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ABSTRACT

We introduce a permutation model for random degree n covers X, of a non-elementary convex-cocompact hy-
perbolic surface X = I"\H. Let § be the Hausdorff dimension of the limit set of I". We say that a resonance of X, is new if
it is not a resonance of X, and similarly define new eigenvalues of the Laplacian.

We prove that for any € > 0 and H > 0, with probability tending to 1 as n — oo, there are no new resonances s =
o+t of X, witho € [%5 + €, 6] and ¢ € [-H, H]. This implies in the case of § > % that there is an explicit interval where
there are no new eigenvalues of the Laplacian on X,,. By combining these results with a deterministic ‘high frequency’
resonance-free strip result, we obtain the corollary that there is an n = n(X) such that with probability — 1 as n — oo,
there are no new resonances of X, in the region {s : Re(s) > 6 —n}.
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1. Introduction

This paper is about spectral gaps for random Riemann surfaces. More specifically,
we are interested in various notions of spectral gap for random covers of a fixed Schottky
Riemann surface. This is in close analogy to questions about the spectral gap of a random
regular graph, and this analogy informs our model for random coverings, so we begin
with a discussion on graphs.
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Let G be a k-regular graph on 7 vertices. Then the adjacency matrix Ag of G has
n real eigenvalues in [—£, k] and £ appears as an eigenvalue with multiplicity equal to the
number of connected components of G. Denoting by

k=Xo=A =---2>2,

the eigenvalues of G, the spectral gap of G is Ag — Ay. If G 1s connected, then Ay > A,
and the spectral gap is related to the exponential rate at which the random walk on G
converges to the uniform measure. As such, it is an important quantity in theoretical
computer science, and accordingly, there has been a great deal of interest in the spectral
gap of a random regular graph. Alon’s conjecture [Alo86], now a theorem due to Friedman
[Fri08], says that for any € > 0, as n — o0, the probability that A,(G,) > 2+/k—1 + €
tends to zero, when G, is sampled uniformly at random from k-regular graphs with »
vertices.! The relevance of the quantity 24/ — 1 is that for any k-regular graph with n
vertices, a result of Alon-Boppana [Nil91] says that A (G) > 24/k — 1 —0,(1),s0 24/k — 1
1s an asymptotically optimal lower bound for A, (G), often called the Ramanujan bound after
[LPS88].

The model of a random graph described above chooses random graphs accord-
ing to a uniform distribution. Another popular model for a random 24-regular graph
is called the permutation model and is the one we wish to focus on in the sequel. Let
=¥ ...,y ') be a free group on £ generators, £ > 2, and let S, denote
the symmetric group on 7 letters, and ¢, be a random homomorphism from I'" to S,,
sampled uniformly from all possible homomorphisms. Since I' is free, a homomorphism
1s described simply by choosing the images ¢,(y;) of the generators of I' independently

and uniformly from S,. Then let G, be the random graph with vertex set [7] ) {1,...,n}
and with an edge between i and j if there is a generator y, such that ¢,(y,) (2) =7. We will
adapt this model to a model of a random Riemann surface.

Let X be a connected, non-elementary, non-compact, convex co-compact hyper-
bolic surface. Then X = I'\H where H is the hyperbolic upper half plane and I" 1s a
free subgroup of SLy(R). We view X as fixed throughout the paper. We let X, be the

random n-cover of X obtained as a fibered product X, “y X ¢, [n]. More precisely, X, is
the quotient of H x [#] by the diagonal action of "

y-(6 0 = (¥ (), 0.1 ).

If S C [n] 1s a set of representatives for the orbits of I' on [#] via ¢,, and T'; ) Stabr () 1s
the stabilizer of ¢ € S, then X, is isomorphic to the disjoint union of (connected) covers
Fi\H, 1.e.

X,=| |r\H.

€S

! A generalization of Alon’s conjecture to random covers of a fixed graph was proposed by Friedman [Fri03] and
recently proved by Bordenave and Collins in [BC19].
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Notice that we have

Z[r ‘Tl =n.

€S

We say that a property E(¢,) of the random ¢, holds asymptotically almost surely (a.a.s.) if as
n — 00, the probability that E(¢,) holds tends to 1. It is an elementary calculation” that
a.a.s. I' acts transitively on [z] via ¢, and hence, a.a.s. X, is connected. This also follows
from the main theorems below. Although we do not assume X, is connected at any point,
it would not hurt to assume this on a first reading.

We now discuss the spectral theory of X and X,,. The group I' acts properly dis-
continuously on H, but for any point 0 € H, the orbit I'0 accumulates on dH =R U {oo}
and the accumulation set of this orbit is called the lmut set of I' and denoted by A(I").

This A(I") is a perfect nowhere dense fractal and has an associated Hausdorff dimension

) d:efdimHaus(A(F)) € [0, 1). By a result of Lax and Phillips [LP81], the spectrum of the

Laplacian Ax is discrete in the range [0, i), and Patterson [Pat76] proved that if § > é,

then the lowest eigenvalue of Ax 1s §(1 —4). If § < é then there are no eigenvalues of Ax.

The same 1s true for X, with the same § (although 6 (1 — ) will be simple if and only if X,

1s connected). More generally, if A is any eigenvalue of X, then by lifting eigenfunctions

through the covering map, A is an eigenvalue for X, with at least as large multiplicity.
The first main theorem of our paper is the following.

Theorem 1.1. — Assume that 5 > % Then for any o, € (%8, ), a.a.s.

(1.1) spec(Ax,) N [8(1 —3§8),00(1 — 00)] =spec(Ax) N [8(1 —3§),00(1 — 00)]

and the multiplicities on both sides are the same.

Remark 1.2. — 'This theorem implies that a.a.s. the X, have a uniform spectral
gap, and this spectral gap only depends on § and the gap between the first two eigenvalues
of X.

Remark 1.3. — If 6 € (%, %) then since X, has no eigenvalues in [Jlr, o0) by a result
of Lax and Phillips [LP81], Theorem 1.1 implies that a.a.s. X, has no new eigenvalues.

Remark 1.4. — Theorem 1.1 can be viewed as a significant sharpening of a result
of Brooks and Makover [BM04], albeit in the infinite area setting. See Section 1.1 for a
more detailed discussion of this comparison.

% For a concrete reference, this statement follows from [BS87, Theorem 13]. One can also prove by elementary
combinatorial arguments that the probability that X, is connected as n — +00 is bigger than 1 — %, where C(k) > 0 is

a constant depending only on k.
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Remark 1.5. — We point out that it is possible for X, to not be connected, and in
this case, there is no spectral gap. Even further, it is easy to see that X, can be a connected
cyclic cover of X, and by results of [JNS19], these have no uniform spectral gap.

Remark 1.6. — In the limit as § — 1, the range of forbidden eigenvalues in (1.1)
becomes [0, 1%) This is interestingly the same range covered by Selberg’s 1—36 Theo-
rem [Sel65] on the spectral gap of congruence covers of the modular surface SLy(Z)\H.
This should also be compared to the deterministic result of Gamburd [GamO02] for
congruence covers of infinite index geometrically finite subgroups of SLy(Z): assuming
s> %, he shows that the spectrum remains the same in the range [6(1 — &)

[Magl5] for a generalization of this result to higher dimensions.

5
, %). See also

We write x (X) for the Euler characteristic of X. It has recently been proved by
Ballmann, Matthiesen, and Mondal [BMM17] that if x (X) < 0, Ax has at most — x (X)
eigenvalues. If x (X) = —1 then this means the only possible eigenvalue of X is at §(1 —3)
and thus Theorem 1.1 yields

Corollary 1.7. — Assume that § > % 1f X s topologically a parr of pants, or a torus with one
hole, then for any o € (%5, 8), a.a.s.

spec(Ax,) N (8(1 = 8), op(1 —0p)] =0,
and §(1 — 6) 1s a simple ergenvalue of Ax,.

We now turn to what we can say about general § € (0, 1). In the case § < %, Ax
and Ax, will have no discrete L? spectrum, so one must consider a more subtle notion of
spectral gap.

For any non-elementary convex co-compact hyperbolic Y with 6 = §(Y) (e.g
Y =X, Y =1X,) the resolvent

def

Ry(9) = (Ay —s(1 —5)) " LA(Y) = LX(Y)

1s, a priori, a meromorphic family of bounded operators in the right half plane Re(s) > %
with poles precisely at real s such that s(1 — s) is an eigenvalue of Ax. By work of Mazzeo-
Melrose [MMS87], it can be meromorphically continued to a family of bounded operators
from C{°(Y) — C*(Y) that is meromorphic in s € C. In the case of hyperbolic surfaces,
a simpler proof of the meromorphic continuation is due to Guillopé and Zworski [GZ95],
see also the book [Borl6].

The poles of the meromorphically continued resolvent are called resonances of Y. In
the sequel we write Ry C G for the multi-set of resonances, repeated according to mul-
tiplicities.” Resonances, unlike L*-eigenvalues, correspond to a non self-adjoint spectral

% Following [Bor16, Definition 8.2], the multiplicity of a resonance s of Y is given by rank( fy Ry(s)ds) where y is
an anticlockwise oriented circle enclosing s and no other resonance of Y.
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problem and are therefore notoriously difficult to study. There is however a clear analog
of the spectral gap in this setting. The ‘bass resonance’ is located at s = § and by a result
of Naud [Nau0O5a] if'Y is connected then there exists a constant e > 0 such that

RyN{s:Re(s) =38 —er}={6}.

We call the existence of such a resonance free strip a spectral gap for Y. The spectral gap on
hyperbolic surfaces has numerous applications, from prime geodesic theorems [Nau05b]
to local L*-asymptotics of waves [GN09]. A recent breakthrough of Bourgain-Dyatlov
[BD 18] showed that there always exists an “essential spectral gap” past the line {Re(s) = é},
1.e. there exists € = €(Y) > 0 such that

'Ryﬂ{s:Re(s)Z%—g}

is a finite set. The proof is based on the general phenomenon of “fractal uncertainty
principle”, see [Dyal9]. We point out that € > 0 can be made explicit, see Jin-Zhang
[JZ17] and also Dyatlov-Jin [DJ18]. For a broader view and a state of the art survey
on the mathematical theory of resonances including hyperbolic manifolds and related
conjectures, we recommend to read [Zwol7]. Our next main result is the following.

Theorem 1.8. — Fix any H > 0 and 0y € (%8, 38), and let

Rect(og, H) £ {s=0 +it : 0 €0y, 8] and || <H}.
Then a.a.s.
Rx, [ Rect(on, H) = Rx [ | Rect(oy, H)

where the multiplicities on both sides are the same.

Remark 1.9. — Because all eigenvalues A, =0 (1 — o) of Ax, with o > é give a
resonance of X, at o, with the same multiplicity, and the same is true for X, Theorem 1.8
implies Theorem 1.1 and extends it to resonances in rectangles of explicit width and any
bounded height 2H. We point out that Theorem 1.8 actually yields new information on
low frequency resonances past the line {Re(s) = %} when § € (%, % .

This leaves the question of how to deal with resonances with large imaginary part.
For this we have the following theorem that applies to arbitrary covers. Note that here
there is no randomness involved.

Theorem 1.10. — Assume that I is a non-elementary convex co-compact group. Then there
exist €r > 0 and 'T'r > O such that for all finite index subgroups I' C I, we have for X = I'\H,

Rz N{s:Re(s) =8 —er and |Im(s)| > Tr } = 0.
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Remark 1.11. — From the work of Bourgain and Dyatlov [BD17], we know that
there exists £€(8) > 0, depending only on 6 and thus uniform on covers such that

Rx N {Re(s) =8 — ()}

is a finite set. However the result of Bourgain and Dyatlov does not provide any infor-
mation on the finite set of resonances in this uniform strip. Theorem 1.10 shows that new
resonances can only appear in a compact region.

Combining Theorem 1.8 with Theorem 1.10 yields the following corollary.

Corollary 1.12. — A.a.s. the random cover X,, — X has a uniform spectral gap. In particular,
above each non elementary surface X, one can produce an finite family of covers X,, with degree n and
having a uniform spectral gap.

Remark 1.13. — When § > é, Corollary 1.12 follows from a mild extension of
[BGS11, Theorem 1.2] together with results on random graphs as explained in Sec-
tion 1.1. However, when § < %, to our knowledge, Corollary 1.12 is completely new: the
only result of that type so far is for congruence covers of convex co-compact subgroups

of Sy (Z), see Oh-Winter [OW16] and the discussion below.

1.1. Prior work. Brooks and Makover. — Brooks and Makover in [BMO04] consider a
similar model for random finite area Riemann surfaces. In this model, random surfaces
are modeled by random 3-regular oriented graphs sampled according to a refinement
of the Bollobas ‘bin model’ introduced in [Bol88]. Then Brooks and Makover [BM04]
construct from a random oriented graph on 7 vertices a Riemann surface Y,, tiled by a
specific hyperbolic triangle with one vertex at 0o. They then consider a compactification
Y! of the cusped surface Y,. Thus Y! is a random compact Riemann surface; the genus
of Y° is however not deterministic.* Brooks and Makover proved in (ibid.)

Theorem 1.14 (Brooks-Makover). — There 1s some constant C. > O such that a.a.s. the furst
non-zero eigenvalue of Y', 1s > C.

Although our main theorems deal instead with infinite area Riemann surfaces,
they offer two improvements over Theorem 1.14:

e The range of new forbidden eigenvalues and resonances in Theorems 1.1 and
1.8 are explicit,

e Moreover, we have an entire moduli space of random families (parameterized
by the modulus of X) and the range of forbidden eigenvalues and resonances
only depends on X in a very mild way, through the Hausdorff dimension of the
limit set.

* By a result of Gamburd [Gam06], if /(Y,) & 5 12— 2genus(Y}), then as n — 00, I(Y,) converges to a Poisson-

Dirichlet distribution. The function /(Y,) coincides with the number of cusps of Y.
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The Brooks-Burger transfer principle. — Also relevant to the current work is the fol-
lowing transfer principle for small eigenvalues developed independently by Brooks and
Burger in [Bro86, Bur88].

Theorem 1.15 (Brooks-Burger). — Let Y be any compact Riemannian manifold with T' =
1 (Y). There is a constant ¢(Y) > 0 and a finite subset S C T such that the following hold. Let T"' be
any finite index subgroup of T, with associated Riemannian covering space Y' of Y. Let A (Y") be such
that spec(Ay) = {0 <Ay <Ay <...}. Lt G = G, S) be the Schreier coset graph of S acting
on T/ T, Then

(1.2) 2 (Y) = e(Y) (2o(G) — 11(G)).

Theorem 1.15 was extended to Galois covers of non-elementary convex co-
compact hyperbolic surfaces by Bourgain, Gamburd and Sarnak in [BGS11, Theo-
rem 1.2] where the left hand side of (1.2) is replaced by the gap between 6(1 — §) and
the next eigenvalue of the L?-Laplacian. This extends to non-Galois covers and therefore
applies in the setting of this paper as follows.

Let us assume that X, = I',\H is connected, for simplicity, although the argument
can be adapted to the general case. For fixed S C I', the Schreier coset graphs G, of S
acting on I'/ I', = [n] are precisely the random regular graphs of the permutation model,
and a.a.s. these have a uniform spectral gap by [BS87, Fri08]. Hence by the extension
of [BGS11, Theorem 1.2] the X, have a uniform spectral gap between §(1 — §) and the
next L?-eigenvalue. Importantly, in all versions of Theorem 1.15, the constant ¢ depends
on Y in a complicated way. Because of this, it is unlikely such an argument would lead
to e.g. Theorem 1.1. However, this argument does lead to Corollary 1.12 when § > % (cf.
Remark 1.13).

It is also worth mentioning that a variant of Theorem 1.15 has also been devel-
oped for resonances in [BGS11, OW16, MOW17], for specific congruence coverings of
Y = I'\H where I is an infinite index subgroup of SLy(Z). Besides only dealing with Ga-
lois covers, the key reason that these methods cannot prove Corollary 1.12 when § < % 18
the following. The state of the art method [MOW17, Appendix| of dealing with low fre-
quency resonances (a la Theorem 1.8) involves bounds on the dimensions of non-trivial
irreducible representations of finite groups G that are polynomial in |G|. The relevant
groups in our setting are S,, and the issue is that S, has non-trivial irreducible represen-
tations of dimensions that are sub-logarithmic in |S,| = n!.

Finally we point out that the methods of [BGS11, OW16, MOW17] are not well
adapted to efficiently tracking constants and hence likely not suitable for producing ex-
plicit resonance free regions as in Theorem 1.8.

1.2. Overview of proofs and paper organization. — All the proofs of the paper rely on a
Schottky encoding of the action of I' on R that is presented in Section 2.1. To control res-
onances (and eigenvalues) we rely on the connection between resonances and zeros of the
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Selberg zeta function due to Patterson and Perry [PPO1]. This connection is explained
in Section 2.2. We then pass to dynamical considerations by the relationship between
Selberg zeta functions and dynamical zeta functions explained in Section 4.1. The rele-
vant dynamical zeta functions are Fredholm determinants of certain transfer operators
on vector valued functions, twisted by (random) unitary representations p° of I'. These
are introduced in Section 2.2. The relevance of these representations is that the zeros
of the p’-twisted Selberg zeta function of X correspond to new resonances of X, (see
Section 4.1). These are precisely the objects we wish to control.

Theorems 1.1 and 1.8. — Since Theorem 1.8 implies Theorem 1.1 it suffices to dis-
cuss the former.

So far we have not been precise about the transfer operators we use. To prove
Theorem 1.8 we do not use the ‘standard’ twisted transfer operators used for example in
[BGS11, OW16, MOW17], but rather, we base our twisted operators on the r¢fined transfer
operators introduced by Bourgain and Dyatlov in [BD17]. The operators are denoted by
L, 0 and defined precisely in Section 2.2. The parameter s is a frequency parameter,

and the parameter 7 is a ‘discretization parameter’ that is taken to be w3 . If we do not
use this operator in the definition of the dynamical zeta function, but rather, an iterate of
the standard one, without the built in parameter 7, then one can still follow the strategy
of this paper to obtain resonance-free regions. However, these will depend on subtle features of
the graph of the pressure functional P(o') defined in Section 2.1. It is the use of refined transfer
operators that allows us to improve on this, and is a key idea in the paper. The functional
spaces we use are Bergman spaces, and this gives us crucial access to trace techniques.

To control zeros of the dynamical zeta function in a rectangle, we use Jensen’s
formula with a circle enclosing the rectangle (cf. Figure 2). The strategy is to prove that
the expected number of zeros in the region decays as a polynomial in z, so by Markov’s
inequality, a.a.s. there are none. There are two terms in Jensen’s formula we need to
control. The first is log | det(1 — L., o0)| when s is the center of the circle. As shown in
Proposition 4.8, this term decays provided the center of the circle is a sufficiently large real
number, which can be arranged. The second term in Jensen’s formula is the integral over
s in the circle of log | det(1 — ‘Cz,s,pgﬂ' A convenient property of Jensen’s formula is that
it is an integral formula, and we can take expectations inside the integral. Using Weyl’s
inequality, and taking expectations, we reduce to bounding the expectation E,[| L. ; 0 s,
of the squared Hilbert-Schmidt norm of L, ; ,0 for s on the circle. We need to prove these
all decay uniformly and polynomially in n. This estimate is at the core of the proof; is
stated precisely in Proposition 5.1, and its proof takes up Section 5.

We now discuss the proof of Proposition 5.1. The first step is a formula for
E,|L., ;.- This uses a deterministic expression for [|£, 0[5 involving a Bergman
kernel and given in Lemma 4.7. The formula for || £, ; ,0[I;¢ is a complex weighted sum
of random variables Tr[,ofl)(ya/ yb_,l)], where y, and 3, are elements of I'. By linearity of
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. . . 2 . .
expectations we obtain an expression for E, || £ , 0 [l1; s as a weighted sum of expectations

(1.3) E,[Tr(p; (vavy'))]

By passing to a majorant, in Lemma 5.4 we reduce our task to estimating a sum of the
form

(1.4) > E[Tr(e ()]

a,beZ(t)

where Z(7) is a set of words in the generators of ', and a’ is a with the last letter removed.

The strategy is to insert good bounds for (1.3) into (1.4) to obtain the decay we
want. This is analogous to the trace method used to bound the spectral gap of a random
graph, where || L., 50 ||(12{.s‘ would be replaced by the trace of a power of the adjacency
matrix. Indeed, the bounds we use for (1.3) go back to the paper of Broder and Shamir
[BS87] who used the trace method to show that the second largest eigenvalue of a 24-
regular random graph in the permutation model is a.a.s. < 3k. So the appearance of %
in Theorems 1.1 and 1.8 is similar to (zbiud.).

In (ibid.) Broder and Shamir proved, roughly speaking, that E,[Tr(p’(y))] has a
trivial bound if y is the identity, a better bound if y is a proper power of another element
in I', and an even better bound if y does not fall in one of the previous two cases. We
need a two sided estimate for (1.3) that can be deduced from more recent work of Puder
[Pudl5] and is stated in Theorem 5.2. According to the three cases above, we partition
the range of summation in (1.4) into three different sets.

The hardest of these to deal with in (1.4) is the set PowerPairs(t) that consists of
a, b € Z(7) such that y, ¥, is a proper power in I'. We need to show that the contribu-
tion of this set to (1.4) has polynomial decay. We give a precise bound on |PowerPairs(7)|
in Proposition 5.6; this proposition is at the core of the paper so we now explain the ideas
of its proof.

Throughout the paper we work with real quantities Y,, where a is a word in the
generators of I". These are defined in Section 3. Roughly speaking, T, measures the size
of the derivative of the associated group element y,, and the set Z(t) is the set of words
a such that T, &~ t. This means that estimating |PowerPairs(7)| is roughly the same as
estimating the sum

(1.5) >

(a,b)ePowerPairs(t)

;—%
LTS
3

the choice of the exponent g optimizes the result we can get from this method. The key

combinatorial observation we use to estimate (1.5) is that if ., is a proper power, after
performing an absolutely bounded finite number of the following operations

e cutting the sequences a’ and b/,



146 MICHAEL MAGEE, FREDERIC NAUD

e possibly replacing some cut sequence with its ‘mirror’,
e and regluing

one can form a long identical pair of sequences. This idea is performed rigorously in Sec-
tion 5.4. The result of these operations on the Y is to introduce a bounded multiplicative
constant, since Y is roughly multiplicative (Lemma 3.4) and behaves well with respect
to mirrors (Lemma 3.5). The result of obtaining the long identical pair of sequences is
that we get bounds on (1.5) from the relationship between sums of Y, and the pressure
functional (Lemma 3.10).

Theorem 1.10. — The proof of Theorem 1.10 is given in Section 7. It is based
on uniform Dolgopyat estimates for arbitrary unitary representations of I'. We use the
main result of Bourgain and Dyatlov [BD17] on Patterson-Sullivan measures and Fourier
decay to provide a short and completely general proof of the uniform Dolgopyat estimates
without having to rely on the more difficult technique from [Nau05a], which was also
used in [OW16, MOW17].

1.3. Notation. — If U C C we write U for the closure of U. We write N for the
natural numbers and Ny = N U {0}.

2. Preliminaries

In this paper we use the notational system for Schottky groups that is used in
the papers of Dyatlov and Bourgain [BD17] and Dyatlov and Zworski [DZ17] since it
is very convenient for the analysis in the sequel. We follow these papers closely in our
development.

2.1. Words, encodings of Schottky groups, and pressure. — Letr > 2 and A = {1, ..., 2r}.
If a € A, then we write a = a + r mod 2r. The setup of our paper is that we are given for
each a € A an open” disc D, in C with center in R. The closures of the discs D, for a € A
are assumed to be disjoint from one another. We let I, = D, N R, an open interval. We
write D = U, 4D, for the union of the discs.

We consider the usual action of SLy(R) by Mobius transformations on the ex-
tended complex plane C = C U {o0}. We are given for each a € A a matrix y, € SLy(R)
with the properties

y(C—D;) =D, y;= v,

We write T = (y, : a € A) for the group generated by the y,. Since the D, are
disjoint, the Ping-Pong Lemma shows that I is a free subgroup of SLy (R). An illustration

® This is a difference from the notation of [BD17] that we make the reader aware of.
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D3 = DT D4 = D§ D1 D2

FiG. 1. — An example of Schottky pairing with r = 2

of the current setup is given in Fig. 1. Any group obtained by this construction is called
a Schottky group. It is a result of Button [But98] that if X = I"\H is a connected convex
co-compact Riemann surface as in our main theorems, then I' is a Schottky group; we
now fix I' and assume it arises from the above construction.

The elements of I' can be encoded by words in the alphabet A as follows. A word
is a finite sequence

a=(a,...,a,), neNU{0}

such that ¢; # @ for i =1,...,n— 1. We say that n is the length of a and denote this
by |a| = n. We write WV for the collection of all words, Wy for the words of length N,
and Wy for the words of length > N. We write ¢ for the empty word and write WW° =
W —{0}. Fora=(ay,...,a,),b=(b,...b,) €W we write

e a=(a,...,a,))fa=(ay,...,a,) andn>1.
e a — b if cither of a or b is empty, or else a, # b, in which case (ay, ..., a,
by, ..., b,) 1s in YW° and we write ab for this concatenation.

e a~~bifa,be W°and a, = b, which case a’b is in WW°.

If a=(a,...,a,) € W then we associate to a the group element y, i Vay - Vay
here yy = id. The map a € W = y, € I is a one-to-one encoding of I'. We write
as (a,, ..., ay) and call this the mirror of a. Note that yz = ya_l. Ifa=(a,...,a)e WV
we let

Da =Va (Da,,)’ Ia =Va (Ian)

and write |I,| for the length of the open interval I,.
The Bowen-Series map 1" : D — G is given by

T|Da: ya_l = VZI'

The Bowen-Series map is eventually expanding [Borl6, Proposition 15.5]; this will be
made explicit below so we do not give the general definition now. The limit set A = A(T")
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of T, defined in the Introduction, coincides with the non-wandering set of T

A(T) = ﬂT—"(D).

n=1

The limit set A is a compact T-invariant subset of R. Given a Holder continuous map
¢ : A — R, the topological pressure P(¢) can be defined through the variational formula:

P(p) = sup (@(T) + / codu),
" A

where the supremum is taken over all T-invariant probability measures on A, and 4, ('T)
stands for the measure-theoretic entropy. A celebrated result of Bowen [Bow79] says that
the map

o > P(—olog|T'|)

is convex,’ strictly decreasing and vanishes exactly at o = §(I"), the Hausdorff dimension
of the limit set A. In addition, it is not difficult to see from the variational formula that
P(—olog|1’|) tends to —oo as 0 — 4-00. For simplicity, we will use the notation P(o)
in place of P(—o log|T’|). The pressure will play a role in some of the estimates in the
sequel.

2.2. Functional spaces and transfer operators. — Let V be any Hilbert space. If €2 is any
open subset of the complex numbers G, we consider the Bergman space H(£2; V) that is
the space of V-valued holomorphic functions on €2 with finite norm with respect to the
given inner product

{9 d=d‘/S;if(X),g(x))Vdm(x)

Here dm is Lebesgue measure on Q. If' V is separable, then H (€2; V) is a separable Hilbert
space.
Of particular interest is H(D; V). This splits as an orthogonal direct sum

HD; V) =P HD,: V).
ac A

If {e;};2, 1s any orthonormal basis of H(D,; C), and x;, x, € D, then the sum

o0

——def
e (x))er(xo) = Bp, (¥, x0)
=1

6 Convexity follows obviously from the variational formula above.
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converges and the resulting kernel is called the Bergman kernel of D,. It is given by the
explicit formula (cf. [Borl6, p. 378])

r2

[r7 — (o — c) (11 — ) PP

<2.1> BDa(xla XQ) =
T

where r,, ¢, are the radius and center of D,.
Throughout the sequel, p : I' = U(V) will be a unitary representation of the
Schottky group I'. If Z C W is any finite subset of words, then we define

L2100 =) vi@ oy M (va(®) xeDybe A

acZ

a~h
The complex power y,,(x)* is defined by analytic continuation using that y,,(x) is positive
on I, and never a negative real on D,. One has Lz , : H(D; V) - H(D; V). Certain

particular choices of Z are made throughout the paper. The basic type of transfer oper-

. . . . lef .
ator that is considered corresponds to the choice Z = W,. We write L, , = Lyy,., ,. This

operator can be written as

L0 =) vy, V() xeD,beA

ac A

a—b
In the following we follow Dyatlov and Zworski [DZ17, Section 2.4].

Definition 2.1. — A subset 7. C YV° s a partition if there is N > O such that for all a € VW
with |a| > N, there is a unique b € Z. that is a prefix of a.

One particular family of partitions, introduced by Bourgain and Dyatlov [BD17],
plays an important role in this paper. For any 7 > 0 we define

def

Z)={aeW: LI<t <L/}

It is shown by Dyatlov and Zworski [DZ17, Equations (2.7), (2.15)] that this is indeed a
partition. Not only is the partition Z(7) important to us, but so too is its mirror set

Z(I)d:ef{aewc’:ieZ(r)}.

The reason for introducing this mirror set is to make Lemma 4.5 below work. Note that

= . . . def
Z.(t) may not be a partition, although this will not matter. We write £, , , = L7050
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2.3. The representations appearing in this paper. — In this paper we consider particular
types of representations p : I' — U(V) as follows. We consider n € N and the family of

symmetric groups S, on n letters. Let V, d—efﬂz({l, ..., n}). The group S, has a standard
representation std, : S, — U(V,) where S, acts by precomposition on £ functions f :
{1, ...,n} = G. This representation is not irreducible, but splits as an orthogonal direct
sum 1 @ VY where V! is an irreducible representation of dimension n — 1. We write
std” : S, — U(V?) for the corresponding homomorphism of the symmetric group.

We now build a representation from a homomorphism ¢, : I' — S,. Since I' is
free, ¢, is described simply by choosing the images of a generating set of I', which may
be taken to be the y, with 1 < a <7. We consider

(2.2) P Estd, 0 p" Lstd) o,

These depend on the choice of ¢,. Later in the paper we will view ¢, : I' — S, as a
random homomorphism; its law is described by choosing the ¢,(y,) with 1 <a <7 in-
dependently and uniformly at random with respect to the uniform measure on S,. This
gives random representations p, and p. We write E, to refer to expectations of ran-
dom variables with respect to the random representation p'. For example, if y € ", then
Tr[p,?(y)] is a real random variable and we write En(Tr[p,? (y)]) for its expectation. At
other times we view ¢, 0,, pg as fixed and coupled to one another; it will be clear from
the context whether we make probabilistic or deterministic statements.

2.4. Selberg zeta functions. — If X is any convex co-compact hyperbolic surface (not
necessarily connected), then the Selberg zeta function of X is defined for Re(s) > § by

Zx(5) X 1_[ 1—[ ¢ (DI

yeP(X) k=0

where P(X) is the collection of primitive’ closed geodesics on X, and /(y) is the length of
such a geodesic. The function Zx(s) analytically continues to an entire function [Gui92,
GLZ04]. One has the following theorem due to Patterson and Perry [PPO1, Theo-
rem 1.5] relating resonances of the Laplacian to the Selberg zeta function.

Theorem 2.2 (Patterson-Perry). — If X is any non-elementary convex co-compact hyperbolic
surface, then any resonance of X is a zero of Zx. Conversely, if s is a zero of Zx with Re(s) > 0 then s
us a resonance of X. In all cases, the order of the zero of Zx s equal to the multiplicity of the corresponding
resonance.

7 Primitive here means it is not an iterate of a shorter closed geodesic.
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We will also have a use for twisted Selberg zeta functions. If p : I' — U (V) is any
finite dimensional unitary representation of I' then we let

7x.,(5) def l—[ Hdet(l B p(y)e—(s-ﬁ—k)/(y)).

yeP(X) k=0

This converges to a holomorphic function in Re(s) > § and extends to an entire function
by results in [FP17].

3. Estimates for derivatives

The following section contains certain technical but either easy or well-known es-
timates for derivatives of I" that will be used in the sequel. The fundamental estimates for
derivatives of elements of I" are the following:

Lemma 3.1.

Uniform contraction: Thee are C=C() >0 and 0 <0 < 6 < | such that Jor all
acW,be Awitha— b, and x € D,

(3.1 C™'o" < |yl(0| = Co™.

Bounded distortion I: There is K = K(I") > 0 such that for all b € A, a € W such that
a— bandall x;,x € Dy,

3.2) gl < —W;(xl)' < ek

B AC)

Bounded distortion II: There is a constant ¢ = ¢(T') > O such that fora € W, by, by € A
with a — by, by and x, € Dy, x9 € Dy,,

A

3.3 .
(3.3) i)

Proof. — The first two properties can be found in [Naul4, Section 2]. The last
part is trivial if a = {. Otherwise, if |a] > 1 we can write a = a’a with a’ € VV and
a’' — a—> by, by. Then for x; € D, we have

V()| = v (va())yi(x)  i=1,2.

We have 2401 < C by (3.1) and since now y,(x) and y,(x,) are in D, (3.2) gives

[7q(x2)]

|Va (Va(x1))]| (

AT < exp
|V (Va(21))]

Equation (3.3) now follows. O

Ksup diameter(Db)) .
be A
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In the rest of the paper, for any a € WW°, we define

def

Ta = [Lal.
We set Yy Y Forac We, we have
3.4 Y. <Y
since I, C Iy. Therefore there is ¢ = ¢(I") > 0 such that for any a € W
3.5) 0<Y,<c
We next recall some useful results of Bourgain-Dyatlov from [BD17, Section 2].

Lemma 3.2. — There is a constant Ky = Ko(I') > 1 such that for any a = (ay, ..., a,) €
We and x € D,,

KalTa = ’V;/(X)| = KOTa-

Progf: — For x € I, this is [BD17, Lemma 2.5, (20)]. The more general result
here follows by combining [BD17, Lemma 2.5] with the bounded distortion estimate
(8.3). O

The following lemma is [BD17, Lemma 2.10, (30)].

_ Lemma 3.3. — There 15 a constant Ky = K (I') > 1 such that for T € (0, 1), for any
a € Z(t) we have

K 't <Y, <Kt
The next lemma says that T is coarsely multiplicative.

Lemma 3.4. — There is a constant Ky = Ko(T') > 1 such that for all a,b € W° with
a~b

K;lTaTb S Ta’b S KQTaTb’
and fora,b € W witha — b

(3.6) K, ' Yp < Yap <Ko Yo T,

Progf: — 'The first set of inequalities is [BD17, Lemma 2.7]. If either a or b is ¥,
then (3.6) is trivially true with Ky = 1. So assume a, b € WW°. Then (3.6) follows by com-
bining [BD17, Lemmas 2.6 and 2.7]. O

We also have the following ‘mirror’ estimate for Y.
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Lemma 3.5 (Mirror estimate, [BDI17, Lemma 2.8]). — There s a constant Kg =
K3(T) > 1 such that for any a € W

-1
K Tz <Y, <K;Ts
We now state some lemmas about the set Z(7).

_ Lemma 3.6. — There is a constant Cy = C(I") > 1 such that for a = (ay, ..., a,) €
Z(7), for any x € D, we have

Cil't<|y,|=<Ct.
Proof. — This follows by combining Lemmas 3.2 and 3.3. U

Given Lemma 3.6, we can make the following estimate on the word lengths of
elements a € Z(71).

B Lemma 3.7. — There are constants D = D(I') > 1 and k = k(I') > 0 such that if a €
7.(7), then

'~k <l|a]<Dlogt ' +«.

D 'logt™
Proof. — Write a = (ay, ..., a,). Pick x € D,,. By Lemma 3.6 we have
Clr<[yaw|=Cr,
and combining this with (3.1) gives
crlc'o™ <t <cai9,
Since |a| = |a’| 4 1, this gives the result after taking logarithms and rearranging. 0

We now note

Lemma 3.8. — Thereis 0 < vy < | such that for T < 7o, 7(7) C Weo.
Progf: — 'This 1s a direct consequence of Lemma 3.7. UJ

Throughout the sequel, Ty will always be the parameler given by Lemma 3.8. It will also be
useful to know roughly how many elements there are in Z(7). This 1s given by [BD17,
Lemma 2.13] (noting that |Z(t)| = |Z(7))).

Lemma 3.9. — There is Cy = Co(I') > 1 such that for T € (0, 1]

Gyt < |Z(r)} < Cyr°.
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To conclude this section, we record that certain sums of derivatives are related to
the pressure functional.

Lemma 3.10. — For all 0,,Q € R such that 0 < oy < Q_there is a constant C =
C(o1, Q) > 0 such that for all N € Ny and o € [0, Q] we have

(3.7) > suplywl” < Cexp(NP(o1)),
ac A aael/};aN L

and

(3.8) D Y7 < Cexp(NP(o))).
aEWN

Progf: — The estimate (3.7) is a standard estimate that appears in [Naul4,
Lemma 3.1]. The estimate (3.8) follows by combining (3.7) with Lemma 3.2 and in-
creasing C. 0J

4. Transfer operators and zeta functions

4.1. Zeta functions.

Lemma 4.1. — For any 7. C W-o, and any finite dimensional unitary representation p of T',
the operator Ly, , is trace class on H(D; V).

Proof. — The proof'is an easy adaptation of [Bor16, Lemma 15.7]. The condition
7. C W, rules out Ly, , having any summand that acts as the identity on some D,. [

Corollary 4.2. — Let (p, V) be any finite dimensional unitary representation of T".

(1) The operator L, , is trace class on H(D; V).
(2) For T < 10, the operator L., , is trace class on H(D; V).

Given Corollary 4.2 we can define zeta functions
£,(5) = det(1 — L, ),
é-r,p(s) d=Cfd€t(1 — £2 )

7.5,

The determinants that appear here are Fredholm determinants. The reason that we have
used L | , In the definition of {; ,(s) is that it will later allow us to estimate log |¢; ,(s)| in
terms of the Hilbert-Schmidt norm of £, , rather than the trace norm (cf. (6.3)). On the
other hand, we do not square L, , in the definition of ¢,(s) so that we can access known
results about £, (s).
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By the general theory of Fredholm determinants we have

Lemma 4.3. — Let (p, V) be any finite dimensional unitary representation of T".
(1) The function &,(s) is an entire function of s € G and

(=0 <<= 3JueHD;V): L  u=u
(2) If T < 7 then &1 ,(s) s an entire function of s € G and

gr,p(s)zo — HUEH(D,V) : £2 U=u.

LIy A

The relevance of the zeta functions ¢, (s) are the following:

Proposition 4.4. — Let ¢, : T' — S, be a fixed homomorphism, and (p,, V,) the unitary
representation corresponding to ¢, via (2.2). Let X, be the n-cover of X corresponding to ¢,,.

(1) We have ¢, (s) = Zx p,(s) = Zx,(5).
(2) We have Zx,(s) = Zx(5)Z,0(s).

Proof. — Proof of Part 1. A special case of a result of Jakobson, Naud, and Soares
[JNS19, Proposition 2.2] for arbitrary finite-dimensional unitary representations gives

80, (9) = 7Zx., (5)

where both sides are entire functions of s.

If X, is connected, then X, = I',\H for some I', <T and p, = Indll:”l, the in-
duction of the trivial representation from I', to I'. In this case the Venkov-Zograf type
induction formula proved by Fedosova and Pohl in [IFP17, Theorem 6.1(i1)] (cf. [VZ82])
gives

7x.p,(8) =7Zx,(s).

If X, is not connected, let Xfll), e Xf]’") denote its connected components, and let Xf{l) =
[V\H with IV <T'. If we let p/ = Ind;{;l then we have p, = ;«":1 p.. Then

7%, =] [ 20 ® =] [ Zx ;) =Zx., )

J=! J=I

where the first equality is by definition of the Selberg zeta functions, the second equality
uses the induction formula [FP17, Theorem 6.1(i1)] and the last inequality uses the factor-
ization formula [FP17, Theorem 6.1(1)]. Thus we have proved ¢, (s) = Zx ,,(s) = Zx, (5).
T his proves Part 1.

Proof of Part 2. Using [JNS19, Proposition 2.2] again gives

(4.1) Lo () = Zx o ().
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Since p, = 1@ p?, we have

7x,(8) =7 p,(8) = Zx(5)Zx p0 (5) = Zx(5)E,0 ()

where the first equality used Part 1 of the lemma, the second used the factorization for-
mula [FP17, Theorem 6.1(1)], and the third used (4.1). Ths proves Part 2. U

The following lemma adapts (a special case of) [DZ17, Lemma 2.4] to our vector-
valued setting. The proof is essentially the same.

Lemma 4.5. — For all sufficiently small T > 0, if u € H(D; V) is such that L, ,u = u, then
Lo, u=u

Corollary 4.6. — For all sufficiently small T > 0, if Zx,(s) = 0 and Zx(s) # 0, then
;r,p,? (s)=0.

Proof. — If Zx,(s) = 0, Zx(s) # 0, then by Proposition 4.4, Part 2, {,0(s) = 0.
Then by Lemma 4.3, Part 1, there is « € H(D; VY) such that £, ,ou = u. By Lemma 4.5,
this implies that L. jou = u, and hence /Jf’w()u = u. Then by Lemma 4.3, Part 2,
Cr,p{} (s5) =0. ' ([l

4.2. The Hilbert-Schmudt norm of the transfer operator. — Corollary 4.6 reduces control-
ling zeros of the Selberg zeta function of X, that do not come from X to controlling zeros
of &7 p0(s). To do this, we will use Jensen’s formula, but before doing so, we collect some
estimates. The first will be a pointwise lower bound on [¢; ,(s)| when s is a sufficiently
large real number (cf. Section 4.3). The other will be an estimate for the expectation of
the squared Hilbert-Schmidt norm || £, , |5 for p = p°. One input to the latter result
is a deterministic (non-random) expression for || L., , || s that we give now.

Lemma 4.7. — Let (p, V) be any finite dimensional unitary representation of I". We have for
anys€ Candt <1

Iesliis = D Te(o(rary)

a,be A aj,an EZ(‘E)
a~aj,a~>b

x f 74, (7 00 Bo, (v (9, vag () dn().
Dy
Here and henceforth we write a ~ a,, ag ~» b to mean that both a ~ a, ~ b and a ~~ ay ~= b.

Progf: — 'This is similar to arguments given by Jakobson and Naud in [JN16,
pp. 466-467]. For a € A, let {e{}?°, be an orthonormal basis for H(D,; C) and let
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{v, }dlm\ be an orthonormal basis for V. Then {e] ® v; : a€ A, keN,1 <j <dimV}is
an orthonormal basis for H(D; V). We have

1L p s,
=Te(L! L.r,)

T,5,0

= Z (vap lei @] Loy, [ef @ v/])

a€ A keN,1<j<dimV

- Z Z/ T80 e/c ® U]](X) 'Cr 5 p[ek ® vJ(x))dm(x)

ae A keN,1<j<dimV be A

= 2 22

ac AkeN,1<j<dimV beA a| ayeZ(t)

a),ag~>b

/ya DT (r el & 1 (72, (9). (7" )el @ b (1 () ()

2. 2

a,0e A,keN  a; aseZ(t)
a~aj,ag~bh

Tr(p(ra,7,,') f Va, (072, ()€} (v, () ] (va, () dim(x)

=) > Trle(ry))

a,beA aj areZ(r)

a~~aj,a~>b

f Val ()Y, (x)°Bp, (Vay (%), Va, (1)) dm(x).
Dy

The final application of Fubini’s theorem is justified since we assume 7 < 7, S0 7Z(t) C
Ws,, and each y,, Ya, maps D into a compact subset of D,, coupled with the fact that

the convergence of Z,fil e;(x1)e;(x9) to Bp, (x1, x0) 1s uniform on compact subsets of D,
(see, for example, [Borl6, Proof of Theorem 15.7]). 0

4.3. A pointwise estimate _for the modulus of a zeta function.

Proposition 4.8 (Pointwise bound for |Ey ,(s)|). — Therews T, < 79 and B € Rwith B > 26
such that of T < 71, if s € [B, 00), and (p, V) s any finite dimensional unitary representation of T,
we have

—log|¢.,(s)| < (dim V)7.
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Remark 4.9. — A crucial restriction in Proposition 4.8 is Re(s) > 2§ that results

from the presence of £ | in the definition of ¢ ,.

Proof of Proposition 4.8. — We can write

=1
;T,p(f) = det(l — Eg B p) = exp<_ Z kTrﬁgé p)

k=1
whenever the series inside the exponential is absolutely convergent. We have if x € D,
2k _ / s —1
‘Cr ) [f] (X) - Z Va’l ay...a), (X) p(ya’lafz...a;k)f(ya/l ay..ay, (X)) .
ay,..., aMEZ(‘L’)
aj~vragave s agp v h
Carefully applying the Lefschetz fixed point formula [Bor16, Lemma 15.9] now gives
)/;’ a)...aly, (% a’z...aka)3

1 — Va’a’ al, (xala2 a,k)

TeLY = 3> Te[p(Vaa o)

aj,...,a9€Z(7)
agp~ral v AYNVY A9

where xy 2., € R is the unique attracting fixed point of y a)...al Let 6 denote the last
letter of ay;.
By using Lemmas 3.2 and 3.4 (2k — 1 times) we obtain
/
V.., P o) < KoTajay ot a

<KoK3¥ ', ... T

ay*

Now using Lemma 3.3 we obtain

2k—1y7r2k—1__2k k. 2k
(aa2 a%)_KOK K T <K

"‘1"‘2 aA
for some K > 1. We now assume

|—
Tlf—K
2

so that given T < 7; we have

)<2 Zk

alaz a?}( aa2 a2k

We may also use the simple estimate Tr[p ()/,‘1_,1,‘11/2 a/A)] < dim V. Putting this together gives
}..aly,

I TeL2 | < (dim V) (K7)%|Z(7)|*

7,5,
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Hence by Lemma 3.9 we obtain

ITrL | < (dim V) (K1) C3lt ™ = (dim V)K* C3l e 2%,

Tsp
Choose B such that B > max(1, 2§) and

K" > Co,
with the effect of obtaining |Tr£§f“& ,| < (dim VYK Z=29k — (dim V) (K‘*I(Q*%)Xk when
s > B. Now decrease 7y, if necessary, to ensure

Kir!' ™9 <o,

Note that 1 — % > 0, so this 1s indeed possible. The result of our choices is that when
s>B>landt <17

]

‘det(l - Ef’w)‘ = exp (Re(— Z %Trﬁfi’p)>

SO

00 sk 00 k
_1og\;,,p(;)|5(dim\/)z<g) g(dimV)ZG) < (dimV)r. O
k=1 k=1

5. The expectation of the Hilbert-Schmidt norm of the transfer operator

5.1. Statement of the main probabilistic estimate. — 'The main estimate we wish to prove
in this Section 5 is the following.

Proposition 5.1. — Gwen H, > 0, o) > %, and Q) > oy there are constants € =
e(I',Hy, Q,07) >0, and ny = no(I', Hy, Q, 01) > 0 such that if T = n_%, n>ny, s=0o + il
with o € [0, Q] and |t| < H, we have

2 —_
En”Er,s,p,? ”HS =n 6'

5.2. The expected value of the trace of a word. — The key probabilistic estimate for p?
that we use in this paper is essentially due to Broder-Shamir [BS87], and in the stronger
form that we use it can be deduced from the work of Puder [Pud15]. We will explain how
to deduce the result below.
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Theorem 5.2 (Broder-Shamay, Puder). — Let y € I have reduced word length t. Then _for any

n> >
n—1 Jy=
E(Tr[p!WD])| < Yd) — 1+ L5 ify =y, ¢= 2 and g maximal,
nfﬂ otherwise.

Here d(q) s the number of divisors of q.

Remark 5.3. — Broder and Shamir [BS87] only prove upper bounds for
E, (Tr[p’(y)]), whereas it is crucial for us to have upper and lower bounds, since we
deal with complex weighted sums of the random variables Tr[,o,?()/)].

Deduction of Theorem 5.2. — Let y be an element of the non-abelian free group I'
with reduced word length ¢. Note that Theorem 5.2 is trivial if y = id, so we assume
this is not the case. Puder proves in [Pud15, p. 885] that for n > ¢ one has an absolutely
convergent Laurent series

o0

5.1) E,(T[p.n]) =Y “S(y)

S=0

where each as(y) € Z. Puder associates to y a quantity w(y) € Ny U {oo} called the

primitivity” rank of y . For our purposes, the only thing we need to know is that 7 (y) = 0 if

and only if y =1id, and w(y) = I if and only if y is a proper power. Puder also considers

a certain finite set Crit(y) of subgroups of the free group. Again, the only thing we need

to know is that if y = ], ¢ > 2 and ¢ maximal, then |Crit(y)| = d(¢) — 1 [PP15, p. 67].
The following facts are proven by Puder in [Pudl15, pp. 885-887]:

e We have ay(y) = 1, unless w(y) = 1, in which case
ap(y) = |Crit(y)| + 1.

e If 1 <S<m(y)—1then
as(y) =0.

e Ifm(y)# 1 then

-1 = | Crit(y)].

% For good reasons, ‘primitivity’ in the setting of [Pud15] does not coincide with the notion of primitive closed
geodesics, although they are related. However, this is not relevant to the current proof.
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e foranyS>0

|as(y)| < 2572

Since Tr[p,(y)]1 =1 + Tr[p ()], if y =y, ¢ > 2 and ¢ maximal, we have from (5.1)

s t28+2 4

E(Te[p))])| <d() =1+ ——=dg)— 1+
S=1

n® n— 12

If y is neither a proper power nor the identity then the estimate is similar, but there is no
d(q) — 1 term since w(y) > 2. ]

5.3. Majorization of the expectation of the Hilbert-Schmudt norm.

Lemma 5.4. — Guven Q, Hy > 0 there is a constant C = C(T", H,, Q) such that if T < 79
ands =0 +ut witho € (0, Q] and |¢t| <Hj,

5.2) E/llLespllis = CT7 ) [B[Te(o) (v )]
a,beZ(1)
Progf: — Suppose we are given H; as in the statement of the lemma. Taking the

expectation of the expression given in Lemma 4.7 gives

(5.3) ElCc. s =Y, Y, E,[Tr(p, (va7.;))]

a,bEA aj,a9 Ez(‘[)
a~aj,ar~>b

x / 2 (VLG Bo, (v, (4., g, () ).
Dy

We wish to estimate the modulus of all quantities appearing in the integral on the right
hand side. Firstly the assumption that T < 7; ensures Z(t) C W-,, and so each Ya)s Va)
maps D, into a compact subset of D,. It then follows from the explicit expression for the
Bergman kernel in (2.1) that there is K = K(I") > 0 such that

(5.4) Bp, (a (1), v, (1) <K

for all a, x, @), ay as in (5.3).
By definition, if s = o 4 ¢,

(v () = exp((o + i) (log|yy ()| +iarg(ry (1))

where arg is the principal value of the argument, arg : G — Ry — (—m, ). Hence

| (v, () | = explolog|y, (0] = rarg (v, ) < ™[y @
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Therefore by Lemma 3.6 for some ¢ = ¢(H;, Q) > 0 we have for |¢{| < H,
(5.5) (v )| < e,

for all aj, x in (5.3), and the same for a, in place of a;. Hence applying the triangle
inequality to (5.3) and using (5.4) and (5.5), together with the fact that the D, have finite
Lebesgue measure gives

E L. lhs <Cot™ Y Y

a,beA a) areZ(t)

a~>aj,ao~b

720 Z |En Tr Va Y ))]‘

a,beZ(1)

for some C = C(I', H;, Q) whenever |¢{| < H, and t < 7. O

2 (v v DI

The next step is to input the estimates of Theorem 5.2 into the estimate of
Lemma 5.4. To organize the result we introduce, for each ¢ € Z-,, the set

PowerPairs(t; q) {(a b) € Z(1) x Z(7), Va' J/b,
is a gth power in I" with ¢ maximal },

and

PowerPairs(t) o U PowerPairs(t; ¢).
=2

Notice that in the above, Y, )/l;l # id. We will show

Lemma 3.5, — Guwen Q,H,, o, € > 0, there are constants C = C(I', H;, Q) > 0 and
ng = no(I', €, a) such that if t =n"* and s = o 4+ it with o € (0, QJ, |¢t| < H,, and n > ny, we

have
—95
L)

Progf. — We will input Theorem 5.2 into Lemma 5.4. For this to be valid we need
to control the word lengths of elements of Z(7). By Lemma 3.7, all a € Z(7) have |a| <
clogt™! +k,s0if T =n"* with a > 0,

E,|C.. ol <CT” <nr‘3 b

la| < calogn+k < 571%

for n sufficiently large, say n > ny. In this case, if a, b € Z(7) the reduced word length of
-1 .
YaVy 18

A
T
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so we may apply Theorem 5.2 to E,l[Tr(,o,?(ya/ yb_,l))]. Moreover, if ¢ is the reduced word
length of yu ¥, ', we have ¢ < 2calogn + k so for any € > 0, we have

£ 1
<

n—t " pl-e

when n > ny, after increasing ny if necessary. Finally, in the case Y34, is a gth power in
the free group I', with ¢ > 2 we must have ¢ < ¢ and so d(¢) <t < 2calogn+ « < n° for
any € > 0 and n > ny(€) (here we increase n, again if necessary).

With these estimates in hand, we partition the range of the sum of the right hand
of (5.2) according to the following three cases:

° ]/arj/b_,l is the identity; if this is the case then |E,Z[Tr(p3(yaryb_,1))]| =n—1<n
We observe that y, )/b_,1 =1d implies y»' = Y, but since the map a — y, is one-
to-one, this forces a’ = b’. Therefore the number of pairs (a, b) of this type is
< |A||Z(7)| < |A|CyT™? by Lemma 3.9. So in total, these pairs contribute at
most

(5.6) C|A|Cyt* nr™°

to the bound for E,[| L., oI} given in (5.2).
e VaYy ' isa gth power with ¢ maximal, ¢ > 2. In this case, Theorem 5.2 gives

1
‘E,Z[Tr(pf(ya/yb_,l))]‘ <d(qg—1+ s <2
for n > ny. The total number of these pairs (for all possible ¢) is [PowerPairs(7)|
so in total, these pairs contribute at most
(5.7) 2C 7" nf|PowerPairs()|

to (5.2).
e If .y, is not the identity and not a proper power, then Theorem 5.2 gives

1

nlfe

[E[Tr(p) (v )] =

We overestimate how many pairs of this kind there are by counting all pairs,
of which there are |Z(1)|*> < C3t% by Lemma 3.9. So in total, these pairs

contribute at most
—95

(5.8) cClee i —
nl—e
to (5.2).
Summing up the bounds (5.6), (5.7), and (5.8) gives the result. 0

In the next section, we will estimate |PowerPairs(t)|.
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5.4. Estimating the size of PowerPairs(t ). — Our goal is now to prove the following
proposition controlling the size of PowerPairs(7).

Proposition 3.6. — For any € > 0, there 1s Ty = To(I', €) such that for T < 19

‘PowerPairs(r)} < g9,

In the remainder of this Section 5.4 we prove Proposition 5.6.

We decompose PowerPairs(t) as follows. We introduce integer parameters
L,R>0,M,;,M; > 0, and ¢ > 2. For such parameters, let PowerPairs(z, L, M, My, R; ¢)
be the subset of PowerPairs(z; ¢) consisting of those (a, b) € PowerPairs(z; ¢) with

def

|a'| =N =L+M, +R,

b'| =N, €L+ M, +R,

a'=(a,...,ax,), b = (by,...,bx,),
a=by,ag=by,...,a, = by, a1 F by,

an, = bNQ’ aN, -1 = bNQ—la <o N —R+1 = bNQ—R+1» aN;—R #* bNQ—R-

Since every element of PowerPairs(t) belongs to some PowerPairs(z, L, My, My, R; ¢),
we have

(5.9) [PowerPairs(r)| < )" [PowerPairs(r, L, M;, My, R; g)].

LM, Mg, R>0,4>2
We will estimate |PowerPairs(t, L, M, My, R; ¢)| in the following lemma.

Lemma 5.7. — There are constants D > 0 and k € R depending only on T such that
PowerPairs(z, L, M, My, R; q) is empty unless

(5.10) D 'logt™' —k <N, Ny <Dlogt ™" +«,
and

5.11 2<¢<Dlogt '+«

( q g

Under the same assumptions as Proposition 5.6, and assumung (5.10) holds, there is a constant K =
K(T") > 0 such that

(5.12) |PowerPairs(t, L, M, My, R; )| < Kz ™.

Progf. — Yor the first statement of the lemma, if (a,b) € PowerPairs(z, L, M},
My, R; ¢), since |a'| = N, [b'| =Ny, and a, b € Z(7), Lemma 3.7 implies (5.10) must
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hold; therefore PowerPairs(z, L, M, My, R; ¢) is empty if (5.10) does not hold. Moreover
since 2 < ¢ < N; 4 Ny, after doubling D and «, (5.11) must hold also.

Now we prove (5.12) assuming (5.10) holds. For (a,b) € PowerPairs(z, L, M,
M, R; ¢) we have

a' = cAd, b'=cBd
where |¢| =L, |d| =R, |A] = M, and |B| = M,. Therefore

YaVer = VeYaVaVa Ve Vo' =VeVavs Ve .

Since Ya¥, ' is a gth power, with ¢ maximal, y,)g ' is also a gth power, with ¢ maximal,
as they are conjugate in I'. Since the first letters of A and B are not the same, and the
last letters of A and B are not the same, we have A — B — A, in other words, the word
AB is cyclically reduced. It now follows that there is some u € W° with |u| = w and
u — u (L.e. u is also cyclically reduced) such that

AB is ¢ repeated copies of u. Therefore

(5.13) A=uu...uv, B=uu...uwv
—— ——

71 q2
with vi = v and
(5.14) viV; =u,
ntgp=q9—1

Our estimates will crucially rely on the observation that for fixed L, M, My, R, ¢, choosing ¢, d, a
specifies a' and b’ and hence specifies a and b except for their last letters.

We will use the shorthand u” < uu ... u for m € N. From (5.13), using Lemma 3.4
—_—

three times gives "
Yo < KT Yun Yy, Ya
and using the same estimate in addition to the mirror estimate of Lemma 3.5 gives
Yy < K3Y e Yan Vs Ya
<KJK;3Y Yy Yo Ya
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Therefore, now using Lemma 3.4 in the opposite direction together with (5.14) we obtain
(5.15) Yo Yo < KSK3 Y2 Yo Y Yy, Yo Y
< KK Y2 Y un Y Yo Yy
<K)Ks Y Y Y.
To exploit these estimates, we note that by Lemma 3.3, we have

PowerPairs(t, L, M, My, R; q)‘

3 3 8
<Kt § T2 Yy,

(a,b)ePowerPairs(t,L,M;,My,R;¢)
3 s s 8
2 2 2
<Kjrt E T,y
(a,b)ePowerPairs(r,L,M;,Mg,R;¢)

where the last inequality is by (3.4). Let

Y =3(r,L,M;, My, R, 9) & > Tiv},
(a,b)ePowerPairs(r,L,M;,Mg,R;¢)
so we have
(5.16) |PowerPairs(t, L, M, My, R; )| < K? 0%,
By (5.15)
(5.17) o 3 it}

(a,b)ePowerPairs(r,L,M;,Mg,R; ¢)
2 91 VI rSAnE b
2 2
<|A| E (KOK3) Y2y Y3
cu,d

5|A|2(K3K3)3(ZT3>< 2 TEQ)((EZMT'?‘)

ceWWL, “EW(MIJrMQ)/q

By Lemma 3.10 there is some C = C(I") > 0 such that

(5.18) > ) < Cexp(LP(8)) =C, > Ty < Cexp(RP(8)) =C.
ceW, deWr

3

5 .
wEWar, gy Y, we write

To deal with )

qg=2q+r
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where r = 11f¢is odd and r = 0 if ¢ is even. Now using Lemma 3.4 twice and the uniform
bound for Y, from (3.5) we obtain

T, < Kg Y Vi Vo < ch Tii'
Therefore
s N
(5.19) D S () D Y.

ue W, +My)/g ueWar, +My) /g

<& Y 1

UeWjai, +My) /g
i (GM 4+ M
< C(cK3)? eXP<uP(8)>
q
s
= C(CK%) : ’

where the final inequality is by Lemma 3.10 and C = C(§) is the constant provided there
Therefore in total, inputting our bounds (5.18) and (5.19) into (5.17) we get

¥ <K
for K =K(I') > 0. Hence by (5.16)

|PowerPairs(t, L, My, My, R; ¢)| < Kz ™

for some K =K(I") > 0.

Now we can prove Proposition 5.6.
Proof of Proposition 5.6. — Combining (5.9) with Lemma 5.7 we obtain for constants
D,k >0

‘PowerPairs(‘L’) | < Z Kr~°

0<L,M;,My,R,g<Dlog 7~ !4«
_ 5 _
<K(Dlogt™' +«)'t°

< ,L,—B—e

for any € > 0 and 7 sufficiently small.
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3.5. Proof of Proposition 5.1. — Suppose we are given parameters Q, H;, o) as in
Proposition 5.1. We assume o, > %, o €lo,Q], and |¢t] < H;. Let

def . 5 1[40
e=mm|—-,-{——3 > 0.
4 4\ §

2 N
Leta = % and let T =n~* =n75. Let ny be such that for n > ny, T < 9 where 1y is the

one provided by Proposition 5.6 for the current €, and n, is at least the one provided by
Lemma 5.5 for the current € and «.
Combining Proposition 5.6 and Lemma 5.5 gives for n > ny

1
Bl e pglliys, < G (’”_8 T fﬁ)
n

< QC(nl—(Qa—S)a + n—1+e—2(0—5)a)

< 4Cn(37%’)+€

4o
< 4CpB— e <4Cn% <n €

after possibly increasing ny. This completes the proof of Proposition 5.1. 0J

6. Proof of Theorems 1.1 and 1.8

As explained in the Introduction, Theorem 1.8 implies Theorem 1.1, so we will
prove Theorem 1.8. A direct proof of Theorem 1.1 would use most of the same ideas and
not be significantly shorter.

Let n € N, ¢, be a random homomorphism ¢, : I' = S,, and (p,? , VS) be the ran-
dom representation described in Section 2.3. Let X, be the random convex co-compact
hyperbolic surface described in the Introduction.

Let 0y € (%8 ,8) and H be the number given in the assumptions of Theorem 1.8.
Let 7; and B > 26 be the constants provided by Proposition 4.8 and choose 4 > B such
that the open disc D,_ 3 5(b) contains Rect(oy, H). We let T =n75.

Since as n varies in N and ¢, runs over all homomorphisms from I' — S,, the
countable collection of holomorphic functions ¢; ,0 have amongst them all, a countable

number of zeros in the closed disc Db,% s(b), it is possible to find a o) € (%8, 0p) such that

® 10 &, has azero s with |s — | = b — 0}, and
e the open disc D,_,, (b) contains the closed rectangle Rect(oy, H)

We pick such a o;. Now we let

RE)_ o, R

= sup |b—s] <R.

seRect(og,h)

We will shortly apply Proposition 5.1 with Q = 44 R, 0} as is it is in the current context,
and H; = R. Let € and nj be the positive constants provided by these inputs to Proposi-



EXPLICIT SPECTRAL GAPS FOR RANDOM COVERS OF RIEMANN SURFACES 169

Im(s) !
!
1
1
1
1
1
1
1
1
I
1
1
I
1
I
b Rect(og, H)
H |
1
1
1
1
3 ]
70 b Re(s)
|
0 |
I
1
I
|
1
1
1
1
1
1
\
1
|
1
1
\
\
\
\
\
\
\
\
\ |S — b‘ = R
\
\
\

\

Fic. 2. — Illustration of the contour used in Jensen’s formula

tion 5.1. We pick n; > ny such that for n > n;, T < 1;. This sets up all the constants for the
proof.
If for 0 > 0, o is an resonance for X,,, and is either not a resonance of X or a reso-
nance of X with a lower multiplicity, then by Theorem 2.2 combined with Corollary 4.6,
Ce.p0(0) = 0. Therefore it suffices to show that a.a.s. there are no zeros of ¢ ,0 in Rect(ap, H).

Let N (¢,) be the number of zeros of ¢, o0 in Rect(ay, H). Note that Rect(og, H) C
Dg/(b). By Jensen’s formula [Borl6, Theorem A.2] applied to the translate of ¢; ,0 by &

we have

* R of 1 2m .
6.1 > log(—)=M<¢n>d=‘2—n / log |¢. oo (b+Re?)|d6 —log |, ,0(8)].
0

2€Dr (5) |z =4l
£ 0@=0
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The star on the sum means zeros are repeated according to their multiplicity. Note that
b > B so Proposition 4.8 ensures ¢; ,0(b) # 0, and the choice of o7 ensures ¢, ,0(b+ Re?)
1s never zero. These conditions were needed for Jensen’s formula. Now (6.1) implies

R 1

Next we majorize M (¢,). By Weyl’s inequality (cf. [Bor16, (A36)]) we have for any s € C

(6.3) log |, 0 (5)| =1log | det(1 — £2

7,5,00

) =L

7,5,00

2
}1 =< ”‘Cr,s,p,‘) ”H‘S.’
where || @ ||; and || @ ||gs. stand for the trace and Hilbert-Schmidt norms, respectively.

This was the reason for the square in the definition of ¢; ,0(s). Also, by Proposition 4.8
we have

(6.4) —log |t 0 (B)| < (n— DT <n'"5 <n!
since § € (0, 1). Using (6.3) and (6.4) gives

def 1

2
6.5) Mig) = M9 2 - / VLo o 46+ 17
0

Combining (6.2) and (6.5) and taking expectations gives

R -1
B[V 00] <tog( ) ELM @)

R\l [ ) _1
:log<ﬁ> Q—n/(] E[IIL: siret pollirs |40 + 07"

By Proposition 5.1 we have En[”Er’bJ’_Reiﬁ,pg ||%{S_] <n “forall 8 €0, 27]. Hence

(6.6) E,[N(¢)] < log<%>_ (e +n7")

for n > n;. By Markov’s inequality, the probability that ¢; ,0 has at least one zero in
Rect(oy, H) is bounded by the right hand side of (6.6); since this — 0 as n = 00, a.a.s.
Cr.p0 has no zeros in Rect(oy, H). Hence by the previous arguments, a.a.s.

Rx, [ |Rect(o, H) = Rx [ | Rect(oy, H)

and the multiplicities on both sides are the same. UJ
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7. Proof of Theorem 1.10 about high frequency resonances

This part is largely independent from the previous sections. Although we use the
technique of induced representations to keep track of resonances in covers, we prove a
spectral estimate on transfer operators twisted by any unitary representation which im-
plies Theorem 1.10 via induced representations. We will prove the following completely
general fact. Let p : T' — U(V) be a unitary representation of I' on a complex Hilbert
space V. Here U(V) is the set of unitary operators on V. Recall that I = UJ-QLIIJ-. Let

C!(1, V) denote the Banach space of V-valued functions, C' on 1, endowed with the
norm (¢ # 0)

1
I oy, v = lf lloo,v + m!V' |oo v

where as usual

AVAS

ooy = sup IFeo

where ||.|lv 1s the Hilbert space norm on V. We recall that the action of the “basic”
transfer operator L, ,, now on the function space C'(I, V), is given by

def

L, EY () We(y Fm, ifrel.

J—1

We will use the notation W, & {a € Wy : a—j}. Given the previously defined nota-
tions and F € C'(I, V), we have for all x € I;and N € N,

L,®@ =Y (v0) p(ra ) (ra).
acW,

We mention here that we could also alternatively use the “refined” transfer operator £, | ,
here in place of ﬁilp, but it wouldn’t change the final result, nor it would make the size
of the gap explicit. We will need in this section some standard distortion estimates. Some
of them (bounded distortion) have already been used in previous sections, but we recall
them for the convenience of the reader.

o (Uniform hyperbolicity). There exists G > 0 and 0 < 0 <6 < 1 such that for all N
and all j such that a € WY, then for all x € I; we have

C'8 < |yl(| < coN.

9 We do not assume that it is finite dimensional here.
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o (Bounded distortion). There exists M| > 0 such that for all N,y and all a € M,

"
a

sup - < Ml.
I

a

o (Bounded distortion for the third derivatives). There exists Q) > 0 such that for all n,;
and all a € WX,

"

sup| =2
/

I

<Q.

a

Notice that the “bounded distortion for the third derivatives” follows directly from dif-
ferentiating two times log(y,), and using bounded distortion and uniform hyperbolicity
several times, see for example [BV05, Section 3] for a previous occurrence of this condi-
tion in the literature. We now state the Ruelle-Perron-Frobenius Theorem, which will be
used below. The statement of this theorem in the symbolic setting can be found in [PP90,
Theorem 2.2]. The version we use can be obtained via the work of Liverani [Liv95] as
in [Nau05a, Theorem 5.1].

Theorem 1.1, — Set L, = L,1q where o is real and p = Id means the trivial one-
dimensional representation.

(1) The spectral radius of L, on C' (1, C) is € which is a simple eigenvalue associated to a
strictly positive eigenfunction hy > 0 1 C'(1, C).
(2) The operator L, on C' (1, C) is quasi-compact with essential spectral radius smaller than
Kk (0)e"®@ for some k(o) < 1.
(3) There are no other eigenvalues on | z| = €@ . Moreover, the spectral projector Py on {¢"}
us given by
P, g[) = h, f dig,
A)
where [Ly is the unique probability measure on A that satisfies L (i) = "
the ewgenfunction hy s normalized so that

//z(,d,ug =1.

We continue with a basic a priori estimate.

Mo, and

Lemma 7.2, — Fix some 0g < 8, then there exists Co > 0, p < 1 such that for all N, all
unitary representations (o, V) and all s = o + it with o > oy, we have

[(£300) ey < Col™ {1+ 1) oo + 0N )
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Progf. — Differentiate the formula for L] (f): since the representation factor is
locally constant, we don’t need to differentiate it. Use the bounded distortion property
plus the uniform contraction, combined with the pressure estimate in Lemma 3.10. Uni-
formity with respect to (p, V) follows from triangle inequality plus the fact that for all
y €', we have [|[p(y)|lv=1. O

The main fact of this section is the following. It is essentially a vector-valued version
of a result stated in [JNS19]. This type of estimate is called a Dolgopyat estimate by reference
to Dolgopyat’s work on Anosov flows [Dol98] where these type of bounds appeared for
the first time.

Proposition 71.3. — There existe > 0, Ty > 0 and Cy, B > 0 such that for all N = N(¢) =
[C)log |t]] with s = o + it satisfying |0 — 8| < € and |t| > Ty, we have

Ilfllt
[ el = 20

All the constants here are uniform with respect to p, V.

A particular case of this estimate was proved in [OW16, MOW17] for the case of
congruence subgroups, where

p:T = U(L*(SLy(F)))),

is obtained after reduction mod p via the regular representation of SLy(F,). The proof
was an adaptation of the arguments of [Nau05a]. We will present below a shorter, more
direct version of this estimate which allows to prove this generalization without much
effort.

Let us first briefly explain why this actually implies Theorem 1.10. We set p =
Ind~ where T is an arbitrary, finite index subgroup of I', and Ind~ is the induced repre-
sentation to I of the trivial representation of I'. We work by Contradlctlon Assume that
Z5(s) =0, then according to the induction formula of Venkov-Zograf [VZ82, FP17], we
have for s = o + i,

L ,F)=F,

for some F, # 0 € C'(I, V). We can definitely normalize F, so that ||F,||(yv = 1. Write
N = N; + N(#), where N(¢) 1s given by Proposition 7.3. Take oy < o < §. Using the
triangle inequality for ||.|v and unitarity of p, we have (by Cauchy-Schwarz) and the
pressure estimate (Lemma 3.10),

IF oo < Coe 2P0 (23 (| LNO ) 1)),
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We need to estimate the C'-norm of x — ||,C§ff) (F‘y)||%,(x) on I. Since we work with a
Hilbert norm, the square of the norm is differentiable and we can compute

o= 2Re((LYO®)), LXOF)),).

d
e

and use the V-valued Lasota-Yorke estimate from Lemma 7.2 and Cauchy-Schwarz to
obtain

15 @

iHCl(I) < GNP (1 4 1)).

Using the Ruelle-Perron-Frobenius Theorem (Theorem 7.1), and the fact that P(§) =0,
we get

N1 P(209—38 N 2 N1 2N()P
”F.r”io,v < CeM (200 )(/ ”LJ’;()L‘)(FJ) Vd/'LS + K; 12NO (on)(l + |lf|)),
A(D)

with k5 < 1. Assuming that 0y > § — € and |¢{| > 'T;, we can apply Proposition 7.3 and set
N, =N, () =[Cylog|t]] to get

g C —8)— —Collog 2C
”Fs”io’vfc(”l oP(200—6) ﬁ+ |t| o|logk|+2 11"(00)—&-1).

We then take Cj large enough and fix oy close enough to § so that CoP(20p —§) — B <0
and we get

, I
12, v < Cle ™7,

for some B > 0. The same calculation can be performed to obtain similarly

and we reach a contradiction for all |¢| large since 1 = ||F,||(y.v < C’|¢|7#/%. Once again,
all the constants are uniform with respect to (p, V).

The proof of the key Proposition 7.3 will rest on the following result of Bourgain-
Dyatlov [BD17].

) L
F| < Cl*2,

S

Theorem 1.4. — There exist constants By, Bo > 0 such that the following holds. Given g €
C'(X) and ® € C*(1), consider the integral

def

Z¢) = f eV g(x)dps (x).
A(T)

If we have

inf || = 15177,
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and || P2 <M, then for all |§| > 1, we have

IZ&)| < Culél™ gl
where Cyp > 0 does not depend on &, g.

For comments on this version of the Bourgain-Dyatlov decay estimate, see
[JNS19]. Let us just mention that ps, up to a smooth density, is the Patterson-Sullivan
measure, see [JNS19]. To be able to use this estimate, we will use the following fact from
[JNS19], which is referred there as the “uniform-non-integrability property” (UNI), see
Proposition 4.10.

Proposition 7.5 (UNI). — For alla, b € WN set

Va®) % ()
v®  mm[

PY(a,b) =

xEI

There exist constants M > 0 and ng > 0 such that for all n and all € = ™ with 0 < 1 < no, we
have for all a € WX,

> Inl L =Me

beW,, Z(a,b)<e

For a proof of that fact, see [JNS19, Section 4]. We are now ready to conclude
this section by the proof of Proposition 7.3. Pick / € C'(I, V). We set s = o + it and we
assume that o is close to §. Let us write

Sux)i= [ €500 ydoss = D> [,
AD J= 1a EVV/
with
@, 5 (x) = log ¥, (x) — log %4 (x),
and

D () = {(V;(x))” K (oW 0 val), p(ra ) o () if x €T,
a,b -

0 otherwise.

Notice that g b is indeed a C' function on a neighborhood of A(T"). By using the
bounded distortion property and Cauchy-Schwarz we have easily:

(7.1) sup &0y <€ sup PAN sup vl 1112, v
Y Y Y
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Differentiating inside the inner product (., .)y and using the bounded distortion plus the
uniform contraction (with Cauchy-Schwarz again) gives also

(7.2) sup
I

d
dxga,b

<Cy P val” P [va]” (1 +16N) 11, v
vl Y

Both estimates (7.1) and (7.2) can be combined to yield

(7.3) HgabH(ISCzSUPWJ SuPWJ (24 1467) A1, v-

We also observe that inf,¢y, |, (0] = %(a, b), and that by using the bounded distortion
for the second and third derivatives we have for some uniform Cs > 0,

[Panllcz < Cs.
The plan is now to split S, n(¢) as
Son(t) =S, (0) + SR (),

with the “near-diagonal” sum

2r
Sk:= > / ¢ (W) dps (),
A)

J=1 Y(a,b)<e

and the “off-diagonal” sum

2r
SAMH =Y > / ¢ =g (W) dps (x),
A)

=1 P(a,b)>¢

with € > 0. We now assume that oy < o < § and N = [« log |#|], with € = ¢ ™ with 0 <
1 < no. We fix i large enough so that |¢|0™ stays uniformly bounded as |¢| — 00, and pick
n > 0 small enough such that € = ¢7l<loslll > 111", so that we can apply Theorem 7.4.
Combining estimate (7.3) with the pressure bound from Lemma 3.10, we get

> Ilfll Wy
s3] = ol e

On the other hand we have

\S%(okcvn(gvzZsup\ya > suwplnl

I aeW b b:P(ab)<e

’
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which by using Proposition 7.5 and the pressure estimate combined with the uniform
hyperbolicity (the lower bound) gives

(1) 2 NP(o) 7N (00—=8) 5
S D] = CIIFIE, v 8 e,

because P(0p) — 0 as 0y — &, we can definitely pick oy < § so that for all |¢| > 1, we
have

Son(®] < |SS D] + |SE 0] < CILAIE v 1a 7P,

for some uniform C > 0 and E > 0. This ends the proof.
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