Article
Period integrals from wall structures via tropical cycles, canonical coordinates in mirror symmetry and analyticity of toric degenerations
Publications Mathématiques de l'IHÉS, Volume 132 (2020), pp. 1-82

We give a simple expression for the integral of the canonical holomorphic volume form in degenerating families of varieties constructed from wall structures and with central fiber a union of toric varieties. The cycles to integrate over are constructed from tropical 1-cycles in the intersection complex of the central fiber.

One application is a proof that the mirror map for the canonical formal families of Calabi-Yau varieties constructed by Gross and the second author is trivial. We also show that these families are the completion of an analytic family, without reparametrization, and that they are formally versal as deformations of logarithmic schemes. Other applications include canonical one-parameter type III degenerations of K3 surfaces with prescribed Picard groups.

As a technical result of independent interest we develop a theory of period integrals with logarithmic poles on finite order deformations of normal crossing analytic spaces.

Received:
Accepted:
Online First:
Published online:
DOI: 10.1007/s10240-020-00116-y
@article{PMIHES_2020__132__1_0,
     author = {Helge Ruddat and Bernd Siebert},
     title = {Period integrals from wall structures via tropical cycles, canonical coordinates in mirror symmetry and analyticity of toric degenerations},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {1--82},
     year = {2020},
     publisher = {Springer Berlin Heidelberg},
     address = {Berlin/Heidelberg},
     volume = {132},
     doi = {10.1007/s10240-020-00116-y},
     zbl = {1454.14110},
     language = {en},
     url = {https://pmihes.centre-mersenne.org/articles/10.1007/s10240-020-00116-y/}
}
TY  - JOUR
AU  - Helge Ruddat
AU  - Bernd Siebert
TI  - Period integrals from wall structures via tropical cycles, canonical coordinates in mirror symmetry and analyticity of toric degenerations
JO  - Publications Mathématiques de l'IHÉS
PY  - 2020
SP  - 1
EP  - 82
VL  - 132
PB  - Springer Berlin Heidelberg
PP  - Berlin/Heidelberg
UR  - https://pmihes.centre-mersenne.org/articles/10.1007/s10240-020-00116-y/
DO  - 10.1007/s10240-020-00116-y
LA  - en
ID  - PMIHES_2020__132__1_0
ER  - 
%0 Journal Article
%A Helge Ruddat
%A Bernd Siebert
%T Period integrals from wall structures via tropical cycles, canonical coordinates in mirror symmetry and analyticity of toric degenerations
%J Publications Mathématiques de l'IHÉS
%D 2020
%P 1-82
%V 132
%I Springer Berlin Heidelberg
%C Berlin/Heidelberg
%U https://pmihes.centre-mersenne.org/articles/10.1007/s10240-020-00116-y/
%R 10.1007/s10240-020-00116-y
%G en
%F PMIHES_2020__132__1_0
Helge Ruddat; Bernd Siebert. Period integrals from wall structures via tropical cycles, canonical coordinates in mirror symmetry and analyticity of toric degenerations. Publications Mathématiques de l'IHÉS, Volume 132 (2020), pp. 1-82. doi: 10.1007/s10240-020-00116-y

[AAK] M. Abouzaid; D. Auroux; L. Katzarkov Lagrangian fibrations on blowups of toric varieties and mirror symmetry for hypersurfaces, Publ. Math. IHÉS, Volume 123 (2016), pp. 199-282 | MR | Zbl | Numdam | DOI

[AGIS] M. Abouzaid, S. Ganatra, H. Iritani and N. Sheridan, The Gamma and Strominger-Yau-Zaslow conjectures: a tropical approach to periods, preprint, | arXiv

[Al] K. Altmann Minkowski sums and homogeneous deformations of toric varieties, Tohoku Math. J., Volume 47 (1995), pp. 151-184 | MR | Zbl | DOI

[AS] H. Argüz and B. Siebert, On the real locus in the Kato-Nakayama space of logarithmic spaces with a view toward toric degenerations, preprint, | arXiv

[At] M. Artin On the solutions of analytic equations, Invent. Math., Volume 5 (1968), pp. 277-291 | MR | Zbl | DOI

[Ba] L. Bauer, Torelli theorems for rational elliptic surfaces and their toric degenerations, dissertation, University of Hamburg, 2017, http://ediss.sub.uni-Hamburg.de/volltexte/2018/9099/.

[Br] G. Bredon Sheaf Theory, Springer, New York, 1997 | Zbl | MR | DOI

[CdGP] P. Candelas; X. de la Ossa; P. Green; L. Parkes A pair of Calabi-Yau manifolds as an exactly soluble superconformal field theory, Nucl. Phys. B, Volume 359 (1991), pp. 21-74 | Zbl | MR | DOI

[CMSP] J. Carlson; S. Müller-Stach; C. Peters Period Mappings and Period Domains, 168, Cambridge University Press, Cambridge, 2017 | Zbl | MR

[CBM] R. Castaño-Bernard; D. Matessi Conifold transitions via affine geometry and mirror symmetry, Geom. Topol., Volume 18 (2014), pp. 1769-1863 | MR | Zbl | DOI

[CCLT] K. Chan; C.-H. Cho; S.-C. Lau; H.-H. Tseng Gross fibrations, SYZ mirror symmetry, and open Gromov-Witten invariants for toric Calabi-Yau orbifolds, J. Differ. Geom., Volume 103 (2016), pp. 207-288 | MR | Zbl | DOI

[CKYZ] T.-M. Chiang; A. Klemm; S.-T. Yau; E. Zaslow Local mirror symmetry: calculations and interpretations, Adv. Theor. Math. Phys., Volume 3 (1999), pp. 495-565 | MR | Zbl | DOI

[CCGGK] T. Coates; A. Corti; S. Galkin; V. Golyshev; A. Kasprzyk Mirror symmetry and Fano manifolds, European Congress of Mathematics, Eur. Math. Soc., Zürich, 2013, pp. 285-300 | MR | Zbl

[CS] A. Cynk and D. van Straten, Periods of double octic Calabi–Yau manifolds, preprint, | arXiv

[De] P. Deligne Local behaviour of Hodge structures at infinity (Y. Green, ed.), Mirror Symmetry II, 1, Am. Math. Soc., Providence, 1993, pp. 683-699

[Dl] T. Delzant Hamiltoniens périodiques et images convexes de l’application moment, Bull. Soc. Math. Fr., Volume 116 (1988), pp. 315-339 | MR | Zbl | Numdam | DOI

[Do] I. Dolgachev Mirror symmetry for lattice polarized K3 surfaces, J. Math. Sci., Volume 81 (1996), pp. 2599-2630 | MR | Zbl | DOI

[DK] C. F. Doran; M. Kerr Algebraic K-theory of toric hypersurfaces, Commun. Number Theory Phys., Volume 5 (2011), pp. 397-600 | MR | Zbl | DOI

[Du69] A. Douady Le problème des modules pour les sous-espaces analytiques compacts d’un espace analytique donné, Ann. Inst. Fourier (Grenoble), Volume 16 (1969), pp. 1-95 | Zbl | MR | Numdam | DOI

[Du74] A. Douady Le problème des modules locaux pour les espaces 𝐂-analytiques compacts, Ann. Sci. Éc. Norm. Supér., Volume 7 (1974), pp. 569-602 | Zbl | MR | Numdam | DOI

[Dw] B. Dwork On the zeta function of a hypersurface, Publ. Math. IHÉS, Volume 12 (1962), pp. 5-68 | MR | Zbl | Numdam | DOI

[Ei] D. Eisenbud Commutative Algebra with a View Toward Algebraic Geometry, 150, Springer, New York, 1995 | Zbl | MR

[FFR] S. Felten, M. Filip and H. Ruddat, Smoothing toroidal crossing spaces, preprint, | arXiv | MR

[FPT] M. Forsberg; M. Passare; A. Tsikh Laurent determinants and arrangements of hyperplane amoebas, Adv. Math., Volume 151 (2000), pp. 45-70 | MR | Zbl | DOI

[Fr] D. Freed Special Kähler manifolds, Commun. Math. Phys., Volume 203 (1999), pp. 31-52 | Zbl | MR | DOI

[GZ] T. Graber; E. Zaslow Open-string Gromov-Witten invariants: calculations and a mirror “theorem”, Contemp. Math., Volume 310 (2002), pp. 107-121 Orbifolds in Mathematics and Physics (Madison, WI, 2001) | MR | Zbl | DOI

[Gr] H. Grauert Der Satz von Kuranishi für kompakte komplexe Räume, Invent. Math., Volume 25 (1974), pp. 107-142 | MR | Zbl | DOI

[Gt69] P. Griffiths On the periods of certain rational integrals. I, II, Ann. Math., Volume 90 (1969), pp. 460-541 | MR | Zbl | DOI

[Gt70] P. Griffiths Periods of integrals on algebraic manifolds: summary of main results and discussion of open problems, Bull. Am. Math. Soc., Volume 76 (1970), pp. 228-296 | MR | Zbl | DOI

[GHK] M. Gross; P. Hacking; S. Keel Mirror symmetry for log Calabi-Yau surfaces I, Publ. Math. Inst. Hautes Études Sci., Volume 122 (2015), pp. 65-168 | MR | Zbl | DOI

[GHKS] M. Gross, P. Hacking, S. Keel and B. Siebert, Modular partial compactification of the space of polarized K3 surfaces, in progress.

[GHS] M. Gross, P. Hacking and B. Siebert, Theta functions on varieties with effective anticanonical class, Mem. Am. Math. Soc., preprint, | arXiv | MR

[Gr98] M. Gross Special Lagrangian fibrations. I. Topology, Integrable Systems and Algebraic Geometry (1998), pp. 156-193 | MR | Zbl

[GKR] M. Gross; L. Katzarkov; H. Ruddat Towards mirror symmetry for varieties of general type, Adv. Math., Volume 308 (2017), pp. 208-275 | MR | Zbl | DOI

[GS06] M. Gross; B. Siebert Mirror symmetry via logarithmic degeneration data I, J. Differ. Geom., Volume 72 (2006), pp. 169-338 | MR | Zbl | DOI

[GS10] M. Gross; B. Siebert Mirror symmetry via logarithmic degeneration data II, J. Algebraic Geom., Volume 19 (2010), pp. 679-780 | MR | Zbl | DOI

[GS11a] M. Gross; B. Siebert From real affine geometry to complex geometry, Ann. Math., Volume 174 (2011), pp. 1301-1428 | MR | Zbl | DOI

[GS11b] M. Gross; B. Siebert An invitation to toric degenerations, Surv. Differ. Geom., 16, International Press, Somerville, 2011, pp. 43-78 | MR | Zbl | DOI

[GS14] M. Gross; B. Siebert Local mirror symmetry in the tropics, Proceedings of the International Congress of Mathematicians – Seoul 2014. Vol. II, Kyung Moon Sa, Seoul, 2014, pp. 723-744 | MR | Zbl

[Kf] F. Kato Log smooth deformation theory, Tohoku Math. J., Volume 48 (1996), pp. 317-354 | MR | Zbl | DOI

[KS] M. Kontsevich; Y. Soibelman Affine structures and non-Archimedean analytic spaces, The Unity of Mathematics, 244, Birkhäuser, Boston, 2006, pp. 321-385 | MR | Zbl | DOI

[KZ] M. Kontsevich; D. Zagier Periods, Mathematics Unlimited—2001 and Beyond, Springer, Berlin, 2001, pp. 771-808 | MR | Zbl | DOI

[MR] C. Y. Mak and H. Ruddat, Tropically constructed Lagrangians in mirror quintic threefolds, preprint, | arXiv | MR

[Mi] J. S. Milne Étale Cohomology, Princeton University Press, Princeton, 1980 | Zbl | MR

[ML] B. Moishezon Complex Surfaces and Connected Sums of Complex Projective Planes, 603, Springer, Berlin, 1977 | Zbl | MR | DOI

[Mr84] D. Morrison On K3 surfaces with large Picard number, Invent. Math., Volume 75 (1984), pp. 105-121 | MR | Zbl | DOI

[Mr93] D. Morrison Mirror symmetry and rational curves on quintic threefolds: a guide for mathematicians, J. Am. Math. Soc., Volume 6 (1993), pp. 223-247 | MR | Zbl | DOI

[PR] M. Passare; H. Rullgård Amoebas, Monge-Ampère measures, and triangulations of the Newton polytope, Duke Math. J., Volume 121 (2004), pp. 481-507 | MR | Zbl | DOI

[Ro] L. I. Ronkin On zeros of almost periodic functions generated by functions holomorphic in a multicircular domain, Complex Analysis in Modern Mathematics, FAZIS, Moscow, 2001, pp. 239-251 (Russian) | Zbl | MR

[Ru10] H. Ruddat Log Hodge groups on a toric Calabi-Yau degeneration, Mirror Symmetry and Tropical Geometry, 527, Amer. Math. Soc., Providence, 2010, pp. 113-164 | MR | Zbl | DOI

[Ru18] H. Ruddat, Local uniqueness of approximations and finite determinacy of log morphisms, preprint, | arXiv

[Ru20] H. Ruddat, A homology theory for tropical cycles on integral affine manifolds and a perfect pairing, preprint, | arXiv | MR

[RS] H. Ruddat and B. Siebert, Canonical coordinates in toric degenerations, preprint, | arXiv

[RZa] H. Ruddat and I. Zharkov, Compactifying torus fibrations over integral affine manifolds with singularities, MATRIX Annals (2020), to appear. | MR

[RZb] H. Ruddat and I. Zharkov, Topological Strominger-Yau-Zaslow fibrations, in preparation.

[Sl] M. Schlessinger Functors of Artin rings, Trans. Am. Math. Soc., Volume 130 (1968), pp. 208-222 | MR | Zbl | DOI

[St70] H. Schuster Infinitesimale Erweiterungen komplexer Räume, Comment. Math. Helv., Volume 45 (1970), pp. 265-286 | MR | Zbl | DOI

[St71] H. Schuster, Formale Deformationstheorien, Habilitationsschrift, LMU München, 1971.

[St77] J. H. M. Steenbrink Mixed Hodge structure on the vanishing cohomology, Real and Complex Singularities (1977), pp. 525-563 | MR | Zbl

[Sr] A. Strominger Special geometry, Commun. Math. Phys., Volume 133 (1990), pp. 163-180 | MR | Zbl | DOI

[SGA1] A. Grothendieck Revêtements étales et groupe fondamental (SGA 1), 224, Springer, Berlin, 1971 | Zbl | DOI

[Sy] M. Symington Four dimensions from two in symplectic topology, Topology and Geometry of Manifolds, Volume 71 (2003), pp. 153-208 | Zbl | MR | DOI

[SYZ] A. Strominger; S. T. Yau; E. Zaslow Mirror symmetry is T-duality, Nucl. Phys. B, Volume 479 (1996), pp. 243-259 | MR | Zbl | DOI

[Ti] G. Tian Smoothness of the universal deformation space of compact Calabi-Yau manifolds and its Petersson–Weil metric, Mathematical Aspects of String Theory, Volume 1 (1987), pp. 629-646 | MR | Zbl | DOI

[Wa] J. Wavrik A theorem of completeness for families of compact analytic spaces, Trans. Am. Math. Soc., Volume 163 (1972), pp. 147-155 | MR | Zbl | DOI

[Ya] Y. Yamamoto, Periods of tropical K3 surfaces, preprint, | arXiv

Cited by Sources: