We study the Kronecker sequence on the torus when is uniformly distributed on . We show that the discrepancy of the number of visits of this sequence to a random box, normalized by , converges as to a Cauchy distribution. The key ingredient of the proof is a Poisson limit theorem for the Cartan action on the space of dimensional lattices.
@article{PMIHES_2020__132__293_0,
author = {Dmitry Dolgopyat and Bassam Fayad},
title = {Deviations of ergodic sums for toral translations {II.} {Boxes}},
journal = {Publications Math\'ematiques de l'IH\'ES},
pages = {293--352},
year = {2020},
publisher = {Springer Berlin Heidelberg},
address = {Berlin/Heidelberg},
volume = {132},
doi = {10.1007/s10240-020-00120-2},
zbl = {1473.37012},
language = {en},
url = {https://pmihes.centre-mersenne.org/articles/10.1007/s10240-020-00120-2/}
}
TY - JOUR AU - Dmitry Dolgopyat AU - Bassam Fayad TI - Deviations of ergodic sums for toral translations II. Boxes JO - Publications Mathématiques de l'IHÉS PY - 2020 SP - 293 EP - 352 VL - 132 PB - Springer Berlin Heidelberg PP - Berlin/Heidelberg UR - https://pmihes.centre-mersenne.org/articles/10.1007/s10240-020-00120-2/ DO - 10.1007/s10240-020-00120-2 LA - en ID - PMIHES_2020__132__293_0 ER -
%0 Journal Article %A Dmitry Dolgopyat %A Bassam Fayad %T Deviations of ergodic sums for toral translations II. Boxes %J Publications Mathématiques de l'IHÉS %D 2020 %P 293-352 %V 132 %I Springer Berlin Heidelberg %C Berlin/Heidelberg %U https://pmihes.centre-mersenne.org/articles/10.1007/s10240-020-00120-2/ %R 10.1007/s10240-020-00120-2 %G en %F PMIHES_2020__132__293_0
Dmitry Dolgopyat; Bassam Fayad. Deviations of ergodic sums for toral translations II. Boxes. Publications Mathématiques de l'IHÉS, Volume 132 (2020), pp. 293-352. doi: 10.1007/s10240-020-00120-2
[1.] Sharp error for point-wise Poisson approximations in mixing processes, Nonlinearity, Volume 21 (2008), pp. 2871-2885 | MR | DOI | Zbl
[2.] Probabilistic Diophantine approximation. I. Kronecker sequences, Ann. Math., Volume 140 (1994), pp. 449-502 | MR | DOI | Zbl
[3.] Research problem 6, Bull. Am. Math. Soc., Volume 64 (1958), p. 60
[4.] Limit theorems for translation flows, Ann. Math., Volume 179 (2014), pp. 431-499 | MR | Zbl | DOI
[5.] Limit theorems for horocycle flows, Ann. Sci. Éc. Norm. Supér., Volume 47 (2014), pp. 851-903 | MR | Zbl | Numdam | DOI
[6.] Limit theorems for self-similar tilings, Commun. Math. Phys., Volume 319 (2013), pp. 761-789 | MR | Zbl | DOI
[7.] Quadratic Weyl sums, automorphic functions and invariance principles, Proc. Lond. Math. Soc., Volume 113 (2016), pp. 775-828 | MR | DOI | Zbl
[8.] Poisson approximation for the number of visits to balls in non-uniformly hyperbolic dynamical systems, Ergod. Theory Dyn. Syst., Volume 33 (2013), pp. 49-80 | MR | DOI | Zbl
[9.] Diffusive behavior of ergodic sums over rotations, Stoch. Dyn., Volume 19 (2019) | MR | DOI | Zbl
[10.] A Poisson limit theorem for toral automorphisms, Ill. J. Math., Volume 48 (2004), pp. 1-20 | MR | DOI | Zbl
[11.] Limit theorems for partially hyperbolic systems, Trans. Am. Math. Soc., Volume 356 (2004), pp. 1637-1689 | MR | Zbl | DOI
[12.] Deviations of ergodic sums for toral translations-I: convex bodies, Geom. Funct. Anal., Volume 24 (2014), pp. 85-115 | MR | DOI | Zbl
[13.] Limit theorems for toral translations, Proc. Symp. Pure Math., Volume 89 (2015), pp. 227-277 | MR | DOI | Zbl
[14.] Quenched limit theorems for nearest neighbour random walks in 1D random environment, Commun. Math. Phys., Volume 315 (2012), pp. 241-277 | MR | DOI | Zbl
[15.] Quenched and annealed temporal limit theorems for circle rotations, Astérisque, Volume 415 (2020), pp. 57-85 | MR | Zbl
[16.] An Introduction to Probability Theory and Its Applications, Vol. II, John Wiley & Sons, New York-London-Sydney, 1971 (669 pp.) | Zbl
[17.] G. Forni and A. Kanigowski, Time-Changes of Heisenberg nilflows. Preprint, | arXiv
[18.] Convergence of rare event point processes to the Poisson process for planar billiards, Nonlinearity, Volume 27 (2014), pp. 1669-1687 | MR | DOI | Zbl
[19.] Limit theorems for skew translations, J. Mod. Dyn., Volume 8 (2014), pp. 177-189 | MR | DOI | Zbl
[20.] Some problems of Diophantine approximation: the lattice–points of a right–angled triangle, Proc. Lond. Math. Soc., Volume 3 (1922), pp. 15-36 | MR | DOI
[21.] Poisson law for Axiom A diffeomorphisms, Ergod. Theory Dyn. Syst., Volume 13 (1993), pp. 533-556 | MR | DOI | Zbl
[22.] Poisson law for the dynamical systems with self-mixing conditions (N. Aoki; K. Shiraiwa; Y. Takahashi, eds.), Dynamical Systems and Chaos, 1, World Scientific, Singapore, 1995, pp. 87-96 | Zbl
[23.] Subdiffusive behavior generated by irrational rotations, Ergod. Theory Dyn. Syst., Volume 29 (2009), pp. 1217-1233 | MR | DOI | Zbl
[24.] Uniform distribution , Ann. Math., Volume 71 (1960), pp. 445-471 | MR | DOI | Zbl
[25.] H. Kesten, Uniform distribution , II, Acta Arith., 7 (1961/1962), 355–380.
[26.] Ein Satz über Kettenbrüche, mit arithmetischen Anwendungen, Math. Z., Volume 18 (1923), pp. 289-306 | MR | DOI | JFM
[27.] Poisson Processes, 3, Oxford Univ. Press, New York, 1993 (104 pp.) | Zbl
[28.] Bounded orbits of nonquasiunipotent flows on homogeneous spaces, Sinai’s Moscow Seminar on Dynamical Systems, 171, 1996, pp. 141-172
[29.] Logarithm laws for flows on homogeneous spaces, Invent. Math., Volume 138 (1999), pp. 451-494 | MR | DOI
[30.] Diophantische Approximationen, IV, 1936 (Heft 4, Berlin) | Zbl
[31.] The -point correlations between values of a linear form, Ergod. Theory Dyn. Syst., Volume 20 (2000), pp. 1127-1172 | MR | DOI
[32.] Almost modular functions and the distribution of modulo one, Int. Math. Res. Not., Volume 39 (2003), pp. 2131-2151 | DOI
[33.] Kinetic limits of dynamical systems, Proc. Symp. Pure Math., Volume 87 (2015), pp. 195-223 | MR | DOI
[34.] Spherical averages in the space of marked lattices, Geom. Dedic., Volume 186 (2017), pp. 75-102 | MR | DOI
[35.] Bemerkungen zur Theorie der Diophantischen Approximationen, Abh. Math. Semin. Univ. Hamb., Volume 1 (1922), pp. 77-98 | MR | DOI
[36.] Poisson limit law for Markov chains, Ergod. Theory Dyn. Syst., Volume 11 (1991), pp. 501-513 | MR | DOI
[37.] The number of lattice points in a set, Proc. Lond. Math. Soc., Volume 6 (1956), pp. 305-320 | MR | DOI
[38.] On irregularities of distribution, Mathematika, Volume 1 (1954), pp. 73-79 | MR | DOI
[39.] Stable Non-gaussian Random Processes, Chapman & Hall/CRC, London, 1994 (640 pp.) | Zbl
[40.] Metrical theorems on fractional parts of sequences, Trans. Am. Math. Soc., Volume 110 (1964), pp. 493-518 | MR | DOI
[41.] A mean value theorem in geometry of numbers, Ann. Math., Volume 46 (1945), pp. 340-347 | MR | DOI
[42.] I. Vinogradov, Limiting distribution of visits of several rotations to shrinking intervals. Preprint.
Cited by Sources: