Article
Explicit spectral gaps for random covers of Riemann surfaces
Publications Mathématiques de l'IHÉS, Volume 132 (2020), pp. 137-179

We introduce a permutation model for random degree n covers X n of a non-elementary convex-cocompact hyperbolic surface X=Γ𝐇. Let δ be the Hausdorff dimension of the limit set of Γ. We say that a resonance of X n is new if it is not a resonance of X, and similarly define new eigenvalues of the Laplacian.

We prove that for any ϵ>0 and H>0, with probability tending to 1 as n, there are no new resonances s=σ+it of X n with σ[3 4δ+ϵ,δ] and t[-H,H]. This implies in the case of δ>1 2 that there is an explicit interval where there are no new eigenvalues of the Laplacian on X n . By combining these results with a deterministic ‘high frequency’ resonance-free strip result, we obtain the corollary that there is an η=η(X) such that with probability 1 as n, there are no new resonances of X n in the region {s: Re (s)>δ-η}.

Received:
Accepted:
Online First:
Published online:
DOI: 10.1007/s10240-020-00118-w
@article{PMIHES_2020__132__137_0,
     author = {Michael Magee and Fr\'ed\'eric Naud},
     title = {Explicit spectral gaps for random covers of {Riemann} surfaces},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {137--179},
     year = {2020},
     publisher = {Springer Berlin Heidelberg},
     address = {Berlin/Heidelberg},
     volume = {132},
     doi = {10.1007/s10240-020-00118-w},
     mrnumber = {4179833},
     zbl = {1508.58008},
     language = {en},
     url = {https://pmihes.centre-mersenne.org/articles/10.1007/s10240-020-00118-w/}
}
TY  - JOUR
AU  - Michael Magee
AU  - Frédéric Naud
TI  - Explicit spectral gaps for random covers of Riemann surfaces
JO  - Publications Mathématiques de l'IHÉS
PY  - 2020
SP  - 137
EP  - 179
VL  - 132
PB  - Springer Berlin Heidelberg
PP  - Berlin/Heidelberg
UR  - https://pmihes.centre-mersenne.org/articles/10.1007/s10240-020-00118-w/
DO  - 10.1007/s10240-020-00118-w
LA  - en
ID  - PMIHES_2020__132__137_0
ER  - 
%0 Journal Article
%A Michael Magee
%A Frédéric Naud
%T Explicit spectral gaps for random covers of Riemann surfaces
%J Publications Mathématiques de l'IHÉS
%D 2020
%P 137-179
%V 132
%I Springer Berlin Heidelberg
%C Berlin/Heidelberg
%U https://pmihes.centre-mersenne.org/articles/10.1007/s10240-020-00118-w/
%R 10.1007/s10240-020-00118-w
%G en
%F PMIHES_2020__132__137_0
Michael Magee; Frédéric Naud. Explicit spectral gaps for random covers of Riemann surfaces. Publications Mathématiques de l'IHÉS, Volume 132 (2020), pp. 137-179. doi: 10.1007/s10240-020-00118-w

[Alo86] N. Alon Eigenvalues and expanders, Combinatorica, Volume 6 (1986), pp. 83-96 Theory of computing (Singer Island, Fla., 1984) | MR | Zbl | DOI

[BC19] C. Bordenave; B. Collins Eigenvalues of random lifts and polynomials of random permutation matrices, Ann. of Math. (2), Volume 190 (2019), pp. 811-875 | MR | DOI | Zbl

[BD17] J. Bourgain; S. Dyatlov Fourier dimension and spectral gaps for hyperbolic surfaces, Geom. Funct. Anal., Volume 27 (2017), pp. 744-771 | MR | Zbl | DOI

[BD18] J. Bourgain; S. Dyatlov Spectral gaps without the pressure condition, Ann. Math., Volume 187 (2018), pp. 825-867 | MR | Zbl | DOI

[BGS11] J. Bourgain; A. Gamburd; P. Sarnak Generalization of Selberg’s 3 16 theorem and affine sieve, Acta Math., Volume 207 (2011), pp. 255-290 | MR | Zbl | DOI

[BM04] R. Brooks; E. Makover Random construction of Riemann surfaces, J. Differ. Geom., Volume 68 (2004), pp. 121-157 | MR | Zbl | DOI

[BMM17] W. Ballmann; H. Matthiesen; S. Mondal Small eigenvalues of surfaces of finite type, Compos. Math., Volume 153 (2017), pp. 1747-1768 | MR | Zbl | DOI

[Bol88] B. Bollobás The isoperimetric number of random regular graphs, Eur. J. Comb., Volume 9 (1988), pp. 241-244 | MR | Zbl | DOI

[Bor16] D. Borthwick Spectral Theory of Infinite-Area Hyperbolic Surfaces, 318, Springer, Cham, 2016 | Zbl | MR

[Bow79] R. Bowen Hausdorff dimension of quasicircles, Publ. Math. IHÉS, Volume 50 (1979), pp. 11-25 | MR | Zbl | Numdam | DOI

[Bro86] R. Brooks The spectral geometry of a tower of coverings, J. Differ. Geom., Volume 23 (1986), pp. 97-107 | MR | Zbl | DOI

[BS87] A. Broder; E. Shamir On the second eigenvalue of random regular graphs, The 28th Annual Symposium on Foundations of Computer Science, 1987, pp. 286-294 | DOI

[Bur88] M. Burger Spectre du laplacien, graphes et topologie de Fell, Comment. Math. Helv., Volume 63 (1988), pp. 226-252 | MR | Zbl | DOI

[But98] J. Button All Fuchsian Schottky groups are classical Schottky groups, The Epstein Birthday Schrift, 1, Geom. Topol. Publ., Coventry, 1998, pp. 117-125 | MR | Zbl

[BV05] V. Baladi; B. Vallée Euclidean algorithms are Gaussian, J. Number Theory, Volume 110 (2005), pp. 331-386 | MR | Zbl | DOI

[DJ18] S. Dyatlov; L. Jin Dolgopyat’s method and the fractal uncertainty principle, Anal. PDE, Volume 11 (2018), pp. 1457-1485 | MR | Zbl | DOI

[Dol98] D. Dolgopyat On decay of correlations in Anosov flows, Ann. Math., Volume 147 (1998), pp. 357-390 | MR | Zbl | DOI

[Dya19] S. Dyatlov An introduction to fractal uncertainty principle, J. Math. Phys., Volume 60 (2019) | MR | DOI | Zbl

[DZ17] S. Dyatlov; M. Zworski Fractal uncertainty for transfer operators, Int. Math. Res. Not., Volume 2020 (2020), pp. 781-812 | MR | DOI | Zbl

[FP17] K. Fedosova; A. Pohl Meromorphic continuation of Selberg zeta functions with twists having non-expanding cusp monodromy, Sel. Math., Volume 26 (2020), p. 9 | MR | DOI | Zbl

[Fri03] J. Friedman Relative expanders or weakly relatively Ramanujan graphs, Duke Math. J., Volume 118 (2003), pp. 19-35 | MR | DOI | Zbl

[Fri08] J. Friedman A proof of Alon’s second eigenvalue conjecture and related problems, Mem. Am. Math. Soc., Volume 195 (2008), p. 910 (viii+100) | MR | Zbl

[Gam02] A. Gamburd On the spectral gap for infinite index “congruence” subgroups of SL 2 (𝐙), Isr. J. Math., Volume 127 (2002), pp. 157-200 | MR | Zbl | DOI

[Gam06] A. Gamburd Poisson-Dirichlet distribution for random Belyi surfaces, Ann. Probab., Volume 34 (2006), pp. 1827-1848 | MR | Zbl | DOI

[GLZ04] L. Guillopé; K. K. Lin; M. Zworski The Selberg zeta function for convex co-compact Schottky groups, Commun. Math. Phys., Volume 245 (2004), pp. 149-176 | MR | Zbl | DOI

[GN09] C. Guillarmou; F. Naud Wave decay on convex co-compact hyperbolic manifolds, Commun. Math. Phys., Volume 287 (2009), pp. 489-511 | MR | Zbl | DOI

[Gui92] L. Guillopé Fonctions zêta de Selberg et surfaces de géométrie finie, Zeta Functions in Geometry, Volume 21 (1992), pp. 33-70 | Zbl | MR | DOI

[GZ95] L. Guillopé; M. Zworski Upper bounds on the number of resonances for non-compact Riemann surfaces, J. Funct. Anal., Volume 129 (1995), pp. 364-389 | MR | Zbl | DOI

[JN16] D. Jakobson; F. Naud Resonances and density bounds for convex co-compact congruence subgroups of SL 2 (𝐙), Isr. J. Math., Volume 213 (2016), pp. 443-473 | Zbl | MR | DOI

[JNS19] D. Jakobson; F. Naud; L. Soares Large covers and sharp resonances of hyperbolic surfaces, Ann. Inst. Fourier, Volume 70 (2020), pp. 523-596 | MR | DOI | Zbl

[JZ17] L. Jin; R. Zhang Fractal uncertainty principle with explicit exponent, Math. Ann., Volume 376 (2020), pp. 1031-1057 | MR | DOI | Zbl

[Liv95] C. Liverani Decay of correlations, Ann. Math., Volume 142 (1995), pp. 239-301 | MR | Zbl | DOI

[LP81] P. D. Lax; R. S. Phillips The asymptotic distribution of lattice points in Euclidean and non-Euclidean spaces, Functional Analysis and Approximation, Volume 60 (1981), pp. 373-383 | MR | Zbl | DOI

[LPS88] A. Lubotzky; R. Phillips; P. Sarnak Ramanujan graphs, Combinatorica, Volume 8 (1988), pp. 261-277 | MR | Zbl | DOI

[Mag15] M. Magee Quantitative spectral gap for thin groups of hyperbolic isometries, J. Eur. Math. Soc., Volume 17 (2015), pp. 151-187 | MR | Zbl | DOI

[MM87] R. R. Mazzeo; R. B. Melrose Meromorphic extension of the resolvent on complete spaces with asymptotically constant negative curvature, J. Funct. Anal., Volume 75 (1987), pp. 260-310 | MR | Zbl | DOI

[MOW17] M. Magee, H. Oh and D. Winter, Uniform congruence counting for Schottky semigroups in SL 2 (𝐙)), J. Reine Angew. Math. (2017), with appendix by J. Bourgain, a. Kontorovich, and M. Magee. | MR

[Nau05a] F. Naud Expanding maps on Cantor sets and analytic continuation of zeta functions, Ann. Sci. Éc. Norm. Supér., Volume 38 (2005), pp. 116-153 | MR | Zbl | Numdam | DOI

[Nau05b] F. Naud Precise asymptotics of the length spectrum for finite-geometry Riemann surfaces, Int. Math. Res. Not., Volume 5 (2005), pp. 299-310 | MR | Zbl | DOI

[Nau14] F. Naud Density and location of resonances for convex co-compact hyperbolic surfaces, Invent. Math., Volume 195 (2014), pp. 723-750 | MR | Zbl | DOI

[Nil91] A. Nilli On the second eigenvalue of a graph, Discrete Math., Volume 91 (1991), pp. 207-210 | MR | Zbl | DOI

[OW16] H. Oh; D. Winter Uniform exponential mixing and resonance free regions for convex cocompact congruence subgroups of SL 2 (𝐙), J. Am. Math. Soc., Volume 29 (2016), pp. 1069-1115 | Zbl | MR | DOI

[Pat76] S. J. Patterson The limit set of a Fuchsian group, Acta Math., Volume 136 (1976), pp. 241-273 | MR | Zbl | DOI

[PP90] W. Parry; M. Pollicott Zeta functions and the periodic orbit structure of hyperbolic dynamics, Astérisque, Volume 187–188 (1990), p. 268 | MR | Zbl | Numdam

[PP01] S. J. Patterson; P. A. Perry The divisor of Selberg’s zeta function for Kleinian groups, Duke Math. J., Volume 106 (2001), pp. 321-390 (Appendix A by Charles Epstein) | MR | Zbl | DOI

[PP15] D. Puder; O. Parzanchevski Measure preserving words are primitive, J. Am. Math. Soc., Volume 28 (2015), pp. 63-97 | MR | Zbl | DOI

[Pud15] D. Puder Expansion of random graphs: new proofs, new results, Invent. Math., Volume 201 (2015), pp. 845-908 | MR | Zbl | DOI

[Sel65] A. Selberg On the estimation of Fourier coefficients of modular forms, Proc. Sympos. Pure Math., VIII, Amer. Math. Soc., Providence, 1965, pp. 1-15 | MR | Zbl

[VZ82] A. B. Venkov; P. G. Zograf Analogues of Artin’s factorization formulas in the spectral theory of automorphic functions associated with induced representations of Fuchsian groups, Izv. Akad. Nauk SSSR, Ser. Mat., Volume 46 (1982), pp. 1150-1158 (1343) | MR | Zbl

[Zwo17] M. Zworski Mathematical study of scattering resonances, Bull. Math. Sci., Volume 7 (2017), pp. 1-85 | MR | Zbl | DOI

Cited by Sources: