We give a simple expression for the integral of the canonical holomorphic volume form in degenerating families of varieties constructed from wall structures and with central fiber a union of toric varieties. The cycles to integrate over are constructed from tropical 1-cycles in the intersection complex of the central fiber.
One application is a proof that the mirror map for the canonical formal families of Calabi-Yau varieties constructed by Gross and the second author is trivial. We also show that these families are the completion of an analytic family, without reparametrization, and that they are formally versal as deformations of logarithmic schemes. Other applications include canonical one-parameter type III degenerations of K3 surfaces with prescribed Picard groups.
As a technical result of independent interest we develop a theory of period integrals with logarithmic poles on finite order deformations of normal crossing analytic spaces.
@article{PMIHES_2020__132__1_0,
author = {Helge Ruddat and Bernd Siebert},
title = {Period integrals from wall structures via tropical cycles, canonical coordinates in mirror symmetry and analyticity of toric degenerations},
journal = {Publications Math\'ematiques de l'IH\'ES},
pages = {1--82},
year = {2020},
publisher = {Springer Berlin Heidelberg},
address = {Berlin/Heidelberg},
volume = {132},
doi = {10.1007/s10240-020-00116-y},
zbl = {1454.14110},
language = {en},
url = {https://pmihes.centre-mersenne.org/articles/10.1007/s10240-020-00116-y/}
}
TY - JOUR AU - Helge Ruddat AU - Bernd Siebert TI - Period integrals from wall structures via tropical cycles, canonical coordinates in mirror symmetry and analyticity of toric degenerations JO - Publications Mathématiques de l'IHÉS PY - 2020 SP - 1 EP - 82 VL - 132 PB - Springer Berlin Heidelberg PP - Berlin/Heidelberg UR - https://pmihes.centre-mersenne.org/articles/10.1007/s10240-020-00116-y/ DO - 10.1007/s10240-020-00116-y LA - en ID - PMIHES_2020__132__1_0 ER -
%0 Journal Article %A Helge Ruddat %A Bernd Siebert %T Period integrals from wall structures via tropical cycles, canonical coordinates in mirror symmetry and analyticity of toric degenerations %J Publications Mathématiques de l'IHÉS %D 2020 %P 1-82 %V 132 %I Springer Berlin Heidelberg %C Berlin/Heidelberg %U https://pmihes.centre-mersenne.org/articles/10.1007/s10240-020-00116-y/ %R 10.1007/s10240-020-00116-y %G en %F PMIHES_2020__132__1_0
Helge Ruddat; Bernd Siebert. Period integrals from wall structures via tropical cycles, canonical coordinates in mirror symmetry and analyticity of toric degenerations. Publications Mathématiques de l'IHÉS, Volume 132 (2020), pp. 1-82. doi: 10.1007/s10240-020-00116-y
[AAK] Lagrangian fibrations on blowups of toric varieties and mirror symmetry for hypersurfaces, Publ. Math. IHÉS, Volume 123 (2016), pp. 199-282 | MR | Zbl | Numdam | DOI
[AGIS] M. Abouzaid, S. Ganatra, H. Iritani and N. Sheridan, The Gamma and Strominger-Yau-Zaslow conjectures: a tropical approach to periods, preprint, | arXiv
[Al] Minkowski sums and homogeneous deformations of toric varieties, Tohoku Math. J., Volume 47 (1995), pp. 151-184 | MR | Zbl | DOI
[AS] H. Argüz and B. Siebert, On the real locus in the Kato-Nakayama space of logarithmic spaces with a view toward toric degenerations, preprint, | arXiv
[At] On the solutions of analytic equations, Invent. Math., Volume 5 (1968), pp. 277-291 | MR | Zbl | DOI
[Ba] L. Bauer, Torelli theorems for rational elliptic surfaces and their toric degenerations, dissertation, University of Hamburg, 2017, http://ediss.sub.uni-Hamburg.de/volltexte/2018/9099/.
[Br] Sheaf Theory, Springer, New York, 1997 | Zbl | MR | DOI
[CdGP] A pair of Calabi-Yau manifolds as an exactly soluble superconformal field theory, Nucl. Phys. B, Volume 359 (1991), pp. 21-74 | Zbl | MR | DOI
[CMSP] Period Mappings and Period Domains, 168, Cambridge University Press, Cambridge, 2017 | Zbl | MR
[CBM] Conifold transitions via affine geometry and mirror symmetry, Geom. Topol., Volume 18 (2014), pp. 1769-1863 | MR | Zbl | DOI
[CCLT] Gross fibrations, SYZ mirror symmetry, and open Gromov-Witten invariants for toric Calabi-Yau orbifolds, J. Differ. Geom., Volume 103 (2016), pp. 207-288 | MR | Zbl | DOI
[CKYZ] Local mirror symmetry: calculations and interpretations, Adv. Theor. Math. Phys., Volume 3 (1999), pp. 495-565 | MR | Zbl | DOI
[CCGGK] Mirror symmetry and Fano manifolds, European Congress of Mathematics, Eur. Math. Soc., Zürich, 2013, pp. 285-300 | MR | Zbl
[CS] A. Cynk and D. van Straten, Periods of double octic Calabi–Yau manifolds, preprint, | arXiv
[De] Local behaviour of Hodge structures at infinity (Y. Green, ed.), Mirror Symmetry II, 1, Am. Math. Soc., Providence, 1993, pp. 683-699
[Dl] Hamiltoniens périodiques et images convexes de l’application moment, Bull. Soc. Math. Fr., Volume 116 (1988), pp. 315-339 | MR | Zbl | Numdam | DOI
[Do] Mirror symmetry for lattice polarized K3 surfaces, J. Math. Sci., Volume 81 (1996), pp. 2599-2630 | MR | Zbl | DOI
[DK] Algebraic -theory of toric hypersurfaces, Commun. Number Theory Phys., Volume 5 (2011), pp. 397-600 | MR | Zbl | DOI
[Du69] Le problème des modules pour les sous-espaces analytiques compacts d’un espace analytique donné, Ann. Inst. Fourier (Grenoble), Volume 16 (1969), pp. 1-95 | Zbl | MR | Numdam | DOI
[Du74] Le problème des modules locaux pour les espaces -analytiques compacts, Ann. Sci. Éc. Norm. Supér., Volume 7 (1974), pp. 569-602 | Zbl | MR | Numdam | DOI
[Dw] On the zeta function of a hypersurface, Publ. Math. IHÉS, Volume 12 (1962), pp. 5-68 | MR | Zbl | Numdam | DOI
[Ei] Commutative Algebra with a View Toward Algebraic Geometry, 150, Springer, New York, 1995 | Zbl | MR
[FFR] S. Felten, M. Filip and H. Ruddat, Smoothing toroidal crossing spaces, preprint, | arXiv | MR
[FPT] Laurent determinants and arrangements of hyperplane amoebas, Adv. Math., Volume 151 (2000), pp. 45-70 | MR | Zbl | DOI
[Fr] Special Kähler manifolds, Commun. Math. Phys., Volume 203 (1999), pp. 31-52 | Zbl | MR | DOI
[GZ] Open-string Gromov-Witten invariants: calculations and a mirror “theorem”, Contemp. Math., Volume 310 (2002), pp. 107-121 Orbifolds in Mathematics and Physics (Madison, WI, 2001) | MR | Zbl | DOI
[Gr] Der Satz von Kuranishi für kompakte komplexe Räume, Invent. Math., Volume 25 (1974), pp. 107-142 | MR | Zbl | DOI
[Gt69] On the periods of certain rational integrals. I, II, Ann. Math., Volume 90 (1969), pp. 460-541 | MR | Zbl | DOI
[Gt70] Periods of integrals on algebraic manifolds: summary of main results and discussion of open problems, Bull. Am. Math. Soc., Volume 76 (1970), pp. 228-296 | MR | Zbl | DOI
[GHK] Mirror symmetry for log Calabi-Yau surfaces I, Publ. Math. Inst. Hautes Études Sci., Volume 122 (2015), pp. 65-168 | MR | Zbl | DOI
[GHKS] M. Gross, P. Hacking, S. Keel and B. Siebert, Modular partial compactification of the space of polarized K3 surfaces, in progress.
[GHS] M. Gross, P. Hacking and B. Siebert, Theta functions on varieties with effective anticanonical class, Mem. Am. Math. Soc., preprint, | arXiv | MR
[Gr98] Special Lagrangian fibrations. I. Topology, Integrable Systems and Algebraic Geometry (1998), pp. 156-193 | MR | Zbl
[GKR] Towards mirror symmetry for varieties of general type, Adv. Math., Volume 308 (2017), pp. 208-275 | MR | Zbl | DOI
[GS06] Mirror symmetry via logarithmic degeneration data I, J. Differ. Geom., Volume 72 (2006), pp. 169-338 | MR | Zbl | DOI
[GS10] Mirror symmetry via logarithmic degeneration data II, J. Algebraic Geom., Volume 19 (2010), pp. 679-780 | MR | Zbl | DOI
[GS11a] From real affine geometry to complex geometry, Ann. Math., Volume 174 (2011), pp. 1301-1428 | MR | Zbl | DOI
[GS11b] An invitation to toric degenerations, Surv. Differ. Geom., 16, International Press, Somerville, 2011, pp. 43-78 | MR | Zbl | DOI
[GS14] Local mirror symmetry in the tropics, Proceedings of the International Congress of Mathematicians – Seoul 2014. Vol. II, Kyung Moon Sa, Seoul, 2014, pp. 723-744 | MR | Zbl
[Kf] Log smooth deformation theory, Tohoku Math. J., Volume 48 (1996), pp. 317-354 | MR | Zbl | DOI
[KS] Affine structures and non-Archimedean analytic spaces, The Unity of Mathematics, 244, Birkhäuser, Boston, 2006, pp. 321-385 | MR | Zbl | DOI
[KZ] Periods, Mathematics Unlimited—2001 and Beyond, Springer, Berlin, 2001, pp. 771-808 | MR | Zbl | DOI
[MR] C. Y. Mak and H. Ruddat, Tropically constructed Lagrangians in mirror quintic threefolds, preprint, | arXiv | MR
[Mi] Étale Cohomology, Princeton University Press, Princeton, 1980 | Zbl | MR
[ML] Complex Surfaces and Connected Sums of Complex Projective Planes, 603, Springer, Berlin, 1977 | Zbl | MR | DOI
[Mr84] On K3 surfaces with large Picard number, Invent. Math., Volume 75 (1984), pp. 105-121 | MR | Zbl | DOI
[Mr93] Mirror symmetry and rational curves on quintic threefolds: a guide for mathematicians, J. Am. Math. Soc., Volume 6 (1993), pp. 223-247 | MR | Zbl | DOI
[PR] Amoebas, Monge-Ampère measures, and triangulations of the Newton polytope, Duke Math. J., Volume 121 (2004), pp. 481-507 | MR | Zbl | DOI
[Ro] On zeros of almost periodic functions generated by functions holomorphic in a multicircular domain, Complex Analysis in Modern Mathematics, FAZIS, Moscow, 2001, pp. 239-251 (Russian) | Zbl | MR
[Ru10] Log Hodge groups on a toric Calabi-Yau degeneration, Mirror Symmetry and Tropical Geometry, 527, Amer. Math. Soc., Providence, 2010, pp. 113-164 | MR | Zbl | DOI
[Ru18] H. Ruddat, Local uniqueness of approximations and finite determinacy of log morphisms, preprint, | arXiv
[Ru20] H. Ruddat, A homology theory for tropical cycles on integral affine manifolds and a perfect pairing, preprint, | arXiv | MR
[RS] H. Ruddat and B. Siebert, Canonical coordinates in toric degenerations, preprint, | arXiv
[RZa] H. Ruddat and I. Zharkov, Compactifying torus fibrations over integral affine manifolds with singularities, MATRIX Annals (2020), to appear. | MR
[RZb] H. Ruddat and I. Zharkov, Topological Strominger-Yau-Zaslow fibrations, in preparation.
[Sl] Functors of Artin rings, Trans. Am. Math. Soc., Volume 130 (1968), pp. 208-222 | MR | Zbl | DOI
[St70] Infinitesimale Erweiterungen komplexer Räume, Comment. Math. Helv., Volume 45 (1970), pp. 265-286 | MR | Zbl | DOI
[St71] H. Schuster, Formale Deformationstheorien, Habilitationsschrift, LMU München, 1971.
[St77] Mixed Hodge structure on the vanishing cohomology, Real and Complex Singularities (1977), pp. 525-563 | MR | Zbl
[Sr] Special geometry, Commun. Math. Phys., Volume 133 (1990), pp. 163-180 | MR | Zbl | DOI
[SGA1] Revêtements étales et groupe fondamental (SGA 1), 224, Springer, Berlin, 1971 | Zbl | DOI
[Sy] Four dimensions from two in symplectic topology, Topology and Geometry of Manifolds, Volume 71 (2003), pp. 153-208 | Zbl | MR | DOI
[SYZ] Mirror symmetry is T-duality, Nucl. Phys. B, Volume 479 (1996), pp. 243-259 | MR | Zbl | DOI
[Ti] Smoothness of the universal deformation space of compact Calabi-Yau manifolds and its Petersson–Weil metric, Mathematical Aspects of String Theory, Volume 1 (1987), pp. 629-646 | MR | Zbl | DOI
[Wa] A theorem of completeness for families of compact analytic spaces, Trans. Am. Math. Soc., Volume 163 (1972), pp. 147-155 | MR | Zbl | DOI
[Ya] Y. Yamamoto, Periods of tropical K3 surfaces, preprint, | arXiv
Cited by Sources: