We introduce a permutation model for random degree covers of a non-elementary convex-cocompact hyperbolic surface . Let be the Hausdorff dimension of the limit set of . We say that a resonance of is new if it is not a resonance of , and similarly define new eigenvalues of the Laplacian.
We prove that for any and , with probability tending to 1 as , there are no new resonances of with and . This implies in the case of that there is an explicit interval where there are no new eigenvalues of the Laplacian on . By combining these results with a deterministic ‘high frequency’ resonance-free strip result, we obtain the corollary that there is an such that with probability as , there are no new resonances of in the region .
@article{PMIHES_2020__132__137_0,
author = {Michael Magee and Fr\'ed\'eric Naud},
title = {Explicit spectral gaps for random covers of {Riemann} surfaces},
journal = {Publications Math\'ematiques de l'IH\'ES},
pages = {137--179},
year = {2020},
publisher = {Springer Berlin Heidelberg},
address = {Berlin/Heidelberg},
volume = {132},
doi = {10.1007/s10240-020-00118-w},
mrnumber = {4179833},
zbl = {1508.58008},
language = {en},
url = {https://pmihes.centre-mersenne.org/articles/10.1007/s10240-020-00118-w/}
}
TY - JOUR AU - Michael Magee AU - Frédéric Naud TI - Explicit spectral gaps for random covers of Riemann surfaces JO - Publications Mathématiques de l'IHÉS PY - 2020 SP - 137 EP - 179 VL - 132 PB - Springer Berlin Heidelberg PP - Berlin/Heidelberg UR - https://pmihes.centre-mersenne.org/articles/10.1007/s10240-020-00118-w/ DO - 10.1007/s10240-020-00118-w LA - en ID - PMIHES_2020__132__137_0 ER -
%0 Journal Article %A Michael Magee %A Frédéric Naud %T Explicit spectral gaps for random covers of Riemann surfaces %J Publications Mathématiques de l'IHÉS %D 2020 %P 137-179 %V 132 %I Springer Berlin Heidelberg %C Berlin/Heidelberg %U https://pmihes.centre-mersenne.org/articles/10.1007/s10240-020-00118-w/ %R 10.1007/s10240-020-00118-w %G en %F PMIHES_2020__132__137_0
Michael Magee; Frédéric Naud. Explicit spectral gaps for random covers of Riemann surfaces. Publications Mathématiques de l'IHÉS, Volume 132 (2020), pp. 137-179. doi: 10.1007/s10240-020-00118-w
[Alo86] Eigenvalues and expanders, Combinatorica, Volume 6 (1986), pp. 83-96 Theory of computing (Singer Island, Fla., 1984) | MR | Zbl | DOI
[BC19] Eigenvalues of random lifts and polynomials of random permutation matrices, Ann. of Math. (2), Volume 190 (2019), pp. 811-875 | MR | DOI | Zbl
[BD17] Fourier dimension and spectral gaps for hyperbolic surfaces, Geom. Funct. Anal., Volume 27 (2017), pp. 744-771 | MR | Zbl | DOI
[BD18] Spectral gaps without the pressure condition, Ann. Math., Volume 187 (2018), pp. 825-867 | MR | Zbl | DOI
[BGS11] Generalization of Selberg’s theorem and affine sieve, Acta Math., Volume 207 (2011), pp. 255-290 | MR | Zbl | DOI
[BM04] Random construction of Riemann surfaces, J. Differ. Geom., Volume 68 (2004), pp. 121-157 | MR | Zbl | DOI
[BMM17] Small eigenvalues of surfaces of finite type, Compos. Math., Volume 153 (2017), pp. 1747-1768 | MR | Zbl | DOI
[Bol88] The isoperimetric number of random regular graphs, Eur. J. Comb., Volume 9 (1988), pp. 241-244 | MR | Zbl | DOI
[Bor16] Spectral Theory of Infinite-Area Hyperbolic Surfaces, 318, Springer, Cham, 2016 | Zbl | MR
[Bow79] Hausdorff dimension of quasicircles, Publ. Math. IHÉS, Volume 50 (1979), pp. 11-25 | MR | Zbl | Numdam | DOI
[Bro86] The spectral geometry of a tower of coverings, J. Differ. Geom., Volume 23 (1986), pp. 97-107 | MR | Zbl | DOI
[BS87] On the second eigenvalue of random regular graphs, The 28th Annual Symposium on Foundations of Computer Science, 1987, pp. 286-294 | DOI
[Bur88] Spectre du laplacien, graphes et topologie de Fell, Comment. Math. Helv., Volume 63 (1988), pp. 226-252 | MR | Zbl | DOI
[But98] All Fuchsian Schottky groups are classical Schottky groups, The Epstein Birthday Schrift, 1, Geom. Topol. Publ., Coventry, 1998, pp. 117-125 | MR | Zbl
[BV05] Euclidean algorithms are Gaussian, J. Number Theory, Volume 110 (2005), pp. 331-386 | MR | Zbl | DOI
[DJ18] Dolgopyat’s method and the fractal uncertainty principle, Anal. PDE, Volume 11 (2018), pp. 1457-1485 | MR | Zbl | DOI
[Dol98] On decay of correlations in Anosov flows, Ann. Math., Volume 147 (1998), pp. 357-390 | MR | Zbl | DOI
[Dya19] An introduction to fractal uncertainty principle, J. Math. Phys., Volume 60 (2019) | MR | DOI | Zbl
[DZ17] Fractal uncertainty for transfer operators, Int. Math. Res. Not., Volume 2020 (2020), pp. 781-812 | MR | DOI | Zbl
[FP17] Meromorphic continuation of Selberg zeta functions with twists having non-expanding cusp monodromy, Sel. Math., Volume 26 (2020), p. 9 | MR | DOI | Zbl
[Fri03] Relative expanders or weakly relatively Ramanujan graphs, Duke Math. J., Volume 118 (2003), pp. 19-35 | MR | DOI | Zbl
[Fri08] A proof of Alon’s second eigenvalue conjecture and related problems, Mem. Am. Math. Soc., Volume 195 (2008), p. 910 (viii+100) | MR | Zbl
[Gam02] On the spectral gap for infinite index “congruence” subgroups of , Isr. J. Math., Volume 127 (2002), pp. 157-200 | MR | Zbl | DOI
[Gam06] Poisson-Dirichlet distribution for random Belyi surfaces, Ann. Probab., Volume 34 (2006), pp. 1827-1848 | MR | Zbl | DOI
[GLZ04] The Selberg zeta function for convex co-compact Schottky groups, Commun. Math. Phys., Volume 245 (2004), pp. 149-176 | MR | Zbl | DOI
[GN09] Wave decay on convex co-compact hyperbolic manifolds, Commun. Math. Phys., Volume 287 (2009), pp. 489-511 | MR | Zbl | DOI
[Gui92] Fonctions zêta de Selberg et surfaces de géométrie finie, Zeta Functions in Geometry, Volume 21 (1992), pp. 33-70 | Zbl | MR | DOI
[GZ95] Upper bounds on the number of resonances for non-compact Riemann surfaces, J. Funct. Anal., Volume 129 (1995), pp. 364-389 | MR | Zbl | DOI
[JN16] Resonances and density bounds for convex co-compact congruence subgroups of , Isr. J. Math., Volume 213 (2016), pp. 443-473 | Zbl | MR | DOI
[JNS19] Large covers and sharp resonances of hyperbolic surfaces, Ann. Inst. Fourier, Volume 70 (2020), pp. 523-596 | MR | DOI | Zbl
[JZ17] Fractal uncertainty principle with explicit exponent, Math. Ann., Volume 376 (2020), pp. 1031-1057 | MR | DOI | Zbl
[Liv95] Decay of correlations, Ann. Math., Volume 142 (1995), pp. 239-301 | MR | Zbl | DOI
[LP81] The asymptotic distribution of lattice points in Euclidean and non-Euclidean spaces, Functional Analysis and Approximation, Volume 60 (1981), pp. 373-383 | MR | Zbl | DOI
[LPS88] Ramanujan graphs, Combinatorica, Volume 8 (1988), pp. 261-277 | MR | Zbl | DOI
[Mag15] Quantitative spectral gap for thin groups of hyperbolic isometries, J. Eur. Math. Soc., Volume 17 (2015), pp. 151-187 | MR | Zbl | DOI
[MM87] Meromorphic extension of the resolvent on complete spaces with asymptotically constant negative curvature, J. Funct. Anal., Volume 75 (1987), pp. 260-310 | MR | Zbl | DOI
[MOW17] M. Magee, H. Oh and D. Winter, Uniform congruence counting for Schottky semigroups in ), J. Reine Angew. Math. (2017), with appendix by J. Bourgain, a. Kontorovich, and M. Magee. | MR
[Nau05a] Expanding maps on Cantor sets and analytic continuation of zeta functions, Ann. Sci. Éc. Norm. Supér., Volume 38 (2005), pp. 116-153 | MR | Zbl | Numdam | DOI
[Nau05b] Precise asymptotics of the length spectrum for finite-geometry Riemann surfaces, Int. Math. Res. Not., Volume 5 (2005), pp. 299-310 | MR | Zbl | DOI
[Nau14] Density and location of resonances for convex co-compact hyperbolic surfaces, Invent. Math., Volume 195 (2014), pp. 723-750 | MR | Zbl | DOI
[Nil91] On the second eigenvalue of a graph, Discrete Math., Volume 91 (1991), pp. 207-210 | MR | Zbl | DOI
[OW16] Uniform exponential mixing and resonance free regions for convex cocompact congruence subgroups of , J. Am. Math. Soc., Volume 29 (2016), pp. 1069-1115 | Zbl | MR | DOI
[Pat76] The limit set of a Fuchsian group, Acta Math., Volume 136 (1976), pp. 241-273 | MR | Zbl | DOI
[PP90] Zeta functions and the periodic orbit structure of hyperbolic dynamics, Astérisque, Volume 187–188 (1990), p. 268 | MR | Zbl | Numdam
[PP01] The divisor of Selberg’s zeta function for Kleinian groups, Duke Math. J., Volume 106 (2001), pp. 321-390 (Appendix A by Charles Epstein) | MR | Zbl | DOI
[PP15] Measure preserving words are primitive, J. Am. Math. Soc., Volume 28 (2015), pp. 63-97 | MR | Zbl | DOI
[Pud15] Expansion of random graphs: new proofs, new results, Invent. Math., Volume 201 (2015), pp. 845-908 | MR | Zbl | DOI
[Sel65] On the estimation of Fourier coefficients of modular forms, Proc. Sympos. Pure Math., VIII, Amer. Math. Soc., Providence, 1965, pp. 1-15 | MR | Zbl
[VZ82] Analogues of Artin’s factorization formulas in the spectral theory of automorphic functions associated with induced representations of Fuchsian groups, Izv. Akad. Nauk SSSR, Ser. Mat., Volume 46 (1982), pp. 1150-1158 (1343) | MR | Zbl
[Zwo17] Mathematical study of scattering resonances, Bull. Math. Sci., Volume 7 (2017), pp. 1-85 | MR | Zbl | DOI
Cited by Sources: