform estimates. We will estimate qbl.(‘s) ,1=1,2,3,
over K. In what follows, we take x, ¥’ € K. We assume first the following uniform esti-
mates:

E(¢ (x) — ¢
E((¢) (1) — ¢ (¥)?) < C|

( (‘”(x))

An application of Kolmogorov’s continuity criterion and Fernique’s theorem give uni-
form Gaussian tails for ¢§5) and (]5(5) We then set (15(5) : (5) and ¢(6) : (5) + (]5(6) .

Step 3: Uniform estimates.

First term. We prove that E((q’)(a)(x) — (5) (x))%) < C|x — ¥| by controlling

[ L Gemn=n(F55)

F(x) —F ?
— (¥ =) + b4 (%)) dydi
L2

By introducing p(x) = ¢~ 2 and by a change of variable ¢ <> 22, it is equivalent (up to a
multiplicative constant) to bound from above the quantity

x—y F(x) — F(y)

oo S0
X — F(¥)—F 2

() () o

We will estimate this term by considering the case where ¢ < 4/|x — x| and the case where
1> |x—¥|.

Step 3.(A): Case t > /[x — ¥/[. Using the identity |x — y|* + |¥' —y|* = %lx — x>+
2y — %IQ and the inequality 1 — ¢7* < z, we get

! 2 — |2 ¢
3.3) /(p(%) —p(x ty)) Bh<CE1— ) <Cle—y[".
U

Similarly,

F(x) — F(y) F(Y) —FO)\\°
3.4 /U(/’ ( F0) ) ? ( () ))d

<CFx) —F)[* <Clx— [,

where the constant C depends on |I'||y. Then the corresponding part in (3.2) is bounded

from above by |x — ¥'|? f V= 4 <Clx—x|.

[x—x
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Step 3.(B): Yor t < y/|x — «’[, using the Taylor inequality |F(x) — F(») — F'(»)(x —
M| < 3IF |l |¥ — 9% and the mean value inequality (as we have assumed that K is con-
vex),

=0\ (F®) ~F)
s () (")

Ie |x _)’|2 <|x_))| i |x _))|2) 22 infye0,1)
t

a1 P [

¢ ¢

Step 3.(B): case (a). If y € B(x, €) for & small enough (depending only on [|[F”||), we
have, using again |F(x) — F()) — F'(»)(x —»)| < 3 ||F”||U |x — »|?, uniformly in & € (0, 1),
—F0) ‘

) 1
atx—»)+ (1 —a ) > [x— )| — HF”HUIx—yIZZEIx—yl-

F/ (y)

Therefore, for such y’s we have, coming back to (3.5),

x—y F(x) — F(y) =l st
() (B | s
For this case we get the bound
=\ (Fe) - F(y))) )
.. ()"

6 [x— |2 . )
< c/ % S0 = Cr2E(B.|%) < G,
B(x,e)

where B, denotes a two-dimensional Gaussian variable with covariance matrix ¢ times

VI < - ).

the identity. This term contributes to (3.2) as C fo
Step 3.(B): case (b). Now, for ¢ < {/|x — «’| and y € U \ B(x, £) we write

V= gy x—9 2 =41 g
f —f p( )@scf A (IBel > )
0 U\B(x,¢) t !

tS

=

fvwxw 2
0

¢

and similarly

[x—x|
/v a p<F<x> F(y)) p<Cleey
0 B Ju\Bee) tF (y)

where the constant C depends on ||F'||y and ||[(F~")'||y.
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Applying Step 3.(A) and then Step 3.(B) twice (once for x and then again for x’) to
(3.2), we get E((0\” (x) — ¢V (¥))?) < Clx — ¥/|.

Second term. We want to prove here that E((¢§5) (x) — 55) )N <Clx—«|.
Note that three terms contribute to §¢»;. The third one is a nice Gaussian field indepen-
dent of 8. The first two terms are similar, so we will just focus on the first one, namely

G () = [ [ p1(x —2)W(dy, di). We have, similarly to (3.2) and (3.3),

(( HOE “”(x)))
1 2
= / / (=2 =, =) e
52 ¢
ldlf _ / 2
el LA
<G A =2 dt X—y y /
< il +p dy + Clx — x|
0  Jyue ¢ ¢

The remaining term can be controlled as follows (noting the symmetry between x and x'):

A =« dt 1 |x HZ VAL dt
/ —/ e dy<C/ “P(Bel > )
0 ue 0

4

4/|’(—’( ]/; 2

where d = d(K, U°). Thus E((¢5 (x) — ¢ (x'))?) < C|x — /.

Third term. We give here a bound on the pointwise variance of (1);8). By using
2

F@-Fp) | o [l ®) (2 5 4 S
] = bl e get B ) < 104 oo < C. 0

3.2. Russo—Seymour—Welsh estimates. — The main result of this section is the follow-
ing RSW estimate. It shows that appropriately-chosen quantiles of crossing distances of
“long” and “short” rectangles at the same scale can be related by a multiplicative factor
that is uniform in the scale. This is the equivalent of Theorem 3.1 from [18] but with the
field mollified by the heat kernel instead of a compactly-supported kernel. It holds for
any fixed § > 0.

Proposition T (RSW estimates for s ) — If [A, B] C (0, 00), there exists C. > O such that
Jor (a, b), (@, V') € [A,Blwith § <1 < b/,forn> 0 and & < 1/2, we have,

(3.6) 09 ($,£/C) < CLY)(g, £)e N 0sIo/C,
<3.7> Zt(ztl,)b’(d)’ 380) < Cg(nz(qs 8) W



372 JIAN DING, JULIEN DUBEDAT, ALEXANDER DUNLAP, HUGO FALCONET

The following corollary then follows from Propositions 5 and 7.

Corollary 8 (RSW estimates for \rs). — Under the same assumptions as used in Proposition 7,

we have

(3-8) 09, (W, £/C) < CLY) (3, £)eCv/oele/C
and
(3.9) €9, (¥, 36%) < CL)(y, £)C/losle/Cl.

We point out that the constants C in (3.8) and (3.9) are not equal to those in (3.6)
and (3.7). The remaining parts of the section will only deal with approximations associ-
ated with ¢ so we will omit this dependence in the various observables.

We describe below the main lines of the argument. Consider R, ;, and R, 5, two
;<1< Z—: Suppose
that we could take a conformal map I : R,, — R, mapping the long left and right
sides of R, to the short left and right sides of Ry . (This is not in fact possible since

there are only three degrees of freedom in the choice of a conformal map, but for the

rectangles with respective side lengths (a, b)) and (&', ¥') satistying

sake of illustration we will consider this idealized setting first.) Then the proof goes as
follows.

Take a geodesic 7 for @, for the left-right crossing of R, ,. Then, using the cou-
pling (3.1), we have

T
L (Ry) S LG = [ 0 OG0 0l
0

=¥

/ 65(43(),”+3¢L+3¢H)d5

Rop .
T

<|¥

S80Ik, / o 5w g
R/l,b 7

It is essential that 7T is (50,,Z measurable and d;O,n is independent of §¢pyy. Then, we can use
the following lemma.

Lemma 9. — If " 1s a continuous field and V s an independent continuous centered Gaussian
field with pointwise variance bounded above by o* > 0, then we have, as long as & is sufficiently small
compared to o>,

1 £, (T 4+ W, e) <eV2loeely (T, 2¢);
2. 0 (T + W, 2) <eV2loee™ f (T, g).

Proof. — Fix s:=,/20%loge~! throughout the proof. Let 7 (I") be a geodesic as-
sociated with the left-right crossing length for the field I', and define the measure p on
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71(T) by ju(ds) = Ly (D)~ e ds, s0 [, 1,

equality with o = 325 = V/(loge=1)/(20?), which is greater than 1 for small enough &,
and Chebyshev’s inequality, we have

(3.10) P (f Vs> Ly (D) | F) <P (/ AVdp > e | F)
(") (I

1,252 g -2
< Y7 Y = 2% — g,

¢"ds = 1. Conditionally on I, using Jensen’s in-

To bound from above L; | (I' + W), we take a geodesic for I" and use the moment estimate
(3.10). We start with the left tail. Still with s := /20?loge~!, we have

P (Ll,l(r) <L+, 8)675")
< P(Ll,l(F + W) < L (1), L (T) <6, (T + ¥, 8)6’_5)
+ P(Ll,l(F + W) > €‘YL1,1(F))

<P(L, (T+¥) <, (T+W¥,8)+P (/ ¢ Vds > e‘Ll,l(F))

()
< 2e.

For the right tail, we have similarly that
P(Ll,l(F + W) > ¢, (T, 8)83)

<P(L, (T+W¥)> 61T, e)e, £(T,6) > Li1(I)
+P(L1,1(F) > 0,,(T, 8))
<P(L,(T+W¥) > €5L1,1(F)) +e& =<2,

which concludes the proof of the lemma. UJ

The previous reasoning does not apply directly to rectangle crossing lengths but
provides the following proposition. Recall that K is a compact subset of U. Let A, B be
two boundary arcs of K and denote by L the distance from A to B in K for the metric
¢#%1ds; we denote A’ :=F(A), B :=F(B), K’ := F(K), and L is the distance from A’ to
B’ in K’ for £#%01ds. Recall that we have |F'| > 1 on U. In the application we will achieve
this by scaling U to be sufficiently small.

Proposition 10. — We have the following comparisons between quantiles. There exists C > 0
such that

1. of for some | >0 and ¢ < 1/2, P(L <) > ¢, then P(' <!') > /4 with |' =
Iy o€/ Toser2cl,

2. if for some | >0 and e < 1/2, P(L<])>1—¢, then P(L' <) > 1 — 3¢ with
[ = | O/ P2l
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A N\ D

\ AI/ £ ] D
g\/\/\/\/%

W u—
B/
B~ ¢

E,

FiG. 1. — Illustration of Lemma 12

Now, we want to prove a similar result for rectangle crossing lengths. We will need
the three following lemmas that were used in [18]. The first one is a geometrical con-
struction, the second one is a complex analysis result and the last one comes essentially
from [39] together with an approximation argument. In these lemmas, by “crossings” we
mean continuous path from marked sides to marked sides.

Lemma 11 (Lemma 4.8 of [18]). — If a and b are two positive real numbers with a < b, there
exists j = j(b/a) and j rectangles isometric to [0, a/2] x [0, b/2] such that if 7w 1s a lefi—right crossing
of the rectangle [0, a] x [0, b], at least one of the j rectangles is crossed in the thin direction by a subpath
of that crossing.

Lemma 12 (Step 1 wn the proof of Theorem 3.1 in [18]). — If a/b <1 and d' /b’ > 1, there
exists m, p > 1 and two ellipses B, E with marked arcs (AB), (CD) for E, and (A'B’), (C'D") for
E’ such that:

1. Any lefi-right crossing of [0, a/2] x [0, b/2"] is a crossing of E,.

2. Any crossing of ' is a lefi-—right crossing of [0, '] x [0, &'].

3. When dividing the marked sides of E,, into m subarcs of equal length, for any pair of such
subarcs (one on each side), there exists a conformal map ¥ : E, — K and the pair of subarcs
is mapped to subarcs of the marked sides of ¥/ .

4. For each paw, the associated map ¥ extends to a conformal equivalence U — V where
E,CUFECVad|F|>1onU.

We refer the reader to Figure 1 for an illustration.

Lemma 13 (Positive association and square-root-trick). — If k > 2 and (R, ..., Ry) denote
a collection of k rectangles, then, for (xi, ..., x;) € (0, 00)*, we have

P(L”R)) > xi,...,LYRy) > x)
>P(LYR) > x)--PLYRY > x1).
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An easy consequence of this positive association is the so-called “square-root-trick”:
P(LP(R)<x)>1-(1-PFi<k:LOR) <)) "
n?;(X ( ( z)_xz)_ ( (l_k ( Z)_X,))
The main result of this section, Proposition 7, is a rephrasing of the following one.

Proposition 14. — We have the following comparisons between quantiles. If a/b < 1 and
ad' /b > 1, there exists C > 0 such that, for any € € (0, 1/2),

L (LY =) z e, ten P (LY, = CVTwe/T) =
2. andif P (L0 < 1) 21— e, then P (L), < CltoV 1w/ > 1 — 36,

Proof. — We provide first a comparison between low quantiles and then a compar-
ison between high quantiles.
Step 1: Comparison of small quantiles. Suppose P(Lgf; </[)>e¢.By Lemma 11 and

union bound, P(L;%’ 32 < 1) > €/j. Furthermore, by iterating, we have P(Lflj)%, )
e/j’. Under this event, by Lemma 12, there exists a crossing of E, between two subarcs
of E, (one on each side) hence with probability at least &/(’m”), one of these crossings
has length at most /. By the left tail estimate Proposition 10 and Lemma 12, we obtain a

C > 0 (depending also on ||F’||E—p) such that for all g, / > 0:
P(LY) <1) = =P (LY, = QLI DN > o/,

hence the first assertion.
Step 2: Comparison of high quantiles. Now suppose P(LY) < /) > 1 — . By
Lemma 11 (to start with a crossing at a lower scale) and Lemma 13 (square-root-trick),

we have P(Lij)“/2 <) > 1 — &'/, Furthermore, by iterating, we have P(Lij)%b/% <>
1 — &' On the event {Lg})%, yy = U}, the ellipse E, from Lemma 12 has a crossing of

length </ between two marked arcs. Again by subdividing each its marked arcs into m
subarcs and applying the square-root trick, we see that for at least one pair of subarcs,
there is a crossing of length < / with probability > 1 — & """ . Combining with the right-
tail estimate Proposition 10 and Lemma 12, we get:

(3.11) P(L0) <l) = 1-e=P (LY, = CLVImrT) = 1 -5/,
which completes the proof. U
Remark 15. — The importance of the Russo—Seymour-Welsh estimates comes

from the following: percolation arguments/estimates work well when taking small quan-
tiles associated with short crossings and high quantiles associated with long crossings.
Thanks to the RSW estimates, we can instead keep track only of low and high quantiles
associated to the unit square crossing, £,(p) and E_n(p).



376 JIAN DING, JULIEN DUBEDAT, ALEXANDER DUNLAP, HUGO FALCONET

4. Tail estimates with respect to fixed quantiles

Lower tails. — 'This is where we take 7, small enough (recall the definition (2.11)) to
obtain some small range of dependence of the field ¥ so that a Fernique-type argument
works.

Proposition 16 (Lower tail estimates for ). — We have the _following lower tail estimate: for p
small enough, but fixed, there is a constant C so that for all s > 0,

4.1) P(LOW) = 6(.p) <Ce.
Progf: — The RSW estimate (3.8) gives
(4.2) P (Lé’fg(w) < [) <e=P <L§?z(1ﬁ) < Q0 |1og05\> <Ce

Now, if Lg’%(tp) is less than /, then both [0, 1] x [0, 3] and [2, 3] x [0, 3] have a left—
right crossing of length </ and the restrictions of the field to these two rectangles are
independent (if 7y defined in (2.11) 1s small enough). Consequently,

4.3) P(Lw) <1) <P (L) <1)

Take po small, such that C%py < 1 where C is the constant in (4.2) and set 7" :=

Zg’%(l//, po). (This is not related to 7y, defined previously.) For ¢ > 0, set

(4.4) pir = (Cp)?
4.5) 1 o= 1r"C exp(—CE /| log(Cp)))

By induction we get, for : > 0,
(4.6) P(LY, () <) <p;

Indeed, the case ¢ = 0 follows by definition and then notice that the RSW estimate (4.2)

under the induction hypothesis implies that P(LS", () < 7”) < p; = P(L{3(¥) <) <

Cip; which gives, using (4.3), P(L{% () <r})) < P (¥) < r)? < (Cp)? = piyi.
From (4.4) we get p; = (oC?)?> C~2 and from (4.5) we have the lower bound, for
i>1

>
e i—1 (O e 01/2
Ti(n) > gé’%(w,po)c 1,=C8 Ximo A/ 1og(Capl > gé’%(w’po)g Gi ,—C¢ [log poC2|2 )
Our estimate (4.6) then takes the form, for : > 0,

n n —Ci —£C og 91/ N2
P(Lé,é(w) <P, po)e e EOV I aﬁocm/z) < (nC?) ¢
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This can be rewritten, taking ¢ = [2log, s, as

P(ng)s(w) < eé?f)?)(w’po)c—le—(}logge_g}) < e—m

for s > 2 with absolute constants. We obtain the statement of the proposition by using
again the RSW estimates. O

Using the comparison result between ¢ and ¥ (Proposition 5), we get the following
corollary.

Corollary 17 (Lower tail estimates for ¢). — For p small enough, but fixed, for all s > 0 we
have a constant C. < 00 so that

4.7) P (L@ <L) <G

Upper tails. — The proof for the upper tails is similar to the one of Proposition 5.3 in
[18]. The main difference is that we have to switch between ¢ and ¥, so that we can
use the independence properties of Y together with the scaling properties of ¢. Before
stating the proposition, we refer the reader to (2.20) for the definition of A,(¢, p). In
contrast with the lower tails estimates which are relative to £,(¢, p), we do not know
how to prove (at least a priori) the analogous result for the upper tails with £,(¢, p) only.
However, we can prove it by replacing l, (¢, p) by A, (p, p)L,(¢, p) and this is the content
of the following proposition.

Proposition 18 (Upper tail estimates for ¢ ). — For p small enough, but fixed, we have a constant
C < 00 so that for alln > 0 and s > 2,

4.8) P(L5)(6) = A0, LB, ) < G,

Proof. — The proof uses percolation and scaling arguments. A percolation argu-
ment 1s used to build a crossing of a larger rectangle from smaller annular circuits, and
then a scaling argument is used to relate quantiles of these annular crossings to crossing
quantiles of the larger rectangle.

Step 1: Percolation argument. To each unit square P of Z*, we associate the four
crossings of long rectangles of size (3, 1) surrounding P, each comprising three squares on
one side of the eight-square annulus surrounding P, as illustrated in Figure 2. We define
S™(P, ) to be the sum of the four crossing lengths, and declare the site P to be open
when the event {S® (v, P) < 45%")1 (¥, p)} occurs. This occurs with probability at least 1 —
e(p), where €(p) goes to zero as p goes to zero (recall that P(Lgf)l (¥) < Eé")l »)=1-0p.
Using a highly supercritical finite-range site percolation estimate to obtain exponential
decay of the probability of a left-right crossing (which is standard technique in classical
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TR [
i'\];\—v N s P CZ%VWN\/\
A ;

F16. 2. — Four blue rectangles are surrounding the square P. Left-right geodesics associated to the long and short rectangles
surrounding P are drawn in green and brown respectively. Any geodesic 7, here in red, which intersects P has to cross the
green circuit and to induce a short crossing of one of the four rectangles (Color figure online)

percolation theory [20]; see also for example the proof of Proposition 4.2 in [10]) together
with the Russo—Seymour—Welsh estimates (to come back to £,(, p)), we have

P(L3,() = CRLG, p)) < G,

Therefore, using this bound together with Proposition 5 to bound Xs; ;. (recalling the
definition (2.18)),

P (LY, = EC,CRT @, p/2)

<P (AL, ) = EYC,CR T, /)

<P (Xos = CVE) +P (L, (0) = C,CR L. 1/2))

< Ce 4+ P (LY, (0) = CRLW. p) < Ce ™
Note that we used the bound £,(, p) < C,Z,(¢, p/2) from (2.22) in the third inequality;
here C, is defined as in (2.22).

Step 2: Decoupling and scaling. In this step, we give a rough bound of the coarse

field ¢y, to obtain spatial independence of the remaining field between blocks of size
27". When an event occurs on one block with high enough probability, the percolation

argument of Step | then provides, with very high probability, a left-right path of such
events occurring simultaneously. Since L") (¢) < & ™®s1 9218 (), the scaling prop-

erty of the field ¢, i.e. Lg’f’l‘") (9) @ 2_"1L§'§m@m (), gives
P(L)@) = VTl (0.p)

<P (n}gax b0 > Cm+ sﬂ) +P (2*’”L§'.’;m’fgm @) =Vl (0, p))
3,1

2 om
Scem +C€[2,
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where the first term of the second expression is bounded by taking a = C + sm™'/* in
Proposition 2 and the second bound follows from the result obtained in Step 1 with
k= 2", taking a slightly larger ¢ in exp(cy/2™) to absorb the factor .

Step 3: We derive an a priori bound £,(¢, p) > 27%%¢, (¢, p)e‘cﬁf. (Note that the
argument below will be optimized in (5.31).) For each dyadic block of size 27 visited by
7,(¢), one of the four rectangles of size 27*(1, 3) around P has to be crossed by 7,(¢).
Therefore, since 7,(¢) has to visit at least 2 dyadic blocks of size 27, we have

L® > ok infip 132 $ok min min L& (R3(P), ¢),
11(9) 2 PeP,, P, ()40 1<i<4 (R7(P), §)

where (R?(P))]Sl‘§4 denote the four long rectangles of size 27*(1, 3) surrounding P. Us-
ing the supremum tail estimate (2.3) and the left tail estimates (4.7), we get £,(¢, p) >
27540, (¢, p)e= V", Indecd,

P <€E infl, 110 do.k min min QkL(/c,n) (st (P), ¢) 5272%&[—/{ (¢, p) e(}ﬂ)
PePy, PN, (¢)#0 1<i<4

<P ( inf2 @or < —klog4 — C«/E)
[0,1]

+P ( min min 2°LE(RE(P), ¢) < £, (¢, p)ecﬂ)

PeP, PN, ()20 1 <i<4

and each term is less than p/2 if C is large enough, depending on p. Therefore, we have

Lo @ ) <A@, YL@, ) < 257N, (B, LD 1)

Now, by coming back to the partial result obtained in Step 2 and by taking s* = 2" for
s€[1,2"%], we get

P(L) (@) 2 VIS A 0. 1)) <

Step 4: Now we consider large tails, so we assume s > 27, By a direct comparison
with the supremum, we have £,(¢, p) > 27%"+SV? (later on we will use a more precise
estimate from [12], see (5.5)). Moreover, bounding from above the left-right distance by
taking a straight path from left to right and then using a moment method analogous to

2
the one in (3.10), we get P (Lgn)1 (@) > eE‘Y> < ¢ 0k Altogether,

P(L7)9) > L6, DA, ) <P (L) = 66, )

_ (s=nlogd—Cym)?

<e 2(n+1)log2 < eC

Ll
S 75170 N
e ‘Togs
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where we used A,(¢, p) > 1 in the first inequality and the bound £,(¢, p) > 27§+CV
2
together with the tail estimate P (LE")1 (@) > eE") < ¢ Z#0ke? in the second one. The last
inequality follow since s > 27.
Combining the tail estimate of Step 3, valid for s € [1, 2"/?], and the one of Step 4,
valid for s > 2%, completes the proof. UJ

Using again the comparison between ¢ and v given in Proposition 5, we get the
following corollary.

Corollary 19 (Upper tail estimates for ). — For p small enough, but fixed, we have, for all
n>0ands>2,

4.9 P (L5100 = A D ) = G

5. Concentration
3.1. Concentration of the log of the lefl—right crossing length.

Condition (T). — Denote by m,() the left-right geodesic of the unit square associated
to the field ¥ ,. If there are multiple such geodesics, let 7,() be chosen among them
in some measurable way, for example by taking the uppermost geodesic. By 7*(y) its
K-coarse graining which we define as

5.1) aR() = {PePx : PNm,(¥) £ 2,

recalling the definition (2.7) of Px. Let v ,(P) denote the value of the field ¥ , taken at
the center of a block P. We introduce the following condition: there exist constants o > 1,
¢ > 0 so that for K large we have

a\ /o

ZPE Kp) 25 Vok(®)
T, — ..
. ek (Condition (1))

(5.2) supE 5
=k (ZPEH,F(W) eéwo’K(P))

The importance of Condition (T) comes from the following theorem.

Theorem 20. — If & s such that Condition (T) above is satisfied, then (1ogL(l'f)l () —
1og A, ()0 is tight, where 1,(¢) denotes the median of L")

It is not expected that the weight is approximately constant over the crossing (since
there may be some large level lines of the field that the crossing must cross). Condition (T),
however, roughly requires that the length of the crossing is supported by a number of
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coarse blocks that grows at least like some small but positive power of the total number
of coarse blocks. Note that the fraction in Condition (T) is the £2 norm of the vector of
crossing weights on each block divided by the square of the £' norm of the same, and
thus controlling it amounts to an anticoncentration condition for this vector.

The core of this section is the proof of Theorem 20. Before proving it, let us al-
ready jump to the important following proposition. Here we use the assumption that
& € (0,2/d,), although the formulation of Condition (T) is designed so that it could also
hold for larger &.

Proposition 21. — If y € (0, 2), then § := % satisfies Condition (T).

Progf: — Step 1: Supremum bound. Taking the supremum over all blocks of size
27K4n [0, 11, we get

Zpen;\' W eQEWO.K(P) e{-‘ maxpe Py Yok (P) e§ maxpepy b0,k (P)

En T § P
n c 4

b

recalling the definition of X, below (2.18).

Step 2: We give a lower bound of the denominator of the right-hand side. By taking
the concatenation of straight paths in each box of (1), we get a left-right crossing of
[0, 17%. Denote this crossing by I', k . We have,

P) —£X §do.k (P)
(5.3) Z FVr®) >, Z £,
PerK(y) PerK(y)

> ¢ "% exp(—£ max oscp (o)) 25 L (@, Tk y)
€k

= ¢ exp(—€ maxosep(d0x)2°LiT (6),
€k

where oscp was defined in (2.6) and Pj; was defined in (2.8).
Step 3: Combining the two previous steps, we have

2 P & max,_1 $0,k(P)
ZPen,}i(x//) P &0,k (P) p PePk

<
7 = ®)
(ZPE " eswn,Ka’)) 2817 (@)
T["

26X, gé maXpepl oscp(¢o,K)

Now, we take o > 1 close to 1. Using Hoélder’s inequality with % + % =1 and 7 close to 1,
together with Cauchy—-Schwarz, we get

a\ /o

28 Yo,k (P)
Zpenf(zp)e e

E 2
P
(Zpen}f(w) V0K ))
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1/a
o& max ¢0.x(P)
<2 KE (ﬂ J0EX Myl osc,P(qu,K))

- (LiS (9"
-K aré max,, 1 ¢o.K(P) L/ar (K) —2as
<2E (e K ) E (Ll,l (¢)>

< E (e&xséXl ) 1/4as E (64‘)“YS MaXpepl OSCP(%,K)) 1/4es .

1/2as

Therefore, using (2.4) for the maximum, (4.7) for the left-right crossing, Proposition 5 to
bound X and (2.10) for the maximum of oscillations, we finally get, when a7§ < 2 (recall
that ar can be taken arbitrarily close to 1),

a\ l/a

280,k (P)
Zpenf(w) VR
2
P
(ZPenf(xp) Vok( ))

Step 4: Lower bound on quantiles. For y € (0,2), Q := % + % > 2. Using Propo-
sition 3.17 from [12] (circle average LFPP) and Proposition 3.3 from [11] (comparison
between ¢ and circle average), we have, if p 1s fixed and ¢ € (0, Q — 2), for K large
enough,

(5.4) E < 7KK (g, p) eV,

(5.5) () (¢, p) = 27ROT5QUH),

Step 5: Conclusion. Using the results from the two previous steps, we finally get

a\ l/a
ZPenK(W) 25Vox(®)
E ” 5 < 2*€(Qf2*€)K€Cﬁ’
P
(ZPenf(tp) Evok( ))
which completes the proof. UJ

Now, we come back to the proof of Theorem 20. We first derive a priori estimates
on the quantile ratios.

_ Lemma 22. — Let 7, be a random variable with fimite variance and p € (0, 1/2). If a parr
(E(Z,p), L(Z,p)) satisfies £(Z, p) = €(Z, p), P(Z = L(Z,p)) = p and P(Z < £(Z, p)) = p,

then, we have:

_ 2
(5.6) C(Z,p) —L(Z,p)* < 7 VarZ.

Proof- — If 7/ is an independent copy of Z, notice that for // > / we have 2Var(Z) =
E(Z' 7)) 2 E(lysyl7<(Z) = 7)) 2 P(Z > NP(Z < (' = D)*. [
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In the following lemma, we derive an a priori bound on the variance of log L{", (¢).

Lemma 23. — For all n > 0 we have the bound

Varlog L%} () < £2(n + 1) log2

Progf: — Denote by LE"Z)I (Dy) the left—right distance of [0, 1]* for the length metric

&9 ds, where @f | is piecewise constant on each dyadic block of size 27% where it is equal
to the value of ¢, at the center of this block. (We do not assign an independent meaning
to the notation D;.) Note that we have

oo <1 0y <1 1 e,

which gives almost surely that LE")I (@) =lim;_ LE")I (D). By dominated convergence we
have

Varlog LE")I (¢) = klirrolo Varlog L(ln)1 Dy).

Now, logL{"}(Dy) is a &-Lipschitz function of p = 4/ Gaussian variables denoted by
Y = (Y, ..., Y,), where on R” we use the supremum metric. We can write Y = AN for
some symmetric positive semidefinite matrix A and standard Gaussian vector N on RY.
Then logL&'f)l (D) =f(Y) = f(AN) which is £o-Lipschitz as a function of N where
o =max(|Ai[, ..., |Ay]). By the Gaussian concentration inequality of [17, Lemma 2.1],
applied as in [10, Lemma 5.8], since the pointwise variance of the field is (n+ 1) log2 we
have

Varlog L") (D;) < max(Var(Y)), ..., Var(Y,)) = £*(n + 1) log 2. O

Before stating the following lemma, we refer the reader to the definition of quantile
ratios in (2.20).

Lemma 24 (A priort bound on the quantile ratios). — Fix p € (0, 1/2). There exists a constant
C, depending only on p such that for all n > 1,

(5.7) A (Y, p) < V7

Progf. — By using Lemma 23 we get Var(log L") () < Ck for all 1 < £ < n and
an absolute constant G > 0. This implies the same bound for ¥ by Proposition 5. Using

then Lemma 22 with Z, = log Lgk)l () for k < n, we finally get the bound max;, % <

o/ U
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Proof of Theorem 20. — The proof'is divided in five steps. K will denote a large pos-
itive number to be fixed at the last step.

Step 1. Quantiles-variance relation/setup. We aim to get an inductive bound on
A, (Y, p). We will therefore bound b E:Z Zi; in term of A’s at lower scales. p will be fixed
from now on, small enough so that we have the tail estimates from Section 4 for ¢ with p
and for ¥ with p/2. The starting point is the bound

5.8) LD _ o ot Pl
(Y, p/2) —

Step 2. Efron—Stein. Using the Efron—Stein inequality with the block decomposition
of ¥y, introduced in (2.13), defining the length with respect to the unresampled field
L,(¥) =L (¥), we get

(5.9) Varlog L’} () < E ((log L (¥) — log L,(¥))’ )
+ 3 E((ogLE ) —log L))
PGP}(

where in the first term (resp. second term) we resample the field ¥ x (resp. ¥k ,.p) to get
an independent copy Yok (resp. ¥k ,p) and we consider the left-right distance LE(y)
(resp. LY (¥)) of the unit square associated to the field ¥, — Yox + Wox (resp. Vo, —
YKnp + VK np)

Step 3. Analysis of the first term. For the first term, using Gaussian concentration
as in the proof of Lemma 23, we get

(5.10) E((log Ly () — log L,(¥))*) = 2E(Var(log L,(¥) %, — ¥ x)) < CK.

Step 4. Analysis of the second term. For P € Pk, if Lf () > L,(¢), the block P is
visited by the geodesic ,() associated to L, (). Define

(5.11) P*:={Q e Pk : d(P,Q) < CK*27K},

where we recall that g is associated with the range of dependence of the resampled field
1/}1{,”,19 through (2.11) (see also the subsection following this definition). Here, d(P, Q) 1s
the L*™-distance between the sets P and Q,

We upper-bound LP'(¥) by taking the concatenation of the part of ,(1) outside
of P¥ together with four geodesics associated to long crossings in rectangles comprising a
circuit around P¥ (for the field v/, , which coincides with the field 1//5’ , outside of PX). We
get, introducing the rectangles (Q;(P))<;<4 of size 27%(CK®, 3) surrounding P¥ (P* and
its 3 - 27X neighborhood form an annulus, and gluing the four crossings gives a circuit in
this annulus) and using the inequality logxy <x — 1,

(LG L), maxizey Q). )
512 (logll @) —logL, (), < " <1
Sam s )= ) W)




TIGHTNESS OF LIOUVILLE FIRST PASSAGE PERCOLATION FOR y € (0,2) 385

AR R3(Q)
N\ \ Ry (Q)

FiG. 3. — Illustration of the geodesics used in the upper bound of Step 4

e We recall the notation ¢ k (P) to denote the value of the field ¢, k at the center
of P. We bound from above each term in the maximum of (5.12) as follows:

LO(Q(P), ¥) < XL (Qu(P), ¢)
< gSXgS‘PQK(P)eS 0SCpK (¢0,K)L(K,n)(QZ_(P)’ ¢)

< 62§X€§ Yo,k (P) 65 oscpK (¢0,K) L(K,n) (Q (P) , ¢) s

where the oscillation osc is defined in (2.6) and P* is defined in (5.11).

For a rectangle Q of size 27, with corners in 27%Z?, we denote by (R}F(Q))<i<4
the four long rectangles of size 27%(3, 1) surrounding Q, We can upper-bound the rect-
angle crossing lengths associated to the Q;(P)’s by gluing O(K*®) rectangle crossings of
size 27%(3, 1), which include an annulus around each block Q of size 27%(1, 1) (with

corners in 27%Z?) in the shaded region A* of Figure 3. We get
m {iL(K’")(Qi(P), ¢) <CK" max LE"(R}HQ), )
= Qs

1<i cAK 1<i<4

and we end up with the following upper bound:

(5.13) (log L, () — log L,(¥))
26X FVor® § oscpk (¢0.K) (T 20 & (RE
< 0sCpl , £ o1 ' .
= QWi R

e We lower-bound the denominator of (5.13) as follows. If P € Px is visited by a
7,(¥) geodesic, then there are at least two short disjoint rectangle crossings among the
four surrounding P. Therefore, if we denote by P the box containing P at its center whose
size 1s three times that of P,
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/ ¢V ds > 2 min L (RE(P), ¥) = ¢ min L (R¥(P), )
7,()NP l<i<4 1<i<4

> ¢ EX F0K(P) = oscp(@o.k) a0 T (Kom) (R? P), ¢)

1<i<4

> e—QEXeéllfo,K(P)e—E 0s¢p(@0.K) i L& (Rlb (P), ¢)’
1<i<4

where (R?(P))1§i§4 denote the four short rectangles of size 27%(1, 3) surrounding P.
Summing over all P’s and taking uniform bounds for the rectangle crossings at higher

scales,
1
LE’;’)l (w) — Z / es‘//(),ﬂds Z _ Z / eékbo,nds
PN, () 9 P, ()

PePx

PePx
1 —9tX . 1K) S
> —¢ min min L'™" (R (P), ¢)
9 pepy =it
x Z &£ Vor(P) ,—Eoscp(do.k)

Pe Pk, PN, ()£

Therefore, taking a uniform bound for the oscillation, we get

1
(5.14) LY = < 55 Y FHox®fontm | min - LEORY(P), ¢)
9 Pert ) PePL,1<i<4
1 —2tX —& max | 05Cfn(¢0,K) . (K,n) S
(5.15) > 56 e PePK min  L™"(R>(P), ¢)

PeP} . 1<i<4

x Z €§1//0,K(P)'

PexX(y)

e We recall that (RiL (P))1<i<4 denote the four rectangles of size 27%(3, 1) surround-
ing P. Gathering inequalities (5.13) and (5.15), we have

> E((logLi ) ~log L))

PePx

2 P K, 2
Zpenf(w) ¢ Vor® maXpepl 1<i<4 Lm (R%(P), ®)

2 : S
(Zp k) 65'”°'K(P)> Minpep, 1<i<4 L&V (R7(P), )
€,

< CK*E

Cémax, | oscpK (0.K)
s LEmep) K @00 pex
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e Condition (T) gives us a o > 1 and ¢ > 0 so that for K large enough, for n > K,

a\ l/a

2590,k (P)
E ZPGJT%((W) ¢ P

2
< P Ennb’ (1//) [4 ]//().K( )>

Then, by using the gradient estimate (2.10) and recalling the definition of P¥ in (5.11),
we have

Cma osc ) e 9—K ) Lten
<5.16) E (g Spepl pK (¢0.K ) <E (€CK 02 ||V¢[),K||[o,112) < eCKz .

It is for the second inequality that in (2.11) we take & to be small in the definition of
;5 g9 < 1/2 is sufficient. Furthermore, using our tail estimates with regard to upper and
lower quantiles for ¢ (see (4.7) and (4.8), and the scaling property (2.23), for # > 1 so that
é + % =1, we get

(5.17)

1
. 2B\ 7
E MaXpepy . 1<i<t L™ )(RiL(P)’ ¢) <A (¢ 2 CR3+0
1 — " hn— »ple .
MINpepl 1<i<4 L& (Rls P), ¢) Kk

Note that we could have a logK term instead of the K* in (5.17). Altogether, by applying
Holder inequality and Cauchy—Schwarz, we get

(5.18) Y E <(logL5(1ﬁ) —logL,(¥))?) = oot o

PePk
b
< e—yKeCK2+ OC/)Ai_K(Iﬁ,Ib/Q),

where we used (2.22) in the last inequality to get A2_y (¢, p) < C)AZ_ (Y, p/2).
Step 5. Conclusion. Gathering the bounds obtained in Step 3 (inequality (5.10)) and
Step 4 (inequality (5.18)), we get, coming back to the inequality (5.9), for K large enough,

(5.19) Varlog L") (%) < C/K + ¢ 8 A2_ (¥, p/2).

Now, we will show that this bound together with the a priori bound on the quantile
ratios (Lemma 24) is enough to conclude first that A (¢, p/2) < 00 and then that
sup,., Varlog L(I")1 (¥) < 00, using the tail estimates (4.7) and (4.9).

~ Coming back to Step 1 (equation (5.8)) and using (5.19), we get the inductive in-
equality (5.20) below for K large enough and n > K, and (5.21) below by the a priori

bound on the quantile ratios Lemma 24:

<5.20) % < ecp,/\’arlogL(l’f)l(I//) < eC/z\/ClK-i-fC?KAf_K(w,p/Q);
MUY

(5.21) Ax (¥, p/2) < VK,
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From now on, we take K large enough but fixed so that

<5-22) e_CQK(eC/’\/K + ec/:\/m)Q E ClK.
Set
(5.23) Aree = Ax(W, p/2) v VT

so that Ax (¥, p/2) < Age. This is the initialization of the induction. Now, assume that
A1 (Y, p/2) < Agee. In particular, A,_x (¥, p/2) < Agec and using (5.20)

(Y, p/2) —

The right-hand side is smaller than ¢“v2“1X and therefore than Ag... Indeed, by (5.23),
(5.21) and (5.22),

FORAL, < O (AR (W, p2) + N
< e*CQK(gcl,«/K_i_eCp«/?C]K)? < C]K

Therefore,
6, p/2)
An( ) 2):An—( ) 2)\/75 ect
v, p/ 1 (Y, p/ 00 0)2) R
Therefore, A (¥, p/2) < 00 thus A (¢, p) < 0o and by the tail estimates (4.7) and (4.8),
the sequence (log L{"} (¢) — log A, (#)),=0 is tight. O

3.2. Weak multiplicativity of the characteristic length and error bounds. — Henceforth, we
will only consider the case & = % for y € (0, 2) and the field ¢ ,. All observables will
be assumed to be taken with respect to ¢ and we will drop the additional notation used
to differ between ¢ and . In this case, we saw that there exists a fixed constant C > 0
so that for all n> 0, £5 (p) < C€%(p), C'€5"(p) < €"(p) and with the tail estimates,
E(Lé'f)l) < CE(LE'%). All these characteristic lengths are uniformly comparable. We will
take A, to denote one of them, say the median of LE")I

In the next elementary lemma, we prove that a sequence satisfying a certain quan-
titative weak multiplicative property has an exponent, and we quantify the error.

Lemma 25. — Consuder a sequence of positive real numbers (X,),>1. If there exists C > O such
that for alln> 1, k> 1 we have

(5.24) eV < Ar < EVERAL

then there exists p > 0 such that h, = p"TOW™.
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Progf: — We introduce the sequence (a,),>0 such that Ao+ = (hon)* ™. By iterat-
ing, we get

2 4 _ nt+l on n—1 _
Aont1 = ()\2 ) n — ()“2" 1) 2001+ )\% €2 ap+2"" a1 +-+2ay 1+an

The condition (5.24) gives that the sequence (2_”/ 2a,,)ﬂ> , 1s bounded, therefore the series

> k=05 converges and |}, % < 2 (sup,. 27H2|q,[) 27"/2. In particular there exists
p > 0 such that

2 (oghi b Ty ) _ 2 (ot T2 ) -2 T 27,007

)\.2n+l == Z/L — [0

Now that we have the existence of an exponent, we prove the upper bound of Lemma 25.
There exist Cy, Cy > 0 such that we have the following upper bounds:

(5.25) Aor < p2 12",
(5.26) Mt < Aphpe Ve,

Take Cs large enough so that (C; 4+ Cy)* 4 (C; +Cy)Cs3 < C% and A, < pe®. We want to
prove by induction that foralln > 1, A, < p"¢%v" The assumption on Cs implies that this
holds for » = 1. By induction (in a dyadic fashion), take n € [2¥, 2*1). We decompose 7 as
n = 2% 4+, with n; € [0, 2F). We have, by using (5.26), (5.25) and the induction hypothesis,

R < Dt < (0% ) (e 22
— p"e (C1+C2)2"2+C3 <pn665f
since by the assumption on Cs we have
((C1 4 C272 4+ Cy/my)” = (C1 +C)?2" + (T 4 Co) Cy272 /g + Cnyg
< C}2 + ) = Cin.

The proof of the lower bound is similar. U

In the next proposition we prove that the characteristic length A, satisfies the weak
multiplicativity property (5.24) and we identify the exponent by using the results of [12].

Proposition 26. — For & satisfying Condition (T), there exists C > O such that for all n > 1,
k> 1 we have

(5.27) eV < Ar < VR
Furthermore, when y € (0, 2) and § =y /d, , we have

(5.28) A, = 27MIEQFOWD,
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Proof. — Let us assume first that (5.27) holds. Then, by using Lemma 25, there
exists p > 0 such that we have A, = p"*°V?_ Similarly to (5.5), for each fixed small
8 > 0, for £ large enough we have,

(5.29) Ay < 9HIEQD)

The proof of (5.29) follows the same lines as the one of (5.5). Combining (5.29) and (5.5)
we get p = 27175 Now, we prove that the characteristic length satisfies (5.27).

Step 1: Weak submultiplicativity. Let 77, be such that L® (7r;) = L{",. If P € P, is vis-
ited by 7%, consider the concatenation S®"™(P) of four geodesics for ¢f?++ds associated
to the rectangles of size 27%(3, 1) surrounding P. Each geodesic is in the long direction
of its rectangle so that this concatenation is a circuit. By scaling, E(L®"™ (S®h (P))) =
2-M2E(LY"). Note that the collection 7/ (¢) = {P € P, : PN m; # @} is measurable with
respect to @ s, which is independent of ¢y ,.4+. Set Ty, := UPen/ir((b) S®m+h (P) . Note that

[, contains a left-right crossing of [0, 1]* whose length is bounded above by

L(n+k) (Fk,n) — Z L(n+k) (S(k,n-i-k) (P))
Perf(p)
< Z L(/HH-/C) (S(/fvﬂ"rk) (P))€§¢0,k(P) 65 oscp (¢o,4) ,

Penf(9)

where P denotes the box containing P at its center whose side length is three times that
of P. Since L{"1" < L®*"(T; ), by independence we have

E(LY,LIHC)) < 4—E(Lén)l)E Z 9~k b0k (P) £ oscp(do.r)
Per/($)

If P is visited, then one of the four rectangles of size 27%(1, 3) in P surrounding P contains
a short crossing, denoted by 77,(P) and we have

/ Aok lnkmf’ds > 1.® (77,(P)) > 2—/665 inf}, ¢o i > Q—keétbo.k(f’) e—E OSC13(¢(),k)’
Tk

hence
Z Q—ke&ﬁo.k(l’) & 05¢p(@o.r) < Z 228 osep(¢o,r) / Aok 1ndes_
Perf(9) Perf(¢) i
Taking the supremum of the oscillation over all blocks,

—k
Z 625 Oscf)(d’o‘k)/ €§¢0,k1nkmf)ds < 962€2 ||v¢°’k||[°*”2LYf)1-

Penf(g) T



TIGHTNESS OF LIOUVILLE FIRST PASSAGE PERCOLATION FOR y € (0, 2) 391
Altogether, by Cauchy—Schwarz,
c o—k
E(L{'1") < 36E(LDE(LE) Y PEE 70 loe 72

When £ satisfies Condition (T), by using the uniform bounds for quantile ratios together
with the upper tail estimates (4.8) and the gradient estimate (2.10) we get A4, < ¢“VEr
Step 2: Weak supermultiplicativity. We argue here that

(5.30) Mrr = ¢ VR

Using a slightly easier argument than (5.15) (since we just have the field ¢ here), we have

—& mz scp(¢0,k) . 2
L&rf—li-k) > MaXpepl OSCp(P0.k < min L(k'H”)(R?(P))) Z F£P0i®)

PeP} 1<i<4 P
Penn+k

where 7, denotes the k-coarse grained approximation of 7,4, the left-right geodesic of
[0, 1]? for the field ¢y, ,44, and where we recall that (Rl-S (P))1<i<4 denote the four rectan-
gles of size 27%(1, 3) surrounding P. Furthermore, by using a similar argument to (5.3),
we have

Z F£04®) > —Emaxpep, OSCP(¢O’k)2kL(1/f)1.

k
Penn+k

Altogether, we get the following weak supermultiplicativity,
(5.31) L(Vl+k) > L(k) min QkL(/c,/c-i-n) (RS (P)) e—?& maxpep, 0scp(¢o k)
b= PeP) 1<i<4 '

When £ satisfies Condition (T), by scaling and the tail estimates (4.7),
P(minpep]}’lgg QFLKk+m) (RiS P)) > )Lnefc‘/%) > 1 — ¢ *. Furthermore, using the gradient
estimates (2.9), we get P(27* H Vo, H[O,]]Q > C+/k) = 1 — ¢ for C large enough. There-
fore, with probability > 1/2, Lg’f)l < ¢~ %Vk), A, hence the bound A, > eV, O

5.3. Tughtness of the log of the diameter.

Proposition 27. — If y € (0,2) and & =y /d,, then (log Diam ([0, 112, A, &£%01ds))
is tight.

n>0

Progf: — Step 1: Chaining. By a standard chaining argument, (see (6.1) in [18] for
more details), we have

5.3 Diam ([0, 1]%, £%ds*) < C L®(P) 4+ C x 27" P2 %or,
(5.32) 1am([ 1%, ¢ s)_ ;rlpe%ii P)+Cx27"%

where C; is a collection of no more than C4* long rectangles of side length 27%(3, 1).
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Using the bound for the maximum (2.4), when & < 2, we have E(27"¢ P %oy <
2—7222§n€Cﬁ.

Fix 0 < k£ < nand P € C;. We can bound L (P) by taking a left-right geodesic 7y,
for ¢y ,. Therefore,

LO(P) £ L0y, < ™0 B1LE) (P),
and consequently,

(5.33) max L (P) < ¢ ™0.12 %4 max L*" (P).

Peck PeCk

Using independence, the maximum bound (2.4), scaling of the field ¢ and the tail
estimates (4.8), we get

Sre
<5.34> E (65 maxp, 112 $0.k r}I)lZ(lZX L(k,n)(P)> < 2—k22§keC«/%)\ﬂik€Ck2+
€Ck

for some fixed small ¢ > 0 (again, the term £° could in fact be log£). Taking the expec-
tation in (5.32), using (5.33) and (5.34), we obtain the following bound for the expected
value of the diameter,

(5-35) E(Dlam([O, 1]2, e§¢0.;zds)) S C Z Q_kQQSk)\,n_kngTH-

k=0

OV
Mg

Step 2: Right tail. By Proposition 26, A, < A, < Aan(l_EQ)eC“/E. Together with

(5.35), this implies that

n i,
E(Diam([0, 1%, £%7ds)) < C Y 27ho%h, 07"

k=0

o0
1ie
<2,C) 9@

k=0

Since Q > 2, Markov’s inequality gives P (Diam([O, 112, A 1 Ponds) > e“) <Ce.
Step 3: Left tail. Finally, since the diameter of the square [0, 1]* is larger than the
left-right distance, by our tail estimates (4.7), we get P (Diam([O, 17%, )»;16545""' ds) < e‘") <

P (Lﬁ'j{ < )\.,le_“) <o O
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5.4. Tightness of the metrics.

Proposition 28. — If y € (0, 2) and § =y /d,, then the sequence of metrics ()»n_leg ¢0’“ds)
us tight. Moreover, if we define

n>0

T do i
C":= sup lx= 1" and Cly:= do.u(x, ¥')

T e doa(x, x) wvepoap X — P

then, for o0 > §(Q + 2) and B < §(Q_ — 2), the sequence (Ci,, C) o s tight.

Henceforth, we use the notation 4, for the renormalized metric A;les"’ov"ds re-
stricted to [0, 1]°.

Progf: — 'The proof has two parts. In the first part we show the tightness of the
metrics in the space of continuous function from [0, 1]* x [0, 1]* = R™ and in the second
part we show that subsequential limits are metrics. A byproduct result of the argument is
explicit bi-Holder bounds.

Part 1. Upper bound on the modulus of continuity. We suppose y € (0, 2). We
start by proving that for every 0 < B < £§(Q — 2), if ¢ > 0, there exists a large C, > 0 so
that for every n> 0

(5.36) P(3x, ' €[0, 11 : dou(x, x) = Celx — x'IF) <,

1e. (Hdo’”Hcﬂ([o,1]2x[0,1]2>)n20 is tight, where the Cf-norm is defined for f : [0, 1]* x
[0,1]> > Ras

‘VH CA([0,1]2x[0,112)

= /] n sup If (v p) —f (¥ ))]
= 2 2 .
(011011 oW e pxioap 1(62) = &, N)1P

By a union bound it suffices to estimate P(3x, x' : |x — x| < 27", dy ,(x, ¥') = €'|x —

x'|#) and

n
D oP(En 2 s v <27 o () = e — o)),
k=0

Step 1: We start with the term PJw, &' : 27% < |x — &/| < 27M1 dy ,(x, &) > €'|x —
«'|?). We use the chaining argument (5.32) at scale £ which gives

| " | & sup ¢ox
sup  dp(x, x) <CA,; Zr&%x L™ (P) + CA ' x 27" 0P
i=k !

27k <|x—x'|<27HH
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Taking the expected value and using the same bounds as those obtained in the proof of
Proposition 27, we get

n
. -fl+s \ :l+s
E ( sup do (%, x’)) < Z 97E(Q=2) L2 T < (9 kEQ-D) CR2 T

—k S —k+1 .
27 <|x—x'|=2 i=k

Therefore, using Markov’s inequality we get the bound

n
Y P(E A 27 < r— ¥ 27 dy (. K) 2 ev — A)F)
k=0

: ZP( WP o) = e~*2—kﬂ> <oy 2PeTe,
0

— 27 <|x—o/ | <27HH k=0

The series is convergent since §(Q —2) — 8 > 0.
Step 2: We bound from above P(3x, &' |x — x| < 27", dy,(x, &) > € |x — ¥/|?) using
a bound on the supremum of the field. Indeed, for such x and x’, note that

Elx — )P <dy,(x, ) < AT PR Py — |

Writing 8 = §(Q — 2) — €& for some € > 0, it follows that 1 — = (1 —&£Q + 2§) +
€& > 0 since the LFPP exponent 1 — £Q > —2& by a simple uniform bound. Therefore,
|x — &/ |71 > 270=F) and A 12n(1=A) = gnHes+o) - AJtogether, this probability is bounded
from above by P(supy, ;2 ¢, = nlog4 + enlog2 + o(n) + £~15) and using (2.3) gives a
uniform tail estimate.

Therefore, we obtain the tightness of (do,,,) as a random element of C([0, 1]? x

n>0

[0, 17%, RT) and every subsequential limit is (by Skorohod’s representation theorem) a
pseudo-metric.

Part 2. Lower bound on the modulus of continuity. We prove that if & > §(Q + 2)
and € > 0 then there exists a small constant ¢, > 0 such that for every n > 0,

(5.37) P(3x, 2 €[0, 11 : dy,(x, %) <colx—¥|%) <e.

Similarly as before, by union bound it is enough to estimate the term
(5.38) PEx,« €[0, 117 [x — &| < 27", dp,(x, ) < e 5|x—A|%)
and the term

(5.39) ZP I, o 27 < |y — A <277 dp L (x, ) < e — A"
=0

:=Ek,n,s
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Step 1: We give an upper bound for (5.39). Fix x, ¥’ € [0, 1]* such that 27% < |x —
x| <271, Note that any path from x to ' crosses one of the rectangles in the collection

RE(P):Pe P} +9» 1 <1 <4}. Hence, under the event E; , , there exists x, ' such that

(5.40) 275 > dy ,(x, ) = A2 Mo o ( min  2FL%" (Rf(P))) .

PeP},,, 1<i<4
Since o =&(Q + 2) 4+ &6 for a small § > 0, by using Proposition 26 we get
(5.41) 9k of <9k o OVE < 9 HemEQy | CVE — 9=hHDE () 1 083k Gy

Now, using (5.40), (5.41) and scaling, we get

P(E.,)<P (gs info,1j2 0. ( min 2% (Rf(P))) < 2—"“)\,,2%—55)

PeP} . 1<i<4

<P (sup |@o.x| > klog4 + kSlog2 + 5/2)

(0,112

PePl,,,1<i<4

+P< min L@ P RIP)) < A, 271 LV e—SJ/Q)
< Ce—dfe—m,

where we used in the last inequality the supremum bounds (2.3) and the left tail estimate
4.7).
Step 2: Finally, we control (5.38). We write

PEx,x :|x— x| < 27", dy,(x, ) < e x — X%

< P ( inf d(),n(x’ X) < €_SX>

=<2 |x — ']

_1 &inf . _ _
<P ()\n L2000 nf |x— ¥|'7% <e s’) .

[x—x'|<27"

We recall that o > £Q + 2§, and in particular « > 1: indeed, 1 — £Q < 2§ follows from
a comparison with the infimum of the field. In this case, inf],_y|<o- |x — /| 7% = 2717
and by Proposition 26,

Q—n(l—a))\ﬂ—l > 9=n(l=a)gn(1-§Q) ,~C/i _ gn(a—£Q) ,~C/
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Therefore, since @ — §Q) = 2& + 6§ for some § > 0, we have for n large that

P ()Ln_les Mo @ qnf |y — 'Y < e_g“)

[x—a'|<27"

)
<P| sup |¢o,| > nlog4+n=log2 +s
[0,112 2

Using (2.3) completes the proof. 0J
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Appendix A
A.1 Comparison with the GFF mollified by the heat kernel

Let 2 be a GFF with Dirichlet boundary condition on a domain D and U CC D be a
subdomain of D. We recall that we denote by p, the two-dimensional heat kernel at time ¢

re. p(x) = ﬁf‘%‘fz. The goal of this section is to obtain a uniform estimate to conclude on
the tightness of the renormalized metric associated to p: * / assuming the one associated
to ¢ ;. In particular, the second assertion of Theorem 1 is a corollary of the following
proposition.

Proposition 29. — There exist constants G, ¢ > O such that for all t € (0, 1/2), there is a

coupling of h and @, © @ i such that for all x > 0, we have

(

@ — pL ok /zH > x) < Ce .
2 U
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Mollification of the GFF by the heat kernel. —  The covariance of the Gaussian field pg * / 1s
given for x, ¥ € U by

E () % h(x) py () = / / P50 = GNP 0 — )by,
DJD

where Gp, 1s the Green function associated to the Laplacian operator on D. For an open
set A, we denote by p*(x, y) the transition probability density of a Brownian motion killed
upon exiting A.

White noise representation. — Take a space—time white noise W and define the field 1, on
U by
(A.1) n,(x) 1= / / i 5 (e )W(dy, ds)

o Jp

whete pxR) = [ p= R0,
D

so that (1,(x))ev @ (p% * 1(x)).cu. Indeed, by Fubini, we have

E(m(x)m(x’))

= [ [ s p e s
0 D
= [ [ [ [p6=ep e =0 0 baiaras
0 DJDJD
[ [0 ([ [ Boomosnoa) s s
DJD 0 D
Zf/ﬁ%(X—y/)GD(y/,y//)ﬁé(y//—x/)dy/d)/”~
DJD

Coupling. — Note that for 1 € (0, 1/2) ¢ s(x) = ftl fRQp% (x —»)W(ay, ds) @ ©,(x), where

we set

1—t
o= [ [ pee-pwa.
0 R?

Furthermore, we can decompose ¢;(x) = gotl (x) + gof (x), where
1—t
(A.2) %1 (x) := f —/p% (x —)W(dy, ds);
0 D

1—¢
A3 P0) = / prss (= YWy, ).
0 De
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Recalling the definition of 7 in (A.1), we introduce 7] and n? so that

1—t¢ o0
A4 00 = [ [ peseow@ [ [ pleowea
0 D 1—t JD

=217, (x) + 17 (%)

Therefore, under this coupling (viz. using the same white noise W), we have

1t
A5 ol =0 = [ [ (bt = py ) Widr .

o Jp
Comparison between kernels. — We will consider x, y € U, subdomain of D. Set d :=
d(U,D%) > 0.

prxpt(x) = /D pra=P0 D = /D pr=0ps O/ =N O DD,

where ¢ (x, x') is the probability that a Brownian bridge between x and x’ with lifetime ¢
stays in D. Therefore, using Chapman—Kolmogorov,

by 1R 3) — s (6 0) = — f D=0 =

+ / PG=2p0 =N ) — D
D

Note that the first term can be bounded by using that [y — )'| > d for y € U and ' € D*.
For the second term, we can split the integral over D in two parts: one over the e-
neighborhood of 0D (within D), denoted by (dD)¢, and one over its complement. To give
an upper bound on the first, we use that for y € U and y’ € (dD)*, [y —'| > d(U, (dD)®).
Finally, we bound the second part by using a uniform estimate on the probability that a
Brownian bridge between a point in U and a point D \ (dD)® exits D in time less than
s/2. (Note that 1 — q];(y, y) is the probability that a Brownian bridge between y and '
with time length s/2 exits D.) Therefore, we get that uniformly in x, y € U and ¢,

(A.6) Iy # 15 (6 9) = pr (6 ) < Ce™F,
Comparison between ¢, and p; * h. — By the triangle inequality,
A7) loi=pixn| = llet =ty + Il + Il

We look for a uniform right tail estimate (in ) of each term in the right-hand side of (A.7).
In order to do so, we will use the Kolmogorov continuity criterion. Therefore, we derive
below some pointwise and difference estimates.
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First term. We derive first a pointwise estimate. For x € U, using the kernel
comparison (A.6), there exists some ' > 0 such that, uniformly in ¢,

o 11 9
Var (0 = ¢ @)) = [ [ (o2 = ptn) i
0 D
1—t
50/ ¢ ds <C.
0

We now give a difference estimate: introducing A, (x) := gatl (x) — nt1 (x), for x, ¥ € U,

1—t
E((A - A(>¥))) = / /((p%(x —0) = py P (x.0))
0 D

/ / 2
(s (=) = py () o,
which is uniformly bounded in ¢ € (0, 1/2) by a quantity of size O(|x — «’|). (By splitting
the integral at 4/|x — x’[, one can use (A.6) for the small values of s and gradient estimates

for both kernels for larger values of s.)
Second term. We recall here that <th (x) 1s defined for x € U by

P20 = /( - [ py W d € / | /D Dy =W ).
We have, for x, x' € U, with d := d(U, D),
E ((wf (x) — ¢’ (x’))Q)
< /tl /D (0 (=) = b5 (¥ =) dods

1
< S =) — ps (X =) dyds
/MRQ@Q ) —ps (¥ =) dy

A/ =
L R N A
0 D¢

A/ =]

1
= 2[ e (ﬁj(o) _ps(x - X/)) d5+ 4”/(; p% (d)dS < Clx — X,|,

where we use 1 — ¢ < z in the last inequality. Similarly, we can prove that there exists
C > 0 independent of ¢ such that E(¢,(x)*) < C.

Third term. We recall here that ?(x) is defined for x € U by n?(x) = flojl fD DL
p[%)(x,y)W(dy, ds). Similarly, there exists C > 0 such that for ¢ € (0, 1/2), x,x" € U, we



400 JIAN DING, JULIEN DUBEDAT, ALEXANDER DUNLAP, HUGO FALCONET

have
o0 2
E((r20 — ) = [ [ (b2 6 = p e R) i
12 JD
<Clx—«.

Furthermore, the pointwise variance is uniformly bounded.

Result. Altogether, coming back to (A.7) and combining Kolmogorov continuity
criterion with Fernique’s theorem (see Section 1.3 in [22]), we get the following tail esti-
mate on the above coupling: there exist C, ¢ > 0 such that for all z € (0, 1/2), x > 0, we

have
(]

A.2 Approximations for § € (0, 1)

@ — Pt *}zH > x) < Ce .
2 U

We explain here how results obtained along the sequence {27 : n > 0} can be extended
to 8 € (0, 1). For each § € (0, 1), let n> 0 and 7 € [0, 1] such that § = 2~ Then by
decoupling the field ¢, ,, using a uniform estimate for r € [0, 1] and a scaling argument,
we generalize our previous results obtained along the sequence 27" to § € (0, 1).

Decoupling low frequency nose. — Note that there exists C > 0 such that for » > 0 and
r € [0, 1] we have

(A.8) ¢ “hi < My < M

Indeed, note that a.s. ¢ o2 LI < LI < & P02 L™ Furthermore, with

high probability sup, 2 [¢0.,| < C, < C. Then, note that Ly @ ~Ly, and as.
Lg”)Q < L;'f?z, < L;”)l By the tightness result, there exists a constant C > 0 such that uni-
formly in n, with high probability, L") > ¢"¢1, and L§"} < ¢“A,, therefore, with high
probability, %4, < L1 < ¢“A,, hence (A.8).

Weak multiplicativity. —  In this paragraph, we will use the notation A from the introduc-
tion. We recall that writing A, instead of Ay—» was an abuse of notation. Now we prove
that there exists G > 0 such that for 8, 8’ € (0, 1) we have

(A.9) Gl OV 0g0V) 3 o < Asy < CeCVI8V13 A,
Similarly as (A.8), there exists C > 0 such that for r, 7 € [0, 1], n,n’ > 0,

(A.10) ¢ Ngercit < Mgererat—r < Agen €
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For 8,8 € (0,1), let n,n >0 and r,7 € [0, 1] such that § = 2=+ § = 2=+ Note
that n = [—log, §]. Using the weak multiplicativity for powers of 2, we have

—_C / /
A.11 OV At < Agnt < Mgenhog €V
2 2 2 2 2

Without loss of generality, we consider just the upper bound in (A.9). The lower bound
follows along the same lines. By using first (A.10) and then (A.11) we get

)\.53/ = )\,2_,,_,_,,/_,/ < )\‘2_”_”/ eC < )\‘27")\‘2_?1/ ECV”An,gC.
Now, the result follows by using (A.8):

/ / < N ! 5
)\’2_”)\‘27'/ eC«/nAn < )\‘2_71_7_)\‘27'/7# eC«/rH—r/\n +r’€2C — )"6)\'6/6(‘« /log |6V \eZC.

Tail estimates and tightness of metrics. — Using the same argument as in the two previous
paragraphs and the tail estimates obtained along the sequence {27 : 7 > 1}, we have the
following tail estimates for crossing lengths of the rectangles [0, a] x [0, b]: there exists
¢, G > 0 (depending only on a, 4 and y) such that for s > 2, uniformly in 6 € (0, 1), we
have

2

A.12) P10 > ¢) = G
(A.13) P(3'L) <) =G

Furthermore, the sequence of metrics (Aglzﬁ% ds)seo.1) on [0, 1]% is tight.
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