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ABSTRACT

We introduce a permutation model for random degree n covers Xn of a non-elementary convex-cocompact hy-
perbolic surface X = �\H. Let δ be the Hausdorff dimension of the limit set of �. We say that a resonance of Xn is new if
it is not a resonance of X, and similarly define new eigenvalues of the Laplacian.

We prove that for any ε > 0 and H > 0, with probability tending to 1 as n → ∞, there are no new resonances s =
σ + it of Xn with σ ∈ [ 3

4 δ + ε, δ] and t ∈ [−H,H]. This implies in the case of δ > 1
2 that there is an explicit interval where

there are no new eigenvalues of the Laplacian on Xn. By combining these results with a deterministic ‘high frequency’
resonance-free strip result, we obtain the corollary that there is an η = η(X) such that with probability → 1 as n → ∞,
there are no new resonances of Xn in the region { s : Re(s) > δ − η }.
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1. Introduction

This paper is about spectral gaps for random Riemann surfaces. More specifically,
we are interested in various notions of spectral gap for random covers of a fixed Schottky
Riemann surface. This is in close analogy to questions about the spectral gap of a random
regular graph, and this analogy informs our model for random coverings, so we begin
with a discussion on graphs.
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Let G be a k-regular graph on n vertices. Then the adjacency matrix AG of G has
n real eigenvalues in [−k, k] and k appears as an eigenvalue with multiplicity equal to the
number of connected components of G. Denoting by

k = λ0 ≥ λ1 ≥ · · · ≥ λn

the eigenvalues of G, the spectral gap of G is λ0 − λ1. If G is connected, then λ0 > λ1

and the spectral gap is related to the exponential rate at which the random walk on G
converges to the uniform measure. As such, it is an important quantity in theoretical
computer science, and accordingly, there has been a great deal of interest in the spectral
gap of a random regular graph. Alon’s conjecture [Alo86], now a theorem due to Friedman
[Fri08], says that for any ε > 0, as n → ∞, the probability that λ1(Gn) > 2

√
k − 1 + ε

tends to zero, when Gn is sampled uniformly at random from k-regular graphs with n

vertices.1 The relevance of the quantity 2
√

k − 1 is that for any k-regular graph with n

vertices, a result of Alon-Boppana [Nil91] says that λ1(G) ≥ 2
√

k − 1− on(1), so 2
√

k − 1
is an asymptotically optimal lower bound for λ1(G), often called the Ramanujan bound after
[LPS88].

The model of a random graph described above chooses random graphs accord-
ing to a uniform distribution. Another popular model for a random 2k-regular graph
is called the permutation model and is the one we wish to focus on in the sequel. Let
� = 〈γ1, . . . , γk, γ

−1
1 , . . . , γ −1

k 〉 be a free group on k generators, k ≥ 2, and let Sn denote
the symmetric group on n letters, and φn be a random homomorphism from � to Sn,
sampled uniformly from all possible homomorphisms. Since � is free, a homomorphism
is described simply by choosing the images φn(γi) of the generators of � independently
and uniformly from Sn. Then let Gn be the random graph with vertex set [n] def= {1, . . . , n}
and with an edge between i and j if there is a generator γa such that φn(γa)(i) = j. We will
adapt this model to a model of a random Riemann surface.

Let X be a connected, non-elementary, non-compact, convex co-compact hyper-
bolic surface. Then X = �\H where H is the hyperbolic upper half plane and � is a
free subgroup of SL2(R). We view X as fixed throughout the paper. We let Xn be the
random n-cover of X obtained as a fibered product Xn

def= H ×φn
[n]. More precisely, Xn is

the quotient of H × [n] by the diagonal action of �

γ.(x, i) = (
γ (x),φn(γ )(i)

)
.

If S ⊂ [n] is a set of representatives for the orbits of � on [n] via φn, and �i
def= Stab�(i) is

the stabilizer of i ∈ S, then Xn is isomorphic to the disjoint union of (connected) covers
�i\H, i.e.

Xn =
⊔

i∈S

�i\H.

1 A generalization of Alon’s conjecture to random covers of a fixed graph was proposed by Friedman [Fri03] and
recently proved by Bordenave and Collins in [BC19].
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Notice that we have
∑

i∈S

[� : �i] = n.

We say that a property E(φn) of the random φn holds asymptotically almost surely (a.a.s.) if as
n → ∞, the probability that E(φn) holds tends to 1. It is an elementary calculation2 that
a.a.s. � acts transitively on [n] via φn and hence, a.a.s. Xn is connected. This also follows
from the main theorems below. Although we do not assume Xn is connected at any point,
it would not hurt to assume this on a first reading.

We now discuss the spectral theory of X and Xn. The group � acts properly dis-
continuously on H, but for any point o ∈ H, the orbit �o accumulates on ∂H = R ∪ {∞}
and the accumulation set of this orbit is called the limit set of � and denoted by �(�).
This �(�) is a perfect nowhere dense fractal and has an associated Hausdorff dimension
δ

def= dimHaus(�(�)) ∈ [0,1). By a result of Lax and Phillips [LP81], the spectrum of the
Laplacian 
X is discrete in the range [0, 1

4), and Patterson [Pat76] proved that if δ > 1
2 ,

then the lowest eigenvalue of 
X is δ(1−δ). If δ ≤ 1
2 then there are no eigenvalues of 
X.

The same is true for Xn, with the same δ (although δ(1−δ) will be simple if and only if Xn

is connected). More generally, if λ is any eigenvalue of X, then by lifting eigenfunctions
through the covering map, λ is an eigenvalue for Xn with at least as large multiplicity.

The first main theorem of our paper is the following.

Theorem 1.1. — Assume that δ > 1
2 . Then for any σ0 ∈ ( 3

4δ, δ), a.a.s.

(1.1) spec(
Xn
) ∩ [

δ(1 − δ), σ0(1 − σ0)
] = spec(
X) ∩ [

δ(1 − δ), σ0(1 − σ0)
]

and the multiplicities on both sides are the same.

Remark 1.2. — This theorem implies that a.a.s. the Xn have a uniform spectral
gap, and this spectral gap only depends on δ and the gap between the first two eigenvalues
of X.

Remark 1.3. — If δ ∈ ( 1
2 ,

2
3) then since Xn has no eigenvalues in [ 1

4 ,∞) by a result
of Lax and Phillips [LP81], Theorem 1.1 implies that a.a.s. Xn has no new eigenvalues.

Remark 1.4. — Theorem 1.1 can be viewed as a significant sharpening of a result
of Brooks and Makover [BM04], albeit in the infinite area setting. See Section 1.1 for a
more detailed discussion of this comparison.

2 For a concrete reference, this statement follows from [BS87, Theorem 13]. One can also prove by elementary
combinatorial arguments that the probability that Xn is connected as n → +∞ is bigger than 1 − C(k)

nk−1 , where C(k) > 0 is
a constant depending only on k.
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Remark 1.5. — We point out that it is possible for Xn to not be connected, and in
this case, there is no spectral gap. Even further, it is easy to see that Xn can be a connected
cyclic cover of X, and by results of [JNS19], these have no uniform spectral gap.

Remark 1.6. — In the limit as δ → 1, the range of forbidden eigenvalues in (1.1)
becomes [0, 3

16). This is interestingly the same range covered by Selberg’s 3
16 Theo-

rem [Sel65] on the spectral gap of congruence covers of the modular surface SL2(Z)\H.
This should also be compared to the deterministic result of Gamburd [Gam02] for
congruence covers of infinite index geometrically finite subgroups of SL2(Z): assuming
δ > 5

6 , he shows that the spectrum remains the same in the range [δ(1 − δ), 5
36). See also

[Mag15] for a generalization of this result to higher dimensions.

We write χ(X) for the Euler characteristic of X. It has recently been proved by
Ballmann, Matthiesen, and Mondal [BMM17] that if χ(X) < 0, 
X has at most −χ(X)

eigenvalues. If χ(X) = −1 then this means the only possible eigenvalue of X is at δ(1−δ)

and thus Theorem 1.1 yields

Corollary 1.7. — Assume that δ > 1
2 . If X is topologically a pair of pants, or a torus with one

hole, then for any σ0 ∈ ( 3
4δ, δ), a.a.s.

spec(
Xn
) ∩ (δ(1 − δ), σ0(1 − σ0)] = ∅,

and δ(1 − δ) is a simple eigenvalue of 
Xn
.

We now turn to what we can say about general δ ∈ (0,1). In the case δ ≤ 1
2 , 
X

and 
Xn
will have no discrete L2 spectrum, so one must consider a more subtle notion of

spectral gap.
For any non-elementary convex co-compact hyperbolic Y with δ = δ(Y) (e.g.

Y = X, Y = Xn) the resolvent

RY(s)
def= (


Y − s(1 − s)
)−1 : L2(Y) → L2(Y)

is, a priori, a meromorphic family of bounded operators in the right half plane Re(s) > 1
2

with poles precisely at real s such that s(1− s) is an eigenvalue of 
X. By work of Mazzeo-
Melrose [MM87], it can be meromorphically continued to a family of bounded operators
from C∞

0 (Y) → C∞(Y) that is meromorphic in s ∈ C. In the case of hyperbolic surfaces,
a simpler proof of the meromorphic continuation is due to Guillopé and Zworski [GZ95],
see also the book [Bor16].

The poles of the meromorphically continued resolvent are called resonances of Y. In
the sequel we write RY ⊂ C for the multi-set of resonances, repeated according to mul-
tiplicities.3 Resonances, unlike L2-eigenvalues, correspond to a non self-adjoint spectral

3 Following [Bor16, Definition 8.2], the multiplicity of a resonance s of Y is given by rank(
∫

γ
RY(s)ds) where γ is

an anticlockwise oriented circle enclosing s and no other resonance of Y.
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problem and are therefore notoriously difficult to study. There is however a clear analog
of the spectral gap in this setting. The ‘bass resonance’ is located at s = δ and by a result
of Naud [Nau05a] if Y is connected then there exists a constant ε� > 0 such that

RY ∩ {
s : Re(s) ≥ δ − ε�

} = {δ}.
We call the existence of such a resonance free strip a spectral gap for Y. The spectral gap on
hyperbolic surfaces has numerous applications, from prime geodesic theorems [Nau05b]
to local L2-asymptotics of waves [GN09]. A recent breakthrough of Bourgain-Dyatlov
[BD18] showed that there always exists an “essential spectral gap” past the line {Re(s) = 1

2},
i.e. there exists ε̃ = ε̃(Y) > 0 such that

RY ∩
{

s : Re(s) ≥ 1
2

− ε̃

}

is a finite set. The proof is based on the general phenomenon of “fractal uncertainty
principle”, see [Dya19]. We point out that ε̃ > 0 can be made explicit, see Jin-Zhang
[JZ17] and also Dyatlov-Jin [DJ18]. For a broader view and a state of the art survey
on the mathematical theory of resonances including hyperbolic manifolds and related
conjectures, we recommend to read [Zwo17]. Our next main result is the following.

Theorem 1.8. — Fix any H > 0 and σ0 ∈ ( 3
4δ, δ), and let

Rect(σ0,H)
def= {

s = σ + it : σ ∈ [σ0, δ] and |t| ≤ H
}
.

Then a.a.s.

RXn

⋂
Rect(σ0,H) =RX

⋂
Rect(σ0,H)

where the multiplicities on both sides are the same.

Remark 1.9. — Because all eigenvalues λσ = σ(1 − σ) of 
Xn
with σ > 1

2 give a
resonance of Xn at σ , with the same multiplicity, and the same is true for X, Theorem 1.8
implies Theorem 1.1 and extends it to resonances in rectangles of explicit width and any
bounded height 2H. We point out that Theorem 1.8 actually yields new information on
low frequency resonances past the line {Re(s) = 1

2} when δ ∈ ( 1
2 ,

2
3).

This leaves the question of how to deal with resonances with large imaginary part.
For this we have the following theorem that applies to arbitrary covers. Note that here
there is no randomness involved.

Theorem 1.10. — Assume that � is a non-elementary convex co-compact group. Then there

exist ε� > 0 and T� > 0 such that for all finite index subgroups �̃ ⊂ �, we have for X̃ = �̃\H,

RX̃ ∩ {
s : Re(s) ≥ δ − ε� and

∣∣Im(s)
∣∣ ≥ T�

} = ∅.
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Remark 1.11. — From the work of Bourgain and Dyatlov [BD17], we know that
there exists ε(δ) > 0, depending only on δ and thus uniform on covers such that

RX ∩ {
Re(s) ≥ δ − ε(δ)

}

is a finite set. However the result of Bourgain and Dyatlov does not provide any infor-
mation on the finite set of resonances in this uniform strip. Theorem 1.10 shows that new
resonances can only appear in a compact region.

Combining Theorem 1.8 with Theorem 1.10 yields the following corollary.

Corollary 1.12. — A.a.s. the random cover Xn → X has a uniform spectral gap. In particular,

above each non elementary surface X, one can produce an infinite family of covers Xn with degree n and

having a uniform spectral gap.

Remark 1.13. — When δ > 1
2 , Corollary 1.12 follows from a mild extension of

[BGS11, Theorem 1.2] together with results on random graphs as explained in Sec-
tion 1.1. However, when δ ≤ 1

2 , to our knowledge, Corollary 1.12 is completely new: the
only result of that type so far is for congruence covers of convex co-compact subgroups
of SL2(Z), see Oh-Winter [OW16] and the discussion below.

1.1. Prior work. Brooks and Makover. — Brooks and Makover in [BM04] consider a
similar model for random finite area Riemann surfaces. In this model, random surfaces
are modeled by random 3-regular oriented graphs sampled according to a refinement
of the Bollobás ‘bin model’ introduced in [Bol88]. Then Brooks and Makover [BM04]
construct from a random oriented graph on n vertices a Riemann surface Yn, tiled by a
specific hyperbolic triangle with one vertex at ∞. They then consider a compactification
Yc

n of the cusped surface Yn. Thus Yc
n is a random compact Riemann surface; the genus

of Yc
n is however not deterministic.4 Brooks and Makover proved in (ibid.)

Theorem 1.14 (Brooks-Makover). — There is some constant C > 0 such that a.a.s. the first

non-zero eigenvalue of Yc
n is ≥ C.

Although our main theorems deal instead with infinite area Riemann surfaces,
they offer two improvements over Theorem 1.14:

• The range of new forbidden eigenvalues and resonances in Theorems 1.1 and
1.8 are explicit,

• Moreover, we have an entire moduli space of random families (parameterized
by the modulus of X) and the range of forbidden eigenvalues and resonances
only depends on X in a very mild way, through the Hausdorff dimension of the
limit set.

4 By a result of Gamburd [Gam06], if l(Yn)
def= n

2 + 2 − 2genus(Yc
n), then as n → ∞, l(Yn) converges to a Poisson-

Dirichlet distribution. The function l(Yn) coincides with the number of cusps of Yn.
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The Brooks-Burger transfer principle. — Also relevant to the current work is the fol-
lowing transfer principle for small eigenvalues developed independently by Brooks and
Burger in [Bro86, Bur88].

Theorem 1.15 (Brooks-Burger). — Let Y be any compact Riemannian manifold with � =
π1(Y). There is a constant c(Y) > 0 and a finite subset S ⊂ � such that the following hold. Let �′ be

any finite index subgroup of �, with associated Riemannian covering space Y′ of Y. Let λ1(Y′) be such

that spec(
Y′) = {0 ≤ λ1 ≤ λ2 ≤ . . . }. Let G = G(�′,S) be the Schreier coset graph of S acting

on �/�′. Then

(1.2) λ1

(
Y′) ≥ c(Y)

(
λ0(G) − λ1(G)

)
.

Theorem 1.15 was extended to Galois covers of non-elementary convex co-
compact hyperbolic surfaces by Bourgain, Gamburd and Sarnak in [BGS11, Theo-
rem 1.2] where the left hand side of (1.2) is replaced by the gap between δ(1 − δ) and
the next eigenvalue of the L2-Laplacian. This extends to non-Galois covers and therefore
applies in the setting of this paper as follows.

Let us assume that Xn = �n\H is connected, for simplicity, although the argument
can be adapted to the general case. For fixed S ⊂ �, the Schreier coset graphs Gn of S
acting on �/�n

∼= [n] are precisely the random regular graphs of the permutation model,
and a.a.s. these have a uniform spectral gap by [BS87, Fri08]. Hence by the extension
of [BGS11, Theorem 1.2] the Xn have a uniform spectral gap between δ(1 − δ) and the
next L2-eigenvalue. Importantly, in all versions of Theorem 1.15, the constant c depends
on Y in a complicated way. Because of this, it is unlikely such an argument would lead
to e.g. Theorem 1.1. However, this argument does lead to Corollary 1.12 when δ > 1

2 (cf.
Remark 1.13).

It is also worth mentioning that a variant of Theorem 1.15 has also been devel-
oped for resonances in [BGS11, OW16, MOW17], for specific congruence coverings of
Y = �\H where � is an infinite index subgroup of SL2(Z). Besides only dealing with Ga-
lois covers, the key reason that these methods cannot prove Corollary 1.12 when δ ≤ 1

2 is
the following. The state of the art method [MOW17, Appendix] of dealing with low fre-
quency resonances (a la Theorem 1.8) involves bounds on the dimensions of non-trivial
irreducible representations of finite groups G that are polynomial in |G|. The relevant
groups in our setting are Sn, and the issue is that Sn has non-trivial irreducible represen-
tations of dimensions that are sub-logarithmic in |Sn| = n!.

Finally we point out that the methods of [BGS11, OW16, MOW17] are not well
adapted to efficiently tracking constants and hence likely not suitable for producing ex-
plicit resonance free regions as in Theorem 1.8.

1.2. Overview of proofs and paper organization. — All the proofs of the paper rely on a
Schottky encoding of the action of � on R that is presented in Section 2.1. To control res-
onances (and eigenvalues) we rely on the connection between resonances and zeros of the
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Selberg zeta function due to Patterson and Perry [PP01]. This connection is explained
in Section 2.2. We then pass to dynamical considerations by the relationship between
Selberg zeta functions and dynamical zeta functions explained in Section 4.1. The rele-
vant dynamical zeta functions are Fredholm determinants of certain transfer operators
on vector valued functions, twisted by (random) unitary representations ρ0

n of �. These
are introduced in Section 2.2. The relevance of these representations is that the zeros
of the ρ0

n -twisted Selberg zeta function of X correspond to new resonances of Xn (see
Section 4.1). These are precisely the objects we wish to control.

Theorems 1.1 and 1.8. — Since Theorem 1.8 implies Theorem 1.1 it suffices to dis-
cuss the former.

So far we have not been precise about the transfer operators we use. To prove
Theorem 1.8 we do not use the ‘standard’ twisted transfer operators used for example in
[BGS11, OW16, MOW17], but rather, we base our twisted operators on the refined transfer

operators introduced by Bourgain and Dyatlov in [BD17]. The operators are denoted by
Lτ,s,ρ0

n
and defined precisely in Section 2.2. The parameter s is a frequency parameter,

and the parameter τ is a ‘discretization parameter’ that is taken to be n− 2
δ . If we do not

use this operator in the definition of the dynamical zeta function, but rather, an iterate of
the standard one, without the built in parameter τ , then one can still follow the strategy
of this paper to obtain resonance-free regions. However, these will depend on subtle features of

the graph of the pressure functional P(σ ) defined in Section 2.1. It is the use of refined transfer
operators that allows us to improve on this, and is a key idea in the paper. The functional
spaces we use are Bergman spaces, and this gives us crucial access to trace techniques.

To control zeros of the dynamical zeta function in a rectangle, we use Jensen’s
formula with a circle enclosing the rectangle (cf. Figure 2). The strategy is to prove that
the expected number of zeros in the region decays as a polynomial in n, so by Markov’s
inequality, a.a.s. there are none. There are two terms in Jensen’s formula we need to
control. The first is log |det(1 − Lτ,s,ρ0

n
)| when s is the center of the circle. As shown in

Proposition 4.8, this term decays provided the center of the circle is a sufficiently large real
number, which can be arranged. The second term in Jensen’s formula is the integral over
s in the circle of log |det(1 − L2

τ,s,ρ0
n
)|. A convenient property of Jensen’s formula is that

it is an integral formula, and we can take expectations inside the integral. Using Weyl’s
inequality, and taking expectations, we reduce to bounding the expectation En‖Lτ,s,ρ0

n
‖2

H.S.

of the squared Hilbert-Schmidt norm of Lτ,s,ρ0
n

for s on the circle. We need to prove these
all decay uniformly and polynomially in n. This estimate is at the core of the proof, is
stated precisely in Proposition 5.1, and its proof takes up Section 5.

We now discuss the proof of Proposition 5.1. The first step is a formula for
En‖Lτ,s,ρ0

n
‖2

H.S.. This uses a deterministic expression for ‖Lτ,s,ρ0
n
‖2

H.S. involving a Bergman
kernel and given in Lemma 4.7. The formula for ‖Lτ,s,ρ0

n
‖2

H.S. is a complex weighted sum
of random variables Tr[ρ0

n (γa′γ −1
b′ )], where γa′ and γb′ are elements of �. By linearity of
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expectations we obtain an expression for En‖Lτ,s,ρ0
n
‖2

H.S. as a weighted sum of expectations

(1.3) En

[
Tr

(
ρ0

n

(
γa′γ −1

b′
))]

By passing to a majorant, in Lemma 5.4 we reduce our task to estimating a sum of the
form

(1.4)
∑

a,b∈Z(τ )

∣∣En

[
Tr

(
ρ0

n

(
γa′γ −1

b′
))]∣∣

where Z(τ ) is a set of words in the generators of �, and a′ is a with the last letter removed.
The strategy is to insert good bounds for (1.3) into (1.4) to obtain the decay we

want. This is analogous to the trace method used to bound the spectral gap of a random
graph, where ‖Lτ,s,ρ0

n
‖2

H.S. would be replaced by the trace of a power of the adjacency
matrix. Indeed, the bounds we use for (1.3) go back to the paper of Broder and Shamir
[BS87] who used the trace method to show that the second largest eigenvalue of a 2k-
regular random graph in the permutation model is a.a.s. ≤ 3k

3
4 . So the appearance of 3

4
in Theorems 1.1 and 1.8 is similar to (ibid.).

In (ibid.) Broder and Shamir proved, roughly speaking, that En[Tr(ρ0
n (γ ))] has a

trivial bound if γ is the identity, a better bound if γ is a proper power of another element
in �, and an even better bound if γ does not fall in one of the previous two cases. We
need a two sided estimate for (1.3) that can be deduced from more recent work of Puder
[Pud15] and is stated in Theorem 5.2. According to the three cases above, we partition
the range of summation in (1.4) into three different sets.

The hardest of these to deal with in (1.4) is the set PowerPairs(τ ) that consists of
a,b ∈ Z(τ ) such that γa′γ −1

b′ is a proper power in �. We need to show that the contribu-
tion of this set to (1.4) has polynomial decay. We give a precise bound on |PowerPairs(τ )|
in Proposition 5.6; this proposition is at the core of the paper so we now explain the ideas
of its proof.

Throughout the paper we work with real quantities ϒa, where a is a word in the
generators of �. These are defined in Section 3. Roughly speaking, ϒa measures the size
of the derivative of the associated group element γa′ , and the set Z̄(τ ) is the set of words
a such that ϒa ≈ τ . This means that estimating |PowerPairs(τ )| is roughly the same as
estimating the sum

(1.5)
∑

(a,b)∈PowerPairs(τ )

ϒ
δ
2

a ϒ
δ
2

b ;

the choice of the exponent δ

2 optimizes the result we can get from this method. The key
combinatorial observation we use to estimate (1.5) is that if γa′γ −1

b′ is a proper power, after
performing an absolutely bounded finite number of the following operations

• cutting the sequences a′ and b′,
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• possibly replacing some cut sequence with its ‘mirror’,
• and regluing

one can form a long identical pair of sequences. This idea is performed rigorously in Sec-
tion 5.4. The result of these operations on the ϒ is to introduce a bounded multiplicative
constant, since ϒ is roughly multiplicative (Lemma 3.4) and behaves well with respect
to mirrors (Lemma 3.5). The result of obtaining the long identical pair of sequences is
that we get bounds on (1.5) from the relationship between sums of ϒa and the pressure
functional (Lemma 3.10).

Theorem 1.10. — The proof of Theorem 1.10 is given in Section 7. It is based
on uniform Dolgopyat estimates for arbitrary unitary representations of �. We use the
main result of Bourgain and Dyatlov [BD17] on Patterson-Sullivan measures and Fourier
decay to provide a short and completely general proof of the uniform Dolgopyat estimates
without having to rely on the more difficult technique from [Nau05a], which was also
used in [OW16, MOW17].

1.3. Notation. — If U ⊂ C we write U for the closure of U. We write N for the
natural numbers and N0 = N ∪ {0}.

2. Preliminaries

In this paper we use the notational system for Schottky groups that is used in
the papers of Dyatlov and Bourgain [BD17] and Dyatlov and Zworski [DZ17] since it
is very convenient for the analysis in the sequel. We follow these papers closely in our
development.

2.1. Words, encodings of Schottky groups, and pressure. — Let r ≥ 2 and A= {1, . . . ,2r}.
If a ∈A, then we write ā = a + r mod 2r. The setup of our paper is that we are given for
each a ∈A an open5 disc Da in C with center in R. The closures of the discs Da for a ∈A
are assumed to be disjoint from one another. We let Ia = Da ∩ R, an open interval. We
write D = ∪a∈ADa for the union of the discs.

We consider the usual action of SL2(R) by Möbius transformations on the ex-
tended complex plane Ĉ = C ∪ {∞}. We are given for each a ∈A a matrix γa ∈ SL2(R)

with the properties

γa(Ĉ − Dā) = Da, γā = γ −1
a .

We write � = 〈γa : a ∈ A〉 for the group generated by the γa. Since the Da are
disjoint, the Ping-Pong Lemma shows that � is a free subgroup of SL2(R). An illustration

5 This is a difference from the notation of [BD17] that we make the reader aware of.
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FIG. 1. — An example of Schottky pairing with r = 2

of the current setup is given in Fig. 1. Any group obtained by this construction is called
a Schottky group. It is a result of Button [But98] that if X = �\H is a connected convex
co-compact Riemann surface as in our main theorems, then � is a Schottky group; we
now fix � and assume it arises from the above construction.

The elements of � can be encoded by words in the alphabet A as follows. A word

is a finite sequence

a = (a1, . . . , an), n ∈ N ∪ {0}
such that ai �= ai+1 for i = 1, . . . , n − 1. We say that n is the length of a and denote this
by |a| = n. We write W for the collection of all words, WN for the words of length N,
and W≥N for the words of length ≥ N. We write ∅ for the empty word and write W◦ =
W − {∅}. For a = (a1, . . . , an),b = (b1, . . . bm) ∈W we write

• a′ = (a1, . . . , an−1) if a = (a1, . . . , an) and n ≥ 1.
• a → b if either of a or b is empty, or else an �= b1, in which case (a1, . . . , an,

b1, . . . , bm) is in W◦ and we write ab for this concatenation.
• a � b if a,b ∈W◦ and an = b1, which case a′b is in W◦.

If a = (a1, . . . , an) ∈ W then we associate to a the group element γa
def= γa1 . . . γan

;
here γ∅ = id. The map a ∈ W �→ γa ∈ � is a one-to-one encoding of �. We write
a

def= (an, . . . , a1) and call this the mirror of a. Note that γa = γ −1
a . If a = (a1, . . . , an) ∈W◦

we let

Da = γa′(Dan
), Ia = γa′(Ian

)

and write |Ia| for the length of the open interval Ia.
The Bowen-Series map T : D → Ĉ is given by

T|Da
= γ −1

a = γā.

The Bowen-Series map is eventually expanding [Bor16, Proposition 15.5]; this will be
made explicit below so we do not give the general definition now. The limit set � = �(�)
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of �, defined in the Introduction, coincides with the non-wandering set of T:

�(�) =
∞⋂

n=1

T−n(D).

The limit set � is a compact T-invariant subset of R. Given a Hölder continuous map
ϕ : � → R, the topological pressure P(ϕ) can be defined through the variational formula:

P(ϕ) = sup
μ

(
hμ(T) +

∫

�

ϕdμ

)
,

where the supremum is taken over all T-invariant probability measures on �, and hμ(T)

stands for the measure-theoretic entropy. A celebrated result of Bowen [Bow79] says that
the map

σ �→ P
(−σ log

∣∣T′∣∣)

is convex,6 strictly decreasing and vanishes exactly at σ = δ(�), the Hausdorff dimension
of the limit set �. In addition, it is not difficult to see from the variational formula that
P(−σ log |T′|) tends to −∞ as σ → +∞. For simplicity, we will use the notation P(σ )

in place of P(−σ log |T′|). The pressure will play a role in some of the estimates in the
sequel.

2.2. Functional spaces and transfer operators. — Let V be any Hilbert space. If � is any
open subset of the complex numbers C, we consider the Bergman space H(�;V) that is
the space of V-valued holomorphic functions on � with finite norm with respect to the
given inner product

〈f , g〉 def=
∫

�

〈
f (x), g(x)

〉
V

dm(x).

Here dm is Lebesgue measure on �. If V is separable, then H(�;V) is a separable Hilbert
space.

Of particular interest is H(D;V). This splits as an orthogonal direct sum

H(D;V) =
⊕

a∈A
H(Da;V).

If {ek}∞
k=1 is any orthonormal basis of H(Da;C), and x1, x2 ∈ Da, then the sum

∞∑

k=1

ek(x1)ek(x2)
def= BDa

(x1, x2)

6 Convexity follows obviously from the variational formula above.
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converges and the resulting kernel is called the Bergman kernel of Da. It is given by the
explicit formula (cf. [Bor16, p. 378])

(2.1) BDa
(x1, x2) = r2

a

π [r2
a − (x2 − ca)(x1 − ca)]2

where ra, ca are the radius and center of Da.
Throughout the sequel, ρ : � → U(V) will be a unitary representation of the

Schottky group �. If Z ⊂W◦ is any finite subset of words, then we define

LZ,s,ρ[f ](x) =
∑

a∈Z
a�b

γ ′
a′(x)

sρ
(
γ −1

a′
)
f
(
γa′(x)

)
x ∈ Db, b ∈A.

The complex power γ ′
a′(x)s is defined by analytic continuation using that γ ′

a′(x) is positive
on Ib and never a negative real on Db. One has LZ,s,ρ : H(D;V) → H(D;V). Certain
particular choices of Z are made throughout the paper. The basic type of transfer oper-
ator that is considered corresponds to the choice Z = W2. We write Ls,ρ

def= LW2,s,ρ . This
operator can be written as

Ls,ρ[f ](x) =
∑

a∈A
a→b

γ ′
a(x)

sρ
(
γ −1

a

)
f
(
γa(x)

)
x ∈ Db, b ∈A.

In the following we follow Dyatlov and Zworski [DZ17, Section 2.4].

Definition 2.1. — A subset Z ⊂W◦ is a partition if there is N ≥ 0 such that for all a ∈W
with |a| ≥ N, there is a unique b ∈ Z that is a prefix of a.

One particular family of partitions, introduced by Bourgain and Dyatlov [BD17],
plays an important role in this paper. For any τ > 0 we define

Z(τ )
def= {

a ∈W◦ : |Ia| ≤ τ < |Ia′ |}.

It is shown by Dyatlov and Zworski [DZ17, Equations (2.7), (2.15)] that this is indeed a
partition. Not only is the partition Z(τ ) important to us, but so too is its mirror set

Z(τ )
def= {

a ∈W◦ : a ∈ Z(τ )
}
.

The reason for introducing this mirror set is to make Lemma 4.5 below work. Note that
Z(τ ) may not be a partition, although this will not matter. We write Lτ,s,ρ

def= LZ(τ ),s,ρ .
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2.3. The representations appearing in this paper. — In this paper we consider particular
types of representations ρ : � → U(V) as follows. We consider n ∈ N and the family of
symmetric groups Sn on n letters. Let Vn

def= �2({1, . . . , n}). The group Sn has a standard
representation stdn : Sn → U(Vn) where Sn acts by precomposition on �2 functions f :
{1, . . . , n} → C. This representation is not irreducible, but splits as an orthogonal direct
sum 1 ⊕ V0

n where V0
n is an irreducible representation of dimension n − 1. We write

std0
n : Sn → U(V0

n) for the corresponding homomorphism of the symmetric group.
We now build a representation from a homomorphism φn : � → Sn. Since � is

free, φn is described simply by choosing the images of a generating set of �, which may
be taken to be the γa with 1 ≤ a ≤ r. We consider

(2.2) ρn
def= stdn ◦ φn, ρ0

n

def= std0
n ◦ φn.

These depend on the choice of φn. Later in the paper we will view φn : � → Sn as a
random homomorphism; its law is described by choosing the φn(γa) with 1 ≤ a ≤ r in-
dependently and uniformly at random with respect to the uniform measure on Sn. This
gives random representations ρn and ρ0

n . We write En to refer to expectations of ran-
dom variables with respect to the random representation ρ0

n . For example, if γ ∈ �, then
Tr[ρ0

n (γ )] is a real random variable and we write En(Tr[ρ0
n (γ )]) for its expectation. At

other times we view φn, ρn, ρ0
n as fixed and coupled to one another; it will be clear from

the context whether we make probabilistic or deterministic statements.

2.4. Selberg zeta functions. — If X is any convex co-compact hyperbolic surface (not
necessarily connected), then the Selberg zeta function of X is defined for Re(s) > δ by

ZX(s)
def=

∏

γ∈P(X)

∞∏

k=0

(
1 − e−(s+k)l(γ )

)

where P(X) is the collection of primitive7 closed geodesics on X, and l(γ ) is the length of
such a geodesic. The function ZX(s) analytically continues to an entire function [Gui92,
GLZ04]. One has the following theorem due to Patterson and Perry [PP01, Theo-
rem 1.5] relating resonances of the Laplacian to the Selberg zeta function.

Theorem 2.2 (Patterson-Perry). — If X is any non-elementary convex co-compact hyperbolic

surface, then any resonance of X is a zero of ZX. Conversely, if s is a zero of ZX with Re(s) > 0 then s

is a resonance of X. In all cases, the order of the zero of ZX is equal to the multiplicity of the corresponding

resonance.

7 Primitive here means it is not an iterate of a shorter closed geodesic.
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We will also have a use for twisted Selberg zeta functions. If ρ : � → U(V) is any
finite dimensional unitary representation of � then we let

ZX,ρ(s)
def=

∏

γ∈P(X)

∞∏

k=0

det
(
1 − ρ(γ )e−(s+k)l(γ )

)
.

This converges to a holomorphic function in Re(s) > δ and extends to an entire function
by results in [FP17].

3. Estimates for derivatives

The following section contains certain technical but either easy or well-known es-
timates for derivatives of � that will be used in the sequel. The fundamental estimates for
derivatives of elements of � are the following:

Lemma 3.1.

Uniform contraction: There are C = C(�) > 0 and 0 < θ̄ < θ < 1 such that for all

a ∈W , b ∈A with a → b, and x ∈ Db,

(3.1) C−1θ̄ |a| ≤ ∣∣γ ′
a(x)

∣∣ ≤ Cθ |a|.

Bounded distortion I: There is K = K(�) > 0 such that for all b ∈ A, a ∈ W such that

a → b and all x1, x2 ∈ Db,

(3.2) e−|x1−x2|K ≤ |γ ′
a(x1)|

|γ ′
a(x2)| ≤ e|x1−x2|K.

Bounded distortion II: There is a constant c = c(�) > 0 such that for a ∈ W , b1, b2 ∈ A
with a → b1, b2 and x1 ∈ Db1 , x2 ∈ Db2 ,

(3.3)
|γ ′

a(x1)|
|γ ′

a(x2)| ≤ c.

Proof. — The first two properties can be found in [Nau14, Section 2]. The last
part is trivial if a = ∅. Otherwise, if |a| ≥ 1 we can write a = a′a with a′ ∈ W and
a′ → a → b1, b2. Then for xi ∈ Dbi

we have
∣∣γ ′

a(xi)
∣∣ = γ ′

a′
(
γa(xi)

)
γ ′

a(xi) i = 1,2.

We have |γ ′
a(x1)|

|γ ′
a(x2)| ≤ C by (3.1) and since now γa(x1) and γa(x2) are in Da, (3.2) gives

|γ ′
a′(γa(x1))|

|γ ′
a′(γa(x1))| ≤ exp

(
K sup

b∈A
diameter(Db)

)
.

Equation (3.3) now follows. �
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In the rest of the paper, for any a ∈W◦, we define

ϒa
def= |Ia|.

We set ϒ∅
def= 1. For a ∈W◦, we have

(3.4) ϒa ≤ ϒa′

since Ia ⊂ Ia′ . Therefore there is c = c(�) > 0 such that for any a ∈W

(3.5) 0 < ϒa ≤ c.

We next recall some useful results of Bourgain-Dyatlov from [BD17, Section 2].

Lemma 3.2. — There is a constant K0 = K0(�) > 1 such that for any a = (a1, . . . , an) ∈
W◦ and x ∈ Dan

K−1
0 ϒa ≤ ∣∣γ ′

a′(x)
∣∣ ≤ K0ϒa.

Proof. — For x ∈ Ian
this is [BD17, Lemma 2.5, (20)]. The more general result

here follows by combining [BD17, Lemma 2.5] with the bounded distortion estimate
(3.3). �

The following lemma is [BD17, Lemma 2.10, (30)].

Lemma 3.3. — There is a constant K1 = K1(�) > 1 such that for τ ∈ (0,1), for any

a ∈ Z(τ ) we have

K−1
1 τ ≤ ϒa ≤ K1τ.

The next lemma says that ϒ is coarsely multiplicative.

Lemma 3.4. — There is a constant K2 = K2(�) > 1 such that for all a,b ∈ W◦ with

a � b

K−1
2 ϒaϒb ≤ ϒa′b ≤ K2ϒaϒb,

and for a,b ∈W with a → b

(3.6) K−1
2 ϒaϒb ≤ ϒab ≤ K2ϒaϒb.

Proof. — The first set of inequalities is [BD17, Lemma 2.7]. If either a or b is ∅,
then (3.6) is trivially true with K2 = 1. So assume a,b ∈W◦. Then (3.6) follows by com-
bining [BD17, Lemmas 2.6 and 2.7]. �

We also have the following ‘mirror’ estimate for ϒ .
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Lemma 3.5 (Mirror estimate, [BD17, Lemma 2.8]). — There is a constant K3 =
K3(�) > 1 such that for any a ∈W

K−1
3 ϒa ≤ ϒa ≤ K3ϒa.

We now state some lemmas about the set Z(τ ).

Lemma 3.6. — There is a constant C1 = C1(�) > 1 such that for a = (a1, . . . , an) ∈
Z(τ ), for any x ∈ Dan

we have

C−1
1 τ ≤ ∣

∣γ ′
a′(x)

∣
∣ ≤ C1τ.

Proof. — This follows by combining Lemmas 3.2 and 3.3. �

Given Lemma 3.6, we can make the following estimate on the word lengths of
elements a ∈ Z(τ ).

Lemma 3.7. — There are constants D = D(�) > 1 and κ = κ(�) > 0 such that if a ∈
Z(τ ), then

D−1 log τ−1 − κ ≤ |a| ≤ D log τ−1 + κ.

Proof. — Write a = (a1, . . . , an). Pick x ∈ Dan
. By Lemma 3.6 we have

C−1
1 τ ≤ ∣∣γ ′

a′(x)
∣∣ ≤ C1τ,

and combining this with (3.1) gives

C−1
1 C−1θ̄ |a′| ≤ τ ≤ CC1θ

|a′|.

Since |a| = |a′| + 1, this gives the result after taking logarithms and rearranging. �

We now note

Lemma 3.8. — There is 0 < τ0 < 1 such that for τ < τ0, Z(τ ) ⊂W≥2.

Proof. — This is a direct consequence of Lemma 3.7. �

Throughout the sequel, τ0 will always be the parameter given by Lemma 3.8. It will also be
useful to know roughly how many elements there are in Z(τ ). This is given by [BD17,
Lemma 2.13] (noting that |Z(τ )| = |Z(τ )|).

Lemma 3.9. — There is C2 = C2(�) > 1 such that for τ ∈ (0,1]
C−1

2 τ−δ ≤ ∣∣Z(τ )
∣∣ ≤ C2τ

−δ.
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To conclude this section, we record that certain sums of derivatives are related to
the pressure functional.

Lemma 3.10. — For all σ1,Q ∈ R such that 0 ≤ σ1 < Q there is a constant C =
C(σ1,Q) > 0 such that for all N ∈ N0 and σ ∈ [σ1,Q] we have

(3.7)
∑

a∈A

∑

a∈WN
a�a

sup
Ia

|γa′ |σ ≤ C exp
(
NP(σ1)

)
,

and

(3.8)
∑

a∈WN

ϒσ
a ≤ C exp

(
NP(σ1)

)
.

Proof. — The estimate (3.7) is a standard estimate that appears in [Nau14,
Lemma 3.1]. The estimate (3.8) follows by combining (3.7) with Lemma 3.2 and in-
creasing C. �

4. Transfer operators and zeta functions

4.1. Zeta functions.

Lemma 4.1. — For any Z ⊂ W≥2, and any finite dimensional unitary representation ρ of �,

the operator LZ,s,ρ is trace class on H(D;V).

Proof. — The proof is an easy adaptation of [Bor16, Lemma 15.7]. The condition
Z ⊂W≥2 rules out LZ,s,ρ having any summand that acts as the identity on some Da. �

Corollary 4.2. — Let (ρ,V) be any finite dimensional unitary representation of �.

(1) The operator Ls,ρ is trace class on H(D;V).

(2) For τ < τ0, the operator Lτ,s,ρ is trace class on H(D;V).

Given Corollary 4.2 we can define zeta functions

ζρ(s)
def= det(1 −Ls,ρ),

ζτ,ρ(s)
def= det

(
1 −L2

τ,s,ρ

)
.

The determinants that appear here are Fredholm determinants. The reason that we have
used L2

τ,s,ρ in the definition of ζτ,ρ(s) is that it will later allow us to estimate log |ζτ,ρ(s)| in
terms of the Hilbert-Schmidt norm of Lτ,s,ρ rather than the trace norm (cf. (6.3)). On the
other hand, we do not square Ls,ρ in the definition of ζρ(s) so that we can access known
results about ζρ(s).
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By the general theory of Fredholm determinants we have

Lemma 4.3. — Let (ρ,V) be any finite dimensional unitary representation of �.

(1) The function ζρ(s) is an entire function of s ∈ C and

ζρ(s) = 0 ⇐⇒ ∃ u ∈H(D;V) : Ls,ρu = u.

(2) If τ < τ0 then ζτ,ρ(s) is an entire function of s ∈ C and

ζτ,ρ(s) = 0 ⇐⇒ ∃ u ∈H(D;V) : L2
τ,s,ρu = u.

The relevance of the zeta functions ζρ(s) are the following:

Proposition 4.4. — Let φn : � → Sn be a fixed homomorphism, and (ρn,Vn) the unitary

representation corresponding to φn via (2.2). Let Xn be the n-cover of X corresponding to φn.

(1) We have ζρn
(s) = ZX,ρn

(s) = ZXn
(s).

(2) We have ZXn
(s) = ZX(s)ζρ0

n
(s).

Proof. — Proof of Part 1. A special case of a result of Jakobson, Naud, and Soares
[JNS19, Proposition 2.2] for arbitrary finite-dimensional unitary representations gives

ζρn
(s) = ZX,ρn

(s)

where both sides are entire functions of s.
If Xn is connected, then Xn = �n\H for some �n ≤ � and ρn = Ind�

�n
1, the in-

duction of the trivial representation from �n to �. In this case the Venkov-Zograf type
induction formula proved by Fedosova and Pohl in [FP17, Theorem 6.1(ii)] (cf. [VZ82])
gives

ZX,ρn
(s) = ZXn

(s).

If Xn is not connected, let X(1)
n , . . . ,X(m)

n denote its connected components, and let X(j)
n =

� j
n\H with � j

n ≤ �. If we let ρ j
n = Ind�

�
j
n
1 then we have ρn = ⊕m

j=1 ρ j
n. Then

ZXn
(s) =

m∏

j=1

ZX(j)
n
(s) =

m∏

j=1

ZX,ρ
j
n
(s) = ZX,ρn

(s)

where the first equality is by definition of the Selberg zeta functions, the second equality
uses the induction formula [FP17, Theorem 6.1(ii)] and the last inequality uses the factor-
ization formula [FP17, Theorem 6.1(i)]. Thus we have proved ζρn

(s) = ZX,ρn
(s) = ZXn

(s).
This proves Part 1.

Proof of Part 2. Using [JNS19, Proposition 2.2] again gives

(4.1) ζρ0
n
(s) = ZX,ρ0

n
(s).
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Since ρn = 1 ⊕ ρ0
n , we have

ZXn
(s) = ZX,ρn

(s) = ZX(s)ZX,ρ0
n
(s) = ZX(s)ζρ0

n
(s)

where the first equality used Part 1 of the lemma, the second used the factorization for-
mula [FP17, Theorem 6.1(i)], and the third used (4.1). This proves Part 2. �

The following lemma adapts (a special case of) [DZ17, Lemma 2.4] to our vector-
valued setting. The proof is essentially the same.

Lemma 4.5. — For all sufficiently small τ > 0, if u ∈H(D;V) is such that Ls,ρu = u, then

Lτ,s,ρu = u.

Corollary 4.6. — For all sufficiently small τ > 0, if ZXn
(s) = 0 and ZX(s) �= 0, then

ζτ,ρ0
n
(s) = 0.

Proof. — If ZXn
(s) = 0, ZX(s) �= 0, then by Proposition 4.4, Part 2, ζρ0

n
(s) = 0.

Then by Lemma 4.3, Part 1, there is u ∈ H(D;V0
n) such that Ls,ρ0

n
u = u. By Lemma 4.5,

this implies that Lτ,s,ρ0
n
u = u, and hence L2

τ,s,ρ0
n
u = u. Then by Lemma 4.3, Part 2,

ζτ,ρ0
n
(s) = 0. �

4.2. The Hilbert-Schmidt norm of the transfer operator. — Corollary 4.6 reduces control-
ling zeros of the Selberg zeta function of Xn that do not come from X to controlling zeros
of ζτ,ρ0

n
(s). To do this, we will use Jensen’s formula, but before doing so, we collect some

estimates. The first will be a pointwise lower bound on |ζτ,ρ(s)| when s is a sufficiently
large real number (cf. Section 4.3). The other will be an estimate for the expectation of
the squared Hilbert-Schmidt norm ‖Lτ,s,ρ‖2

H.S. for ρ = ρ0
n . One input to the latter result

is a deterministic (non-random) expression for ‖Lτ,s,ρ‖2
H.S. that we give now.

Lemma 4.7. — Let (ρ,V) be any finite dimensional unitary representation of �. We have for

any s ∈ C and τ ≤ τ0

‖Lτ,s,ρ‖2
H.S. =

∑

a,b∈A

∑

a1,a2∈Z(τ )
a�a1,a2�b

Tr
(
ρ
(
γa′

1
γ −1

a′
2

))

×
∫

Db

γ ′
a′

1
(x)sγ ′

a′
2
(x)sBDa

(
γa′

1
(x), γa′

2
(x)

)
dm(x).

Here and henceforth we write a � a1,a2 � b to mean that both a � a1 � b and a � a2 � b.

Proof. — This is similar to arguments given by Jakobson and Naud in [JN16,
pp. 466–467]. For a ∈ A, let {ea

k}∞
k=1 be an orthonormal basis for H(Da;C) and let
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{vj}dim V
j=1 be an orthonormal basis for V. Then {ea

k ⊗ vj : a ∈ A, k ∈ N,1 ≤ j ≤ dim V } is
an orthonormal basis for H(D;V). We have

‖Lτ,s,ρ‖2
H.S.

= Tr
(
L∗

τ,s,ρLs,τ,ρ

)

=
∑

a∈A,k∈N,1≤j≤dim V

〈
Lτ,s,ρ

[
ea

k ⊗ vj

]
,Lτ,s,ρ

[
ea

k ⊗ vj

]〉

=
∑

a∈A,k∈N,1≤j≤dim V

∑

b∈A

∫

Db

〈
Lτ,s,ρ

[
ea

k ⊗ vj

]
(x),Lτ,s,ρ

[
ea

k ⊗ vj

]
(x)

〉
dm(x)

=
∑

a∈A,k∈N,1≤j≤dim V

∑

b∈A

∑

a1,a2∈Z(τ )
a1,a2�b

∫

Db

γ ′
a′

1
(x)sγ ′

a′
2
(x)s

〈
ρ
(
γ −1

a′
1

)
ea

k ⊗ vj

(
γa′

1
(x)

)
, ρ

(
γ −1

a′
2

)
ea

k ⊗ vj

(
γa′

2
(x)

)〉
V

dm(x)

=
∑

a,b∈A,k∈N

∑

a1,a2∈Z(τ )
a�a1,a2�b

Tr
(
ρ
(
γa′

1
γ −1

a′
2

))∫

Db

γ ′
a′

1
(x)sγ ′

a′
2
(x)sea

k

(
γa′

1
(x)

)
ea

k

(
γa′

2
(x)

)
dm(x)

=
∑

a,b∈A

∑

a1,a2∈Z(τ )
a�a1,a2�b

Tr
(
ρ
(
γa′

1
γ −1

a′
2

))

∫

Db

γ ′
a′

1
(x)sγ ′

a′
2
(x)sBDa

(
γa′

1
(x), γa′

2
(x)

)
dm(x).

The final application of Fubini’s theorem is justified since we assume τ ≤ τ0, so Z(τ ) ⊂
W≥2, and each γa′

1
, γa′

2
maps Db into a compact subset of Da, coupled with the fact that

the convergence of
∑∞

k=1 ea
k(x1)ea

k(x2) to BDa
(x1, x2) is uniform on compact subsets of Da

(see, for example, [Bor16, Proof of Theorem 15.7]). �

4.3. A pointwise estimate for the modulus of a zeta function.

Proposition 4.8 (Pointwise bound for |ζτ,ρ(s)|). — There is τ1 ≤ τ0 and B ∈ R with B > 2δ

such that if τ ≤ τ1, if s ∈ [B,∞), and (ρ,V) is any finite dimensional unitary representation of �,

we have

− log
∣∣ζτ,ρ(s)

∣∣ ≤ (dim V)τ.
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Remark 4.9. — A crucial restriction in Proposition 4.8 is Re(s) > 2δ that results
from the presence of L2

τ,s,ρ in the definition of ζτ,ρ .

Proof of Proposition 4.8. — We can write

ζτ,ρ(s) = det
(
1 −L2

τ,s,ρ

) = exp
(

−
∞∑

k=1

1
k

TrL2k
τ,s,ρ

)

whenever the series inside the exponential is absolutely convergent. We have if x ∈ Db

L2k
τ,s,ρ[f ](x) =

∑

a1,...,a2k∈Z(τ )
a1�a2�···�a2k�b

γ ′
a′

1a′
2...a

′
2k
(x)sρ

(
γ −1

a′
1a′

2...a
′
2k

)
f
(
γa′

1a′
2...a

′
2k
(x)

)
.

Carefully applying the Lefschetz fixed point formula [Bor16, Lemma 15.9] now gives

TrL2k
τ,s,ρ =

∑

a1,...,a2k∈Z(τ )
a2k�a1�a2�···�a2k

Tr
[
ρ
(
γ −1

a′
1a′

2...a
′
2k

)] γ ′
a′

1a′
2...a

′
2k
(xa′

1a′
2...a

′
2k
)s

1 − γ ′
a′

1a′
2...a

′
2k
(xa′

1a′
2...a

′
2k
)

where xa′
1a′

2...a
′
2k

∈ R is the unique attracting fixed point of γ a′
1a′

2...a
′
2k

. Let b denote the last
letter of a2k .

By using Lemmas 3.2 and 3.4 (2k − 1 times) we obtain

γ ′
a′

1a′
2...a

′
2k
(xa′

1a′
2...a

′
2k
) ≤ K0ϒa′

1a′
2···a′

2k−1a2k

≤ K0K2k−1
2 ϒa1 . . .ϒa2k

.

Now using Lemma 3.3 we obtain

γ ′
a′

1a′
2...a

′
2k
(xa′

1a′
2...a

′
2k
) ≤ K0K2k−1

1 K2k−1
2 τ 2k ≤ Kkτ 2k

for some K > 1. We now assume

τ1 ≤ 1
2

K−1

so that given τ ≤ τ1 we have

γ ′
a′

1a′
2...a

′
2k
(xa′

1a′
2...a

′
2k
) ≤ 2−2k.

We may also use the simple estimate Tr[ρ(γ −1
a′

1a′
2...a

′
2k
)] ≤ dim V. Putting this together gives

∣
∣TrL2k

τ,s,ρ

∣
∣ ≤ (dim V)(Kτ)2ks

∣
∣Z(τ )

∣
∣2k

.
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Hence by Lemma 3.9 we obtain
∣
∣TrL2k

τ,s,ρ

∣
∣ ≤ (dim V)(Kτ)2ksC2k

2 τ−2kδ = (dim V)K2ksC2k
2 τ (2s−2δ)k.

Choose B such that B > max(1,2δ) and

KB ≥ C2,

with the effect of obtaining |TrL2k
τ,s,ρ| ≤ (dim V)K4ksτ (2s−2δ)k = (dim V)(K4τ (2− 2δ

s
))sk when

s ≥ B. Now decrease τ1, if necessary, to ensure

K4τ
(1− 2δ

B )

1 ≤ 2−1.

Note that 1 − 2δ

B > 0, so this is indeed possible. The result of our choices is that when
s ≥ B ≥ 1 and τ ≤ τ1

∣∣det
(
1 −L2

τ,s,ρ

)∣∣ = exp
(

Re
(

−
∞∑

k=1

1
k

TrL2k
τ,s,ρ

))

≥ exp
(

−(dim V)

∞∑

k=1

(
τ

2

)sk)
,

so

− log
∣
∣ζτ,ρ(s)

∣
∣ ≤ (dim V)

∞∑

k=1

(
τ

2

)sk

≤ (dim V)

∞∑

k=1

(
τ

2

)k

≤ (dim V)τ. �

5. The expectation of the Hilbert-Schmidt norm of the transfer operator

5.1. Statement of the main probabilistic estimate. — The main estimate we wish to prove
in this Section 5 is the following.

Proposition 5.1. — Given H1 > 0, σ1 > 3δ

4 , and Q > σ1 there are constants ε =
ε(�,H1,Q, σ1) > 0, and n0 = n0(�,H1,Q, σ1) > 0 such that if τ = n− 2

δ , n ≥ n0, s = σ + it

with σ ∈ [σ1,Q] and |t| ≤ H1 we have

En‖Lτ,s,ρ0
n
‖2

H.S. ≤ n−ε.

5.2. The expected value of the trace of a word. — The key probabilistic estimate for ρ0
n

that we use in this paper is essentially due to Broder-Shamir [BS87], and in the stronger
form that we use it can be deduced from the work of Puder [Pud15]. We will explain how
to deduce the result below.
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Theorem 5.2 (Broder-Shamir, Puder). — Let γ ∈ � have reduced word length t. Then for any

n > t2

∣
∣En

(
Tr

[
ρ0

n (γ )
])∣∣ ≤

⎧
⎪⎨

⎪⎩

n − 1 if γ = id,

d(q) − 1 + t4

n−t2
if γ = γ

q

0 , q ≥ 2 and q maximal,
t4

n−t2
otherwise.

Here d(q) is the number of divisors of q.

Remark 5.3. — Broder and Shamir [BS87] only prove upper bounds for
En(Tr[ρ0

n (γ )]), whereas it is crucial for us to have upper and lower bounds, since we
deal with complex weighted sums of the random variables Tr[ρ0

n (γ )].

Deduction of Theorem 5.2. — Let γ be an element of the non-abelian free group �

with reduced word length t. Note that Theorem 5.2 is trivial if γ = id, so we assume
this is not the case. Puder proves in [Pud15, p. 885] that for n > t one has an absolutely
convergent Laurent series

(5.1) En

(
Tr

[
ρn(γ )

]) =
∞∑

S=0

aS(γ )

nS

where each aS(γ ) ∈ Z. Puder associates to γ a quantity π(γ ) ∈ N0 ∪ {∞} called the
primitivity8 rank of γ . For our purposes, the only thing we need to know is that π(γ ) = 0 if
and only if γ = id, and π(γ ) = 1 if and only if γ is a proper power. Puder also considers
a certain finite set Crit(γ ) of subgroups of the free group. Again, the only thing we need
to know is that if γ = γ

q

0 , q ≥ 2 and q maximal, then |Crit(γ )| = d(q) − 1 [PP15, p. 67].
The following facts are proven by Puder in [Pud15, pp. 885–887]:

• We have a0(γ ) = 1, unless π(γ ) = 1, in which case

a0(γ ) = ∣∣Crit(γ )
∣∣+ 1.

• If 1 ≤ S < π(γ ) − 1 then

aS(γ ) = 0.

• If π(γ ) �= 1 then

aπ(γ )−1 = ∣
∣Crit(γ )

∣
∣.

8 For good reasons, ‘primitivity’ in the setting of [Pud15] does not coincide with the notion of primitive closed
geodesics, although they are related. However, this is not relevant to the current proof.
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• For any S ≥ 0
∣
∣aS(γ )

∣
∣ ≤ t2S+2.

Since Tr[ρn(γ )] = 1 + Tr[ρ0
n (γ )], if γ = γ

q

0 , q ≥ 2 and q maximal, we have from (5.1)

∣
∣En

(
Tr

[
ρ0

n (γ )
])∣∣ ≤ d(q) − 1 +

∞∑

S=1

t2S+2

nS
= d(q) − 1 + t4

n − t2
.

If γ is neither a proper power nor the identity then the estimate is similar, but there is no
d(q) − 1 term since π(γ ) ≥ 2. �

5.3. Majorization of the expectation of the Hilbert-Schmidt norm.

Lemma 5.4. — Given Q,H1 > 0 there is a constant C = C(�,H1,Q) such that if τ ≤ τ0

and s = σ + it with σ ∈ (0,Q] and |t| ≤ H1,

(5.2) En‖Lτ,s,ρ0
n
‖2

H.S. ≤ Cτ 2σ
∑

a,b∈Z(τ )

∣∣En

[
Tr

(
ρ0

n

(
γa′γ −1

b′
))]∣∣.

Proof. — Suppose we are given H1 as in the statement of the lemma. Taking the
expectation of the expression given in Lemma 4.7 gives

En‖Lτ,s,ρ0
n
‖2

H.S. =
∑

a,b∈A

∑

a1,a2∈Z(τ )
a�a1,a2�b

En

[
Tr

(
ρ0

n

(
γa′

1
γ −1

a′
2

))]
(5.3)

×
∫

Db

γ ′
a′

1
(x)sγ ′

a′
2
(x)sBDa

(
γa′

1
(x), γa′

2
(x)

)
dm(x).

We wish to estimate the modulus of all quantities appearing in the integral on the right
hand side. Firstly the assumption that τ ≤ τ0 ensures Z(τ ) ⊂ W≥2, and so each γa′

1
, γa′

2

maps Db into a compact subset of Da. It then follows from the explicit expression for the
Bergman kernel in (2.1) that there is K = K(�) > 0 such that

(5.4) BDa

(
γa′

1
(x), γa′

2
(x)

) ≤ K

for all a, x,a1,a2 as in (5.3).
By definition, if s = σ + it,

(
γ ′

a′
1
(x)

)s = exp((σ + it)
(
log

∣∣γ ′
a′

1
(x)

∣∣+ i arg
(
γ ′

a′
1
(x)

))

where arg is the principal value of the argument, arg : C − R≤0 → (−π,π). Hence
∣∣(γ ′

a′
1
(x)

)s∣∣ = exp(σ log
∣∣γ ′

a′
1
(x)

∣∣− t arg
(
γ ′

a′
1
(x)

) ≤ eπ |t|∣∣γ ′
a′

1
(x)

∣∣σ .
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Therefore by Lemma 3.6 for some c = c(H1,Q) > 0 we have for |t| ≤ H1

(5.5)
∣∣(γ ′

a′
1
(x)

)s∣∣ ≤ cτ σ ,

for all a′
1, x in (5.3), and the same for a2 in place of a1. Hence applying the triangle

inequality to (5.3) and using (5.4) and (5.5), together with the fact that the Db have finite
Lebesgue measure gives

En‖Lτ,s,ρ0
n
‖2

H.S. ≤ C0τ
2σ

∑

a,b∈A

∑

a1,a2∈Z(τ )
a�a1,a2�b

∣
∣En

[
Tr

(
ρ0

n

(
γa′

1
γ −1

a′
2

))]∣∣

≤ Cτ 2σ
∑

a,b∈Z(τ )

∣∣En

[
Tr

(
ρ0

n

(
γa′γ −1

b′
))]∣∣

for some C = C(�,H1,Q) whenever |t| ≤ H1 and τ ≤ τ0. �

The next step is to input the estimates of Theorem 5.2 into the estimate of
Lemma 5.4. To organize the result we introduce, for each q ∈ Z≥2, the set

PowerPairs(τ ; q)
def= {

(a,b) ∈ Z(τ ) × Z(τ ), γa′γ −1
b′

is a qth power in � with q maximal
}
,

and

PowerPairs(τ )
def=

⋃

q≥2

PowerPairs(τ ; q).

Notice that in the above, γa′γ −1
b′ �= id. We will show

Lemma 5.5. — Given Q,H1, α, ε > 0, there are constants C = C(�,H1,Q) > 0 and

n0 = n0(�, ε,α) such that if τ = n−α and s = σ + it with σ ∈ (0,Q], |t| ≤ H1, and n ≥ n0, we

have

En‖Lτ,s,ρ0
n
‖2

H.S. ≤ Cτ 2σ

(
nτ−δ + nε

∣
∣PowerPairs(τ )

∣
∣+ 1

n1−ε
τ−2δ

)
.

Proof. — We will input Theorem 5.2 into Lemma 5.4. For this to be valid we need
to control the word lengths of elements of Z(τ ). By Lemma 3.7, all a ∈ Z(τ ) have |a| ≤
c log τ−1 + κ , so if τ = n−α with α > 0,

|a| ≤ cα log n + κ <
1
2

n
1
2

for n sufficiently large, say n ≥ n0. In this case, if a,b ∈ Z(τ ) the reduced word length of
γa′γ −1

b′ is

< n
1
2
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so we may apply Theorem 5.2 to En[Tr(ρ0
n (γa′γ −1

b′ ))]. Moreover, if t is the reduced word
length of γa′γ −1

b′ , we have t ≤ 2cα log n + κ so for any ε > 0, we have

t2

n − t2
≤ 1

n1−ε

when n ≥ n0, after increasing n0 if necessary. Finally, in the case γa′γ −1
b′ is a qth power in

the free group �, with q ≥ 2 we must have q ≤ t and so d(q) ≤ t ≤ 2cα log n + κ ≤ nε for
any ε > 0 and n ≥ n0(ε) (here we increase n0 again if necessary).

With these estimates in hand, we partition the range of the sum of the right hand
of (5.2) according to the following three cases:

• γa′γ −1
b′ is the identity; if this is the case then |En[Tr(ρ0

n (γa′γ −1
b′ ))]| = n − 1 ≤ n.

We observe that γa′γ −1
b′ = id implies γa′ = γb′ , but since the map a → γa is one-

to-one, this forces a′ = b′. Therefore the number of pairs (a,b) of this type is
≤ |A||Z̄(τ )| ≤ |A|C2τ

−δ by Lemma 3.9. So in total, these pairs contribute at
most

(5.6) C|A|C2τ
2σ nτ−δ

to the bound for En‖Lτ,s,ρ0
n
‖2

H.S. given in (5.2).
• γa′γ −1

b′ is a qth power with q maximal, q ≥ 2. In this case, Theorem 5.2 gives
∣
∣En

[
Tr

(
ρ0

n

(
γa′γ −1

b′
))]∣∣ ≤ d(q) − 1 + 1

n1−ε
≤ 2nε

for n ≥ n0. The total number of these pairs (for all possible q) is |PowerPairs(τ )|
so in total, these pairs contribute at most

(5.7) 2Cτ 2σ nε
∣∣PowerPairs(τ )

∣∣

to (5.2).
• If γa′γ −1

b′ is not the identity and not a proper power, then Theorem 5.2 gives
∣
∣En

[
Tr

(
ρ0

n

(
γa′γ −1

b′
))]∣∣ ≤ 1

n1−ε
.

We overestimate how many pairs of this kind there are by counting all pairs,
of which there are |Z̄(τ )|2 ≤ C2

2τ
−2δ by Lemma 3.9. So in total, these pairs

contribute at most

(5.8) CC2
2τ

2σ τ−2δ

n1−ε

to (5.2).

Summing up the bounds (5.6), (5.7), and (5.8) gives the result. �

In the next section, we will estimate |PowerPairs(τ )|.
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5.4. Estimating the size of PowerPairs(τ ). — Our goal is now to prove the following
proposition controlling the size of PowerPairs(τ ).

Proposition 5.6. — For any ε > 0, there is τ2 = τ2(�, ε) such that for τ ≤ τ2

∣
∣PowerPairs(τ )

∣
∣ ≤ τ−δ−ε.

In the remainder of this Section 5.4 we prove Proposition 5.6.
We decompose PowerPairs(τ ) as follows. We introduce integer parameters

L,R ≥ 0, M1,M2 ≥ 0, and q ≥ 2. For such parameters, let PowerPairs(τ,L,M1,M2,R; q)

be the subset of PowerPairs(τ ; q) consisting of those (a,b) ∈ PowerPairs(τ ; q) with

∣
∣a′∣∣ = N1

def= L + M1 + R,

∣∣b′∣∣ = N2
def= L + M2 + R,

a′ = (a1, . . . , aN1), b′ = (b1, . . . , bN2),

a1 = b1, a2 = b2, . . . , aL = bL, aL+1 �= bL+1,

aN1 = bN2, aN1−1 = bN2−1, . . . , aN1−R+1 = bN2−R+1, aN1−R �= bN2−R.

Since every element of PowerPairs(τ ) belongs to some PowerPairs(τ,L,M1,M2,R; q),
we have

(5.9)
∣∣PowerPairs(τ )

∣∣ ≤
∑

L,M1,M2,R≥0,q≥2

∣∣PowerPairs(τ,L,M1,M2,R; q)
∣∣.

We will estimate |PowerPairs(τ,L,M1,M2,R; q)| in the following lemma.

Lemma 5.7. — There are constants D > 0 and κ ∈ R depending only on � such that

PowerPairs(τ,L,M1,M2,R; q) is empty unless

(5.10) D−1 log τ−1 − κ ≤ N1, N2 ≤ D log τ−1 + κ,

and

(5.11) 2 ≤ q ≤ D log τ−1 + κ.

Under the same assumptions as Proposition 5.6, and assuming (5.10) holds, there is a constant K =
K(�) > 0 such that

(5.12)
∣∣PowerPairs(τ,L,M1,M2,R; q)

∣∣ ≤ Kτ−δ.

Proof. — For the first statement of the lemma, if (a,b) ∈ PowerPairs(τ,L,M1,

M2,R; q), since |a′| = N1, |b′| = N2, and a,b ∈ Z(τ ), Lemma 3.7 implies (5.10) must
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hold; therefore PowerPairs(τ,L,M1,M2,R; q) is empty if (5.10) does not hold. Moreover
since 2 ≤ q ≤ N1 + N2, after doubling D and κ , (5.11) must hold also.

Now we prove (5.12) assuming (5.10) holds. For (a,b) ∈ PowerPairs(τ,L,M1,

M2,R; q) we have

a′ = cAd, b′ = cBd

where |c| = L, |d| = R, |A| = M1 and |B| = M2. Therefore

γa′γ −1
b′ = γcγAγdγ

−1
d γ −1

B γ −1
c = γcγAγ

−1
B γ −1

c .

Since γa′γ −1
b′ is a qth power, with q maximal, γAγ

−1
B is also a qth power, with q maximal,

as they are conjugate in �. Since the first letters of A and B are not the same, and the
last letters of A and B are not the same, we have A → B → A, in other words, the word
AB is cyclically reduced. It now follows that there is some u ∈W◦ with |u| = M1+M2

q
and

u → u (i.e. u is also cyclically reduced) such that

AB = uu . . .u︸ ︷︷ ︸
q

;

AB is q repeated copies of u. Therefore

(5.13) A = uu . . .u︸ ︷︷ ︸
q1

v1, B = ūū . . . ū︸ ︷︷ ︸
q2

v2

with v1 → v2 and

v1v2 = u,(5.14)

q1 + q2 = q − 1.

Our estimates will crucially rely on the observation that for fixed L,M1,M2,R, q, choosing c,d,u
specifies a′ and b′ and hence specifies a and b except for their last letters.

We will use the shorthand um def= uu . . .u︸ ︷︷ ︸
m

for m ∈ N. From (5.13), using Lemma 3.4

three times gives

ϒa′ ≤ K3
2ϒcϒuq1 ϒv1ϒd

and using the same estimate in addition to the mirror estimate of Lemma 3.5 gives

ϒb′ ≤ K3
2ϒcϒuq2 ϒv2ϒd

≤ K3
2K3ϒcϒuq2 ϒv2ϒd
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Therefore, now using Lemma 3.4 in the opposite direction together with (5.14) we obtain

ϒa′ϒb′ ≤ K6
2K3ϒ

2
c ϒuq1 ϒuq2 ϒv1ϒv2ϒ

2
d(5.15)

≤ K7
2K3ϒ

2
c ϒuq1 ϒuq2 ϒuϒ

2
d

≤ K9
2K3ϒ

2
c ϒuqϒ2

d.

To exploit these estimates, we note that by Lemma 3.3, we have
∣∣PowerPairs(τ,L,M1,M2,R; q)

∣∣

≤ K
δ
2
1 τ−δ

∑

(a,b)∈PowerPairs(τ,L,M1,M2,R;q)
ϒ

δ
2

a ϒ
δ
2

b

≤ K
δ
2
1 τ−δ

∑

(a,b)∈PowerPairs(τ,L,M1,M2,R;q)
ϒ

δ
2

a′ϒ
δ
2

b′

where the last inequality is by (3.4). Let

� = �(τ,L,M1,M2,R, q)
def=

∑

(a,b)∈PowerPairs(τ,L,M1,M2,R;q)
ϒ

δ
2

a′ϒ
δ
2

b′,

so we have

(5.16)
∣
∣PowerPairs(τ,L,M1,M2,R; q)

∣
∣ ≤ K

δ
2
1 τ−δ�.

By (5.15)

� =
∑

(a,b)∈PowerPairs(τ,L,M1,M2,R;q)
ϒ

δ
2

a′ϒ
δ
2

b′(5.17)

≤ |A|2
∑

c,u,d

(
K9

2K3

) δ
2 ϒδ

cϒ
δ
2

uqϒδ
d

≤ |A|2(K9
2K3

) δ
2

(∑

c∈WL

ϒδ
c

)( ∑

u∈W(M1+M2)/q

ϒ
δ
2

uq

)( ∑

d∈WR

ϒδ
d

)
.

By Lemma 3.10 there is some C = C(�) > 0 such that

(5.18)
∑

c∈WL

ϒδ
c ≤ C exp

(
LP(δ)

) = C,
∑

d∈WR

ϒδ
d ≤ C exp

(
RP(δ)

) = C.

To deal with
∑

u∈W(M1+M2)/q
ϒ

δ
2

uq , we write

q = 2q̃ + r
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where r = 1 if q is odd and r = 0 if q is even. Now using Lemma 3.4 twice and the uniform
bound for ϒu from (3.5) we obtain

ϒu ≤ K2
2ϒuq̃ϒuq̃ϒur ≤ cK2

2ϒ
2
uq̃ .

Therefore

∑

u∈W(M1+M2)/q

ϒ
δ
2

uq ≤ (
cK2

2

) δ
2

∑

u∈W(M1+M2)/q

ϒδ

uq̃(5.19)

≤ (
cK2

2

) δ
2

∑

U∈Wq̃(M1+M2)/q

ϒδ
U

≤ C
(
cK2

2

) δ
2 exp

(
q̃(M1 + M2)

q
P(δ)

)

= C
(
cK2

2

) δ
2 ,

where the final inequality is by Lemma 3.10 and C = C(δ) is the constant provided there.
Therefore in total, inputting our bounds (5.18) and (5.19) into (5.17) we get

� ≤ K̃

for K̃ = K̃(�) > 0. Hence by (5.16)

∣
∣PowerPairs(τ,L,M1,M2,R; q)

∣
∣ ≤ Kτ−δ

for some K = K(�) > 0. �

Now we can prove Proposition 5.6.

Proof of Proposition 5.6. — Combining (5.9) with Lemma 5.7 we obtain for constants
D, κ > 0

∣
∣PowerPairs(τ )

∣
∣ ≤

∑

0≤L,M1,M2,R,q≤D log τ−1+κ

Kτ−δ

≤ K
(
D log τ−1 + κ

)5
τ−δ

≤ τ−δ−ε

for any ε > 0 and τ sufficiently small. �
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5.5. Proof of Proposition 5.1. — Suppose we are given parameters Q,H1, σ1 as in
Proposition 5.1. We assume σ1 > 3δ

4 , σ ∈ [σ1,Q], and |t| ≤ H1. Let

ε
def= min

(
δ

4
,

1
4

(
4σ1

δ
− 3

))
> 0.

Let α = 2
δ

and let τ = n−α = n− 2
δ . Let n0 be such that for n ≥ n0, τ ≤ τ2 where τ2 is the

one provided by Proposition 5.6 for the current ε, and n0 is at least the one provided by
Lemma 5.5 for the current ε and α.

Combining Proposition 5.6 and Lemma 5.5 gives for n ≥ n0

En‖Lτ,s,ρ0
n
‖2

H.S. ≤ Cτ 2σ

(
nτ−δ + nετ−δ−ε + 1

n1−ε
τ−2δ

)

≤ 2C
(
n1−(2σ−δ)α + n−1+ε−2(σ−δ)α

)

≤ 4Cn(3− 4σ
δ

)+ε

≤ 4Cn(3− 4σ1
δ

)+ε ≤ 4Cn−3ε ≤ n−ε

after possibly increasing n0. This completes the proof of Proposition 5.1. �

6. Proof of Theorems 1.1 and 1.8

As explained in the Introduction, Theorem 1.8 implies Theorem 1.1, so we will
prove Theorem 1.8. A direct proof of Theorem 1.1 would use most of the same ideas and
not be significantly shorter.

Let n ∈ N, φn be a random homomorphism φn : � → Sn, and (ρ0
n ,V0

n) be the ran-
dom representation described in Section 2.3. Let Xn be the random convex co-compact
hyperbolic surface described in the Introduction.

Let σ0 ∈ ( 3
4δ, δ) and H be the number given in the assumptions of Theorem 1.8.

Let τ1 and B > 2δ be the constants provided by Proposition 4.8 and choose b ≥ B such
that the open disc Db− 3

4 δ(b) contains Rect(σ0,H). We let τ = n− 2
δ .

Since as n varies in N and φn runs over all homomorphisms from � → Sn, the
countable collection of holomorphic functions ζτ,ρ0

n
have amongst them all, a countable

number of zeros in the closed disc Db− 3
4 δ(b), it is possible to find a σ1 ∈ ( 3

4δ, σ0) such that

• no ζτ,ρ0
n

has a zero s with |s − b| = b − σ1, and
• the open disc Db−σ1(b) contains the closed rectangle Rect(σ0,H)

We pick such a σ1. Now we let

R def= b − σ1, R′ def= sup
s∈Rect(σ0,h)

|b − s| < R.

We will shortly apply Proposition 5.1 with Q = b + R, σ1 as is it is in the current context,
and H1 = R. Let ε and n0 be the positive constants provided by these inputs to Proposi-
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FIG. 2. — Illustration of the contour used in Jensen’s formula

tion 5.1. We pick n1 ≥ n0 such that for n ≥ n1, τ ≤ τ1. This sets up all the constants for the
proof.

If for σ > 0, σ is an resonance for Xn, and is either not a resonance of X or a reso-
nance of X with a lower multiplicity, then by Theorem 2.2 combined with Corollary 4.6,
ζτ,ρ0

n
(σ ) = 0. Therefore it suffices to show that a.a.s. there are no zeros of ζτ,ρ0

n
in Rect(σ0,H).

Let N (φn) be the number of zeros of ζτ,ρ0
n

in Rect(σ0,H). Note that Rect(σ0,H) ⊂
DR′(b). By Jensen’s formula [Bor16, Theorem A.2] applied to the translate of ζτ,ρ0

n
by b

we have

(6.1)
∗∑

z∈DR(b)
ζ
τ,ρ0

n
(z)=0

log
(

R
|z − b|

)
=M(φn)

def= 1
2π

∫ 2π

0
log

∣
∣ζτ,ρ0

n

(
b+Reiθ

)∣∣dθ − log
∣
∣ζτ,ρ0

n
(b)

∣
∣.
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The star on the sum means zeros are repeated according to their multiplicity. Note that
b ≥ B so Proposition 4.8 ensures ζτ,ρ0

n
(b) �= 0, and the choice of σ1 ensures ζτ,ρ0

n
(b + Reiθ )

is never zero. These conditions were needed for Jensen’s formula. Now (6.1) implies

N (φn) ≤ log
(

R
R′

)−1

M(φn).(6.2)

Next we majorize M(φn). By Weyl’s inequality (cf. [Bor16, (A36)]) we have for any s ∈ C

(6.3) log
∣∣ζτ,ρ0

n
(s)

∣∣ = log
∣∣det

(
1 −L2

τ,s,ρ0
n

)∣∣ ≤ ∥∥L2
τ,s,ρ0

n

∥∥
1
≤ ‖Lτ,s,ρ0

n
‖2

H.S.,

where ‖ • ‖1 and ‖ • ‖H.S. stand for the trace and Hilbert-Schmidt norms, respectively.
This was the reason for the square in the definition of ζτ,ρ0

n
(s). Also, by Proposition 4.8

we have

(6.4) − log
∣
∣ζτ,ρ0

n
(b)

∣
∣ ≤ (n − 1)τ ≤ n1− 2

δ ≤ n−1

since δ ∈ (0,1). Using (6.3) and (6.4) gives

(6.5) M(φn) ≤M∗(φn)
def= 1

2π

∫ 2π

0
‖Lτ,b+Reiθ ,ρ0

n
‖2

H.S.dθ + n−1.

Combining (6.2) and (6.5) and taking expectations gives

En

[
N (φn)

] ≤ log
(

R
R′

)−1

En

[
M∗(φn)

]

= log
(

R
R′

)−1 1
2π

∫ 2π

0
En

[‖Lτ,b+Reiθ ,ρ0
n
‖2

H.S.

]
dθ + n−1.

By Proposition 5.1 we have En[‖Lτ,b+Reiθ ,ρ0
n
‖2

H.S.] ≤ n−ε for all θ ∈ [0,2π ]. Hence

(6.6) En

[
N (φn)

] ≤ log
(

R
R′

)−1(
n−ε + n−1

)

for n ≥ n1. By Markov’s inequality, the probability that ζτ,ρ0
n

has at least one zero in
Rect(σ0,H) is bounded by the right hand side of (6.6); since this → 0 as n → ∞, a.a.s.
ζτ,ρ0

n
has no zeros in Rect(σ0,H). Hence by the previous arguments, a.a.s.

RXn

⋂
Rect(σ0,H) =RX

⋂
Rect(σ0,H)

and the multiplicities on both sides are the same. �
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7. Proof of Theorem 1.10 about high frequency resonances

This part is largely independent from the previous sections. Although we use the
technique of induced representations to keep track of resonances in covers, we prove a
spectral estimate on transfer operators twisted by any unitary representation which im-
plies Theorem 1.10 via induced representations. We will prove the following completely
general fact. Let ρ : � → U(V) be a unitary representation of � on a complex Hilbert9

space V. Here U(V) is the set of unitary operators on V. Recall that I = ∪2r
j=1Ij . Let

C1(I,V) denote the Banach space of V-valued functions, C1 on I, endowed with the
norm (t �= 0)

‖f ‖(t),V := ‖f ‖∞,V + 1
|t|

∥
∥f ′∥∥

∞,V
,

where as usual

‖f ‖∞,V = sup
x∈I

∥
∥f (x)

∥
∥

V
,

where ‖.‖V is the Hilbert space norm on V. We recall that the action of the “basic”
transfer operator Ls,ρ , now on the function space C1(I,V), is given by

Ls,ρ(F)(x)
def=

∑

j→i

(
γ ′

j

)s
(x)ρ

(
γ −1

j

)
F(γj x), if x ∈ Ii.

We will use the notation W j

N
def= {a ∈ WN : a → j}. Given the previously defined nota-

tions and F ∈ C1(I,V), we have for all x ∈ Ij and N ∈ N,

LN
s,ρ(F)(x) =

∑

a∈W j

N

(
γ ′

a(x)
)s
ρ
(
γ −1

a

)
F
(
γa(x)

)
.

We mention here that we could also alternatively use the “refined” transfer operator Lτ,s,ρ

here in place of LN
s,ρ , but it wouldn’t change the final result, nor it would make the size

of the gap explicit. We will need in this section some standard distortion estimates. Some
of them (bounded distortion) have already been used in previous sections, but we recall
them for the convenience of the reader.

• (Uniform hyperbolicity). There exists C > 0 and 0 < θ < θ < 1 such that for all N
and all j such that a ∈W j

N, then for all x ∈ Ij we have

C−1θ
N ≤ ∣∣γ ′

a(x)
∣∣ ≤ CθN.

9 We do not assume that it is finite dimensional here.
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• (Bounded distortion). There exists M1 > 0 such that for all N, j and all a ∈W j

N,

sup
Ij

∣
∣
∣∣
γ ′′

a

γ ′
a

∣
∣
∣∣ ≤ M1.

• (Bounded distortion for the third derivatives). There exists Q > 0 such that for all n, j

and all a ∈W j

N,

sup
Ij

∣
∣∣
∣
γ ′′′

a

γ ′
a

∣
∣∣
∣ ≤ Q.

Notice that the “bounded distortion for the third derivatives” follows directly from dif-
ferentiating two times log(γ ′

a), and using bounded distortion and uniform hyperbolicity
several times, see for example [BV05, Section 3] for a previous occurrence of this condi-
tion in the literature. We now state the Ruelle-Perron-Frobenius Theorem, which will be
used below. The statement of this theorem in the symbolic setting can be found in [PP90,
Theorem 2.2]. The version we use can be obtained via the work of Liverani [Liv95] as
in [Nau05a, Theorem 5.1].

Theorem 7.1. — Set Lσ = Lσ,Id where σ is real and ρ = Id means the trivial one-

dimensional representation.

(1) The spectral radius of Lσ on C1(I,C) is eP(σ ) which is a simple eigenvalue associated to a

strictly positive eigenfunction hσ > 0 in C1(I,C).

(2) The operator Lσ on C1(I,C) is quasi-compact with essential spectral radius smaller than

κ(σ )eP(σ ) for some κ(σ ) < 1.

(3) There are no other eigenvalues on |z| = eP(σ ). Moreover, the spectral projector Pσ on {eP(σ )}
is given by

Pσ (f ) = hσ

∫

�(�)

fdμσ,

where μσ is the unique probability measure on � that satisfies L∗
σ (μσ ) = eP(σ )μσ , and

the eigenfunction hσ is normalized so that

∫
hσ dμσ = 1.

We continue with a basic a priori estimate.

Lemma 7.2. — Fix some σ0 < δ, then there exists C0 > 0, ρ < 1 such that for all N, all

unitary representations (ρ,V) and all s = σ + it with σ ≥ σ0, we have

∥∥(LN
s,ρ(f )

)′∥∥
∞,V

≤ C0eNP(σ0)
{(

1 + |t|)‖f ‖∞,V + θN
∥∥f ′∥∥

∞,V

}
.
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Proof. — Differentiate the formula for Ln
s,ρ(f ): since the representation factor is

locally constant, we don’t need to differentiate it. Use the bounded distortion property
plus the uniform contraction, combined with the pressure estimate in Lemma 3.10. Uni-
formity with respect to (ρ,V) follows from triangle inequality plus the fact that for all
γ ∈ �, we have ‖ρ(γ )‖V = 1. �

The main fact of this section is the following. It is essentially a vector-valued version
of a result stated in [JNS19]. This type of estimate is called a Dolgopyat estimate by reference
to Dolgopyat’s work on Anosov flows [Dol98] where these type of bounds appeared for
the first time.

Proposition 7.3. — There exist ε > 0, T0 > 0 and C1, β > 0 such that for all N = N(t) =
[C1 log |t|] with s = σ + it satisfying |σ − δ| ≤ ε and |t| ≥ T0, we have

∫

�(�)

∥∥LN
s,ρ(f )

∥∥2

V
dμδ ≤ ‖f ‖2

(t),V

|t|β .

All the constants here are uniform with respect to ρ,V.

A particular case of this estimate was proved in [OW16, MOW17] for the case of
congruence subgroups, where

ρ : � → U
(
L2

(
SL2(Fp)

))
,

is obtained after reduction mod p via the regular representation of SL2(Fp). The proof
was an adaptation of the arguments of [Nau05a]. We will present below a shorter, more
direct version of this estimate which allows to prove this generalization without much
effort.

Let us first briefly explain why this actually implies Theorem 1.10. We set ρ =
Ind�

�̃
, where �̃ is an arbitrary, finite index subgroup of �, and Ind�

�̃
is the induced repre-

sentation to � of the trivial representation of �̃. We work by contradiction. Assume that
Z�̃(s) = 0, then according to the induction formula of Venkov-Zograf [VZ82, FP17], we
have for s = σ + it,

Ls,ρ(Fs) = Fs,

for some Fs �≡ 0 ∈ C1(I,V). We can definitely normalize Fs so that ‖Fs‖(t),V = 1. Write
N = N1 + N(t), where N(t) is given by Proposition 7.3. Take σ0 ≤ σ ≤ δ. Using the
triangle inequality for ‖.‖V and unitarity of ρ, we have (by Cauchy-Schwarz) and the
pressure estimate (Lemma 3.10),

‖Fs‖∞,V ≤ C0e
N1
2 P(2σ0−δ)

(
LN1

δ

(∥∥LN(t)
s,ρ (Fs)

∥
∥2

V

))1/2
.
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We need to estimate the C1-norm of x �→ ‖LN(t)
s,ρ (Fs)‖2

V(x) on I. Since we work with a
Hilbert norm, the square of the norm is differentiable and we can compute

d

dx

∥∥LN(t)
s,ρ (Fs)

∥∥2

V
= 2Re

(〈(
LN(t)

s,ρ (Fs)
)′
,LN(t)

s,ρ (Fs)
〉
V

)
,

and use the V-valued Lasota-Yorke estimate from Lemma 7.2 and Cauchy-Schwarz to
obtain

∥
∥
∥
∥LN(t)

s,ρ (Fs)
∥
∥2

V

∥
∥

C1(I)
≤ Ce2N(t)P(σ0)

(
1 + |t|).

Using the Ruelle-Perron-Frobenius Theorem (Theorem 7.1), and the fact that P(δ) = 0,
we get

‖Fs‖2
∞,V ≤ CeN1P(2σ0−δ)

(∫

�(�)

∥
∥LN(t)

s,ρ (Fs)
∥
∥2

V
dμδ + κ

N1
δ e2N(t)P(σ0)

(
1 + |t|)

)
,

with κδ < 1. Assuming that σ0 ≥ δ − ε and |t| ≥ T0, we can apply Proposition 7.3 and set
N1 = N1(t) = [C2 log |t|] to get

‖Fs‖2
∞,V ≤ C

(|t|C2P(2σ0−δ)−β + |t|−C2| logκ|+2C1P(σ0)+1
)
.

We then take C2 large enough and fix σ0 close enough to δ so that C2P(2σ0 − δ) − β < 0
and we get

‖Fs‖2
∞,V ≤ C|t|−β̃ ,

for some β̃ > 0. The same calculation can be performed to obtain similarly
∥
∥F′

s

∥
∥2

∞,V
≤ C|t|−β̃+2,

and we reach a contradiction for all |t| large since 1 = ‖Fs‖(t),V ≤ C′|t|−β̃/2. Once again,
all the constants are uniform with respect to (ρ,V).

The proof of the key Proposition 7.3 will rest on the following result of Bourgain-
Dyatlov [BD17].

Theorem 7.4. — There exist constants β1, β2 > 0 such that the following holds. Given g ∈
C1(I) and � ∈ C2(I), consider the integral

I(ξ)
def=

∫

�(�)

e−iξ�(x)g(x)dμδ(x).

If we have

inf
�(�)

∣∣�′∣∣ ≥ |ξ |−β1,
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and ‖�‖C2 ≤ M, then for all |ξ | ≥ 1, we have

∣∣I(ξ)
∣∣ ≤ CM|ξ |−β2‖g‖C1,

where CM > 0 does not depend on ξ, g.

For comments on this version of the Bourgain-Dyatlov decay estimate, see
[JNS19]. Let us just mention that μδ , up to a smooth density, is the Patterson-Sullivan
measure, see [JNS19]. To be able to use this estimate, we will use the following fact from
[JNS19], which is referred there as the “uniform-non-integrability property” (UNI), see
Proposition 4.10.

Proposition 7.5 (UNI). — For all a,b ∈W j

N set

D(a,b) := inf
x∈Ij

∣∣
∣
∣
γ ′′

a (x)

γ ′
a(x)

− γ ′′
b (x)

γ ′
b(x)

∣∣
∣
∣.

There exist constants M > 0 and η0 > 0 such that for all n and all ε = e−ηN with 0 < η < η0, we

have for all a ∈W j

N,

∑

b∈W j

N, D(a,b)<ε

∥
∥γ ′

b

∥
∥δ

Ij ,∞ ≤ Mεδ.

For a proof of that fact, see [JNS19, Section 4]. We are now ready to conclude
this section by the proof of Proposition 7.3. Pick f ∈ C1(I,V). We set s = σ + it and we
assume that σ is close to δ. Let us write

Sσ,N(t) :=
∫

�(�)

∥
∥LN

s,ρ(f )
∥
∥2

V
dμδ =

2r∑

j=1

∑

a,b∈W j

N

∫

�(�)

eit�a,b(x)g
(j)

a,b(x)dμδ(x),

with

�a,b(x) = logγ ′
a(x) − logγ ′

b(x),

and

g
(j)

a,b(x) =
{

(γ ′
a(x))

σ (γ ′
b(x))

σ 〈ρ(γ −1
a )f ◦ γa(x), ρ(γ −1

b )f ◦ γb(x)〉V if x ∈ Ij,

0 otherwise.

Notice that g
(j)

a,b is indeed a C1 function on a neighborhood of �(�). By using the
bounded distortion property and Cauchy-Schwarz we have easily:

(7.1) sup
Ij

∣
∣g(j)

a,b

∣
∣ ≤ C1 sup

Ij

∣
∣γ ′

a

∣
∣σ sup

Ij

∣
∣γ ′

b

∣
∣σ‖f ‖2

(t),V.
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Differentiating inside the inner product 〈., .〉V and using the bounded distortion plus the
uniform contraction (with Cauchy-Schwarz again) gives also

(7.2) sup
Ij

∣
∣∣
∣

d

dx
g
(j)

a,b

∣
∣∣
∣ ≤ C2 sup

Ij

∣∣γ ′
a

∣∣σ sup
Ij

∣∣γ ′
b

∣∣σ (1 + |t|θN
)‖f ‖2

(t),V.

Both estimates (7.1) and (7.2) can be combined to yield

(7.3)
∥
∥g

(j)

a,b

∥
∥

C1 ≤ C̃2 sup
Ij

∣
∣γ ′

a

∣
∣σ sup

Ij

∣
∣γ ′

b

∣
∣σ (2 + |t|θN

)‖f ‖2
(t),V.

We also observe that infx∈Ij
|�′

a,b(x)| = D(a,b), and that by using the bounded distortion
for the second and third derivatives we have for some uniform C3 > 0,

‖�a,b‖C2 ≤ C3.

The plan is now to split Sσ,N(t) as

Sσ,N(t) = S (1)

σ,N(t) + S (2)

σ,N(t),

with the “near-diagonal” sum

S (1)

σ,N(t) :=
2r∑

j=1

∑

D(a,b)≤ε

∫

�(�)

eit�a,b(x)g
(j)

a,b(x)dμδ(x),

and the “off-diagonal” sum

S (2)

σ,N(t) :=
2r∑

j=1

∑

D(a,b)>ε

∫

�(�)

eit�a,b(x)g
(j)

a,b(x)dμδ(x),

with ε > 0. We now assume that σ0 ≤ σ ≤ δ and N = [κ log |t|], with ε = e−ηN with 0 <

η < η0. We fix κ large enough so that |t|θN stays uniformly bounded as |t| → ∞, and pick
η > 0 small enough such that ε = e−η[κ log |t|] > |t|−β1 , so that we can apply Theorem 7.4.
Combining estimate (7.3) with the pressure bound from Lemma 3.10, we get

∣∣S (2)

σ,N(t)
∣∣ ≤ C

‖f ‖2
(t),V

|t|β2
e2NP(σ0).

On the other hand we have
∣∣S (1)

σ,N(t)
∣∣ ≤ C‖f ‖2

(t),V

∑

j

∑

a∈W j

N

sup
Ij

∣∣γ ′
a

∣∣σ
∑

b:D(a,b)<ε

sup
Ij

∣∣γ ′
b

∣∣σ ,
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which by using Proposition 7.5 and the pressure estimate combined with the uniform
hyperbolicity (the lower bound) gives

∣
∣S (1)

σ,N(t)
∣
∣ ≤ C‖f ‖2

(t),VeNP(σ0)θ
N(σ0−δ)

εδ,

because P(σ0) → 0 as σ0 → δ, we can definitely pick σ0 < δ so that for all |t| ≥ 1, we
have

∣
∣Sσ,N(t)

∣
∣ ≤ ∣

∣S (1)

σ,N(t)
∣
∣+ ∣

∣S (2)

σ,N(t)
∣
∣ ≤ C̃‖f ‖2

(t),V|t|−β̃ ,

for some uniform C̃ > 0 and β̃ > 0. This ends the proof.
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