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ABSTRACT

We give a simple expression for the integral of the canonical holomorphic volume form in degenerating families
of varieties constructed from wall structures and with central fiber a union of toric varieties. The cycles to integrate over
are constructed from tropical 1-cycles in the intersection complex of the central fiber.

One application is a proof that the mirror map for the canonical formal families of Calabi-Yau varieties con-
structed by Gross and the second author is trivial. We also show that these families are the completion of an analytic
family, without reparametrization, and that they are formally versal as deformations of logarithmic schemes. Other appli-
cations include canonical one-parameter type III degenerations of K3 surfaces with prescribed Picard groups.

As a technical result of independent interest we develop a theory of period integrals with logarithmic poles on
finite order deformations of normal crossing analytic spaces.
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1. Introduction

A period of a complex manifold X is the integral [ g @ of a holomorphic differential
k-form « over a singular k-cycle B on X. The classical example is the elliptic integral
[ dx//x* + ax + b, an integral over a closed curve of the holomorphic one form y~'dx on
the elliptic curve * = x* 4+ ax + b. More modern accounts emphasize the interpretation
of periods in terms of Hodge theory and their dependence on varying X and « in a holo-
morphic family [Gt70]. This interpretation is of fundamental importance in the study of
moduli spaces [CMSP]. Another fascinating aspect of period integrals is the countable
set of values obtained for algebraic varieties defined over Q [KZ].

The main result of this paper gives a simple closed formula of a class of period
integrals for families of complex manifolds naturally arising in mirror symmetry and in
the study of cluster varieties. The families X — S considered have a special fiber X,
that is a union of projective toric varieties of dimension 7, glued pairwise along toric
divisors. In particular, X, is normal crossings outside a subset of codimension two. The
special fiber is conveniently represented by the union of momentum polytopes, glued
pairwise along their facets according to the gluing of the irreducible components of X,
thus forming a cell complex & with underlying topological space B a pseudo-manifold,
possibly with boundary. Outside codimension two, the family X — S is built from toric
pieces via special isomorphisms encoded in a wall structure on B. The special isomorphisms
respect the toric holomorphic differential n-forms zl_ldzl A A 5;1 dz,, which thus define
a global relative holomorphic n-form € for X over the parameter space S.

For example, for any Laurent polynomial f € C[«', ..., 4= ], the family of sub-
varieties

(1.1) w=f-1

of C* x (C*)"~! parametrized by ¢ € G is of this form. Such families arise as mirrors
to local Calabi-Yau manifolds [CKYZ], [GS14], and in mirror symmetry for varieties
of general type [GKR], [AAK]. If the wall structure is not locally finite, this picture is
accurate only at finite orders in the deformation parameter. A careful treatment of period
integrals with logarithmic poles at ¢ = 0 in this setup is given in Appendix A.

In the simplest versions [GS06], [GS11a], S is the spectrum of a discrete valuation
ring, or a disk analytically, but in any case, S is an open subset of an affine toric variety or
its completion along a toric divisor [GHK], [GHS]. Thus there is a well-defined notion
of monomial function on S.

For the domain of integration, we consider continuous deformations B, of a class
of n-cycles B on X, that generically fiber as a real (n — 1)-torus bundle over a graph in
B and which intersect the singular locus of X transversely in some sense. In a nutshell,
our main result says that in the best cases, which include [GS11a] and [GHK], there are
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constants ¢ € G and a monomial ¢/ on S with

1
| g =c+logh,
(2 /1) / x :

as a holomorphic function outside # = 0 and up to multiples of 277 +/—1. This result is
highly remarkable since for algebraically parametrized families, period integrals of this
form typically lead to transcendental functions. In fact, replacing ¢ by /% - ¢ for some in-
vertible analytic function % changes the right-hand side by a summand log 4. Thus while
the logarithmic monomial behavior can be expected for cycles of our form, the fact that ¢
is a constant is very special to the particular construction of the family X — S via a wall
structure.

The most obvious application of this result is to merror symmetry. On the complex
side of mirror symmetry, one is looking at families X — S of Calabi-Yau varieties with
topological monodromy around the critical locus unipotent of maximal possible expo-
nent [CdGP], [De], [Mr93]. In this situation, the limiting mixed Hodge structure on
the cohomology of a nearby smooth fiber turns out to be of Hodge-Tate type [De], and
exponentials of the kind of period integrals studied here provide a distinguished set of
holomorphic functions on the parameter space. These functions provide a set of coor-
dinates at points where the family is semi-universal, that is, where the Kodaira-Spencer
map is an isomorphism. Since these functions only depend on discrete choices, they are
known as canonical coordinates in mirror symmetry. The identification of the complexified
Kihler moduli space of the mirror with complex moduli works by canonical coordinates.
Thus our result says that the mirror map is monomial on the subspace generated by
our cycles. In favorable situations one obtains full-dimensional pieces of the complexified
Kahler cone on the mirror side.

As another important application, we prove a strong analyticity result for the canon-
ical toric degenerations of [GSlla] and their universal refinement in [GHS], Theo-
rem A.7. This result should be important for the symplectic study of canonical toric
degenerations.

1.1. Toric degenerations from wall structures. — For more precise statements we now
give more details on the setup and construction. We work in the general setting of [GHS]
and fix a finitely generated C-algebra A and some £ € N. The algebra A provides mod-
uli for the construction and may be assumed to be C at first reading. The base ring of
our degeneration is A; = A[#]/(#"), so k determines the order of deformation to be
considered.

1.1.1. Polyhedral affine manifolds (B, &?). — The basic arena of all constructions
is a cell complex & of integral polyhedra with underlying topological space B an n-
dimensional pseudo-manifold with possibly empty boundary ([GHS], Definition 1.1). All

constructions happen away from codimension two. We reserve the letter o for maximal
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cells and p for codimension one cells of 2, respectively, possibly adorned. For a cell
T € & we denote by A, =~ Z3™7 the group of integral tangent vector fields on the interior
Int 7 of 7. We also need maximal cells of the barycentric subdivision of a codimension one
cell p, and these are denoted p. By writing p it 1s understood that p is the codimension
one cell of & containing p. B

Denote by A C B the union of all (z — 2)-cells of the barycentric subdivision that
lie in the (n — 1)-skeleton of &2, that is, which are disjoint from the interiors of maximal
cells. On B\ A we assume given an integral affine structure that restricts to the usual
integral affine structure on the interiors of maximal cells. Note that this amounts merely
to specifying, for each p not contained in 9B, the parallel transport through p of a prim-
itive integral vector complementary to A, on one of the two neighboring maximal cells
o of p to the other neighboring cell ¢’. The polyhedral complex &2 along with the affine
structure on B = || away from A is what we call a polyhedral affine pseudo-manifold. We
use the notation Ay C A for the smaller set defined by the (n — 2)-skeleton of Z.

1.1.2. Rinks k, and multivalued piecewrse affine function ¢. — The second piece of data
is the collection of exponents k € N\ {0} appearing in the local models (1.1) in codimen-
sion one. There is one such exponent for each p, so these exponents may vary' along a
codimension one cell p. As a matter of notation, we denote the collection of all Kk, by the
associated multivalued piecewise affine function ¢ ([GHS], Definition 1.8). -

1.1.3. Wall structures. — The third piece of data is a wall structure . on our
polyhedral affine pseudo-manifold, as defined in [GHS], Definition 1.22. The wall struc-
ture consists of a finite collection of walls, each wall being an (z — 1)-dimensional rational
polyhedron p contained in some cell of &, along with an algebraic function f,. The walls
define an (n — 1)-dimensional cell complex, assumed to cover all (z — 1)-cells p € & and
to subdivide each maximal cell of & into (closed) convex chambers, denoted u. There are
thus two kinds of walls, depending on whether the minimal cell of & containing p is a
maximal cell o or a codimension one cell p. In the first case, walls of codimension zero, f, is
of the form?

Jo= 1_[(1 + a;7"1"),

with ¢; € A, £; > 0 and 2™ the monomial in the Laurent polynomial ring G[A,] =~
Clz ', ..., z*"] defined by some m; € A, \ {0} tangent to p. The second case, walls of codi-
mension one, cover the sources of the inductive construction of the wall structure. Such a

' In [GS11a] and [GHK], kinks depend only on p, but they do depend on p C p in some proofs of [GHK].

2 The definition in [GHS] admits f, of the more general form 1 + >, ¢;2" ¢ with £; > 0 and m; € A, tangent to
p. Such a wall is of the more restrictive form considered here iff the (finite) Taylor series expansion of logf,, at 1 € A has no
terms that are pure powers of ¢. This property is crucial for walls of codimension 0 not to contribute to the period integral.
It is fulfilled in all known cases.
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wall is therefore also called slab and written with a different symbol b instead of p for eas-
ier distinction. In this case, there are no conditions on f, other than that the exponents of
monomials be tangent to p, that is,

Jo € A[A][2].

Here A, >~ Z"! denotes the group of integral tangent vector fields on p.

1.1.4. Construction of the scheme X3 /A;. — From the wall structure we build a
scheme X? over A, = A[f]/(#1") assuming a consistency condition, by taking one copy
Spec R, with R,, = A;[A,] for each chamber u C o and one copy of Spec R, with

(1.2) Ry = AdAZy, Z_1/(Zy 7 — fol2)

for each slab b. A wall p of codimension zero defines a wall crossing automorphism of Ai[ A, ],
for o the maximal cell containing p, see (3.12) below and [GHS], §2.3. The consistency
condition in codimension zero ([GHS], Definition 2.13) is equivalent to saying that se-
quences of such automorphisms identify all Spec R,, for chambers contained in the same
maximal cell o in a consistent fashion.

Ifaslab b C p is a facet of a chamber u C o, there is an open embedding

(1.3) Spec R, — SpecR,

defined by the inclusion A, C A, and by identifying Z with z¢ for ¢ € A, a generator of
A, /A, pointing from p into . For the other chamber 1’ containing b, contained in the
maximal cell 6" with 0 No’ = p, the corresponding homomorphism Ry — R,y maps Z_
to ¢ with ¢’ the parallel transport of —¢ through p. In this procedure there is a choice
of co-orientation of p that determines which maximal cell to take for o, and a choice of
¢ € Ay, but any two choices lead to isomorphic results. Consistency in codimension one
provides the necessary cocycle condition to assure the existence of a scheme X7 with open
embeddings of all SpecR,, and Spec Ry compatible with all wall crossing automorphisms
and all open embeddings (1.3).

If 9B # ¢, the codimension one cells p contained in 9B require a slightly different
treatment that turns 0B into a divisor in X_Z We do not review this construction here
because all our arguments take place on the complement of 9B.

1.1.5. Codimension two locus, partial completion and theta functions. — The fiber X§ of
X3 over ¢t =0 is a product of Spec A with a union of toric varieties, one for each maximal
cell o, glued pairwise canonically along toric divisors as prescribed by the combinatorics
of &. By construction, the toric varieties do not contain any toric strata of codimension
larger than one. For a maximal cell o, the fan of the corresponding toric variety is the
1-skeleton of the normal fan of o, so consists only of the origin and the rays. While it is
always possible to add the codimension two strata to X{ to arrive at a scheme Xy, the
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extension X of the flat deformation X7 of X{ to X is a lot more subtle and in particular,
requires a consistency condition in codimension two. The approach taken in [GHK] and
[GHS] to produce X, is to rely on the construction of a canonical A;-module basis of
the homogeneous coordinate ring, consisting of (generalized) theta_functions. For B = (S')"
these functions indeed agree with Riemannian theta functions. Theta functions will only
be used once in this paper, for the construction of the degenerate momentum map in
Proposition 2.1. There is one generalized theta function ¥, for each integral point m
of B. We refer to [GHS] for details. Our periods are computed entirely on X7 and hence
the extension from X7 to X, is largely irrelevant here.

1.1.6. Gluing data. — One obvious way to introduce parameters in the construc-
tion is to compose the open embeddings Spec R, = Spec Ry, from (1.3) with an A;-linear
toric automorphism of SpecR,,. For R, = A;[A,] such an automorphism is given by a
homomorphism A, — A*. The choices s,, € Hom(A,, A*) for each p, o with p C o is
called (open) gluing data. All previous notions generalize, with consistency in codimension
one and two now checked with the open embeddings (1.3) twisted by the given gluing
data. Gluing data may spoil projectivity or even the existence of the completed central
fiber X, D X§. Since the details of this extension are not relevant for the present paper,
we refer the interested reader to [GHS], Section 5. Gluing data change the period in-
tegral and will play an important role in the application to analyticity, hence have to be
taken into consideration.

For simplicity of notation we write X, and X; instead of X{ and X7} in the following
discussion, but work only away from strata of codimension larger than one.

1.2. Singular cycles on Xy from tropical 1-cycles. — The n-cycles considered are defined
from n-cycles B on X, that generically fiber as a finite union of real (n — 1)-torus bundles
over a graph B, in B. The torus fiber over a non-vertex point of B, in the interior
of a maximal cell 0 € & is an orbit under the conormal torus £+ ® U(1) ~ U(1)"!,
for some & € A, \ {0}, inside the real torus Hom(A,, Z) ®z U(1) >~ U(1)" acting on the
toric irreducible component X, € X, defined by o. The matching of the various orbits
at a vertex amounts to the local vanishing of the boundary of B, as a singular 1-cycle
with twisted coefficients® in the local system A.

1.2.1. The degenerate momentum map p : Xy — B. — To globalize we observe that
each maximal cell o comes with a momentum map pu, : X, — o of the corresponding
irreducible component X, € X. For trivial gluing data (all s,, = 1), the u, agree on
codimension one strata to define a degenerate momentum map 4 : Xy — B. This map
should be viewed as a limiting SYZ-fibration [SYZ]. There is a partial collapse of torus
fibers over the deeper strata of X, described explicitly by the Kato-Nakayama space of

% See [Br], §VI.12, for singular homology with coefficients in a sheaf.
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Xy as a log space, see [AS] for some details. For non-trivial gluing data, the p, have to
be composed with diffeomorphisms of the maximal cells o to make them match over
common strata. In the projective setting one can use generalized theta functions for a
canonical construction, otherwise there may be obstructions to the existence of u in
codimension two. The following is Proposition 2.1.

Proposition 1.1. — If X, is projective, there exists a degenerate momentum map o : Xo — B.
Without the projectivity assumption, such a map exists at least on the complement of the union of toric
strata of X of codimension two.

1.2.2. The log singular locus 7. C Xo, its amoeba image A C B and the adapted affine
structure on B\ (Aq U A). — For each codimension one cell p € & and any slab b C p,
the closure of the zero locus of f;, defines a hypersurface Z, in the codimension one locus
X, C X,. By consistency, this zero locus is independent of the chosen slab on p. From
the local equation in codimension one (1.1), (1.2), it follows that Z,, is the locus where the
degeneration is not semi-stable and is indeed singular even from the logarithmic point of
view. We define the log singular locus,

z=Jz,.
P

a codimension two subset of X lying in the singular locus of X,. The image of Z under
our degenerate momentum map,

A=),

is called its amoeba image. In fact, for each codimension one cell, A N Intp is a diffeo-
morphic image of the hypersurface amoeba of f;, for any slab b C p. If the base ring
A 1s higher dimensional, we first take a base change A — C to restrict to a slice of the
deformation X; — SpecA; or work with a small analytic subset of Spec A for otherwise
A may be too large to be useful.

For x € B\ (Ay U.A) and b a slab containing x, the restriction of f; to u~'(x) has
no zeros. Thus there exists a unique m, € A, with the restriction of 27" : u ' (x) - C*
contractible. This means that the adapted local equation

(1.4) Zo(222) = (2" fp)l2
locally analytically describes the toric normal crossings degeneration
2w =1

by taking z = Z,, w = Z_/f,. This observation motivates the definition of an adapted
integral affine structure on B\ (A, U A) that defines the parallel transport of —¢’ € A,
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through x to be ¢ —m, instead of ¢, the integral tangent vector chosen in connection with
the gluing (1.3).

The set of integral tangent vectors for the adapted affine structure now defines a
local system A on B\ (Ay U A) of free abelian groups of rank n. The dual local system
Hom(A, Z) is denoted A. Note that if x € B \ (Ay U A) lies in a maximal cell o, we have
a canonical isomorphism of the stalk A, with A,.

1.2.3. Tropical 1-cycles. — With the adapted affine structure on B\ (A; U A) we
are now 1n a position to define the affine geometric data representing our singular n-cycles
on Xg.

Definition 1.2. — A tropical one-cycle By, s a twisted singular one-cycle on B\ (Ay U A)
with coefficients in the sheaf of integral tangent vectors A, that is, Buop € Z1(B\ (Ay U A), A).

Thus a tropical one cycle 1s an oriented graph I' together with a map 2: " —
B\ (A U.A) and for each edge ¢ C T a section &, of (%|,)* A such that for each vertex v
the cycle (balancing) condition

(1.5) > +E,=0
eV

holds, with sign depending on ¢ being oriented toward or away from v. We typically
assume without restriction that &, # 0 for all e. One way to obtain such cycles is from a
tropical curve with a chosen orientation on each edge; the tangent vector for an edge ¢ is
then given by the oriented integral generator of the tangent space of ¢ multiplied by the
weight of the edge. The balancing (cocycle) condition for tropical curves implies that the
associated twisted singular chain is a cycle. We may thus think of twisted singular cycles
carrying integral tangent vectors as flabby versions of tropical curves. This motivates the
use of the word “tropical”.

1.2.4. The singular cycle B associated to a tropical 1-cycle Byop. — Fix a parameter value
a € Spec(A),, and let X((a) be the fiber of X over a. Let us now assume for simplicity
that By is transverse to the (n— 1)-skeleton of &2 and that each of its edges ¢ is embedded
into a single maximal cell o. For each edge ¢, choose a section S, C X, of i, : X, — 0
over ¢, chosen compatibly over vertices. Then define a chain f, over ¢ as the orbit of S,
under the subgroup of Hom(A,, U(1)) >~ U(1)" mapping &, to 1. If &, is primitive, this
subgroup equals £+ ® U(1) 2~ U(1)""!, otherwise it is the product of this (» — 1)-torus
with Z/m,Z for m, € N \ {0} the index of divisibility of &,. At a vertex v of B, the cycle
condition ) +& = 0, with signs adjusting for the orientation of the edges at v, implies
that the boundaries over v of the chains B, bound an n-chain I', over v. The singular
n-cycle associated to By, 1s now defined as

:B:ZIBE_ZFU
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The section S, is only unique in homology up to adding closed circles in fibers; the orbit
of such a circle yields a copy of the fiber class of w,, which is homologically trivial in
Xo(a), so we obtain the following.

Lemma 1.3. — The association Byop, —> B induces a well-defined homomorphism

Hi(B\ (A, UA), A) - H,(Xo(a), Z).

Remark 1.4. — Yor n = 2, the construction of n-cycles from tropical one-cycles
was done before in [Sy] with a minor variation: Symington’s tropical cycles have bound-
ary in the amoeba image A of the affine structure, that is, they are relative cycles in
H,(B, A; t,A) for ¢ : B\ A < B the inclusion. Note that in this dimension, A C B is
a finite set. Symington’s alternative definition gives nothing new compared to our cy-
cles since relative one-cycles with boundary on A are homologous to cycles with little
loops around A and this process lifts to singular cycles on Xy(a). Similar relative cycles in
higher dimension are more peculiar; one needs to replace ¢, A by a subsheaf of (, A, see
[Ru20] for details.

If Byop is the tropical cycle associated to a tropical curve and the section S the
restriction of the positive real locus in a real degeneration situation, as discussed in [AS],
then B 1s a Lagrangian cell complex. A related situation for n = 3 arises in [MR] for
n=3.

More generally, a similar procedure produces singular cycles in H,_,.,(X(a), Z)
from cycles in H,(B, ¢, A\ A), well-defined up to adding cycles constructed from
H,_ (B, ¢, N “'A). For tropical cycles with boundary in \A, more care needs to be taken.
See [CBM] for an application of relative tropical 2-cycles to conifold transitions, and also

[Ru20].

The point of using the adapted affine structure on B\ (A, U A) is as follows. For
any analytic family X — D over a disk D C C with central fiber X(a) and given by (1.2)
locally in codimension one, there is a continuous family of n-cycles B(¢) for t € D \ R_g
with B(0) = B. The reason for having to remove R_ in this statement is the topological
monodromy action on B(t) for varying ¢ in a loop around the origin.

At a vertex v of By, on a slab b C p, the local situation is as follows. If §, € A,
then, in adapted coordinates, zw = (2 describes X locally, and the cycle B is locally a
product of an (n — 2)-chain y &~ U(1)"~? with the union of two disks |z] < 1, |lw| < 1. In
this case, (/) equals y times the cylinder zw = 2, |z|, |w| < 1 and the local topological
monodromy is trivial. Otherwise, 8 is locally the product of an (z— 1)-chain y ~ U(1)""!
with a curve ¢ connecting z =1, w =0 with z =0, w = 1. In deforming to ¢ # 0 we can
again leave y untouched, but the curve ¢ deforms to a curve ¢(¢) on the cylinder connect-
ing (z, w) = (1, 1/£2) to (z, w) = (1/{2, 1). The topological monodromy acts on ¢(¢) by
a K ,-fold Dehn twist. These Dehn-twists leave an expected ambiguity of the construction
of B(#) by multiples of the vanishing cycle @ ~~ (S')". Note that there are also continuous
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families of cycles homologous to o that converge to a fiber of the degenerate momentum
map . In particular, @ can be interpreted as a fiber of the SYZ fibration. Note also that
a can be viewed as constructed from a generator of Ho(B \ (A, U A), 1, /\0 A) in the
generalized construction mentioned in Remark 1.4.

1.2.5. Picard-Lefschetz transformation and ¢,(¢). — The effect of Picard-Lefschetz
transformations on our singular cycles can be written down purely in terms of affine ge-
ometry. Since this expression appears in our period integrals, we review it here. The mul-
tivalued piecewise affine function ¢ defines a cohomology class in H' (B \ (A, U A), lv\)
denoted ¢;(¢), see [GHS], §1.2. Cap product then defines an integer valued pairing with
tropical cycles, that we denote

(1.6> (Cl (¢)v ﬁtrop) € Z

Explicitly, this pairing can be computed as follows, see [Ru20], Theorem 6. Assume with-
out restriction that B, is transverse to the (n — 1)-skeleton of 2. Then for a vertex v
of Buop on aslab b C p, let e, ¢ be the adjacent edges following the orientation of B,,.

Denoting o the maximal cell containing e, let cvie € Zv\g be the primitive generator of Aj

evaluating positively on tangent vectors pointing from p into o. Then v contributes the

summand (;1,3, &) - K, to {c1(¢), Buop), the sum taken over all vertices of B, on slabs.
The following is Proposition 2.8.

Proposition 1.5. — Let Buop € Z1(B\ (Ay U A), A) be a tropical one-cycle and let B €
H,(Xo(a), Z) be the associated singular n-cycle. Then the Picard-Lefschetz transformation of the de-
Jormation B, of B to an analytic smoothing X, of Xo(a) acts by

185 I IBt + (C] ((P)’ ﬁtrop) - O

Here o € H,(X,, Z) s the vanishing cycle.

1.3. Statements of main results. — We need two more ingredients before being able
to state the main theorem.

1.3.1. Paring B with ghung data. — Our gluing data s = (s,,) also produces a first

cohomology class, this time in H'(B \ (A, U A), A® AX). Just as ¢; (@), this cohomology
class can be evaluated on tropical cycles via the cap product to obtain an element of A*.
We write

(1.7) (5, Buop) € A™

for this pairing. In the notation used for ¢, (¢) above, a vertex v of B, on a slab contained

. . £, C e . ..
in p now contributes (sg/ o/ So p)< ¥ asa multiplicative factor in the definition of (s, Biop)-
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1.3.2. The complex Ronkin function. — For each value of the parameter space Spec A,
each slab function f; defines a holomorphic function on Hom(A ,, C*) ~ (C*)"'. Such
a holomorphic function f has an associated Ronkin function [Ro] on R"™!, defined by

1 / loglf(Zl,-.wanl”dZ
2r/—1)r! Log™! (x) 1 Rn—1

with Log(z,...,z,) = (log|zl,...,log|z]). This function is piecewise affine on the
complement of the hypersurface amoebae A; = Log(f = 0) and is otherwise continu-
ous and strictly convex. It plays a fundamental role in the study of amoebas [PR]. The
derivative of N, at a point x € R" \ A, is the homology class of the restriction of / to
Log_1 (x), as a map U()~!'—= C*. In particular, Ny is locally constant near x if and only
if this map is contractible.

Nf(X) = 1 H'danlv

Our period integrals involve the complex version of the Ronkin function for our
slab functions f,. Let x € Intb and m, € A, be as in the definition of the adapted affine
structure above. Taking 2, ..., 2,1 any toric coordinates on Spec G[A,], we define the
complex Ronkin_function of f, at x as a germ of holomorphic function in ¢ by

- 1 log (27 fo (21, -+ - 24-1))
1.8) Rz ™/, ::7/ dzy ...dz,_ € G{t}.
(1.8) R ™fo, ) Ry syl P 21 ... dz,m1 € C{t}

Here CG{t} denotes the ring of convergent power series. Under variation of parameters,
that is, changing A — G, the log singular locus Z and in turn the image A moves. But
as long as x ¢ A, the complex Ronkin function varies analytically with the parameters,
hence defines a holomorphic function on appropriate open subsets of Spec(A[¢]).,. Note
also that the real part of R(z™™f;, x) equals N_-ny;. But 27"/ is topologically con-
tractible by the definition of m, and hence N -n, is locally constant. In turn, the complex
Ronkin function is also locally constant, so does not depend on the choice of x inside a
connected component of b \ A. Reference [PR] contains some more results on the com-
plex Ronkin function, notably a power series expansion in terms of the coefficients of f,.
In general the information captured by the complex Ronkin function does not seem to
be well-understood.

Given a tropical cycle B, as before, we weight the complex Ronkin function at
a vertex v of B, on a slab b by (Be, E)YR(z ™y, v), notations as above. The sum of all
these contributions is denoted

(1.9) R(Buop) € OU){1},

for U C Spec(A),, an open subset preserving the condition x ¢ A as discussed.
The complex Ronkin function R(z7"fs, v) 1s trivial (constant 0) in one important
situation. For the statement we view f, € A[A,][¢] as a holomorphic function on

Sp@C (A[’Z]il, I zj:_ll, t]) = SpeC(A)an X (C*)n—] % C,

an
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by means of an isomorphism A, >~ Z"~!. The amoeba image A C B is defined by restrict-
ing f, to a parameter value a € Spec(A),,, and we are interested in R(fy, x) for x € b\ A.
In particular, we now view ! (x) as a real (n— 1)-torus contained in {a} x (C*)"~! x {0}.

Proposition 1.6. — Assume that in a neighborhood U C Spec(A),, X (C*)"~! x C of
W (x) there is a uniformly absolutely convergent infinite product expansion

=0+ et

=1

of 7" fo as a holomorphic function, with a; € A, all m; # 0, and such that |a;z"™| < 1 for those 1 with
2;=0." Then R(z™™f, x) = 0.

Progf: — By assumption we have a convergent Laurent expansion of log(z™"/f,):

1yt
log (Zimx‘fb) = Zlog(l + al«zmitli) — Z Z %d]iz]m’fﬂi.

¢ >0

The integral defining the complex Ronkin function can then be done term-wise. Since
m; # 0 for all , the integral of 2™ over the real torus © ' (x) vanishes. ]

For the slab functions appearing in the wall structures of [GS11a], the criterion of
Proposition 1.6 is fulfilled by the so-called normalization condition, see [GS11a], §3.6.

1.3.3. Period integrals. — Let us now assume that we have a polyhedral affine man-
ifold (B, &), gluing data s = (s,,) and a wall structure on B consistent in codimen-
sion zero and one to order k, parametrized by a finitely generated C-algebra A. We
then obtain X7, the flat deformation of X§ over A, = A[¢]/ (#*1) and, for each point
a € Spec(A),,, the amoeba image A = 1 (Z) C B of the log singular locus Z in the fiber
XG(a) of X{ over a. Let €2 be the canonical relative holomorphic n-form on X7 /A; com-
ing with the construction.

Here is the first main result of the paper, proved in §3.6.

Theorem 1.7, — Let Byop, € 21 (B\ (AU A), A) be a tropical one-cycle and B an associated
singular n-cycle on X (a). Then using notations introduced in (1.6), (1.7) and (1.9), it holds

(1.10) f 9) = exp (R(Buop)) - {81 Buop) - (1P,
B

1
=P ((2N—_1)"—1

* Recall from the theory of complex functions that the convergence assumption is equivalent to requiring conver-

gence of the series Zzl |a;]™it% of real numbers for some 7 = (1}, ...,7,_1) € R”;Ul with |z;(uw™"(x))| <, for all i and
some T > 0.
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According to Proposition A.5 and Proposition A.6, this result s well-defined up to multiplication with
exp(h - 7YY with h € A[d] for A the completion of A at the maximal ideal corresponding 1o a,
and 1t agrees up to such changes with the corresponding analytic integral for any flat analytic_family
X — U x D over an analytic open subset U x D C Spec(Al¢]) .y with reduction modulo 1 equal
to X3.

In the statement of Theorem 1.7, the ambiguity of 8 from adding multiples of the
vanishing cycle o disappears by exponentiation since [, Q = (27 V—=1)" (Lemma 3.1).

In practice one has a mutually compatible system of wall structures .%; consistent
to increasing order £ and with an increasing, often unbounded number of walls for £ —
00. Theorem 1.7 then gives a formula for the exponentiated period integral as an element
of A[],. In this formula only the complex Ronkin function R(Buop) potentially varies
with £, capturing higher order corrections to the slab functions f, as £ — o0o.

Remark 1.8. — A straightforward generalization of Theorem 1.7 deals with base
spaces A[Q] for Q a toric monoid as in [GHS]. Then ¢;(p) € H'(B\ (A, U.A), A ® Q%)
and f, € A[A,][Q]. Thus (¢;(¢), Buop) € QF and the right-hand side of formula 1.10

makes sense as an element of A[Qgp] when writing the monomials of G[Q5P] as ¢/ for
g € Q. This more general form follows easily from the stated version by testing the state-
ment on a dense set of SpfA[Q] by base-changing via various morphisms Spf (A[[t]]) —

Spf(A[Q]).

A particularly nice situation occurs when B has simple singularities, as introduced
in [GS06], Definition 1.60. Morally, these are the singularities that are indecomposable
from the affine geometric point of view. In dimension two, simple singularities lead to
local models with slab functions with at most one simple zero, that is zw = (1 4 Au) - *
for some A € C. In dimension three, the local models are zw = (1 4+ wu; + vuy) - 1 or
xwz = (1+Aw) - “ with A, u, v € G. Then the algorithm of [GS11a] produces a canonical
formal family X — Spf (A[[t]]) with central fiber Spec A classifying log Calabi-Yau spaces
over the standard log point with intersection complex (B, &), see [GHS], Theorem A7.
Our second main theorem says that locally this family is the completion of an analytic
family.

Theorem 1.9 (Theorem 4.4). — Assume that (B, &?) has simple singularities, B is orientable
and 0B s again an affine manifold with singularities (e.g. empty). Then for each closed point a € Spec A
there exists an analytic open newghborhood U of a in Spec(A) ., a disk D C G and an analytic toric
degeneration

Y—UxD

with completion at (a, 0) isomorphic, as a_formal scheme over A[t]], to the corresponding completion of
the canonical toric degeneration X — Spf (A[[zf]]) Srom [GHS], Theorem A.8.
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Fic. 1. — A one-dimensional slab p with two focus-focus singularities is shown on the left, a two-dimensional slab with
amoeba image A on the right. Tropical one-cycles By, are given respectively. On the left, vectors are attached to the edges
of Buep to indicate the respective sections of A

Moreover, this completion s a hull_for the logarithmic divisorial log deformation functor defined in
[GS10], Definition 2.7.

The proof occupies Section 4. The hard part of this theorem is that it is not just an

approximation result: the isomorphism of the two formal families does not require any
change of parameters. Thus the canonical toric degenerations from [GS11a] really are
just an algebraic order by order description of an analytic log-versal family with mono-
mial period integrals, that is, written in canonical coordinates.
History of the results. The tropical construction of n-cycles and the main period compu-
tation in this paper, for the case of [GS11a] with trivial gluing data, has been sketched
by the second author in a talk at the conference “Symplectic Geometry and Physics” at
ETH Zirich, September 3-7, 2007. Details have been worked out in a first version of
the paper in 2014 [RS]. The present paper is an essentially complete rewriting of that
version, carefully treating period integrals with logarithmic poles in finite order defor-
mations, giving an intrinsic formulation of all terms in the main period theorem (Theo-
rem 1.7), including a treatment of non-normalized slab functions via the Ronkin function
and giving a proof of analyticity and versality of canonical toric degenerations (Theo-
rem 4.4 and §4.3).

1.4. Applications. — We apply Theorem 1.7 in several interesting examples.

1.4.1. Mirror dual of Kpi. — We consider (1.1) alias (1.2) for f, € Clu, u~'] featur-

ing two zeros as follows
(1.11) 2w = (au '+ (1 + bu)t*

with k > 0 and @, b € C*, |ab| # 1. The corresponding affine manifold B is shown on the
left in Figure 1, c.f. Figure 2.2 in [GS14]. The two focus-focus singularities are the images
of the zeros of f, under the momentum map. Figure 1 also shows a tropical one-cycle Bip,
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and Theorem 1.7 yields

(1.12) exp(an/__l/ﬂQ>=a-b,

for B the associated singular 2-cycle. Indeed, one checks that the contributions in ¢ arising
from the two orange points on the same green circle cancel. There are also no contribu-
tions from the trivial gluing data. By the product expansion (1.11) and Proposition 1.6,
the Ronkin term vanishes at the two inner crossing points where this expansion is valid.

However, for the two outer crossings, f; is to be multiplied by z=™, which is « and « ™',

respectively. These crossings produce the constant factors ¢ and b in (1.12).

The geometry here arises as the mirror dual of Kpi, a smoothing of the A,-
singularity. Indeed, @ = 67! yields an A;-singularity at x = y = u + a = 0. Our period
computes the integral over the vanishing 2-sphere.

1.4.2. Mirror dual of Kp2. — We go up one dimension and consider a particular
o € C[x*!, »*'] whose zero-set is an elliptic curve so that (1.1) gives

(1.13) aw=(14x+y+s(xy) He*

for s € G a parameter. This geometry arises as the mirror dual of Kp2, as studied before
in [CKYZ], §2.2 and from a toric degeneration point of view in [GS11b], Example 5.2
and [GS14], Figure 2.1. The corresponding real affine manifold is shown on the right
of Figure 1 with the amoeba of the elliptic curve the solid red area. The amoeba com-
plement in the slab has one bounded and three unbounded components. The monomial
Z~™ at a point p inside one of the components equals 1, ™!, y~!, xp, respectively. To com-
pute the contribution of the Ronkin function, we write 27" - f; as an infinite product as
discussed in [GS14]. Define integers a;; by the identity

(1.14) l+x+y+2= 1_[ (l—i—agkxi)/zk)

i, k=0

and then 4 := [];2,(1 + aus"), a constant depending only on the parameter value s.
Inserting z = s(xp) " in (1.14) now yields a factorization of the slab function f, in (1.13) as
the product of /# and a holomorphic function ¢ fulfilling the hypothesis of Proposition 1.6.
Thus the Ronkin term of the period integral at each of the three crossings v of the tropical
cycle in the bounded center region of the amoeba complement equals

R(fo, v) =R(h- q,v) =log(h) + R(q, v) =log(h).

The Ronkin terms for crossings of the unbounded regions vanish readily by Proposi-
tion 1.6, except for the constant term of xy - fy,, which yields log(s).
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Thus, by Theorem 1.7, the exponentiated period integral for the tropical cycle By,
depicted in green in Figure 1 yields

1 3
(1.15) CXp(mLQ)Zh -5

The smoothing algorithm of [GS11a] replaces f; by f; + g, where g = — 25+ 55% —
32s% 4 - -+ is determined by the normalization condition saying that log(f, + ¢) has no pure
s-powers ([GS11a], §3.6). See also [GZ], p.14 and [GS14], Example 3.1,(2). With the nor-
malized slab function f, + g, the factor /#* disappears, leaving only s for the exponentiated
period integral (1.15). This illustrates the mechanism relating the normalization condi-
tion and the fact that the exponentials of periods for the canonical toric degenerations
of [GS1la] are monomials in the base of the family, see also §1.4.5 below. For a related
enumerative interpretation of the normalization condition see [CCLT], Theorem 1.6.

1.4.3. Degenerations of K3 surfaces with prescribed Picard group. — For a K3 surface
Y with holomorphic volume form €2, an integral homology class B € Hy(Y, Z) is the
first Chern class of a holomorphic line bundle if and only if its Poincaré-dual class Be
H*(Y, C) is of type (1, 1). Since ,é 1s real, this condition can be detected by the vanishing
of [ p Q:

(1.16) /ﬂsz:fﬂﬁzfyﬁmzéo.

Combining this observation with Theorem 1.7 and Theorem 1.9, we obtain the following
computation of the Picard lattice of general fibers of the canonical toric degenerations of
K3 surfaces constructed in [GS11a]. In this case B is a 2-sphere and the amoeba locus
A consists of at most 24 points. This number is achieved if all singularities are of focus-
focus type, that 1s, have local affine monodromy conjugate to ( | (1)) This 1s the case iff all
slab functions have simple zeroes with pairwise different absolute values, for example if
(B, &) has simple singularities as explained before Theorem 1.9. In any case, we assume
that the affine structure on B extends over the vertices of &, so we can disregard A,.
The result is then expressed in terms of the singular homology group H; (B, t,A) with
¢t : B\ A — B the inclusion. Before stating the result, we make some comments on this
homology group and how it relates to the K3 lattice.

First, if a singular 1-cycle B, with coefficients in ¢, A passes through a point x of
A, then by assumption x lies in the interior of a 1-cell of the polyhedral decomposition &2
of B. The tangent space of this 1-cell is left invariant under local monodromy and hence
spans the stalk of ¢, A. Thus the integral tangent vector carried by By, at x is invariant
under local integral affine monodromy and B, can therefore be perturbed away from
A. Since the affine structure extends over Ay, we can also perturb By, away from A,.
In other words, push-forward by ¢ defines a surjection

(1.17) Lo H B\ (AyUA), A) —> H, (B, 1,A).
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Second, for Y — U x D the analytic family from Theorem 1.9 and « € U C Spec(A)..,
te D\ {0}, let Y, =Y,(a) denote the fiber over (a, t). Our construction of tropical cycles
defines a homomorphism

HI(B\Aa A) —>H2(Y[,Z)/<Ol>, IBtrop'_)lB,

with a the vanishing cycle. This homomorphism is compatible with the respective inter-
section pairings (cap product), as is the previous homomorphism (1.17). Third, H, (B \
A, A) together with its intersection pairing only depends on the linear part of the mon-
odromy representation, hence can be computed in any model, by the classical uniqueness
result for this monodromy representation ([ML], Theorem on p. 225). For one particular
model, Symington in [Sy], §11, has given a basis of tropical cycles’ spanning the even
unimodular lattice —E&* @ H®? of rank 20 and signature (2, 18), and these also map to
a basis of H; (B, t,A) under (1.17) by unimodularity and a rank computation. This lattice
is the orthogonal complement of a hyperbolic plane H in the K3 lattice spanned by a
fiber and a section of a K3 surface fibered in Lagrangian tori over B. In our situation this
fiber class i1s o, and we have 1dentifications of lattices

H (B, u.A) = {f e Ho(Y,, Z) | B € o} [ (@) = —EF* @ H®.
Our period integrals now identify the Picard lattice of Hy(Y,, Z) inside this lattice.

Corollary 1.10. — Let w : Y — U X D be the analytic version from Theorem 1.9 of the
canonical degenerating family of K3 surfaces defined by a polyhedral affine structure (B, &) with under-
lying topological space S* and simple singularities, strictly convex multivalued piecewise affine function @
and gluing data s € H' (B, 1, A ® C*). Then the Picard group of a general fiber Y, of 7w 1s canonically

wsomorphic to

{Buop € Hi(B, 1, A) | Buop € c1(@) ™, (5, Buop) = 1}

Proof. — Theorem 1.7 implies that f s Q2y, can only be constant if (¢, (¢), Byop) = 0.
If this is the case then f s Q2y, extends holomorphically over # = 0 and thus (s, Byop) = 1 1s
equivalent to fﬂz Qy, € Qm NESY A Noting that faz Qy, =2m V—1)"fora, € Hy(Y,, Z),
the class of the vanishing cycle from Proposition 1.5, the equality in (1.17) implies that
B, 1s the image of the Poincaré-dual of an integral (1, 1) class under the quotient map
Hy(Y,,Z) — Hy(Y,, Z)/(a;). Since o, can be chosen Lagrangian, it can not be Poincaré-
dual to the class of a holomorphic line bundle. Hence the image of g, in Hy(Y,, Z) /{c;)
1s enough to determine the Picard lattice. U

% The cycles in [Sy] use a different construction for the cycles, but it is clear how to obtain cycles homologous to
hers in our fashion.



18 HELGE RUDDAT, BERND SIEBERT

Thus for trivial gluing data s = 1, or s of finite order in H' (B, 1, A ® G*), the Picard
lattice of Y, has next to largest rank 19. We thus retrieve families studied intensely, see
e.g. [Mr84], [Do].

It is also possible to treat the more general families with non-simple singularities
from [GHS], §A.4, by treatment as a limit of a situation with focus-focus singularities.
Such models lead to one-parameter families with A;-singularities. For trivial gluing data,
their resolution still provides families of K3 surfaces with Picard rank 19. Non-simple
singularities are necessary for producing families of K3 surfaces with large Picard rank of
low degree. Further details will appear in [GHKS].

Related results from a more elementary perspective have been obtained in [Ya].

1.4.4. Degenerations of rational elliptic surfaces. — Another application is to toric de-
generations of rational elliptic surfaces. In this case, the formula for period integrals in
Theorem 1.7 has been used in the thesis of Lisa Bauer to prove a Torelli theorem for toric
degenerations of rational elliptic surfaces with simple singularities. We refer to [Ba],85 for
details.

1.4.5. Canonical coordinates in mirror symmetry. — A canonical system of holomorphic
coordinates on the base V of a maximally unipotent Calabi-Yau degeneration ) — V
was first proposed in [Mr93], [De] as follows. Let ), denote the maximally degenerate
fiber, V. C € a small neighborhood of 0 and ), a regular fiber. Assume the discriminant
D =D, +---+ D, C V is the intersection with V of a union of coordinate hyperplanes
and let T; : H,(),, Z) — H,()),, Z) be the monodromy transformation along a simple
loop around D,. If Y is reduced with simple normal crossings then the 'T’; are unipotent,
so N; = —log(T)) is well-defined. Set N =) 1,N; for any A; > 0.

The monodromy weight filtration 1s the unique filtration Wy €W, C W, C ... CW,,
on H,(),, Q) with the properties N(W,) € W,_, and that N - Gr}:rk — Gr}ﬁk 1S an iso-
morphism for Gr?N = W;/W,_,. Schmid gave a decreasing filtration F}_on H"(),, C)
which combines with the Poincaré dual filtration W; := Wy, _: to give a mixed Hodge
structure. The degeneration YV — V is maximally unipotent if this mixed Hodge structure
1s Hodge-Tate. The latter property implies that Wy, = Wy,,. If ), is Calabi-Yau, then
dimg Wy = 1 and dimg W,/W; = dim H'(Y,, ©®y)), so at least dimension-wise it makes
sense to expect that a set of cycles By, ..., 8, € H,(),, Z) that descends to a basis of
Wy /W, gives rise to a set of coordinates /; := exp( f s 2) for €2 a suitably normalized rel-
ative n-form of ) — V. This was proved in [Mr93], [De]. These coordinates are canonical
in the sense of being unique up to an wtegral change of basis of Wy /W,,. The #; also agree
with exponentials of flat coordinates for the special geometry on the Calabi-Yau moduli
space defined by the Weil-Petersson metric [T1], [Sr], [FT].

Motivated from [SYZ], the Leray filtration of the momentum map was found to
coincide with the above weight filtration for n = 3 [Gr98] §4, so generators for Wy /W,
should be obtained from one-cycles in B with values in A, as also suggested in [KS]
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§7.4.1. Note however, this can only work if H, (B, ¢, A) has large enough rank and it is easy
to produce examples where this fails. A way to ensure the rank matches is by requiring
B to be simple, see [GS10], [Ru20]. In the simple situation, Corollary 4.6 and §4.3 give
directly that the exponentiated periods from cycles in H' (B, ¢, A) provide coordinates on
a versal family. At least in the case with simple singularities, it is expected that the image
of the homomorphism

(1.18) H B\ (AU A), A) — H, (Y, Q)/ ()
generates Wy. In general, Wy = im N" and
W, = (imN"_2 ﬂkerN) + (imN"_1 ﬂkerNQ).

By Proposition 1.5, a, € ker(N) and B € ker(N?) for every B obtained from a tropical
one-cycle. By [GS10], N can be identified with the Lefschetz operator on the mirror.
Thus, by the rotation of the Hodge diamond [GS10] and up to identifying the com-
position Y, — Y, > B with a compactification of Tj, », /A = B\ (Ay U A) in the
upcoming work [RZb], announced in [RZa], we find o, € imN" and the image of (1.18)

indeed generates Wy. The geometry over B\ (A, U A) has been investigated extensively
in [AS].

1.5. Relation to other works. — Beyond algebraic curves, explicit computations of
period integrals we found to be quite rare in the literature. In higher dimensions, residue
calculations can sometimes be used to compute certain periods by the Griffiths-Dwork
method of reduction of pole order [Dw], [Gt69]. Equation (3.7) in [CdGP] gives a fa-
mous example of such a computation in the context of mirror symmetry. More recently
the same type of period calculation became the main protagonist in a prominent conjec-
ture for the classification of Fano manifolds [CCGGK]. Other period integrals are often
determined indirectly as solutions of differential equations coming from the flatness of
the Gauss-Manin connection, usually at the expense of losing the connection to topol-
ogy, that is, to the integral structure. Even more recently, [AGIS] computed periods of
a section of the SYZ fibration to small -order in a maximal degeneration as considered
also in this article. Also worth mentioning are the explicit computation of periods for lo-
cal Calabi-Yau manifolds, Proposition 3.5 in [DK] and the numerical approximation of
period integrals over polyhedral cells carried out in §2 in [CS]. A particular local situ-
ation similar to the example in §1.4.1 has been computed independently by Sean Keel
(unpublished).

2. From tropical cycles to singular chains

Throughout let B be an oriented tropical manifold possibly with boundary and
with polyhedral decomposition &2, convex MPL-function ¢, open gluing data s and a
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consistent order £ structure for this data, as explained in §1.1. Let X} be the scheme over
C[t]/(#*"") obtained from this data by gluing the standard picces Spec R/{j and SpecRy,.
Our computation of the period integrals is entirely on X7. For this computation in Sec-
tions 2 and 3 we therefore do not impose the additional consistency requirements needed
to assume the existence of the partial compactification X, or even the existence of X,
nor do we need an extension of X} to an analytic family. An exception is the discussion
of the degenerate momentum map X, — B, which is of independent interest.

For simplicity of presentation we work here with fixed gluing data s, that is, with
A = C asbasering in §1.1. General A can easily be treated by either introducing analytic
parameters in all formulas or, for reduced A, by verifying the claimed period formula
(1.10) on a dense set of gluing data.

2.1. A generalized momentum map for X,. — For trivial gluing data, X, exists as a
projective variety with irreducible components the toric varieties X, with momentum
polyhedra the maximal cells o of &. If 0, 0’ intersect in a codimension one cell p of &
then the (n — 1)-dimensional toric variety X, is a joint toric prime divisor of X, X,
with the identification toric, that is, mapping the distinguished points in the big cells to
one another. It is then not hard to see that the momentum maps u, : X, — o patch to
define a generalized momentum map p : Xo = B=J,.»0.

For general gluing data, the momentum maps i, may not agree on joint toric
strata and it is not clear that p exists. Assuming projectivity, we present here a canonical
construction of u and otherwise prove the existence of ; away from codimension two
strata.

Proposition 2.1. — Assume that X, ts projective. Then there is a continuous map
u:Xg— B

which on each irreducible component X, C X restricts to a momentum map for the toric U(1)"-action
and some U(1)"-invariant Kéhler form on X, .

Wiathout the projectivity assumption, | can be constructed on the complement X, of the codimen-
ston two toric strata.

Proof. — In the projective case, the central fiber X, can be constructed as ProjS
with S a graded C-algebra generated by one rational function #,, on X for each integral
point m of B, see [GHS], §5.2 (where S is denoted S[B](s)). If m lies in a maximal cell
o then ¥, restricts to a non-zero multiple of the monomial z” on X, defined by toric
geometry. Define the Kahler form w on X, as the pull-back of the Fubini-Study form
wys on projective space under the embedding @ : X, — PN defined by the ¥,,, with
N + 1 the number of integral points on B. Denote by t the Lie algebra of the n-torus T,
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acting on X, and write o as a momentum polytope in t*. Now define i on X, by

nggm\a |19m(5)|2 tm
> eanng 10217

We claim that @, is a momentum map for the U(1)"-action on X, with respect to o|x, .
Indeed, denote by Ay the N-simplex with one vertex v,, for each integral point m € B(Z).
We view Ay as an integral polytope in t* with t the Lie algebra of the torus U(1)N*!
acting diagonally on PN. Let p : PN — t* be the usual momentum map defined by a
formula analogous to (2.1) with ¥, replaced by the monomials of degree 1. Then there is
an integral affine map Ay — t*, which for m € o maps the vertex v,, to m and the other
vertices to arbitrary integral points. The induced map t* — t* defines a morphism of tori

(2.1) Ue : Xg —> 0 Ct, (2=

. .. ® . .
k : T, = U(D)N! for which the composition X, — X, — P is equivariant.
Now i, factors over the momentum map u for PN as follows:

MU:X(,—>X01>PN—“>%*£>’¢*.

Thus if &€ € t and & is the induced vector field on X,,, we can check the momentum map
property for p, as follows:

dEopg)=dE ok opo®)=d"d(k.(§) o) = P (g, 0r5) = ;.

If X, is not projective, the complement X{ of the codimension two locus is the
fibered sum of its irreducible components, with a toric divisor X7 contained in two com-
ponents X?°, X?°, identified via a toric automorphism, that is, by multiplication with an
element g of the (n — 1)-torus T, acting on X,.° Let i, : X, = 0 and o : Xy = 0’
be the standard toric momentum maps. Since o N o’ = p, the restrictions of W, Ly tO
X,, viewed as a toric divisor in X, and X/, agree with the standard momentum map
M, - X, — p. By equivariance of p, with respect to the torus action there exists a diffeo-
morphism ¥ : p — p such that

Kplg-2) = W(/'Lp(Z))

holds for any z € X,,. Use ¥ to change the identification of p as a facet of o/, but leave the
embedding p — o unchanged. Repeating this construction for all p leads to a directed
system of all polyhedra p,o € & of dimensions n — 1 and n. After removing all faces
of dimension strictly less than n — 1, a colimit of this directed system in the category of
topological spaces exists and is a topological manifold. It is also not hard to see that this
colimit is homeomorphic and cell-wise diffeomorphic to the complement B\ Ay C B of
the (n — 2)-skeleton of Z. Since we have a compatible description of X{ as a colimit, we

% This fibered sum is the description of X{ in terms of closed gluing data discussed in [GHS], §5.1. This description
may not extend over the codimension two locus.
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obtain the desired momentum map u : Xj —> B\ A, that on X, is the composition of
o with the restriction o — B of the cell-wise diffeomorphism. O

Note that by [DI], Théoréeme 2.1, two momentum maps on a toric variety are
related by a homeomorphism that is a diffeomorphism at smooth points. In particu-
lar, for non-trivial gluing data our global momentum map restricts on any irreducible
component X, C X, to the standard toric momentum map X, — o composed with a
homeomorphism of X, that is a diffeomorphism away from strata of codimension at least
two. Note also that in the Kahler setting, the Hamiltonian vector field on X,, defined by
a co-vector § € A is given by the action of the algebraic subtorus G,, = Spec G[Z] C
Spec CG[A,] given by 6 : A, — Z.

2.2. Canonical affine structure on B\ (Ag U A). — Let u : X§ — B\ Ay be a general-
ized momentum map as produced by Proposition 2.1. Denote by Z C X{ the log singular
locus, an algebraic subset of dimension n — 2 defined by the vanishing of the slab func-
tions. Further denote by A; C B the (n — k)-skeleton of 2, that is, the union of all cells
of & of dimensions at most n — k. The amoeba image A := (Z) is contained in the
(n — 1)-skeleton A} C B. For p € & an (n — 1)-cell, AN Intp is diffeomorphic to the
classical amoeba in R"™! defined by any of the slab functions f, for b C p, viewed as an
element of the ring of Laurent polynomials G[A ,]. For the following discussion only the
reduction f, of f, modulo ¢ is relevant. The notation f/, is justified because by consistency
in codimension one, the reduction of f; modulo ¢ only depends on the cell p C p of the
barycentric subdivision containing b. The fiber of i over a point x € p \ A is the torus
fiber of X, — p over x. We will now show that there is a natural extension of the integral
affine structure on B\ A}, the union of the interiors of maximal cells, to B\ (A, U A) as
follows.

Construction 2.2 (Construction of the affine structure on B\ (A9 U.A)). — On the interior of
a maximal cell o C B define the integral affine structure by the Arnold-Liouville theorem
for the restriction of our momentum map from Proposition 2.1. For p an (n— 1)-cell with
0,0’ the adjacent maximal cells and b C p a slab, recall from §1.1.4 that the defining
equation B

(2.2) 2.7 = fut

involves monomials Z, = ¢, 25, Z_ = ¢_z* on the toric varieties X, X,. Here ¢, ¢’ gen-
erate the normal spaces A, /A, and A, /A ,, respectively, and parallel transport through
any point in p 2 b in the affine structure on B\ A carries ¢ to —¢’. The constants ¢, € CG*
are determined by gluing data, namely ¢; = s,,(¢), ¢ = 557,(¢’). This equation depends
on the choice of p C p, a cell of the subdivision of p defined by A N p, but any other
choice just leads to a multiplication of the equation with a monomial ¢z"%' with m,,, € A,
and ¢ € C.
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We now use these local models to define an adapted affine structure on B outside
Ay U A. Since the integral affine structures on o, ¢’ already agree on p, for the definition
of a chart at x € Int(p) \ A it remains to declare the parallel transport of ¢ through
Intp as —¢' + m, for some m, € A - The restriction of the reduction f, of f, modulo ¢ to
w'(x) =Hom(A,, U(1)) >~ (S")"! defines a map

Hom(A,, U(1)) — C* =5 U(1).

The image of the first arrow lies in G* because f,|,-1(y has no zeroes for x ¢ A. The
positive generator of H'(U(1), Z) >~ Z pulls back to the desired element

(2.3) m, € A, =H'(Hom(A,, U(1)), Z).

It is worthwhile noticing that m, agrees with the order of the amoeba complement selected
by x, as defined in [FPT], Definition 2.1. In particular, m, is locally constant on Int p \ \A.

Remark 2.3. — With the definition of the affine structure in Construction 2.2 we
are now in a position to rewrite the local equation (2.2) in a form suitable for the local
construction of z-cycles from tropical curves. For x € Int(p) \ Alet ¢ € A, be any tangent

vector generating A, /A, and pointing from p into o. Then ¢ =¢+mforsomeme A o
Thus defining

Z+ — zm i Z+, Z_ — zfmfmxz_,
Equation (2.2) can also be written as
(2.4) 2.7 = ("),

The point is that by the definition of m, in (2.3), this equation differs from a standard
normal crossings equation zw = {2 by the factor z~™f,. This factor is homotopically
trivial as a map from p~'(x) to G*. This is a crucial property in the construction of an
n-cycle in Lemma 2.7 below fulfilling the condition (Cy II) needed in our treatment of
finite order period integrals in Appendix A.

We emphasize that while these conventions look technical, our formula (1.10) for

— My

the period integral involves the Ronkin function associated to ™", and hence is sensitive

to the definition of m,. See §1.4.1 and §1.4.2 for two simple examples.

Remark 2.4. — We defined an affine structure on B\ (A, U.A) in Construction 2.2.
On the other hand, [GHS] works with an affine structure on B \ A for the formulation
of the wall structure. These two affine structures are related in the following way. Recall
that A C B is the (n — 2)-skeleton of the barycentric subdivision of the (7 — 1)-skeleton of

P . Let A denote the minimal subcomplex of A that allows an extension of the affine
structure from B\ A to B\ A.. In many cases, including [GS11a] and [GHK], there
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/i a
V|
2 A
\\\\ I\[/’/
T 7
FiG. 2. — Refinement of the affine structure of [GHS] and the common enlargement A of A and A, shown for a

pentagonal slab in a 3-dimensional B. Parallel transport through the shaded arcas with the same labels agrees

is an enlargement A of Ao U A with (AU A C A such that there is a deformation
retraction A — A, See Figure 2 for a sketch of a typical situation. In particular, tropical
l-cycles on B\ A can be identified with tropical 1-cycles on B\ A Replacing A by A
then potentially allows the consideration of further tropical cycles, those that are not
homologous to tropical cycles on B\ A, that is, “passing through holes of A”. In this
sense our affine structure on B\ A is a refinement of the affine structure used in [GHS].

2.3. Construction of n-cycles on X5, from tropical cycles on B\ (Ay U A). — We consider
tropical cycles B, as defined in Definition 1.2 for the integral affine structure from
Construction 2.2. The purpose of this section is to construct an n-cycle B on X suitable
for applying the results of Appendix A for the computation of the period integral | 5 S2on

Assumption 2.5. — For our computation we make a few more assumptions on B
that with hindsight can be imposed without restriction and with no influence on the
period integral.

(B1) Each point of intersection of B, with a wall is a vertex of B, and an interior
point of the wall. Any edge contains at most one vertex contained in a wall.
(Bir) Any vertex of By, of valency at least three is contained in the interior of a chamber.
(Bm) Let v be a vertex of By, contained in an (n — 1)-cell p € &2. Denote by ¢, ¢ the
edges adjacent to v with By, oriented from ¢ to ¢, by 0 € & the maximal cell
containing ¢, and by T” the 1-dimensional subtorus of the algebraic n-torus acting
on X, that fixes the toric divisor X, C X, corresponding to o pointwise.

Then v is an interior point of a unique slab b, v € b \ A, and all vertices of ¢ and ¢

are bivalent.

We also assume that ¢ is contained in the image under the momentum map w :

X, — o of the closure of a T”-orbit, and similarly for ¢ and o”.’

Finally, we assume &, to be a primitive vector and if § ¢ A, then &, generates

As/A,.
7 In coordinates G[A,] >~ Clz, ..., 2,] with z,...,2, € C[A,], this one-dimensional torus acts trivially on
29, ..., 2, and with weight £1 on z,. Hence the orbits are the level sets of 2y, ..., 2z, and their pu-image defines an in-

tegrable foliation of Into by real curves. Our assumption says that locally 8, maps to the closure of a leaf of this foliation.
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All these assumptions can be realized without changing the class of By, in H; (B \ (A U
A), A). For example, the last assumption stated in (By) can always be achieved as follows.
Write &, = a + bm in A, with { € A, a generator of A,/A,, a,b € Z and me A,
primitive. Then replace both ¢, ¢ by a 4 b copies, with the first @ copies carrying ¢ and
the last b copies carrying m. This replacement preserves the cycle property, that is, the
balancing condition at vertices (2.9). A further subdivision of each new edge is needed to
obtain bivalent vertices for all edges intersecting the slab.

Note in particular that each edge ¢ of our tropical cycles By, is considered a subset
of B and the map /4 : By, — B mentioned after Definition 1.2 is defined on ¢ by the
inclusion ¢ — B.

Construction 2.6 (Construction of the n-cycle B on X). — For each edge e of By, let
S(e) € X be a differentiable section of w over ¢, chosen compatibly over vertices. Note
that for trivial gluing data and o the maximal cell containing ¢, one may choose for S(e)
the intersection of £~ !(¢) with the positive real locus of X,, but in general there is no
such canonical choice. For arbitrary gluing data, we make an arbitrary choice, except if
the edge ¢ has a vertex v on an (n — 1)-cell p. In this case, if 0 denotes the maximal cell
containing ¢, we require S(e¢) to be contained in the closure of an orbit of the action of
the one-dimensional subtorus of Spec G[A,] fixing X, C X, point-wise. Note that this
condition is in agreement with the conditions imposed on ¢ in (Byy) of Assumption 2.5.
Note also that an equivalent way to state this additional condition is to ask any monomial
2" € CG[A,] with m € A, to take constant values on S(e).

For an edge ¢ of B, contained in a maximal cell o and carrying the tangent vector
£, € A, define B, C X, as the orbit of S(¢) under the subgroup

(2.5) T, = {¢ € Hom(A,, U(D) |$(£) =1}

of the real n-torus T, = Hom(A,, U(1)) acting on X,. In coordinates, the orbits of
Hom(A,, U(1)) ~ U(1)" are the loci of constant absolute values of all monomials, that is,
|2"| = const for all m € A, . An orbit of Tg inside such an orbit is then given by arg(z%) =
const. Note also that if &, is an m,-fold multiple of a primitive vector ée then Te is a product
of Z/m,Z with the real (n — 1)-torus

(2.6) T, ={¢ € Hom(A,, U(1)) |9(&) = 1} =& ®2 U(D).

The cyclic group Z/m,Z acts by multiplication by roots of unity on z*. Thus if ¢ is disjoint
from all (n— 1)-cells, B, is topologically a disjoint union of m, copies of the product of an
interval with T,.

If one of the vertices v of ¢ is contained in an (z — 1)-cell p, then over v one has to
replace T, by its image T, , = (éeL / (chlp N éf)) ®z U(1) under the restriction map

2.7) Hom(A,, U(1)) — Hom(A,, U(1)).



26 HELGE RUDDAT, BERND SIEBERT

Here ;jp S ]\G = Hom(A,, Z) is a primitive normal vector to A, C A,. Note that T, —
T,, is a finite cover of degree® |((Vip, &)l =1 unless § € A,. In the latter case T, — T,
contracts the circle generated by Qp.

To define the orientation of B, note that A, is oriented since B is by assumption.
Then &, induces a distinguished orientation on T, as follows. Define a basis v, ..., v, of
A, /Zée to be oriented if ée, Vg, ..., U, 1s an oriented basis of A,, for any lift vy, ..., v, €
A, of Vg, ..., v,. Then also éj = (A, /Zée)* is oriented and in turn T,. Now define the
orientation of B, by means of the identification

B,~S, xT,~S,x T, x (Z/mZ),

with S, oriented by e. After triangulating we can view B, as a singular chain. If ¢ in the
interior of a maximal cell is oriented from vertex v_ to v, the boundary 08, decomposes
as follows:

(2.8) B, =0.B,—0_PB,, 0,8, ={vi}xT, 0B ={v.}xT.

If ¢ intersects the codimension one cell p in one of the vertices v, the same formula
holds with the factor T, in the boundary component over v replaced by the image T, .,
under the map (2.7) above, with multiplicity |(2p, &,)|. In particular, for §, € A,, we have
9.8, =0 for the appropriate index .

In any case, if v € By,p 1s a vertex of valency two with adjacent edges ¢, ¢ ordered
according to the orientation of By, then 8+Ee = 8_3/, so these two parts of the bound-
ary cancel in (B8, + B,).

By (Bn), a vertex v of valency at least three is contained in the interior of a maximal
cell o. Denote by S(v) the point of intersection of S(e) with ™! (v), for any edge ¢ adja-
cent to v. As discussed above, Te -S(v) is a union of translations of the (z— 1)-dimensional
subtorus T, of ©~'(v) = Hom(A,, U(1)). The class of T,inH,_, (u="(v), Z) is Poincaré-
dualto & € A, =H'(u"!(v), Z). Define ¢,, = 1 if T, - S(v) is positively oriented as part
of the boundary of B, and ¢,, = —1 otherwise. By (2.8) we have €,, = 1 if ¢ is oriented
toward v. Now the balancing condition (1.5) for By, at v says

(2.9) D e.E=0.

esv

Hence ZBU Eov [Te -S()]=01in H,_;(u~'(v), Z). Thus there exists an n-chain I',, C
u~'(v) whose boundary equals the negative of this sum. The chain T, is unique up to
adding integral multiples of ™' (v). For brevity of notation we define I', = 0 if v is a

bivalent vertex. By construction, the sum of chains Y, 8, + >, T, defines an n-cycle on
X5
0

¢ By our last condition in (By;) of Assumption 2.5, &, generates A, /A, s0 (;ip, E)y=1.
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To arrive at a cycle of the form treated in Construction A.3, we may need to adjust
some of the boundary components of edges adjacent to slabs, as will become clear in
the proof of Lemma 2.7 below. To this end we admit the insertion of chains on some of
such edges as follows. Let v be a vertex contained in a slab and ¢, ¢ the adjacent edges,
with B oriented from ¢ to ¢. Denote by 1’ the chamber containing ¢. We now change f,
by subtracting a chain Iy, while adding the same chain Iy in the chart Spec R%, to the
collection of chains. For notational convenience we define I', = 0 for all other edges ¢ and
I'y = 0 for all two-valent vertices v. The resulting chain for any edge ¢ (modified or not)
is now denoted f,. Thus we have B, = B, unless ¢ is oriented away from a vertex v_ lying
on a slab.

Finally we define
(2.10) B:=> B+> I+ I.

It follows from the construction that 38 =0, so B is a singular cycle on X§. Up to speci-
fying the slab add-ins I'y in Lemma 2.7 below, this ends the construction of B.

For the remainder of the section we assume familiarity with the content of Ap-
pendix A and notably the conditions on adapted charts and cycles from Construction A.3.
To decompose B in the form ). B; demanded in Construction A.3, take for the con-
stituents B; one of the following.

(1) B, with e disjoint from (n — 1)-cells;

(2) T, for v a vertex of valency at least three;

(3) The sum B, + B, for the two edges ¢, ¢ adjacent to a vertex v contained in an (n— 1)-
cell;

(4) Aslab add-in I'y whenever this chain is non-zero.

Lemma2.7. — Foracycle f =) ; Bifrom Construction 2.6 there exist charts ®; : fji — X7
and a choice of slab add-ins 'y, such that the charts ®; and chains B; fulfill (Ch I), (Ch II) and (Cy 1),
(Cy 1) of Construction A.3, respectively.

Proof. — Step I: Construction of adapted charts. By (B;) of Assumption 2.5 for the tropical
cycle Byop, the constituents of the form B; = B, or B; = I', are contained in a single
chamber u. Denote by o the maximal cell containing u. As explained in §1.1.4, the chart
of X} defined by u provides an open embedding

(2.11) SpecRY, = Spec (C[A,]) x O, — X,

which, viewed as a morphism of analytic log spaces, we take for ®;. Thus U; =
Spec (C[Ag]) x Oy. Here we write O; = Spec C[#]/(#**!) as in Appendix A. The re-
duction U; of U; is isomorphic to (C*)". In the notation of Construction A.3, such ®; are
charts of type L.
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In the third instance of two edges ¢, ¢ with 8; = B, + B, and B, oriented from
¢ to ¢ and meeting in a vertex v on a slab b C p, by (1.2) we similarly have an open
embedding

SpecRf — X2,

with R’g; = C[Ap][z+, 7, t]/(Z+Z_ — Mtk T, i = Kp, - Here we use the adapted

coordinates Z4 from (2.4) with ¢ = =&, in case £, ¢ A,.? Denote also by u, 1’ and o, 0’
the chambers and maximal cells containing the images of ¢, ¢, respectively.
To bring the ring R into the form required by (Ch II) of Construction A.3, we

now set

(2.12) 2=7p, w=7_/Z"f),

to obtain an open embedding of the open neighborhood Spec(R});, € Spec R} of ™! (v)
into

(2.13) Spec (G[A, 1z, w, £]/(zw — £, £F1)).

A further shrinking of neighborhood leads to the desired chart of the form U, =V, x H,,
with V; € Hom(A ,, C*) ~ (G*)"~! open and H,, the base change to Oy of an appropri-
ate bounded open subset of { (z,w, 1) € CS| W = t"i}. With the possible rescaling of z, w
from Remark A.4 understood, this is a chart of type II. Denote by o the maximal cell
containing ¢, and by o’ the other maximal cell adjacent to b.

Note also that the projection V; x H,. = V; is a restriction of the map

(2.14) SpecRf —> Spec C[A,]

induced by the inclusion A, C A,, and this map is equivariant for the homomorphism
of tori'’ T, — T, discussed in Construction 2.6. By construction, S(e) lies in the fiber of
this projection since any monomial 2" with m € A, is constant on S(e).

Step IT: Checking (Cy I1),(Cy II) for B, = B, and for T',. We need to check that f; is of the
form specified in (Cy II) of Construction A.3. This discussion is entirely on the cen-
tral fiber X¢, with the toric local model C[A,/] = C[Ap][zj_“] and the non-toric one
ClA,llz, w]/(zw).

Condition (Cy I) is readily fulfilled if B; = B, and ¢ is disjoint from all slabs, and for
B; = T',. It remains to consider the case §; = B, and ¢ N p # @ for some p.

The part B, of B; lying over o is again easily seen to be of the required form, with
the added flexibility of Remark A.4 understood:

% Note that we use here condition (By;) of Assumption 2.5 that if €, ¢ A, then &, is a generator of A, /A,.
10 We have T, = T, by the assumption of primitivity of &, according to (By;) in Assumption 2.5.
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(1) If &, € A, then the action of the (n — 1)-torus Te =T, defined in (2.5) on G[A ]
has a one-dimensional kernel, which acts non-trivially on z = Z_. Hence, in the chart
(2.13), we have B, = y; {|/:| < 82} with y; an (n — 2)-dimensional orbit of the action
of T,, >~ U(1)"" on SpecG[A,] =~ (CG*)""!" and some ¢; € R.;. We do not bother to
compute y; explicitly because our integral over such chains vanishes in any case.

(i) If & ¢ A, then & = . Hence the action of T, = T, is trivial on z =Z, and
the restriction map T, = T, , of (2.7) is an 1somorphism. Thus B, = y; x 2(S(e)) with y;
a T,-orbit and z(S(¢)) a curve inside G connecting z(S(v_)) to O for v_ the other vertex
of e.

Step 111: Construction of By. The situation for the other constituent S, of f; is less straight-
forward. Recall that B, = B, — I', with B, constructed above via the torus action and the
momentum map u, while the slab add-in I'y was still to be determined. Denote by v,
the vertex of ¢ mapping to the interior of o', the maximal cell containing ¢'. By construc-
tion, B, has the boundary component 9., B, mapping to v by the momentum map. This

boundary component 3. B o 1s the torus orbit T, - S(vy) =T, - S(v4) in Hom(A,/, C*),
the reduction modulo ¢ of the chart Spec R,

For the following discussion, let ¢, ..., ¢, € A, be an oriented basis with
(2.15) o =1’
the parallel transport of —E € A, through v, and ¢y, ..., ¢, € A, and let 21y Zn € Rﬁ/
denote the corresponding monomials. Then T, is identified with a subtorus of U(1)" act-
ing diagonally on Zi, ..., Z,. For 8 € T, denote by (61, ..., 6,) the corresponding image

in U(1)", with U(1) = {z € G| |z =1}.
In these coordinates, 8+B€, has the parametrization

T,20=(0,,...,0)—0 -a= (01a1,02a2,...,9nan),

with a, ZQM(S(UJF)) forpu=1,...,nanda=(a,...,a,).

On the other hand, Condition (Cy II) of Construction A.3 tells us that 8, must be
homologous relative to its boundary to the chain B, defined analogously, but using the
chart ®; modeled on C[A ][z, w, t]/(zw — 4, 1) and w replacing Z;. Explicitly, in the

CoordirAlates W, 29, ..., 2, of the chart ®;, with 2, ..., 2, defined by ¢, ..., ¢, € A,, the
chain B, is defined by the parametrization

(2.16) S(¢) x T, —> (C*)", (b, 0) —> (1w (), b222(p), ... 0,2.,(p)).

The two sets of coordinates are related by

(2.17) azi=fo/d")W, 2 =29, ..., 2= 2

with constants ¢, = So'p (¢,) € C* given by gluing data. The action of U(1)" on 2y, ..., 2,

is compatible with the action on 2y, ..., %,, but not so on w. Let f, € C[1][%,", ..., 2]
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be a Laurent polynomial with the property that the reduction of 27/, modulo #*! is
the image of z7™f;, under the gluing map Rf — R%,, and denote by Jp the reduction of

ﬁ, modulo ¢ Then the first equation in (2.17) can be rewritten as
(2.18) L= (/2 w.

To describe 9, B, only the reduction modulo ¢ is relevant and hence f, reduces to f,. Thus

in the coordinates Z), ..., Z,, the boundary 9, ,é(,/ has the parametrization
(2.19) T.560=(,,....6,) — (5;1(?&/2'"")(9@ - 0,by, Ovay. . . .. ena,,),

where b, = w(S(v+)). For simplicity of notation we view here ]A‘B /7™ as a Laurent poly-
nomial in 7 variables by the inclusion A, C A,.

Step 1V: Construction of slab add-ins T',. Now that we have explicit parametrizations of both
0 ,33/ and 0 Be’; we are ready to construct the slab add-in Iy as a chain connecting these
boundary cycles. Note that the factor in the first entry of the right-hand side of (2.19)
agrees with the restriction of /,/z™ on the fiber of the momentum map u : Xj — B over
v:

(fﬁ/%”h})(ga) = @/2mv)(9202’ ) eﬂaﬂ) = (fg/zmu)(QQbQ? LR ann),

with by = 2o(S(v)), ..., b, = 2,(S(v)). The point is that, by the definition of m, in Con-
struction 2.2, this map is homotopically trivial as a map T, — G*. Thus there 1s a differ-
entiable homotopy y : [0, 1] x T, — C* with

(2.20) y(0,0) = (f,/2")0a), y(1,0)=aa/b,

where a; = 21(S(v+)), by = w(S(v+)) and ¢ = SU/B(E/) with E’ the parallel transport of
—Z through v (2.15). We now define the slab add-in ', in the coordinates 21, ..., 2, of
R?, by the parametrization

[0, 1] x T, — Hom(A,, C¥)

(2'21) (5’ 0) > (V(Sa 9) : lel/cls 92622, DR} gnan)a

with the given orientation of the domain. Figure 3 provides a sketch for the case §, € A ,.
The horizontal planes indicate the level sets of Zo, . .., Z,, which for both Eg/ and Bg vary
in the same U(1)" 2-orbit, the orbit containing (%, ..., Z,) (S(v+)) = (20, ..., 2)(S(e)).

The shaded region is the part of T', in this level set. The circle and curve show the in-
tersection of 8, 8, and 8+,3Ae/ with one of the level sets in this U(1)"~2-orbit. In the other
case & & A, there is a U(1)"'-orbit of level sets and on each level set in this orbit, 04 B,,
3. B, define two points in the Z;-plane, connected by the homotopy y.
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|Z_| = const |Xp |w| = const
G
22, , 2n, = cONst

FIG. 3. — A slab add-in (case §, € A )

By construction, 9"y = 8+Be, — 8+Be’ and hence B, = Bg, — I'y has boundary
0y /§g — B_Bg,. Letting the endpoint S(v,) vary as s € S(¢), ¥ can be extended to a con-
tinuous family ¥, of homotopies between the T, -orbits in 8, and in B, containing s. The
corresponding family of n-chains sweeps out an (z+ 1)-chain I" with

af :Be/ -y _Be/'

Thus B, and B, are homologous relative to their boundaries as needed in (Cy II).

We add the slab add-in I'; as an additional chain, taken inside the chart (2.11) for
the chamber u’ containing ¢'. With this definition for the slab add-ins, we have verified
the requirements of Construction A.3 for all constituents B; of S. U

Proposition 2.8. — Let X — D be a famuly with X§, as central fiber and locally analytically
wsomorphic to (1.4), together with a family of n-cycles B(t) with B(0) = B as i Proposition A.6.
Then the Picard-Lefschetz monodromy 1" along a counter-clockwise loop in D based at &, # O acting on
n-homology classes is given by

(T —id)(B,) = (c1(9), Buop) - 0] = D _ Kild,. E)ler].

Here a denotes the vanishing cycle and the sum is over the points v of intersection of By, with codimension
one cells p = p; as explaned in §1.2.5.

Proof. — We apply Lemma A.7 to the specific situation laid out in the proof of
Lemma 2.7. This already justifies what we are summing over. For each summand, we are
in the situation (i) stated in Step II of the proof, where & ¢ A, and B, = y; x z(S(¢)).
A clockwise loop in the w-plane gives a counter-clockwise loop in the z-plane, call this
S!. Hence, by Lemma A.7, (T —id)(B, + B,) = k;[y; X S'], on the level of chains up
to homology. The vanishing cycle « is represented by an orbit of the diagonal action of
U(1)" in the coordinates z°, zo, ..., 2, obtained from an oriented basis &,, ¢, . . ., ¢, with
¢ € A,. Relating this orbit to y; x S', we have z = z°% for ¢ = (Qp, &,) = £1. Recall that
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yi is a T,-orbit, so taken together with S', the circle in the z-plane, this cycle is indeed
homologous to « up to sign. The signs work out as stated. 0J

3. Computation of the period integrals

The purpose of this section is to prove Theorem 1.7. We continue to use the
setup from Section 2. In particular, we have X7, an n-dimensional log scheme over O; =
Spec C[#]/(#*") with restriction to X7\ Z log smooth over O,. Here Oy 1s given the log
structure induced from the toric log structure on Spec G[¢]. Denote by Qg‘q Jo, the sheaf
of relative log differentials of degree n, which is locally free away from Z. The construc-
tion of X} comes with a canonical relative logarithmic n-form € € I' (X7, Q;l{‘; /Ok)‘ Ifois

a maximal cell and ¢, ..., ¢, is an oriented lattice basis of A,, then, in the correspond-
ing local coordinates z; = 2, ..., z, = 2" of Spec(R/;) = Spec (C[t, Zlseens zn]/(tk+l)), 1t
holds

(3.1) Q=dlogzy A---Adlogz, =z 'dzy A Az dz,

We often also work with polar coordinates z; = rje*/__l"‘f. To avoid cluttering some formulas
with exponentials, we work with 8; = V1% € U(1) = S! rather than with a; € R/2m, as
already in the proof of Lemma 2.7. In particular, dlogz; = dlogr, + V-1 da; now reads
dlog z; = dlog7; + dlog 6; and it holds

(3.2) /dlog@,-:«/—l/ do; = 27/~ 1.
Sl Sl

Recall that Z intersected with the interior of a codimension one stratum X, N X{ C X§
is given by the zero locus of f,, the reduction of f, modulo ¢ for any slab b € p C p.
In Construction 2.2 we defined an adapted affine structure on B\ (A, U A) for A =
n(Z) the image of Z under the generalized momentum map u : X — B. For a tropical
cycle Buop on B\ (Ay U A) fulfilling Assumption 2.5 and B the associated n-cycle from
Construction 2.6, we now compute fﬂ Q in the form 4 + glogt¢ with k, g € C[#]/(#)
following Appendix A.

We first compute the period of €2 over a general fiber of the momentum map
w : X§ — B of Proposition 2.1.

Lemma 3.1. — Let v € B be contained in the interior of @ maximal cell o and o = =" (v),

viewed as an n-cycle in X, with the natural orientation. Then, in the sense of finite order period integrals
(Construction A.3),

/sz = 27 v/—1)" € C[]/ ().
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Progf. — The cycle a is contained in a single chart U, = Spec R! of type (Ch I), for
any chamber u C . Using (3.2), we obtain

/ / dlogf, A --- Adlogb, = 2m+/—1)". U
gl)n

According to Proposition A.6, Lemma 3.1 proves the ambiguity of |, pS2 up to

multiples of (2w +/—1)", hence the stated well-definedness of the exponentiated period
integral in Theorem 1.7.
We now turn to the computation of g $2 for B asin (2.10).

3.1. Integration over B; = B, with ®; a chart of type I. — Let ¢ be an edge of By, In
the interior of a maximal cell o, with vertices vy and e oriented from v_ to v,. As in
Construction 2.6 write &, = m, - ée with m, € N and 5(, € A, primitive. Complete ée =¢
to an oriented basis ey, ..., ¢, of A,. Then the inclusion Z"~! — A, defined by ey, ..., ¢,
induces an identification of T, with U(1)"! acting diagonally on (C*)"~! with coordi-
nates 2o = 2%, ..., 2, = 2" and acting trivially on 7. Recall also from Construction 2.6
that 8, = ,B 1s deﬁned as the orbit of S(¢) under T T, x Z/m2Z, with Z/m,Z acting on
2% by roots of unity.

According to Definition A.1 and (3.1), it holds

®H(Q) = dlog & Adlogzs A - -+ Adlog z,.
In view of (A.6), we now compute

/cpj(sz):/ dlog ¥ Adlogz A+ Adlogz,
S(e)xT

i

= / dlog 2 A dlogBs A - - - A dlog6,
S(e)xT,xZ/m,

= Q2n/—1)""! / dlog 2*

S(OXZ/mZ

m,—1

=@V Y (log (€74 (S(w)) — log (€' () ).

v=0
where € denotes a primitive m,-th root of unity. Expanding log(€" 25 (S(vy)) = loge” +
log 22(S(v4)), each term loge” in the sum occurs twice with opposite signs, leaving us
with an m,-fold sum of log 2 (S(v+)) — logz (S(v )) Thus the sum equals the difference

of log 2% = m, log 2 at the two endpoints of S(e), that is,

(3.3) / Q= (Qrv/—1)"" (1og.zfe (S(wy)) — log (S(v,))),

e

for ¢ oriented from v_ to v,.
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3.2. Integration over I',. — We need the following lemma.

Lemma 3.2, — Let o, C U(L) denote the subgroup of k-th roots of unity. For any two positive
integers n and m, the subsets

A = Un U M dﬂd B = Mmn \ ((Mm U //Ln) N :um+n,)

of U(1) = S alternate, that is, following the circle, we alternately cross a point from A and B.

Proof. — First assume m = n. Then we have A = {exp(Qn\/—_IQQ—Z) | £ € Z} and
B= {exp(?n«/—_IQf;—;l) | £ € Z} and the assertion holds. Next assume m % n. Set d =
gcd(m, n). We may view the situation as a d-fold cover of the case where m and n are
coprime. As the assertion transfers to the cover, we may assume that ged(m, n) =1 and
then w,, N w, = {1} and lem(m + n, n) = n(m + n) and lem(m + n, m) = m(m + n). Hence

,u’m—}-n N (/-’Lm ) ,u’n) = {1}’

so in particular A and B have the same number of elements, m 4+ n — 1. Now assume to
the contrary of the assertion that there are consecutive elements in B with no element of
A in between. This means there are integers «, b, ¢ such that

a b ¢ c+1 a+1 b+1
— - < < < , .
mn m—+n m+n m n
Multiplying common denominators yields

O<(@+1D(m+n)—(+1m O0<@+1D)(m+n) —(c+ Dn,

alm—+n) <cm, blm—+n) <cn.

Plugging the third and fourth inequalities into the first and second, respectively, with
subsequent summation of the resulting equations yields

O<(@(@+b+2)(m+n)—(c+1D)(m+n) <m—+n

which has no solution with a, b, ¢ € Z. O
Recall the definition of I', C u~!'(v) = Hom(A,, U(1)) from Construction 2.6.
Lemma 3.3. — Let v € Byop, be a vertex of valency V > 3. Then

1 0, V is even,

(3-4) 27 /—1)" /F Q= : 1/2, Vvisodd

up lo adding integers.
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/24 /24 \
/ £5 £5
& 5\& & +&+E& ’ . 13
5 "y 5
AN )
&3 \ v \ w2 \ w2
/51 & 1 o & /fl o
-~ &1+ &
&2 -~ /51 ~— /51
&o &o

F1G. 4. — Making a vertex trivalent by the insertion of new edges and a 2-chain (in grey) that deletes one of the new edges:

S

Proof: By construction, I', is a singular n-chain on the n-torus u™'(v). The restriction of
2 to this torus is dlogf; A --- A dlog6,, which agrees with (27 /—1)" times the U(1)"-
invariant volume form dvol of total volume 1. Thus the statement concerns the volume
of I', as a fraction of the volume of ! (v).

We have ZBU &6, =0.Set § 1= sej,vgej for ), ..., ¢, an enumeration of the edges
containing v. We decompose v into trivalent vertices via insertion of v — 3 new edges
Jis .-+, v—3 meeting the existing edges in the configuration, depicted in Figure 4. Pre-
cisely, we replace v by a chain of new edges fi, ..., fi—3 such that the ending point of f;
is the starting point of f;, ;. Let wy, ..., wy_y denote the vertices in this chain, the indices
arranged so that w, meets ¢|, ¢;, Wy meets ¢35, w3 meets ¢4 and so forth, finally w,_, meets
ey—1, 6. The edge f; is decorated with the section & + --- +&;, ;. One checks that at each
vertex w; the balancing condition (2.9) holds. One also checks that the new tropical curve
is homologous to the original one. Indeed, adding boundaries of suitable 2-cycles, we
can successively slide down the edges s, ¢, ... to w;. In this process the sections along
Sis -+, v—s get modified and when all ¢; have been moved to the first vertex, the sections
of the f are all trivial and so we end up in the original setup by setting w; = v. Since
there is an injection of groups of chains

C[R" A) — CG(R"xHom(Z", U(1))), (¢,§)~ ¢xHom(Z"/§,U(1))

compatible with boundary maps, we conclude that the associated n-cycles to the original
and modified By, are homologous as well. Hence

/Q:/ Q—i—---—i—/ Q mod 2rv/—1)"Z.
FU le FuIV,Q

We have reduced the assertion to the case where v is trivalent. So we assume v = 3 now.
As before, set § 1= ¢, ,§, for j =1, 2, 3. By the balancing condition (2.9), the saturated
integral span V of &, &, &5 has either rank one or two. In either case, we have a product
situation where we can split A, >~V @& W which yields a splitting of the torus

Hom(A,, U(1)) =~ Hom(V, U(1)) x Hom(W, U(1)),
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Fic. 5. — Two Z2-invariant sets of lattice triangles in Z* ®z R

and I',, also splits as [, x Hom(W, U(1)). The integral over the invariant volume form
splits similarly with the integral over Hom(W, U(1)) giving a factor of 1. It remains to
treat the case A, =V.

We treat the one-dimensional case first. Let ¢ be a primitive generator of V and
& = aje. We have —a3 = a; + ay. Canceling coincidental points (as these have opposite
orientation) between the multi-sets A= eXp(Q?T«/—_1$Z) U exp(?rr\/—_l$Z) and B =
exp(2m =1 aliaz Z), we obtain sets A and B as in the setup of Lemma 3.2. The lemma
implies that I', up to addition of multiples of the fundamental class is homologous to a
union of non-intersecting intervals with the union of endpoints being AU B. This implies
that I', is homologous to the sum of every other interval between the pairs of points in
A UB. We claim that the area of ', is half the area of S'. Indeed, the sets A and B are
both invariant under conjugation k : z + z. Moreover, k takes I', to the closure of its
complement, so I', and « (I',) have the same area. Thus

| 1
/ dvol = —/ dvol = —
r, 2 Jsi 2

up to adding integers.

We next turn to the case where V is two-dimensional. In the universal cover Vg =
Hom(V, R) of Hom(V, U(1)), the cycles in Hom(V, U(1)) given by requiring §; — 1 for
7 =1,2,3, respectively, pull back to the infinite, discrete union of distinct straight lines

UJ.3=1 (Ejl +Z?). Let U C Vg denote the open complement of these lines. We claim that

the pullback I, of T, to Vi can be taken as the closure in Vi of a set of components of
U such that —T', is the closure of Vi \ T',. If this holds then by a similar argument as in
the one-dimensional case we obtain fFv dvol = % up to integers.

To see the claim, consider the map of lattices Z? — V mapping ¢, to & and e to
&,. By the balancing condition, —e; — ¢, then maps to &s. Dually we obtain an inclusion of
lattices V* — Z? of the same index as the sublattice Z&, + Z&, C V. Now &‘J-l maps to the
lines in directions (0, 1), (=1, 0) and (1, —1), respectively, with the stated orientations.
Together with their Z*-translations these lines subdivide R? = Z? ®z R into triangular
domains, see Figure 5: Z*-translations of the two triangles with vertices (0, 0), (1,0),
(0, 1) and (1, 0), (1, 1), (0, 1). The first triangle with the natural orientation of R* and its
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Z*-translations define a Z*-invariant chain A C R? with the union of lines as its boundary.
Moreover, multiplication by —1 leads to the other triangle and its Z*-translations. Take
for T, C Vi the preimage of A under the map Vi — R?. Then ,U(-T,) = Vi and
F N(— [',) is the infinite union of lines, as claimed. 0

3.3. Integration over B; = B, + Bs with ®; a chart of type II. — Let v be a vertex
of Biop in the interior of a slab b C p with adjacent edges ¢, ¢ and B; = B, + B,. We
use the notation from Construction 2.6 and in addition denote v_, v, the vertices of
¢, ¢ different from v. The chart ®; was defined in the proof of Lemma 2.7 from R} =
Cl[A, ][Z+, ) (Ll — el e, Y by substltutlngz_Z+, w="7_/(z"f). De—
note by £ € A, the exponent with Z, = ¢, 7 for some ¢, € G* as discussed in Con-
struction 2.2 and Remark 2.3. Let ¢;, ..., ¢,1 € A, be such that ¢, ..., ¢, ; e A,y 1s
an oriented basis. Differing from the choice in Construction 2.6 and Lemma 2.7, we
now take ¢ as the last element of the basis to turn our cycles into the form required in
Appendix A. In these coordinates, the logarithmic n-form €2 reads

Q=dlogz; A--- Adlogz,-1 A dlogz+
= —dlogz A--- Adlogz,_; AdlogZ_.

Since f, does not depend on Z..7._, the pull-back of €2 to U, equals

®7(Q2) =dlogz A --- Adlogz,—1 Adlogz

= —dlogz; A--- Adlogz,—1 A dlogw.
Thus in (A.7), all the coefficients g,, %, of the Laurent expansion vanish and we have
CD:F(Q) =0, rese,(2)=dlogz; A---Adlogz, ;.

Recall from Lemma 2.7 thgt B. = Eg, while B8, = Be, — I'y 1s homologous relative to
its boundary to the chain B, defined in (2.16). Let us first assume &, ¢ A,. Applying
Formula (A.10) then gives

(3.9) / Q=(-D""' (/ dlogz A+ A dlogzn_l) (k,logt —logh —loga).

i T,
Here the terms with b = w(S(v+)) and a = z(S(v_)) adjust for z(S(e)) and w(S(¢)) to
be curves not starting or ending at 1, see Remark A.4. The factor (—1)""' comes from
the fact that we oriented B; as S(e) x T, rather than as 'T', x S(¢) as done in the appendix.
With §, ¢ A, we have §, = Ee = :I:E by (Bm) in Assumption 2.5. Hence, up to orientation,
T, acts as the diagonal U(1)""! on (z, ..., 2,_1). Thus by Lemma 3.1 in dimension n— 1,
the integral over T, equals £(27 /—1)""'. To determine the sign recall that we oriented
T, from an adapted oriented basis of A, with first element £,=&, Placing £, at the last
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place rather than the first changes the orientation of T, by (—1)"~ !, canceling the sign
factor in (3.5). Finally, & = ¢ with the sign positive iff & points into the maximal cell
o containing ¢. Thus denoting by d, € A, the generator of AL ~ Z with (d,, 7) = 1 we
have

(3.6) E=E=(d.E) L
With this discussion, (3.5) yields the following:

3.7) / Q= (27 v/=1)""(d, &)k, logt — logw(S(v,)) — log(S(v)) ).

i

The coordinate z = Z+ maps (o s, (E )./:E under the generization map R’g — Rﬁ. Using
(3.6) we can thus rewrite (3.7) for later use as

1 .
(3.8) m /ﬂi Q=(d,§&) (Kﬁlogt — logw(S(v+)))

—logs,, (&) —log 2% (S(v_)).

In the other case, § € A,, our chain g; is of type (ii) in (Cy II) of Construction A.3 and
f 5. § =0 by Formula (A.10). Thus (3.8) also holds in this case because (d,, &) = 0.

3.4. Integration over a slab add-in B; =1T",. mapping
to a slab b C p, with adjacent edges ¢, ¢. For the following computation we adopt the
notation of the construction of a slab add-in T, in Step IV of the proof of Lemma 2.7.
Formula (2.21) gives the parametrization of I', with respect to coordinates Zi, ..., Z, of
Hom(A,/, C*), the reduction modulo ¢ of the relevant chart Spec Rﬁ,, where 1 is the
chamber containing the image of ¢:

[0, 1] x T, —> Hom(A,, C*),
(05 5) [ (V(S, 9) . lel/cl’ 92@2, ceey eﬂan)-

The map y : [0, 1] x T, — C* is a differentiable homotopy with

3.9) y(0,0)=(£,/2")0a), y(1,0)=aia/b.

Since the chart ®; for §; is of type (Ch I) of Construction A.10, the first case of Defini-
tion A.l gives

O Q=dlogZ A--- AdlogZ,.

If§, € A, the period integral f[o X, ®FQ involves two-dimensional integrals over level

sets of z9, ..., z,, see Figure 3. Since 2, ..., 2, differ from z,, ..., z, only by constants,
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integrating CD+(Q) over the corresponding annulus [0, 1] x S'C[0,1] x T, leads to a
zero-form. Hence fIO X1, ®FQ vanishes. In the other case &, ¢ A,, the torus T, acts
trivially on z; and the restriction map

Te’—>U(1)n_lv 9'—> (929~~'»9n)

is an isomorphism. Since Z; = zz/ with E "“as in (2.15), this isomorphism is orientation
preserving if &, points into the same maximal cell as ¢’, and then ¢’ = §,. In terms of
d e A, used i in (3.6) this is the case if' and only if (d,, &,) = —1. We can now compute

f sz_f D7 (Q)
[0,11xT,

=—(d, &) / d,Jog y (5,0) ds A dlogfs A - - - A dlog#,
(3.10) [0, 11xU(1)=!

=—(d, g»/ (logy(1,60) —logy(0,6)) dlogbs A - -- A dlog¥,
u(n-!
= —(d,, &) 2nv/=1)"" (log(arc1 /b)) — R(z"f, v)).

As in (3.8) the sign — (cvie, &,) adjusts the orientation of T, with the orientation of U(1)""".
Note that this factor renders the formula also correct in the case §, € A ,. The last equality
follows from (3.9) and the definition of the complex Ronkin function in (1.8), see §1.3.2.
The term ay¢; /b, € C* is the constant endpoint of the homotopy y defined in (2.20). In
the notation used there, provided &, ¢ A ,, we have

a1 =2(S(vy)) = 7 (B8 7 (S(vy)), by =w(S(vy)),
0 = 55p(@') = s51(6) "5,
Thus we can write (3.10) more intrinsically as
. / Q=€) (RG3. v) + logu(8(v.)))
(3.11) @rv/=1y-" Jr,
+log 2% (S(v4)) 4 10g 567, (€/)

Note that this formula also holds if §, € A, and that the term w(S(v+)) appears in (3.8)
with opposite sign.

3.5. Interpolation between charts. — There are two cases where we work with different
charts at a vertex v of B. In the first case, v lies on a wall p and the two edges ¢, ¢
adjacent to v according to (f;) are contained in different chambers u, 1’. In the second
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case, v is adjacent to an edge intersecting a slab. In these cases there is a potentially non-
trivial contribution of the interpolation term f[o,l]xyf‘ (D;(Q) in (A.9). In all other cases,
intersecting chains B; and g; lie in the interior of the same chamber and hence P, =,
We now determine the contribution of the interpolation term in the remaining cases.
Let us first treat the case that v lies on a wall p separating chambers u, u'. Let @, :
U — X7, @) U — X be the charts for the adJacent edges e Cu, ¢ C u', respectively,

as defined in the proof of Lemma 2.7. Then U U = Spec C[1]/(#T1)[A,] and d; =
®; o W; with W;; defined by the wall crossing 1somorphlsm

(3.12) 6,: R — RE, 27 .—>J;

Here zvip € A, is the generator of Aﬁ 2 Z evaluating positively on tangent vectors point-
ing from p into u. Writing f, = 1+ tﬁ, the homotopy ®; : [0, 1] x U; x O; — X} between
®; and ®; of (A.5) can be defined by the family of G-algebra homomorphisms

0,(s) :RE —> RE, 2" > (14 stfy) @ 2,

s€[0,1]. Lete, ..., e, bean oriented basis of A, with (cvip, e;) =1lande, ..., ¢ spanning
Ay. Then in the corresponding coordinates zi, ..., z,, the function f, does not depend

on z;, while 6, (s)(z1) = (1 + sz/‘ﬁ,)zl and 0,(s)(z,) =z, foru=2,...,n Hence
(3.13) @/ (Q) = (dlogzi 4 9,log(1 + stfy)ds) A dlogzs A -+ Adlogz,.

With ¢, = z;(S(v)) the coordinates of S(¢) over v, integrating out s, we obtain
(3.14) / CD;(Q) = / log(l +tj~$(t, zg,...,z,l)) dlogzy A -+ Adlogz,
[0,1]xT, T,

:/ log (1 + t, (¢, Boas, . ..., 0,a,)) dlogy A - - - A dlog,

e

Expanding the logarithm yields a finite sum of constant multiples of zfg9§2 ...0 with
£, 4y,...,8, €Z and £, # 0 for at least one p. If § € A,, then similar to the situation
along codimension one cells discussed in Construction 2.6, the action of T, on (2, ..., 2,)
has a kernel and the integral in (3.14) vanishes for trivial reasons. In the other case &, ¢
A,, the torus T, acts on (29, ..., 2,) via a finite covering T, — U(1)"! and the integral
vanishes because fsl 49,9‘ dlog8,, = 0 for an index p with £, # 0. Hence in any case, there
1s no interpolation contribution from changing chambers at walls.

In the second case, B; = B, + B, maps to a chart of type (Ch II). Let ¢, ¢ map to
chambers u, U’ separated by the slab b containing the common vertex v of ¢ and ¢. As
in the construction of f; in Lemma 2.7, assume B is oriented from e to ¢ and hence ¢
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attaches to the non-trivial slab add-in T',. Then B, was constructed with the toric co-
ordinate z = Z+ and the chart fJZ- is compatible with Rﬁ in that the localization map
R — R’ is toric.!! In particular, both charts provide the same local product decompo-
sition with respect to ¢ and hence the change of coordinates map W;; in Construction A.3
is the identity. Thus there is also no interpolation contribution from this boundary of j;.

The interesting change of coordinates happens between B, and the slab add-in I',.
According to Construction A.3 we need to interpolate between the chart @, : U; — X7,
modeled on C[A ][z, w, 1]/ (zw — i, #*) and used for B,, and the chart b, : fjj — X7,
modeled on R%, and used for T'y. In (2.17) this change of coordinates has already been

made explicit, by using toric coordinates %1, . .., 2, for ﬁj and w, 29, ..., 2, for fJi \(w=
0). In the notation of Construction A.3 and of (2.17)(2.18), the pull-back by W¥; : U; x
O, — U x Oy is the map

w —— 612’1/(2_’7[%), 29 > 622’2, ey Zp > Cn%m

while the map denoted “id” in the appendix has the same form, but with fb replaced
by the reduction f, modulo ¢. Indeed, “id” is defined as the map Uy x O; — Uy x Oy
induced by the identity map of Uj; as a subset of X and extended by the product structure

in the charts U, and fjj, respectively. Writing fb = fﬁ + tgp, define for s € [0, 1],

fb(s) =f£+51{gb.

Then the family of maps W;(s), s € [0, 1], defined by
<3'15) w > Cl%l/(z_m%(‘g))’ 2o > 62229 ey Zp > Cn%n

is a homotopy connecting id to W;;. Thus we can take ®;(s) = CIDZ@ o W;(s) as the homo-
topy between the two restrictions of charts CID?') = ®i|Uy‘><Ok and CIDJ@ = Cléley.Xok . Since
Z1s -5 2, was defined by an oriented basis ¢ = C' e, ... e of Ay, replacing Z; by
w=¢12/(Z" /) shows () = dlogw A dlog zy A - - - A dlog z,. Pulling back by (3.15)
then gives

cD;F(Q) = (dlog,%l — 3, log(z™"™ £(5)) ds) Adlogzy A -+ AdlogZ,.

Similar to (3.11), the interpolation contribution to the period integral is now computed
as

/ o (Q)
[0,11xT,

" With non-trivial gluing data the localization map R% — R identifies monomials only up to scale, but for this
argument it only matters that the map commutes with the torus action.
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= / (—log(z™™ /o) + log(3™™ Ap)) dlogZo A -+ Adlogz,
T,

(3.16) = (d,, &) / (log(3 ™" fs) — log(3™"/,)) dlogb A --- A dlog,
U(])n—] -

= (d, &) vV/=1)"" (R(z "o, v) = R(z ™/, V).

As in (3.8), a factor —(d,, &) was inserted for the second equality to adjust for the ori-
entation of T, and for the non-trivial kernel of the map to U(1)"! in case &, € A,
respectively.

Note that the Ronkin function for ™"/, in this result cancels with the contribution
(3.11) from the slab add-in, thus only leaving the Ronkin function for 2™ f; to contribute
to the global period integral.

3.6. Proof of Theorem 1.7. — To compute W f 5 §2, it remains to take the sum
over all the computed terms. We had contributions from B, for edges disjoint from slabs
(3.3), from I', for a vertex of higher valency (3.4), from B, = B, + B, for pairs of edges
crossing a slab (3.8), from slab add-ins I'y (3.11), and from interpolation terms (3.16).
Note that in view of Lemma 3.1 and Proposition A.5 the result is only well-defined up to
adding integral multiples of 27 v/—1.

First, for a vertex of valency val(v) > 3 the chain I', contributes val(v) - 7/—1 up
to adding integral multiples of 277 +/—1. But a graph without one-valent vertices can be
built inductively by successively connecting two vertices (possibly equal) by an edge. Each
such addition increases ) val(v) by 2. Thus ) fru Q is a multiple of (27r+/—1)" and
hence can be omitted.

The other terms are easiest to gather according to the types of vertices. For a
vertex v in the interior of a maximal cell o and each edge ¢ with vertex v, we have a
contribution #+log z%(S(v)) from (3.3), (3.8) or (3.11). The sign ¢, , = 1 is positive if ¢ is
oriented towards v and ¢,, = —1 otherwise. By the balancing condition (2.9), the sum
over all these terms vanishes:

Z log 58“}%} - lOg zZBv Se,v%}, — O.
=14

Collecting the remaining terms now gives

1
— | Q
(2]-[ /_l)n—l//;

(3.17)
= Z (Qze’ Se>R(5_mu b U) + log

50’2 (Ee’)
op &)

The sum runs over all vertices v of B,,, mapping to a slab, and in the sum ¢, ¢, b, p
denote the corresponding incoming and outgoing edges, the slab containing v and the

+(d, £) -, log t>.
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corresponding codimension one cell of the barycentric subdivision, respectively. The sum
over the terms containing the gluing data gives log(s, Byop). The sum involving k, gathers
the terms involving rese (o) in (A.9). We rewrite the coeflicient of log ¢ thus obtained as

D {di &) iy = (1(@), Buep)-

Thus (3.17) can be written more intrinsically as

1
— |
Q2 /—1)! /ﬁ

(3.18) )
=10g(s, Buop) + (1(9), Buop) - logt + Y (d, ENR(Z "y, V).

Exponentiating finally gives the expression for exp ((271 NE N p Q) claimed in The-

orem 1.7.

4. Analyticity of formal toric degenerations

As an application of the period computations we prove analyticity of the canonical
toric degenerations constructed in [GS11a] in the case that (B, &?) has simple singular-
ities. Simple singularities are locally indecomposable from the affine geometric point of
view and they give rise to locally rigid logarithmic singularities. We won’t need any details
of simple singularities in this paper and refer to [GS06], Definition 1.60 for the formal
definition and to [GS10], §2.2, for the local algebraic description and deformation theory:
For (B, &) with simple singularities and a choice of multivalued, strictly convex piece-
wise affine function ¢ on B, it has been shown in [GS1la] and [GHS], Theorem A.2,
that there is a canonical formal toric degeneration

(4.1) X — & =Spf(A[]).

Here A is a Laurent polynomial ring, so the base of this family is the product of an
algebraic torus with Spf (C[¢])."* If 3B # ¢, by [GHS], Remark 2.18 and Remark 4.13,
the family in (4.1) comes equipped with a divisor ® C X that is flat over &.

To describe the ring A, recall from [GS06], Theorem 5.4, that for simple singu-
larities, the affine cohomology group' H'(B, LA ® C*) is canonically in bijection with
the set of isomorphism classes of log schemes (X, M, ) over the standard log point with

12 Assuming projectivity of the central fiber, Theorem A.2 of [GHS] constructs a projective scheme over a closed
subspace Spec (Ap[¢]) € Spec (A[]). Our analyticity holds more generally in the formal setup, only requiring properness
of the map in (4.1).

13 Note that here we have ¢, A rather than t,A as in loc.cit. because we work in the cone picture rather than in
the fan picture, that is, for us a polyhedron 7 € & indexes a closed stratum of X, isomorphic to the toric variety with
momentum polytope 7.
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associated discrete data (B, &2, ¢). Here ¢ : By — B is the inclusion of the regular locus
and A = Hom(A, Z) is the sheaf of integral cotangent vectors on By.'* The bijection
works by identifying the set of isomorphism classes of log schemes with the set of equiv-
alence classes of lifted, normalized gluing data, which in turn can be identified with the
mentioned affine cohomology group. The base ring is

A=C[H'(B,,A)*],

the Laurent polynomial ring over H'(B, L*A)* = Hom(H'(B, L*A), Z). Thus, SpecA
parametrizes choices of lifted, normalized gluing data.

The construction of the family (4.1) depends on the choice of a splitting o) of the
quotient map

g H'(B,1,A) — H'(B,,A), = H' (B, ,A)/H' (B, 1, A),

by the torsion submodule H' (B, ¢ A), CH! (B, ¢ .A).Sucha sphttlng 0y 1s unique only up
to a homomorphism H' (B, ¢ A) ) —> H'(B, A) .. Thus, if H'(B, ¢ A) has non-trivial tor-
sion, there are finitely many such canonical families, with any two becoming isomorphic
after base change to a common finite étale cover. We fix o and the resulting canonical
family throughout this chapter, with an additional technical requirement imposed on oy
in (4.11) below.

If H?(B, L*A) has torsion, the set of gluing data H' (B, L*A ® C¥) 1s a disjoint union
of torsors for H'(B, 1,A) ® G*, with only one of them containing trivial gluing data.
Indeed, the construction of the family also depends on the choice of a possibly non-trivial
element s, € H' (B, L*]\ ® C*), which selects one of these torsors. If H*(B, L*A) 1s torsion-
free, trivial gluing data s, = 1 is a canonical choice. In any case, we fix 5y throughout.

As a further ingredient in this section, recall from [GS06], Definition 1.45 (using
the notation of [GHS], §A.2) that the short exact sequence

4.2) 0 —> t,A —> PL®B) — MPA®B) — 0,
gives rise to the connecting homomorphism
¢ : MPA(B) — H'(B, 1, A).

This homomorphism sends a multivalued piecewise affine function ¢ to its characteristic
class ¢, (¢). Dually, we have

4.3) ¢ H'(B,1,A)* — MPA(B)".

" In the case with simple singularities, the singular locus can be taken to be the union of the (n — 2)-cells of the
barycentric subdivision of & not containing barycenters of vertices or of maximal cells.
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The trace homomorphism t, A ® L*ZV\ — Z combined with the sheaf homology-cohomo-
logy pairing gives a bilinear map

(4.4) (,):H'®B,,A) @ H (B, ,A) — Z.

The induced homomorphism

(4.5) H (B, 1,A) — H' B 1, A", Buop > By

is an isomorphism over Q by the following result from [Ru20], Theorem 3.

Theorem 4.1. — Let (B, &) be an oriented simple tropical mansfold. Then (4.4) tensored with
Q 5 a perfect pariring of Q-vector spaces.

The composition of ¢} from (4.3) with the map from (4.5) and evaluation on ¢
yields the homomorphism

(4'6> Hl(Bv L*A) — Za ,Btrop > (Cl ((0)a ﬂtrop)v

with {¢1(¢), Buop) given explicitly after (1.6). By Proposition 2.8, this map measures the
monodromy of the n-cycle associated to By, In the base space of the universal family
about ¢ = 0. Denote by

<4.7> Hl(Ba L*A)+ g Hl(Ba L*A)

the preimage of N C Z under (4.6). If ¢;(¢) # 0, this subset is a half-space and in any
case, H, (B, t,A) 4 spans H, (B, t,A). If B is compact without boundary, ¢;(¢) # 0 holds
always:

Proposition 4.2. — Let (B, &, ¢) be a compact polarized affine manifold with singularities of
the affine structure disjoint from the vertices of &2 . We have ¢, (@) # 0 in each of the following situations,
(i) H' (B, Q) = 0 and 9B is again an affine manifold (including 0B = 0),
(i) (B, &) is simple and OB = (.

Progf. — First assume (i), so in particular H'(B, Z) is torsion. For now, assume
that actually H'(B, Z) = 0. By chasing the long exact cohomology sequences for the
third row and second column of the diagram in [GS06], Definition 1.45, and taking
into account H'(B, Z) = 0, it follows that (1) ¢;(¢) € H'(B, L*]\) is the image of a class
&(p) € H'(B, Aff (B, Z)) with Aff(B,Z) the sheaf of integral affine functions on B,
(2) ¢1(¢) = 0 implies ¢;(¢) = 0 and (3) if ¢,(¢) = 0 then ¢ can be represented by a
piecewise-affine function. Thus under the assumptions, if ¢, (¢) = 0 there is a piecewise
affine function @ representing ¢. If, more generally, H'(B, Z) has torsion we can still
run the same argument for some suitable multiple k¢ with £ > 0 which suffices for the
reasoning in the next paragraph.
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Since B is compact there is a point in B where ¢ has maximal value, and ¢ being
piecewise affine, this point can be taken to be a vertex. By assumption, there is an affine
chart near this vertex, yielding a strictly convex, piecewise affine function on the fan
defined by & in this chart. But such a function cannot have a maximum at the origin
since, by assumption (i), the origin is contained in the interior of a straight line segment.
Thus ¢, (p) # 0.

Now assume (ii). The case H' (B, Q) = 0 is covered by (i), so assume H' (B, Q) # 0.
We claim that H(B, t,A) # 0. In fact, the ranks of H’(B, t,A) and of H!(B, Z) agree
with the Hodge numbers 4", %! of a projective scheme X, over G((#)), the generic fiber
of the canonical degeneration over G[[¢] associated to (B, &, ¢) with trivial gluing data
(|[GHS], Proposition A.3, [GS10], Theorem 3.22 and Theorem 4.2, with a gap closed
in [FFR], Theorem 1.10). Thus 2"" = /%! provided X, is smooth. In general, X, has
orbifold singularities and the result follows from [St77], (1.5) and (1.6) (ii1), by base change
to the algebraic closure K of CG((#)), noting that K is isomorphic to C as an algebraically
closed field extension of Q of the same cardinality. Let & € H°(B, t,A) \ {0}. Assuming
¢1(¢) = 0, a similar diagram chase as above yields a section ¢ € H*(B, PL/Z). For each
maximal cell o, denote by @, the cotangent vector defined by the slope of @|,. Let o
be a maximal cell with Vi@ = (&,, §) maximal. Then o has a facet where & is outward-
pointing to another maximal cell ¢’ and the convexity of ¢ leads to the contradiction

(25, &) < (o, §). O

Remark 4.3. — If (B, &, ¢) is a regular subdivision of a lattice polytope, viewed
as an integral affine manifold without singularities, then H' (B, t*]\) =0, so in particular
¢1(¢) = 0. We may call this the purely toric case and then the resulting family (4.1) is trivial
away from ¢ = 0, so this case is not very interesting anyway. However, if one additionally
straightens the boundary of B by trading corners with affine singularities, Case (1) of
Proposition 4.2 then shows ¢ (¢) 7 0. While the family could then still be trivial outside
t =0, we expect that at least the divisor ® C X varies non-trivially. The simplest example
here is P* with D a toric degeneration of elliptic curves—the j-invariant of the elliptic
curve varies with ¢, see [GHS], Example 6.2.

From now on, we restrict to the case ¢;(¢) % 0. Here is the main result of this
section.

Theorem 4.4. — Let (B, &, ) be a compact orientable polarized integral affine manifold
with simple singularities and ¢, (@) # O and either 0B = O or OB utself an affine manifold. Denote
by X - G = Spf (A[[t]]) the associated canonical toric degeneration from (4.1). Then for every closed
point x = (a, 0) € Spec (A[t]) there exists an open neighborhood U C Spec(A) ., of a, and a proper,
flat analytic family
Y — UxD,

with D a disk and with completion at x isomorphic over S to the completion of X — S at x.
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Remark 4.5. — In the non-orientable case one can take the orientable double cover
and study the Z/2-quotient over the Z/2-invariant locus in &.

Combining this result with Theorem 1.7, we obtain monomial period integrals. To
state this result, denote by s” € A the Laurent monomial associated to m € H'(B, t,A)*
as well as the corresponding holomorphic function on Spec(A),, or on Spec (A[t])

an’

Corollary 4.6. — In the situation of Theorem 4.4, let B, € H,(X,,Z), u e U x D, be a
Samily of cycles in the fibers of Y — U x D constructed from a tropical cycle Byop € Hi(B, 1, A),

well-defined up to homology and up to adding multiples of the family of vanishing cycles o, Denote by Q2
the relative holomorphic n-form on' Y with [ S = (27r1)". Then

1 /‘ ) .
_ B (e1(@), Buop)
eXp I —— Q =5 Pwop . ¢ g N
((QWV—l)"_l ’

holds as an equality of meromorphuc functions on U x D, with B, introduced in (4.5). If Buop €
H, (B, t.A) 1 then both sides are holomorphc.

Progf- — The formula follows readily by applying Proposition A.6 and Theorem 1.7
to the reductions modulo #*! of ) — U x D from Theorem 4.4 and letting k — 00. The
term R(Buop) does not appear since the criterion of Proposition 1.6 holds for all slab
functions thanks to the normalization condition in the smoothing algorithm, see §1.4.2
and [GS11a], §3.6. The sign in s P differs from the sign in Theorem 1.7 due to opposite
sign conventions in [GHS] and [GS11a], as discussed in [GHS], §A.1. U

The proof of Theorem 4.4 requires several preparations and steps, which will be
put together only at the end of this section.

4.1. The G, -action on the canonical family. — Let By, be a tropical cycle with
(¢1(¢), Buop) = 0. Then Theorem 1.7 applied to the reduction modulo #+1 and taking
k — oo gives

1 .
4.8 — [ Q)=s5sPw
(4.5) P ((271«/—_1)"1 ./,3 ) ’

for the corresponding period integral of X — &. Thus such period integrals produce
the pull-back of a Laurent monomial in A = G[H, (B, t,A)*] via the projection & =
Spf(A[f]) — SpecA. The exponents of monomials thus obtained form the sublattice

(4.9) K* ={g;,, €H'(B,1.A)"

trop

ﬁtrop € Hl(B’ L*A)’ <61 (()0)’ ﬁtrop) = 0}

of ¢1(p)*t C H'(B, L*ZV\)* Theorem 4.1 implies that K* C ¢;(¢)* has full rank. Hence
the period integrals of the form (4.8) generate the coordinate ring of a finite quotient
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(isogenous) torus Spec (C[K*]) of Spec (C[q ((p)l]). Since ¢; (¢) # 0 by hypothesis, these
tori have dimension one less than dimA. The explanation for the missing dimension
is that the action of the one-dimensional subtorus G,, € Spec(A) defined by ¢ (¢) €
H'(B, t,A) extends to an action on X — Spf (A[]), possibly after a finite base change:

Proposition 4.7. — There exists a finite index sublattice H & F € H' (B, LA) containing
1 (@) such that the pull-back

X — & =Spr(A[1])

of X — & = Spf(A[]) by the induced isogeny of tori Spec A — Spec A, A = C[H* @ F*], is
equivariant for a free G,,-action acting with weight 1 on t. The G,,-action on SpeCA is defined by the
Z-grading given by evaluation at ¢, (¢):

degs" = m(cl (go)), me H* @ F*.

Proof: — The group action is defined in [GHS], §A.3 with a universal choice of
piecewise linear function ¢, taking kinks in a universal monoid Q, The monoid Q is
the toric monoid with Hom(Q), Z) the group MPA(B) of multivalued piecewise affine
functions on B and such that Hom(Q), N) is the submonoid of such functions with non-
negative kinks. Our piecewise affine function ¢ is the composition of ¢ with a homo-
morphism /4 : ) — N. This universal point of view produces a canonical family over
Spf (A[[%), and our family is obtained" by base change via the homomorphism of C-
algebras

(4.10) AJQ] — A[{]

defined by £.

The group action in [GHS], Proposition A.13, has character lattice L* for L. C
MPA(B) a complement to the kernel of ¢, : MPA(B) — H'(B, t,A), up to finite index.
The lattice L has to be chosen in such a way that the isomorphic image H = ¢ (L) C
H'(B, 1, A) lies in the image of the splitting o ((GHS], Lemma A.12). We now assume
that oy has been chosen in such a way that

(4.11) ¢ (@) € imaoy.

This is possible without restriction because any two choices lead to étale locally isomor-
phic families X — &. With this assumption we can also choose L in such a way that
¢ € L. Going over to a sublattice, we may also assume that ¢ is primitive as an element of
L. The construction in [GHS] then provides a finite index sublattice H® F of H' (B, LA,

15 The universal construction also involves a choice of splitting o, of q - H'(B, L*]\) — H'(B, L*A)/. ‘We assume the
same 0y as in the construction of X — Spf(A[[t]]) above has been chosen.
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thus a~ﬁnite unramified ring extension A= C[H* @ I*] of A, or geometrically an isogeny
Spec A — Spec A of tori. By Proposition A.14 in [GHS], the algebraic torus Spec (C [L*])
acts on the pull-back of the universal family after the corresponding base change by

(4.12) S = Spf(A[Q]) — & = Spf(A[Q]).

The action 1s given by the following L*-grading on monomials. For exponents in QC
MPA* , the grading is the dual of the inclusion L. — MPA, while for monomials in A =
C[H* EB F*], the grading is the dual of the composition

L-5H—HA®F.

Now since ¢ € L we can compose these gradings with the dual L* — Z of multiplication
with ¢ to obtain an induced Z-grading on A[Q]. The composition

Q—L"—1Z

defining the Z-grading on Q) is given by evaluating at ¢ € MPA, so agrees with the homo-
morphism of monoids % inducing (4.10). Combining with (4.12), we see that the change
of base morphism

spf(A[4]) — Spf(A[Q])

is equivariant with respect to the inclusion of tori G,, — Spec (C[L*]). The induced

G,-action then also lifts to the pull-back X — Spf (A[[t]]) of our family as claimed. The
statements on the weights of the G,,-action are immediate from our construction. O

Remark 4.8. — Since ¢ € L is primitive, so is ¢;(¢) in the isomorphic image H =
(L) CH'(B, L*]\) of L. Thus there exists a splitting H* =Z & I:I*, with H* the image of
¢1(¢)* under the map H' (B, L*]\)* — H* dual to the inclusion of H. Then the Z-grading
on H* @ F* = Z ® H* ® F* is given by projection to the first factor. This implies that we
have a G,,-equivariant product decomposition

(4.13) ¥=G,xX—6=G,x6

of the family, with & = Spf (Aﬂt]]), A = C[H* @ F*], and G,, acting by multiplication on
the first factor and trivially on X and &. Note that this product decomposition depends
on the splitting H* = Z @ H*, which is only unique up to changing the embedding of Z by
an element of H*. We fix one such choice from now on and denote the ring epimorphism
induced by the projection H* = Z @ H* — H* to the second factor by

(4.14) x:A=C[H @ F]— A=C[H & .

The corresponding morphism Spf(A[/]) — Spf(A[#]) identifies & with the slice {¢} x
ScSforee G,, the unit point. The G,-action acts transitively on the set of slices



50 HELGE RUDDAT, BERND SIEBERT

(M xG&C6. Choosing A appropriately, we can therefore assume w.l.o.g. that a lift a of a
to the finite cover & — & lies in the slice & C &.

'To prove Theorem 4.4 it is therefore enough to prove the existence of an analytic
family Y — U x D with completion at (a, 0) isomorphic to the completion of X — &
at a. Indeed, (4.13) 1s the base-change of X — & by the completion at ¢t = 0 of the C*-

invariant map
(4.15) Spec(A)an X C* x C —> Spec(A)ay X C, (5, A, 1) —> (5, A7'0).

Thus we can construct J) — U x D by base change of ) — U x D with the restriction
of (4.15) to an appropriate neighborhood of (4, 1, 0).

4.2. Analytic approximation with monomial period functions. — According to Remark 4.8,
it suffices to prove local analyticity of the slice X — & of the discussed G,,-action on a
finite unramified cover of our family ¥ — &. Denote by © C X the restricted divisor
defined by 8B. For S C Spec (A[t]) an open neighborhood of x = (4, 0), for any £ > 0
write Sy for the closed analytic subspace of S given by (#*1). Note that S; agrees with an
open subset of the analytification of the closed subscheme of S given by (1), Let X,
9, denote the subschemes of X and D given by (#1).

For the following statement recall the notion of diwsorial log deformation from [GS10],
Definition 2.7, a version of log smooth deformation appropriate for our particular rela-
tively coherent log structures.

Proposition 4.9. — Assume (B, &) is simple, B compact and either 3B = @ or 0B is again
an affine manafold. Then there is an integer ko > O with the following property.

Let @ : Y — S be aflat analytic family together with a Cartier divisor D C Y that is also flat
over S. Assume that_for some k > ky there is an wsomorphism fi. over Sk of the base change of the pair
)V, D) to S; with the restriction of ((.’fk)an, (@k)an) toS;. Then (Y, D) — S with the divisorial
log structure defined by t = 0 s a divisorial log deformation, that s, the complex analytic analogue
of |GS10], Definition 2.7."°

Furthermore, f; induces an isomorphism of the fibers over t = 0 as log spaces when equipped
with the restriction of the divisorial log structures obtained from the divisors {t =0} UD C Y and
{t=0}UD C X respectively, compatible with the log morphism to Sy also given the restriction of the
divisorial log structure via t on S.

Proof. — Since 9B is again an affine manifold, it is also simple and D is the cor-
responding canonical deformation. By simplicity, [GS10], Proposition 2.2 and [Al], (6.5)
Corollary, the fibers in the local models for the log structure of both X and ® away from
t =0 are locally rigid. Hence, by [Rul8], Lemma 2.5 and properness, there is N > 0

such that tNT-l - =0and tN7; /& =0 where Ty refers to the sheaf R“Hom(LY v, Ox),

16 The case B # @ (< D # @) wasn’t actually covered in [GS10], Definition 2.7, but its inclusion is straightforward.
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etc. with L* the cotangent complex. Let I be the ideal sheaf of ® in X. By increasing N if
needed and using properness again, we may assume that the kernel of multiplication by

N - 2 . . . .
£ in T3 16 (I) and in 7—5 /& 1s stationary, that is, does not change with larger N (see [Rul8]

§3.8). Choose k) > 4N and assume (), D) — 8 satisfies the assumptions for this k. If
Xan < V— Uis alocal model at a point y € X, then by [Rul8], Theorem 2.4, possibly
after shrinking V, U, we find that also y € ) has this local model. The case y ¢ © follows
directly (Z = #). For y € ®, let D C U denote the divisor in the local model. We first
apply [Rul8], Theorem 2.4 to D and D to obtain an isomorphism ¢ : D — D locally
at ». Then use this isomorphism ¢ as input in a second application of [Rul8], Theorem
2.4, now with Z =D, Z' = D, to find the pair (), D) isomorphic to (U, D) locally at .

This implies that ) has the same local models as X and since the latter is a divisorial log
deformation, so is the former. That the log structures on the central fibers agree follows
from [Rul8], Theorem 5.5. O

By Theorem B.1, a flat analytic family 7 : JJ — S and D C Y satisfying the as-
sumptions in Proposition 4.9 exists and we take one. Without loss of generality we may
assume &, > 8 with § € N the positive generator of the image of the map in (4.6). Thus §
is the minimal strictly posmve value of <cl (p), ,Btmp) for Biop € Hi(B, 1, A).

For both families, ¥ — & and ) — S we have our exponentiated period inte-
grals constructed from certain n-cycles on Xj;. In the first case these are formal rational
functions on é, in the second case germs of meromorphic functions on S at ¥ = (@, 0).
To obtain regular functions, we restrict to those n-cycles constructed from tropical cy-
cles Biop € Hi(B, 1, A) 4 from (4.7), that is, with (¢;(¢), Buyop) = 0. By Theorem 1.7, on
X — G, the exponentiated period integral for such cycles equals the monomial

(4.16) §Biop . fa(@).Buop) c AM]

Here we write s P for the monomial in A defined by the image of s #rr € A = C[H* @
F*] under the projection H* @ F* — H* @ F* defining x (4.14). We now want to apply a
holomorphic coordinate change to S to achieve the same formula for the period integrals
on) — S.

For the following statement, we assume without loss of generality that the neigh-
borhood S of ¥ is of the form U x D with U C SpeC(A)an an analytic open setand D C G
a small open disc with coordinate ¢.

Proposition 4.10. — After a holomorphuc change of coordinates of S=UxDatx=(z0)
restricting to the identity on U x {0} and leaving t unchanged modulo *, for every tropical cycle Byop €
H (B, t,A) ., the exponentiated period integral on Y — S is the monomial function

(4.17) }lﬁtmp = S_B:;‘op . t(cl((ﬂ)vﬂtn)p).
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Proof. — The choice of slice & C_é was made in order for the periods of ¥ — &
to yield a system of coordinates at x € &. The statement will follow by an application of
the implicit function theorem once we show that the same is also true for ) — S.

By the theory of period integrals developed in Appendix A, the exponentiated pe-
riod integral /g, for a tropical cycle By, € Hi(B, t,A) 4 on U x D* extends holomorphi-
cally to the fiber over ¢ = 0; moreover, the restriction to ¢ = 0 depends only on the restric-
tion of Y = S to ¢ = 0. Since the analytic family ) — S agrees with the canonical family
X — S to order k > 1, the exponentiated period integrals for B, € ¢| (p)* agree with
the monomial exponentiated periods s~# for the canonical family modulo #9*!. The ex-
wop thus obtained cover the image under the projection H* @ F* — H* @ F*

of the sublattice K* ¢ H'(B, ¢ A)* C H* @ I from (4.9). Now K* agrees with ¢ (p)*
up to finite index and ¢ (¢)* maps onto a finite index sublattice of H* @ F*. Thus since

A =C[H* ®F*] and U is an open subset of Spec(A)m, differentials of period functions
Rp e, TOT Buuop with (¢1(¢), Buop) = 0 span the relative cotangent space T D3 TU -

Let B, -+ Blrop € Hi(B, 1, A) map to a basis of K*. Then dhy, ..., dhg,, are

a basis of the relative cotangent space 1%

ponents —

trop”?
3/D.7 hence define local Coordmates on U x {0}.

€ Hi(B, t,A); with {¢;(¢), B%. ) = 8. By (4.16) and since
Y — S agrees with X — & to order k > 8, the exponentiated period integral for B°

Additionally pick some B’

trop tr op >

trop

on S has the form

_ )
hgg,, =51

: . . : = . (B .
with s an invertible function on S restricting to s~ %" on the fiber over ¢ = 0. We claim

that there exists a local biholomorphism ® of S with

O (hy ) =5 P P &% (i,

m)p n op

) _S*(ﬁtlrop)*’ l= 1, ceey 1y,

restricting to the identity on ¢ = 0 and leaving ¢ unchanged modulo #*. In fact, since
o . _(Rr! * _ (AT * —

hﬂtlmp, el lzﬁg'mp restrict to local coordinates s; = s~ Puor)” 5 = s7Pp)” on U x {0}, the

implicit function theorem applied with ¢ as a parameter produces a local biholomorphism

®; with

O =t D(hy, ) =s=s5F i=1,

Another application of the implicit function theorem with parameters s = (s, ..., s,)
finds a local holomorphic function a(¢, s) such that the local biholomorphism ®, defined
by

(1) = (1 + a(t, s)t) ot DY) =s, 1=1,...,7
fulfills
¢;(}lﬂ‘gop) = 57(,380[,)* : ZS.
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Note that the two sides of the last equation already agree modulo #7'; the equation to
solve to find a is the difference of the two sides divided by #. Then ® = &, o ®, defines
the sought-after local biholomorphism.

Finally, the claimed identity (4.17) holds for all B, since ,3301), e ﬁt’mp span the
image of the map By, = ﬁ:;op from (4.5).

In the proof, we have also shown the following statement.

Corollary 4.11. — Resinicted to t = 0, the differentials of the functions s Plop Jor Buop €
H, (B, t,.A) with (¢, (@), Buop) = 0 span the relative cotangent space of S over D.

We endow all our spaces with the divisorial (analytic or formal) log structures de-
fined by the divisors given by £ =0 and ® C X or D C Y and write My, My etc.
for the respective monoid sheaves. By Proposition 4.9 and Remark 4.8, the restriction of
Y, My) = (S, My) to t =0 is isomorphic to the restriction of (X, Mx) — (&, Mg)
to t =0 as a morphism of log spaces over the standard log point. Note that for this last
statement to be true it is important that in Proposition 4.10 we left ¢ unchanged mod-
ulo £.

For the final step of the proof we need to restore the G,,-factor from Remark 4.8
from the logarithmic perspective as follows.

Proposition 4.12. — Wth the log structures defined as in Proposition 4.9, there is an isomor-

phasm of analytic log spaces over the standard log point between the restrictions to the closed subspace
U x Spec (C[z‘]/(z""o“))an of the analytic family Y — U x D C Spec (A[t])an constructed in
Remark 4.8 and of X, — Gy, respectively.

Progf. — In Remark 4.8 the family ) — U x D was constructed frory )_) - UxD
by a base-change with completion at ¢t = 0 the base change producing X — & out of
X — &. The statement therefore follows from the corresponding statement for ) —

UxDand X — &. O

Remark 4.13. — Recall that the base change C[¢] — C[A*!, 1] from (4.15) maps ¢
to A~'¢. Thus as a log space over the standard log point, the fiber of J) — U x D over
t =0 is not the product of the fiber of J) = U x D with the standard log point, the
product structure is modified by rescaling the pull-back of ¢ as a generator of the log
structure of the standard log point by the coordinate A~ of the G*-orbit.

4.3. Log-versality of the canonical family. — 'To finish the proof of Theorem 4.4 and
Corollary 4.6, we need to compare two formal schemes over S= Spf (A[[t]]), where A is
the completion of A = G[H' (B, L*]\)*] at the maximal ideal m, defining the closed point
a. The first is the completion X — & of the formal family X — & = Spf (A[4]) at x € &;
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the second is the completion Y — & of the analytic family ) — U x D C Spec (A[t])am
at x = (a, 0). To make sense of the comparison in the category of formal schemes, note
also that the fiber of )V — U x D over «x is the analytification of a scheme, the fiber X,
of X = & over x. By GAGA for proper schemes ([SGA1], Théoreme 4.4), the restriction
of Y — U x D to the k-th order thickening Spec (OUXD /mf“) of x 1s then also the

analytification of a scheme. We can thus also view V- Spf (A[[t]]) as a morphism of

formal schemes, with the same base & and same closed fiber X, as X 6.

We do the comparison of the two families by showing that both are a hull'’ for a
certain functor of log deformations of (X,, Mx,) as log spaces over C[¢], with the log
structure on C[[¢] defined by the chart N — C[] mapping 1 € N to ¢. This situation fits
into the traditional framework of functors of ordinary Artinian G[[¢]-algebras as treated
by Schlessinger [S], by defining the log structure on an Artinian C[¢]-algebra by pull-
back from C[¢]. Uniqueness of the hull in [SI], Proposition 2.9, then implies that ¥->6
and Y — & are isomorphic as formal schemes over C[¢]. Moreover, since the period
integrals only depend on the formal family, by Proposition 4.10 and Corollary 4.11, this
isomorphism turns out to be a morphism even over 6= Spf (A[[t]]) We now carry out
the details of this idea of proof.

Recall that X and & come with log structures and the morphism X - & indeed
lifts to a morphism of formal log schemes. For X, C X the closed fiber with induced log
structure My, consider the deformation functor D that sends a local Artinian C[¢]-
algebra R, viewed as a log ring by the structure homomorphism C[¢] — R, to the set
D(R) of isomorphism classes of flat divisorial log deformations of XI = (X,, Mx,),
defined'® in [GS10], Definition 2.7. As in [GS10] we now use a dagger superscript to
indicate log spaces. We check in Theorem C.6 in Appendix C that the deformation func-
tor D has a pro-representable hull. Thus there exists a complete local G[¢]-algebra R
and a divisorial log deformation & € D(R) that is a hull for D.

By the defining property of pro-representable hulls, our two formal divisorial log
deformations X — & and Y — & now arise as respective pull-backs of & by two classi-
fying morphisms

(4.18) hi: & —> SpfR,  hy: & —> SpfR

of formal schemes over C[[7]. We claim that both /3 and 4y, are isomorphisms. Since &
1s smooth, it suffices to check this statement at the level of cotangent spaces. We provide
a proof in the needed setup for lack of a reference.

'7 The notion of hull arises in deformation situations where the functor may not be representable, but one has a
versal object that produces any family by pull-back. The hull is a minimal such family. A hull is unique up to an iso-
morphism over the base ring C[[{]. The isomorphism may not be unique, but its differential at the closed point is ([S]],
Proposition 2.9).
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Lemma 4.14. — Let ¢ : (A, m) — (B, n) := (Cxy, ..., %, f], (x1,...,x,0) bealo-
cal map of complete local Noetherian G[t]-algebras with residue field C. Assume that ¢ induces an
isomorphism m/(tA + m?) — n/((B 4+ n?) of relative Zariski cotangent spaces. Then ¢ is an iso-
monrphism.

Proof: — By the proof of [SI], Lemma 1.1, ¢ also induces an isomorphism m/m? —
n/n?. By Cohen’s structure theorem for complete local rings, we have a surjection B— A

that induces an isomorphism n/n* — m/m?. The composition B — A % B induces an
isomorphism on n/n*. By Nakayama’s lemma, every lift of a basis of n/n* generates n
and 1s a regular sequence. Hence, the composition B — B is an isomorphism by [Ei],
§10.3 and thus also ¢ is an isomorphism. UJ

To finish the proof of Theorem 4.4 it essentially remains to show that the differ-
entials of the maps in (4.18) relative C[¢] are isomorphisms. We equip C[e]/(¢?) with
the C[¢]-algebra structure ¢ — 0. Note that, by the definition of the hull, the relative
Zariski-tangent space of R 1s the tangent space to our functor

tp =D(Clel/(¢”)) = Homepg (R, Clel/(e))
= Homg¢ (mR/(tR + mf{), C)
By [GS10], Theorem 2.11,2, we furthermore have a canonical isomorphism
i =H'(X.. Oy 01),

where G denotes the standard log point (Spec C, N @ C*). With this identification, the
differentials D/, DAy, relative G[#] of 4.18 are the Kodaira-Spencer maps of our two
families:

(4.19) Dby, Dhy, Té/c[[,:]],x — H'(X,, ®XI/CT).
Proposition 4.15. — The relative differential
Dhy : Tg opp., = H' (B, 1.A) ® C — H'(X,., O41 1)

of the classifying morphism h : S — SpfR for -6 Jrom (4.18) coincides with the natural map

gwen in Proposition D.1. In particular, this map s an isomorphism.

Progf: — Since we work with relative tangent spaces, only the restriction to ¢ =0 is
relevant. For 7 € H' (B, t,A) ® C denote by

3. :A=C[H'(B,,A)*] — C
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the associated C-linear derivation defined by 8;(s™) = (m, n)a(m) for m € H' (B, LA)*.
Here a(m) € G is the reduction of s modulo m, defining the given closed point a €
Spec A. The pair (a, n) is equivalent to the associated C-algebra map

VA — Clel/(€%), "+ a(m)+ 0;(s")e = a(m)(l + (m, 7_2>8).

We are going to describe the pullback X, — Spec (C[s]/(b‘?)) of X — & under ¢. By
functoriality in the base S of the construction [GS06], Definition 2.28, X, is the toric log
CY space constructed from (B, &2, ¢) for the image under ¥ of the gluing data (s, 0p)
for X. In writing these gluing data as a pair, we used the identification

H'(B, . A®A*) =H'(B,,.A®C") & (H' (B, 1.A) @ H' (B, L.A)"),

observing that A* = C* @ H' (B, L*]\)*, the set of monomials with coefficients in CG*.
For the gluing data describing X,, we have

(4.20) (Clel/(eY)) =C* @ C,

as an abelian group, mapping the pair (A, ¢) € G* @ G to A(1 + ¢¢). Thus we have the
decomposition

H'(B, 1, A ® (C[e]/(s)*) =H'(B,1,A® C") & (H'(B,,.A) ® C),

to describe the gluing data of X, as a pair as well. Since the map on invertibles induced

by ¥,
C'OH' (B, A) — C®C, ,m)r—> (ra(m), (m, 7)),

respects the decompositions as pairs, so does the map on cohomology induced by ¥. The
first summand maps s to asp, the translation of s, € H'(B, L*]\ ® C*) by a as an element
of the algebraic torus H' (B, L A) ® C* acting on gluing data. This is expected since as,
is the gluing data giving rise to the central fiber X, of X.

To describe the image of X, in H'(X,, Oyt i) under the Kodaira-Spencer map,
we need to work at the level of cocycles. We use the coverings by the open sets W, C B
and V. C X, from Appendix D. Let n n and asy be re;presented by the cocycles n = (n,.) €
C! {W, )4, b A® C) and s = (5,) € C! ({W:}:, 1A ® C¥), respectively. Write s(1 4 ne)
for the image of (s, n) under the identification

C'((Wehe, b, A® G & C'({W, ., 1.A ® C)
=C'({Wele, 1. A ® (ClE)/ (7))

induced by (4.20). Then X, is canonically isomorphic to the toric log CY space for
(B, Z, ¢) defined by gluing data s(1 + n¢). Now for @ C 7, the section n,, of A ® C
over W, = W, N W, defines a logarithmic vector field 9, . on V,,, =V, NV, and this

Nt
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vector field describes the infinitesimal deformation X, of X, on V,, U V;. It thus follows
from the Cech description of the Kodaira-Spencer map that the image of X, under the
Kodaira-Spencer map is the cohomology class of the Cech 1-cocycle (8%1)&) .- Now the

map
C'((Wee. t,A® C) — C'({Vilr, Oyt i6)s (o) — (3,,)

indeed agrees with the natural isomorphism in Proposition D.1 at the level of cochains,
as claimed. U

Proof of Theorem 4.4 and (yr Corollary 4.6. — Proposmon 4.15 and Lemma 4.14 show
that the classifying map /3 6 > SpfR for X - & from (4 18) 1s an isomorphism.
The argument in Proposition 4.15 only required knowing X — & as a divisorial log
deformation to first order on the fiber over ¢ = 0 and, by Proposition 4.12, hence also
applies to Y — &. Thus also the clasmfymg map £y 6 - SpfR for Y — &is an
isomorphism. Taking the composition 4y, o h! % > Wenow obtain an isomorphism of formal
divisorial log deformations of (X,, MXK), that is, a cartesian diagram

.
(4.21) l l

over C[¢] with horizontal maps 1somorph1sms But by Proposmon 4.10 and (4.16), the
exponentiated period functions for ¥f>&and)Y > 6 agree and contain a system of
coordinate functions on the fiber over £ =0 of &. Since furthermore ¢ maps to £, in view
of Remark 4.13, the lower horizontal arrow £y, o h;l in (4.21) is the identity. This finishes
the proof of both Theorem 4.4 and of Corollary 4.6. UJ
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Appendix A: Finite order period integrals

The main result of this paper computes certain period integrals of a relative logarithmic
holomorphic n-form for a flat analytic map X, — Spec G[¢]/(#*") over a family of »-
cycles. The result is given in the form glog? + 4 with g, h € C[¢]/(#*"). The purpose
of this section is to define such integrals unambiguously despite only working in a finite
order deformation and despite the appearance of the log-pole. It is also straightforward to
incorporate analytic parameters by replacing the ground field G by an analytic G-algebra
A=C{s,...,s}/(h,....Jr). For the sake of readability all formulas are given over C.

The log-pole arises by the intersection of the cycle with the singular locus (X)ing C
Xy, where locally X is assumed to be normal crossings and (Xg)in, smooth. As a prepa-
ration, we take a closer look at relative logarithmic differential forms near a double locus.
We work analytically and denote by D the unit disk in C and by Da slightly larger disk.
Let k € N\ {0} and denote

A.1) A, ={(z,w,0) eD* x D| 2w =},

viewed as an analytic log space with log structure induced by the divisor with normal
crossings ¢ = 0. The function ¢ defines a log morphism A, — D, for D endowed with the
divisorial log structure for {0}. To not overburden the notation, the log structure is not
made explicit in the notation, but should always be clear from context. A crucial fact for
the following is that a holomorphic function f* on H, can be written uniquely as a sum

(A.2) Szw, t)y=2z-g(z, ) + w - (w, t) + ()

with g € C{z, 1}, h € CG{w, ¢} and ¢ € G{t}, by replacing mixed terms zw by ¢ and then
collecting the respective monomials.
By definition, the sheaf of relative logarithmic 1-forms Qil D is the invertible Oy -

K

submodule of the sheaf of relative meromorphic differential forms on H, generated by

dz dw

z w

Recall that this relation arises by applying dlog to the equation zw = # and modding out
by % Together with

wtdz = —ww  dw = — 1w dw,
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zZJrldu) — _zlJrlu)zfldz — _lf/(zlfldz

1

for [ > 0, we see that similarly to (A.2), any a € I (H,, Q4 D

the form

) can be uniquely written in

dz dw
(A.3) a =gz t)dz+ (w, t)dw + c(z,‘)? =g(z, )dz + Mw, t)dw — c(t);

with g, & holomorphic functions on DxDandca holomorphic function on D.

A similar statement holds after reduction modulo #*! and for forms of higher
degree in higher dimensions as follows. Fix £ > 0 throughout this appendix. Let O, be
the zero-dimensional analytic log space Spec G[#]/(#*") with the restriction of the log
structure on D. Let H, be the base change of H, to O;. Then the reduction of (A.3)
modulo #*! also yields a unique decomposition, now for a € I'(H,, Q. s0,) and with
g he O/ (), c € ClA/ (),

For the higher dimensional case consider U =V x H, with V a complex manifold
of dimension 7 — 1 and let U denote the reduction of U by ¢ If U= U"U U” is the
decomposition of U into the two irreducible components defined by w = 0 and z =
0 respectively, and V=V x Oy, various combinations of the functions z, w, ¢ and the
product structure of U define projections

pv:fJ—>V ])HK:G—)HK,
p;:U—V=VxO0, p:U—Ux0O, p:U—U"xO,

With this notation, the sheaf €

/04 of relative holomorphic logarithmic p-forms on U

decomposes as a direct sum,

* —1 * *
%ka/ok = (ﬁvgé’ ®Of; bu, QII{K/OA,) EBPVQI{\)/-

Note also that this formula can be rewritten using i€y, = p5 Q¢ 101 with r=p — 1, p.
In view of the decomposition of relative (holomorphic) logarithmic 1-forms of H, /Oy
arising from (A.3), a logarithmic p-form o on U can thus be written uniquely as a sum

d
(A.4) a = (pja’) Adz+ (p3a”) A dw + (Phoes) A f + o5,

with &’ € T(U' % Op, Q0,05 @ € TU" X O Qi 0,10,) tes € TV, Q) and

ag e (0, 2590, All these differential forms can be expanded as polynomials in ¢ by
means of the canonical isomorphisms

Qroyo, = R ®CUY/ A, Q0 0, = ' ® CL/(EH)

Qo =@ ®CI/ (@, F =05 @0, 17 -
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In the last instance, for oy, we use the analogue of (A.2) on U=V x H, to write the
coefficient functions as polynomials in ¢.

Definition A.1. — Let @ U — X, be a logarithmic morphism relative Oy with U = U x O
and U non-singular, or U =V x Hy and V a complex manifold of dimension n — 1. In the furst case
define

O (X, X j0,) — (U, Q) ®c Cl/(41)

by composing ®* with the canonical isomorphism Qlfjxok 0, = Q' ®¢ CL/ ("), In the second
case define

Ot T (X, 4, 0,)
— [(rU, @ h e, Q") ®c /)] @ D, prai ),
by decomposing & € T (X, 2%, ,) according to (A.4) and omitting the term with the simple pole:
Ot () := (a’, o, a(,).

We call @ («) the special pull-back of «.
In the second case, the ot,.s-component of ®* o in the decomposition (A.4) also provides a homo-
morphism

reso : (X, 2 j0,) — TV, ) ®c Cl4/(¢).

Note that rese (@) = @, in Definition A.1 agrees with the residue of the restriction
of ®*(«) to the branch w = 0. Restricting to the other branch z = 0 changes the sign,
but up to the choice of branch, resqe («) is well-defined as a (p — 1)-form on the thickened
double locus (Xo)sing X Of.

Lemma A.2. — The homomorphism @ commutes with the exterior differential d.
Proof: — 'T'his follows easily from the definition. U

With the notion of special pull-back at hand we are now in position to define our
finite order period integrals.

Construction A.3. — Let X; — O, be a morphism of analytic log spaces with Oy
the fat log point introduced above. Denote by X, the central fiber and let 8 be a singular
differentiable p-cycle on X,. Here differentiability is defined on each singular simplex by
locally composing with an embedding of X, into some GN. In a neighborhood of the
image |B| C Xy of B we assume X, to be normal crossings and 7 log smooth. Since
the discussion is local around |8| we may just as well assume these conditions to hold
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everywhere. We assume 8 =) . B; with each B; a chain mapping into the image of ®; :
U; — X, a logarithmically strict open embedding over Oy with either

Chl U, = U, x Oy with U; C C" open, or
< b
ChlIl fji =V, x H,. with V; € C"! open.
< 1 p

We identify the reduction U; of fji with its image in X, and we assume the U, for the
second type are mutually disjoint. The index : runs over a finite subset of N.
Concerning B we assume that

(CyI) For either type of chart, 08; = Zu v with (p — 1)-cycles y/, the number of
summands depending on :. Moreover, for each (z, u) there exists exactly one
j #1and one v with |y| N |yj"| # (). Yor such (z, ), (7, v), it necessarily holds
yi =~y since 3f = 0.

(Cy II) If ®; is of type II (i.e., U; N (Xo)sing # ¥) then B; is homologous relative to df;
either to (i) 3 x = with £ the two-chain [D x {0} x {0}] + [{0} x D x {0}] in
H,,, or to (ii) y; x ¢, with

(=4,0,0), —-1=1=0

t:[-1,1]— H,,, Ar—
(0, A,0), 0<x<l.

In the two cases, y;1s a (p — 2)- and (p — 1)-cycle in V, respectively. In particular,
3B; = y! — v with y/ = y; x S! homologous to zero in the first case and
homologous to y; x {0} in the second case.

For i # j denote U; = U; N U; = Uj;. We then have two open embeddings CI>?) , CDji) Uy x
O — X}, defined by the restrictions of ®; and ®;, respectively. Note that if U; # @, at
most one of the two charts can be of type II, say U;. In this case, U; = U;UU decomposes
into two irreducible components with only one of them intersecting Uy, say Ul In the
coordinates z, w, ¢ for HKJ. assume that Ujf is defined by w = 0. Then for z # 0 we can

eliminate w via w = z~'#9 to obtain an identification fjj \ U/” = (U// \ U]” ) X Oy. The map
CD;” : U x Op — X, is then defined by the composition

D;
Uy X Ok — (Ujl \ U]N) X Ok —> Vj X HKj —J> X/C,

with the first two arrows the canonical open embeddings.
In any case, since CIDZQ ), CID;Z) agree on the reduction Uy, there is a biholomorphism

W, of Uy x Oy = U;; x O fulfilling & = &7 0 W;,. Using the linear structure on U; C "

we may then define a homotopy between CDZ(-D and q);i) as follows:

(A.5) @;: [0, 1] x Uy x Op —> X, ®y(s,.) = OV ((1 — ) - id +5y).
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Note that ®; is really a homotopy of the homomorphism between the structure sheaves,
the underlying map of topological spaces stays constant throughout the homotopy.'® For
a relative logarithmic p-form o on X we define @;(oe) by using the product structure of

Uy' X Ok.

Now let o be a closed relative logarithmic p-form on X, /O;. If ®; is a chart of
type I, we can easily define |, 5. @ by integrating over the first factor in I'(U;, SZ%Z_) Q¢

C[#]/(#). Explicitly, expanding @ () = Y, ¢!, we have

A.6) fﬁi OF)= (f ozl)tl.

l Bi

An analogous formula defines f[o,l]xy“ CD;-L(oc) needed for the treatment of d8; below.
For charts of type II we need a different definition of the integral to take into

account the change of topology that B; would undergo under deformation to ¢ # 0. Ex-

panding the three entries of ®; («) in power series yields
A7) @) = (X0 28, 0 Loy W Bt )

with g, b, € Q' (V) = Q' (V) @ CL/ (), arg, € (U, g7, @) Since H, is a closed

subset of D2 x D with D a slightly larger disk than the unit disk (A.1), the two power series
are absolutely and uniformly convergent for |z] <1 and |w| < 1, respectively. For the two
cases listed in (Cy II), define now

0, Bi=yix X
A.8) / OF (o) = e
Bi ZTZO 1 i++1 f)/i (hr _gr)v ﬁi =Y XL

The motivation for this definition will become clear in the proof of Proposition A.6. The

factor in front of the integral should be recognized as the integral of w’dw over a curve
in D connecting # and 1. But note that here ¢ is only defined up to order £, so this
interpretation should be taken with care.

Finally define [ 5 @ as a formal linear combination ¢ + #log ¢ with coefficients g, 4 €

C[1]/ (1) as follows:

(A.9) /a ::Z/ c1>j(a)+Zf Ofo + (ZKZ»/ res@((x))logt.
B ; ; i Y 10.1Dxyf ; vi

Here the first sum runs over all 2. The second sum runs over all (z, ) with ®; of type I;
in the summand, j is the unique index with j # ¢ and y/* mapping also to U; as explained

18 The particular form of homotopy is not important and can be chosen according to convenience.
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in Construction A.3, (Cy I); if also ®; is of type I we assume 7 <. The third sum runs
over all 7 with ®; of type II. Note that the integral over the residue vanishes if §; is a cycle
of type (1), that 1s, of the form y; x X.

Remark A.4. — Formula (A.9) depends on the specific choice of ¢ for chains of type
(i) in (Cy II) above as a curve connecting z = 1 to w = 1. For curves connecting z = a to
w = b, the term «;log¢ in (A.9) has to be replaced by «;logt —log b — loga, the result of
computing [ wo dlog z. Varying a and b implies that the result depends on the choice of
a branch of the logarithm, and hence can only be well-defined up to changing any of the
terms K; fyg resg, () by integral multiples of omr/—1 fw rese, ().

This generalized formula also shows that by replacing z, w, ¢ by &z, ew, %%t for a
small ¢ € G*, the same Formula (A.9) applies if we replace the unit disks above by disks
with any radius.

For convenient referencing, for charts ®; of type (Ch II) we also introduce the
notation

A.10) /a::f CDj(a)—i-Kl-(/res(pi(a))logt.
i i Yi

Note that this definition depends on ®; whereas (A.9) does not depend on choices, as we
show next.

Proposition A.5. — The integral of the closed logarithmic p-form o on X/ Oy over the p-cycle
B on X defined in Equation (A.9) of Construction A.3 as a_formal expression

fazglogt+h
B

with g, h € C[{]1/(+Y), does not depend on any choices up to changing g by adding integral multiples
of 2~/ —1 fyv resq, (o) for any 1. Moreover, up to this ambiguity, the result is invariant under changing
a by an exact form or under homotopy of B through cycles of the same _form.

Progf.: — First observe that for a given cycle B, we can make B; with ®; of type 11
arbitrarily small. Indeed, let @, be of type Il and B; split into a sum B/ + B;™*" with B!
mapping to IVJZ» = U\ U C X. Viewing IVJZ» x Oy as an open subspace of U, =V, x H,,
by means of p; : U; — U} x Oy, the restriction @} := ®;|y;., o, defines a chart of type I. A
straightforward check now shows

/‘Dfa=f(<l>§)+a+f dra.
Bi ﬂl/ ﬁ;‘maller

A similar refinement argument holds if we swap the roles of U’ and U and also for
charts of type I. Thus given two systems of open embeddings ®,, &Dj we may go over to a
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larger indexing set and shrink the domains of definition to arrive at the situation that the
indexing sets and the open sets U; C X, agree.

We use the notation from Construction A.3, with a hat indicating the use of d,.
If @,, CiDi are charts of type I, the same argument as in the definition of ®; defines a
homotopy

Wi [0,1] x U, — X,

between ®; = W,;(0, .) and CTJZ» = W,(1,.). There also exists such a homotopy W, for charts
o, dAD,- : Vi x Hy, = X, of type II, but the construction has to be modified to preserve the
equation zw = #i as follows. By composing with ®;', we may replace X; by V; x H,. and
assume ®; = 1id for the construction of the homotopy. Write CiDZ- :V: x H,, = V; x H,,
component-wise as

Di(u, 2, w, 8) = (U, 2, w, ), Z(u, 2, w, ), W(u, 2, w, £), £).

Note that &)i commutes with the map to O, and reduces to the identity modulo ¢. Hence
ZW =t and Z, W reduce to z, w modulo ¢. A straightforward induction on the degree
in ¢ shows that there exists an invertible function fon V; x H, withZ =z- A, W=w - At
and 2= 1 modulo ¢. Thus we can define log # uniquely with log/ = 0 modulo ¢, and in
turn /2 = exp(s - log /) for any s € R is also defined. Then

\I-’l' . [0, 1] X Vl' X HKi —> Vl' X HK[,
(s,u,z,w, ) —> ((1 —u+sU,z-F,w-h°, t))

defines the desired homotopy between ®; = id and d,.
Similarly, there exist homotopies

W, [0, 1] x [0, 1] x Uy x O — X

between ®; = W;(0, ., .) and &Dy = Y;(1,.,.). By constructing W, by linear interpolation
between W; and W; as we have done, we can also achieve W;(.,0,.) =W;, ¥;(.,1,.) =
W;. Since da = 0 by assumption, these homotopies give rise to exact forms in the usual
way by integration over the first entry:

1

1
CIDZ.“a—Ci);‘oe:d(/ \11;‘0[), CD;oe—CiDZa:d(/ \IJ;(X>.
; : i .

Taking the respective parts of the product decomposition of U, yields the analogous for-
mulas for special pull-back:

1

1
cpj(a)—cﬁj(a)zd(/ vt @), q>;(a)—ci>;(a)=d(/ vl @),
0 0
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where we view the parameters first complex-valued and then restrict to [0, 1] x [0, 1] C
D?. Note this computation requires Lemma A.2.

The difference of the terms appearing in the first sum on the right-hand side of
(A.9) now can be written as

1 1
[@r@-dre)= [ o [ wrw)=[ [ v
Bi Bi 0 9B /0

1
=Z/ / W ().
w v Yo

For the second term one computes similarly

1
/ (cp;(a)—ég(a)):f d(/ w;(a))
[0,1]xy [0,11xy}* 0
1
:/ f (¥ (@) — ¥ ().
vl Jo

Now each y/* from U, of type I equals a unique —y]-” with j # 2. If ij- is of type I the
contribution of y” occurs with opposite sign in / 5 (@f(a) - CiDZ*(oz)). If Ijj- is of type II
a similar cancellation arises with a contribution of the second term in (A.9), and each
summand in the latter occurs exactly once. Thus the first two terms in (A.9) give the same
result for ®; and ®;, while the integral over the residue is already defined independently
of choices.

A similar argument shows invariance under homotopies of 8 and the vanishing of
fﬁ o for exact o. U

If X; — Oy is the reduction modulo #*! of an analytic family, our period integral
agrees with the usual period integral, up to order £, assuming fy, resg, (o) € Z for all 7.

Otherwise we have agreement up to integral multiples of (27‘[ =1 fm resq, (a)) log(?).

Proposition A.6. — In the situation of Construction A.3, assume that Xy, — Oy and o are the
reductions modulo t**" of a holomorphic map X — D to the unit disk and of a closed, relative logarithmic
p-form & on X, respectively. Let B; be a continuous extension of the p-cycle B on Xo = 7t~ (0) to the
fibers X, for t € D\ (Reoe¥™1€) for some ¢ € [0, 27). Then possibly afier replacing D by a smaller
disk, there are holomorphic functions 3, h € O (D) with

/ a,=glog(t) +h, €D\ RV,

t

whose reductions modulo {7 agree with g, h € C[£]/(I*T") from (A.9), respectively, for some choice of
branch of log t on D\ Rage¥ ™', and up to changing g by integral multiples of 27t /—1 fn resq, (@)
Jor any 1.
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Fic. A.1. — The curve ¢(¢)

Proof. — After composing X — D with multiplication by ¢¥~'"~% on D we may
assume ¢ = 7. The charts ®, from Construction A.3 extend to analytic open embeddings
into X, possibly after shrinking U; C X slightly. To reduce the amount of notation, we
use the same symbols as before, except Oy, is replaced by the unit disk D. Thus &; : U, —
X continues to be a logarithmically strict open embedding, but now U; = U; x D or
U, =V, x IA{,(Z. with IA{,(Z. ={(z,w,t) € D’xD | zw = #“}. Similarly, we have the homotopy
®; between the restrictions of ®; and ®; to a neighborhood of Iy = |)/j"|, all assumed
to agree to order £ with their respective versions in Construction A.3.

We now extend B =) . as a cycle to small ¢ by the sum of the following three
types of singular chains.

(A)If U, = U; x D is of type I define Bi() = ®,,(B: x {£}).

(B) If UZ- =V, x PAI,(Z. is of type II, then by (Cy II) either B; = y; X X or B; =y X (.
In the first case, ¥ = I:IKI. N (D x D x {0}) and ¥; 1s a chain in V; of dimension p — 2. In
this case define 8;(t) = y; x X(¢) with X () = I:IK/ N (D x D x {#}). In the second case,
is a union of two line segments in I:I,Q in the fiber over ¢ = 0, while y; is a chain in V; of
dimension p — 1. For t € R define B;(¢¥) = y; x t(¢) with

L) = {(&/a,n, 0 € H |9 < A< 1)

For ¢ € D\ R take the same definition for B;(¢), now with ¢(¢) a continuous family
of curves in I:I,q in the fiber over ¢ that, projected to the w-plane, connects #/ and 1 inside
the annulus || < |w| < 1.

For example, writing ¢ = |t|eﬁ9 with —m < 0 <, we could take ¢(¢) : [0, 1] —
{w eC | |t|“ < |w|] <1} to map the three intervals (a) [0, 1/3], (b) [1/3,2/3] and (c)
[2/3, 1] to (a) the radial line segment connecting ¢/ = [¢|* V=1 with |¢]<i/ Qe*/__w, (b) an arc
on a circle, with endpoint |¢]/?, (c) the radial line segment from |¢]/? to 1, respectively,
and each interval parametrized with constant speed. Then indeed ¢(#) varies continuously
with ¢ € G\ R.. Moreover, decomposing I:IKZ. N (]A)2 X {t}) into two annuli of outer radius
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1 and inner radius |£|'/?

Construction A.3.
(C) For each 7 with ®; of type I and each component y/* = —y,;" of 9B; define the
interpolating p-chain

Bin(®) =Dy ([0, 1] x y/* x {1}).

If also ®; is of type I we only consider g; , if « <.
Finally, define

BO=Y B+ Biu().
i 1,1

, we see that ¢(¢) for £ — 0 converges to the curve ¢ in (Cy II) of

Note that B(¢) is a cycle since by construction: 38;(¢) = Y u v () with ¥/ (¢) a continuous
family of cycles converging to y/* for  — 0, while by (C) it holds 38; ,(1) = —y/ () —
Y ().

To finish the proof; it remains to compute |, sy @ and to match the various contri-

butions with the terms in (A.9), modulo #*!. For contributions from (A) we have

Joe= L

Developing the integrand in ¢ up to order £ yields |’ s OF ().

For (B)and ¢t = |tleY=1 £ 0 we may eliminate z = ¢//w and work over the w-plane.
The choice of w over z is motivated by the fact that for the case B; = y; X t, the curve
¢t moves radially inwards in the z-plane and outwards in the w-plane. In this coordinate,
using 7'dz = —t"TV%w 24w and following (A.4), (A.7), we can write uniquely

t("‘l‘l)’(z

(A.11) Ol =Y pt by Aw'dw + pi b 1/\——vagr —dw +ag,
>0 r>0
with 4,6 € T(V; x D, szf;ji,, p) and ag, € T(U;, p%, Q). Projected to the w-plane, ¢(?)
is a curve connecting £/ and 1. If B;(¢¥) = y; X X (¢), the integral over ®*« involves integra-
tion of a holomorphic one-form over ¥ and hence it vanishes identically, in agreement
with the first line in (A.8).
For the other case, 8;(t) = y; x t(t), we have

1 L _ 4+ D —
[ o= [ w0 2
10) ki —Kl-logt, r=—1.

Moreover, f s @v; = 0 since oy, vanishes on ker(pg, ). Integration of (A.11) over y; X

t(¢) now gives
L;(7+1)Kz
(—KZ/ >logt—|—z (/ h,,—g7,> .
Vi
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Since g,, h, for r > 0 reduce modulo #*! to the differential forms with the same symbols
in Construction A.3 and since —/_; = resq,(a), this result agrees to order £ with the
contributions to | 5@ In (A.9) from (A.8) and with Ki( fyz- resq, (a)) log¢.

For the interpolation integrals (C) it holds

[
ﬂz,u @® [0, ”XyiM x{t}

which agrees with flo,llxy/‘ CD;-r(a) in (A.9) upon reduction modulo #*! by the same argu-
ment as in (A).
Any other choice of B(¢) differs from our choice up to homology by a sum of

integrals over vanishing cycles of the form fq), (ixsixy @ for @; of type 1L Here St x

{t} C I:I,(,. is defined by |z| = |w|. Integrating over the S'-factor yields 27t /—1 fyz- resq, (),
hence only changes the result as stated. UJ

Lemma A.7. — In the situation of Proposition A.6, let T denote the monodromy transformation
on n-cycle classes along a counter-clockwise simple loop in the base disk D of the family X — D based
at a fiber X, for some ty # 0. We have

(T—id)(B,) =) _wilyi x S']

where, i the notation of the proof of the proposition, the sum s over all charts of type (B) for which
Bi = vi X L and S" denotes a clockwise simple loop around the origin in the w-plane, see Figure A.1.

Proof. — The cycle B, decomposes into chains B; according to cases (A),(B),(C)
as in the proof of Proposition A.6. For (A) and (C), it is straightforward to see that f;
is invariant under monodromy because the family is trivial here. Hence, (T — id) only
yields contributions for case (B). Note further that the factor y; is also invariant under
monodromy, so we only need to consider the local situation of the map H,, — D given by
zw = (‘. In the sub-situation where 8; = y; X X (#), we find that X (%) is the fundamental
chain of the fiber of H,, — D which is also invariant under monodromy. Thus, only the
situation f; = y; X t contributes, as claimed in the assertion. Studying how ¢ changes when
following a simple counter-clockwise 4-based loop in D, as illustrated in Figure A.1, we
see that ¢ gets mapped to ¢ + «;[S'] under T. Adding the invariant factor y; yields the
assertion. 0J

Appendix B: Analytic approximation of proper formal families

TheoremB.1. — Let R = C{t, z1, ..., 2.}/ (@1, ..., &) bga convergent power series algebra,
(S,0) C (C",0) the corresponding germ g‘ analytic space and (S, Q) the completion in the closed
subspace defined by 1. Let T : (X,Xo) = (S, 0) be a proper and flat_formal analytic map and vy, :
X, — S, its reduction modulo .
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Then for any k > O there exists a proper flat analytic map of germs of pawrs 7w : (X, Xg) —
(S, 0) with reduction modulo **' isomorphic to 7.

Analogous approximation statements hold for morphisms of complex spaces (3, Zy) — (X, Xo),
both of which are proper and flat over (S, 0), and for pairs ((I, D), (X, Do)) with (9, Dy) an
S, 0) Slat analytic subspace of (X, Xo).

Progf. — We first treat the case (X, X)) — (S, 0). By a result of Douady and
Grauert, the compact complex space X, admits a versal deformation, a proper analytic
map 4 : ) — V with a point v € V and an isomorphism ~~' (v) 2~ X, which is versal for
proper flat analytic deformations of X, ([Du74], VIL.8, Théoréme Principal and [Gr],
§5, Hauptsatz). Possibly by shrinking V, we may assume V is an analytic subspace of an
open subset in C" given by some f,, ..., f,, € G{xy, ..., x,} and v = 0. Thus for any given
k there exists a cartesian diagram of analytic spaces

Xy —= Y

(B.1) nkl ) lh
S, — =V

We are going to construct (X, Xy) — (S, 0) by extending ®; to an analytic map & :
(S,0) — (V,0), first formally and then analytically using Artin approximation.

To do so, denote by T : X — Sand by 7Y — V the completions of T and h at
the origins, respectively. By results of Schuster and Wavrik [St71], [Wa], the family 7 is
formally versal. Hence there exists a cartesian square

2
) <— R)
<) < <)

o
—_—

We can also achieve that the reduction of ® modulo #+! agrees with the completion of
®, at 0. Indeed, if m C R is the maximal ideal, constructing ® amounts to finding a
compatible system of lifts

®:O0¢0=Clxr,.... 5]/ (fir o fo) — R/m* =0y, (€N,

along with a compatible system of isomorphisms of X; — S, with the pull-back of n by
D, Assuming D, given, the construction of ®, can be done in two steps: First construct
an intermediate deformation X of X, over

(B.2) R):= R/(mz+1 + ("N ml) = R/m’ Xp st R/(ml“ 4 (tk“)),
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by gluing the family over R/m' given by ®,_; with the reduction modulo m*! of X /Sk,
using the given isomorphism of the common reductions modulo m’ + (#*1). The fibered
sum of analytic spaces involved in this step exists due to [St70], Satz 2.7. We have now
arrived at the following sequence of Artinian C-algebras

R/m* — R/ — R/m/,

and a compatible system of deformations of Xy, which are X; over R/m/*! the fibered
sum X over Rj just constructed, and X,_; over R/m!. In the second step we can now
use formal Versahty of % : y — V to extend the morphism o, O — R/m! first to
R} and then to R/m"!, in a way inducing the two families X, over R} and X, over
R/m/H, respectively. The intermediate step assures that the lift preserves the alread
given completion to all orders modulo #*!, namely the reduction of ®; at 0. Thus @
with the requested properties exists.

Writing z = (zy, ..., 2,), the map @ is given by equations x; = @;(t,z) for | <i<n
with @; € C[t, z]). Since the ideal (f}, ..., /,) gets mapped into the ideal (g, ..., g,), the
@; fulfill the system of equations

(B'S) ,]j(al(t’ Z), ’@(t’ Z)) :Z@G(ta z)ga(t’ Z), 1 E]Sm
o=1

for some @, € C[t, z]. Since we already have the analytic solution ®; on Sy, that is, an
analytic solution modulo #*!, we now rewrite

@:‘Pi'i‘tkﬂai, izlv---amv

with ¢; € CG{t, z} the components of ®; and V; € C[t, ]. Plugging into (B.3) we see that
i =V.(t,2), xo =aj, (1, z) are a formal solution of the system of analytic equations

(B.4) Sz + 1 e +1Y,) = megg(t z), l<j<m

o=1

By Artin’s approximation theorem [At], Theorem 1.2, there exist germs of analytic func-
tions ¥ (¢, z), ..., ¥,(t, z) and g;; (£, z) that solve (B.4). Now ¢, + L @+ Y,
defines an analytic map (S, 0) — (V, 0) with the property that the reduction modulo
! equals ®@;. The base change X :=) xy S of J) = V by @ is the requested analytic
approximation of 77. This finishes the proof for the case (X, Xy) — (S, 0).

The proof for the case of a morphism (3, Zy) — (X, X,) is similar, replacing the
versal deformation of X by the versal deformation of the morphism Z; — X, with
varying domain and target. This latter versal deformation space exists by first construct-
ing versal deformations 7 — W of Zy and ) — V of X separately, and then taking the
relative hom space Homy v (7T x V, W x }) from [Du69], Ch.10, for the pull-backs to
W x V of the versal deformations of domain and target. The case of an analytic subspace
is a special case, noting that the condition that a morphism is a closed embedding is an
open property. O
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Appendix C: The divisorial log deformation functor has a hull

In this section, X¢ denotes a simple toric log Calabi-Yau space over (Spec G, N x C*).
We consider divisorial log deformations of X¢ as defined in [GS2], Definition 2.7. Let
D : (Artinian C[¢]-algebras) — (Sets) be the divisorial log deformation functor that as-
sociates to an Artinian G[{]-algebra A the set of isomorphism classes of divisorial log
deformations X, of X¢ over SpecA equipped with the divisorial log structure defined
by t = 0. The definition requires X4 — SpecA to be flat in the ordinary sense, to be
log smooth away from Z and to permit local models of a particular type along Z. The
last condition requires that each x € Z has an étale neighborhood V, with strict étale
Spec A-morphisms X, <= Vi — Y, = SpecA x¢pg U where U — Spec C[¢] is a par-
ticular affine toric variety with monomial function ¢ uniquely determined by x. In the
following we call such an étale neighborhood V, — X, a model neighborhood. The only
feature of these local models needed for the present discussion is the following result from

[GS10].

Lemma C.1 (|GS10], Lemma 2.15). — For every x € Z, there exists a model neighborhood
Ve of x in X, so that for every Artinian G[t]|-algebra A, any two divisorial log deformations of V¢
over Spec A are isomorphic."’

A standard fact about étale maps (Theorem 1.3.23 in [Mi]) is the following:

Lemma C.2. — If'Y s a log scheme and Yo C Y a closed subscheme defined by a nilpotent
sheaf of ideals with restriction of the log structure from Y, then the category of strict étale Y -schemes s
equivalent to the category of strict élale Y -schemes by means of V= V Xy Y.

Lemma C.3. — Assume that A; — Ay < Ag are maps of Artinian C[t]-algebras and
Xa, < Xa, = Xa, maps of diisorial log deformations above these. Given x € Z, there is the following
commutative diagram with all squares cartesian, rows local models at x, left column the given maps of
deformation and the right column the maps induced via pullback by U — Spec C[[{],

Xa, Va, Ya,
! ! T
Xa, Va, Ya,
l i l
X Va, Ya,

19 The statement in [GS10] only asserts the existence of some étale neighborhood, but the proof in fact shows the
stronger statement given here.
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Proof. — Let X¢ <= V¢ — Y¢ be a model neighborhood of x € Z in X¢ provided
by Lemma C.1. Then Lemma C.2 implies that for any Artinian G[[¢]-algebra A and
divisorial log deformation X, € D(A) of Xg, there exists a model neighborhood X, <
Vi = Y} restricting to X¢ <— Ve — Y. Moreover, this model neighborhood is unique
up to unique isomorphism. Thus the extension of the given model neighborhood X¢ <
V¢ — Yc to divisorial log deformations of X¢ is functorial, which in particular gives the
stated commutative diagram. OJ

An important fact implied from the definition is that the log structure on X,
has integral stalks even though it typically is not coherent. Recall that a morphism f :
(X, Mx) — (Y, My) of log spaces with integral monoid stalks is strict if and only the
induced map f~' My — My is an isomorphism.

Lemma C.4. —Iff : X = Xy s a map of divisorial log deformations over a homomorphism
of Artinian C[t]-algebras, then f is strict.

Proof: — By strictness of X¢g = Xy, X¢ — X/, the map f —IHXA, — MXA in-
duced by f is an isomorphism. The statement now follows by integrality of stalks. O

Lemma C.5. — Assume we have a commutative diagram of Noetherian rings

b

B, By B,
I
of Cy «——— C,

with b, ¢ surjective with nilpotent kernel, the squares co-cartesian and all vertical maps flat and unrami-
Sied, then the natural map f = B, xg, By = C; X, Gy @5 also flat and unramified.

Proof. — The question is local, so we can assume all rings local. Furthermore, since
an étale morphism is locally standard étale, e.g. by Theorem 1.3.14 in [Mi], we may assume
that B, = C; are standard, that is, C; = B,['T]/(P;) for P; € B,['T] monic with simple roots.
By co-cartesianness, we may assume Py 1s the image of P;, Py under B,[T] — By[T]. Thus
P,, Py define a polynomial P € (B, x3, Bo)[T], which is clearly monic. Moreover, P also
has simple roots because any double root would imply a double root also for all the other
P; using that Spec(B; X, Bs) — Spec B, is bijective by surjectivity of b : By — By. Finally,
we find that C; x¢, Gy = (B x3, B9)[T]/(P), which implies the assertion. O

Let A — Ay < Ay be homomorphisms of Artinian G[¢]-algebras. Consider the
natural map

<C.1) D(A] X Ao AQ) —> D(Al) XD(Ag) D(AQ)
The Schlessinger criteria that provide a hull are the following ([SI], Theorem 2.11).
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(H1) The map (C.1) is surjective whenever Ay — A 1s surjective.
(H2) The map (C.1) is bijective whenever Ay = G and A, = C[¢] := G[E]/E*.
(H3) dim,(¢p) < oo where tp := D(C[e]).

Theorem C.6. — The divisorial log deformation functor D has a hull.

Progf- — The last criterion (H3) is proved in [GS10], Theorem 2.11,(2). It re-
mains to verify (H1) and (H2). We begin with (HI). Let Ay — A, be surjective. Set A :=
A X, Ag and note this is naturally an Artinian G[¢]-algebra. Let (X;, M,) — SpecA;
be divisorial log deformations lifting the maps Ay — A;. Just as in the proof of (HI) for
the log smooth deformation functor in [Kf], we obtain a glued log space (Xj, N) via
N =M x pq, My — Ox, X oy, Ox, =t Ox, with log map to (Spec A, N x A*) com-
patible with restrictions to X, X;, Xy. In view of Lemma C.4, we have M, =M, =
M, =: M and there is a natural map o : N = M, x4 M, Mo = M that we claim is

an isomorphism. Indeed, since My — M, is surjective, o is easily seen to be surjective.
Now assume (m, my), (m), my) € N map to the same element when composing N' — N
with . Then my = gym), my = gym;, for &; € M. The cancellation law in M, gives
that &, and &, map to the same element in M.}, hence glue to an element of N'*. Thus
(my, my) and (m, m,) map to the same element in N, proving injectivity of a. By the
same argument as in Lemma C.4, we now know that X; — X, are strict.

Away from the incoherent locus Z, it was argued in [Kf] that (X, N) is a log
smooth lifting of X,. It remains to show the existence of local models along Z (which then

also implies the flatness along 7). Let x € Z be a geometric point. Lemma C.3 provides
a diagram of local models and we use the push-out for each row to obtain the following

// S,
// \\
\ / a \\\/

BN

//

The dashed maps are étale by Lemma C.5 and Y, agrees with Spec A Xgyeccpg U.
The strictness of all vertical maps follows from the strictness of X; — X, proved above.
Lemma C.4 then also gives strictness of the dashed maps, using that X; — X, is a home-
omorphism on underlying spaces. We now have obtained local models for X,, so X, is
a divisorial log deformation of X¢ that maps to (X, Xy) under the map in (C.1). Thus
this map is surjective, finishing the proof of (H1).
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Finally we turn to (H2), for which only injectivity is left to be shown. Let Ay = G
and Ay = Gl[e]. Using the same reasoning as in [Kf], Proof of (H2), it suffices to prove
the following assertion (Lemma 9.2 in [Kf]).

If (X, N') = (SpecA;, N x AX) is a divisorial log deformation that fits in a com-

mutative square

X, M) — X, N)

I I

(Xo, M) —— Xy, M)

so that the restriction maps to (X;, M,) for i = 1, 2 induce isomorphisms, then the natu-
ral map f : (X, N) = (X, N) is an isomorphism. The proof in [Kf] works for us away
from Z, so it remains to prove f is an isomorphism along Z. Let x € Z be a point and let
V', = X, be the strict étale neighborhood of x obtained from the neighborhood V¢ of

% in X¢ via Lemma C.2. Then Lemma C.1 provides a Spec A-isomorphism V', — V4.
Since the restrictions to X¢ <— Vg are compatible isomorphisms, Lemma C.2 shows this
1somorphism commutes with /. In particular, / 1s an isomorphism at x, completing the
proof. 0

Appendix D: Isomorphism of affine and algebraic H!(©)

Let (B, &, ¢) be a simple tropical n-manifold and x € Spec(C[H' (B, Z_*]\)*]) a closed
point. Let X, denote the fiber of the canonical family above it. In particular (B, &?)
is the ntersection complex of Xo(B, &) and also of X,. Occurrences of 7,0 with various
indices below will always refer to cells in &. Inclusions of closed strata are covariant:
Ty C 71 = Xy, C X¢,. Note that, inconveniently, in order to parse all upcoming references
to [GS10], a mental translation to the dual intersection complex as used in [GS10] must
be made. The translation is straightforward, but nonetheless potentially confusing. For
o € X, let V, denote the standard open set of X, that is the open star of the dense
torus of the stratum X, i.e. the disjoint union of the dense torus orbits of all X, for ¢’
containing o. Note the contravariance: V,, C V,, for oy C 0,. Refine the partial order
C of & to a total order < so that for any sheaf F on X, we obtain a Cech complex
(V}i({VU Yoo F) = @U[mei ['(Vo, N2 NV, F) with the usual Cech differential ¢/ —

C/*'. A decoration with T refers to the space with log structure (given by ¢ = 0). Following
[GS10],1lety : X, \Z, = X, denote the open inclusion of the locus where the log structure
is coherent and then we write short

Q =j.Q © :=j.Oy1 r-

,
X/t
The main purpose of this section is to prove the following proposition. For the statement,

recall that W, C B denotes the open set given by the disjoint union of the relative interiors
of all cells in the barycentric subdivision of & that contain the barycenter of 7.
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Proposition D.1. — We have a natural isomorphism of Cech cohomologies
v -1 A n—
Hl({Wr}raL* /\n A®C) —)Hl({vr}T,Q 1)-

Moreoven, if B is orientable, a choice of global volume form v, /\" A >~ Z and matching choice Q" >~
Ox, turns the above isomorphism into an isomorphism

H'({W-}:. 1. A ® €) — H'({V.},. ©).

ot with ng,, € '(W, NTW,, L*]\ ® C) s the cocycle (8nm)w

Explicitly, the image of a cocycle (na,,)
e I'(V, NV, O) the logarithmic vector field defined by ny .

with 0

T

Nwt

Lemma D.2 ([GS06], Lemma 5.5). — For all r > 0, the cover {W,},co s acyclic for
. /\"A®C.

For 7y C 1y, recall from [GS10], Lemma 3.20,% the isomorphism
(D.1) T(W, "W, e A"A ® C) =T Xy, (2, Ix,,)/ T ors)

where Q7 =k, .7 (£2']x,) for k; : X; \ Z; = X, the open embedding defined mn loc.cit..
Note that, by the argument in the proof of Theorem 3.21 of [GS10], for a chain 75 €
--- C 1;, we have

(D.2) T(Wy N NWoot, NV A®C) =T (W, "W, 1, A" A ® C).

The observation that W, N W, = @ unless 7; € 7 or 79 C 7, implies that only chains
7p < --- < 1; of the shape 75 € --- C 1, contribute to the Cech complex for the cover
{W:}:e2. Thus, in view of (D.2), the Cech complex takes the form

(D.3) éi({wf}reg , L*/\A ® C) = P rw,nw,, L*/\A ® C).

70C...C1
Next consider the following variant of this Cech complex, the double complex

(D‘4) Ai’j = @0()C.A.C°}'C‘E(JC...CTZ‘ F((WTO N W'L'z) N (WUO N WQ/')’ Ly /\T A ® C)

===V ="=

The differential i — 7 + 1 is the usual alternating sum of the Cech-differential, and simi-
larly for the differential j — j 4 1.

Lemma D.3. — There is a natural injection G ({W,},Gy, LN A® C) > A" that
yields a quasi-isomorphism C* ({WT},EE@, LN A® C) — P A o the total complex of the
double complex A"

i+j=e

20 [GS10] uses the notation ¢ : Ty — T, but we stick with 7, C 1) assuming no self-intersecting cells, as in [GHS].
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Proof. — In view of (D.3) and (D.4), the map a is defined via the restriction map

&y F(WIOHWQ,L*/\A@C)

0% Cu

- &P F((w,omw,i)mwgo,t*/\A®C)

00C1C...C1;

that takes a tuple ()ufog_”g,l.)mg_,g,i to (k,og___gri|(wmqu)mwm))00909,91.. The map a is
injective because {(Wy, N W;) N Wy, },, covers W, N W_.. To see that a yields a quasi-
isomorphism of total complexes, observe that, for a fixed chain 7y € - - - C 7;, the complex

(D.5) @F(Wm]ﬂwn,t*/\z\@(]) -~ F(WU()QWQ,L*/T\A(@C) ..

00C1o 00C0o1C71)

is the Cech complex for the space W, N'W,, with the cover {W, N W,, N W, },c,,. By
Lemma D.2, the cohomology of (D.5) is Concentrated at the first term, yielding the direct
summand I'(W, "W_, ., \"A®C) of C'({W, }re, s /\" A ® C). The assertion about
the quasi-isomorphism follows. O

The second double complex is

(Duﬁ) Szlz] et @ F(XTO m VOO m o e m VO}’ (Q;|Xtomvaj)/7-07’5).

=z =0%=

The differential : — ¢4 1 is the differential @, given in [GS10], p.736, just before Theo-
rem 3.9, and the differential j — j + 1 is a Cech-type-differential analogous to the one in
A". Note however that, unlike for the cover {W,},, we may have V, N'V,, # ¥ even if
none of 01, 0y is contained in the other. We will later use Lemma D.6 to take care of this
fact.

Lemma D.4. — There is a natural injection of double-complexes ® : AV — Q.

Progf. — Given oy C --- C 0; C 79, the torus-invariant open subset X, N Vg N
NV =X, N V of the toric variety Xy, is of the form V = Spec CG[P] for P a toric
mon01d By [GS]O] Lemma 3.12 and Proposition 3.17, there is an injection 2] <~
Q4 f(log 0X:)lx, = Ox, ®z /\' A; for every max1mal cell T containing 7. Here, 1 ®
(my A --- Am,) gets identified with &L A .. . When changing the choice of 7,
1dent1fy1ng A; with another Az generally depends on the chosen path in B\ A, and
furthermore the gluing data rescale the monomials. Both of these won’t bother us for
the following reasons. We will only be interested in the subsheaf C ®z /\" A; which is
actually invariant under this torus action, because the scaling operation z — Az leaves
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% invariant. Even better, we will actually only care about the monodromy invariant part
of this subsheaf. With this in mind, in view of (D.4), it 1s straightforward to produce the
following map

T((Wo, "W) N (Wo, "W, 1, A" A ® C)

2 CR®T(W, "Wyt AV A)
> T (Xy, N Vo (il v, )/ Tors)

and 1ts image 1s contained in I'(Xy N Vg, (Q;|anvgj) /T ors). This gives an injection
from the sum in (D.4) to the one in (D.6). The map respects the differentials by what we
said before and by the functoriality of Cech-type complexes. UJ

Remark D.3. — The statement of Lemma D.4 can be upgraded to an injection of
triple complexes when taking the de Rham differential for " and an additional trivial
differential 7 — r+ 1 on A".

We need a technical lemma before we can prove Proposition D.1. For a sheaf F
on X,, consider the exact sequence of complexes

K/:=
0> @B TVen....0V,. F) > (Vo). F)
SACR
(D.7) 5 @ T (Vo N .o .NVy, F) — 0.
00G...Coj

LemmaD.6. — (a) The surjection e is a quasi-isomorphism.
(b) Denoting by dy the differential in the second index of ", 1t holds

(D.8) H (@)= P H (X, (2 Ix,,)/T o).

70C...C1

Progf. — For (a) we show that K* is acyclic. Note that V,, N - NV, = ¢ unless
there is a 0 € &2 that contains oy, ..., oj. Let (09, ...,0;) denote the set of minimal
elements with respect to C in the set of all o € & that contain oy, ..., 0; (e.g. for (B, &)
two intervals glued to form a circle and oy, 0, being the two vertices, we have (09, 07) 1s
the set containing the two intervals). The use of this definition is the following observation

Vo MooV = || Ve
UE(O‘Q .,(7j)
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Ignoring the differentials for a moment, the exact sequence (D.7) decomposes as a direct
sum €, . , of sequences with the summand for o being

K=
9 0> P TV.H-> P TV..H=> @ IV, F)—o.
00 < <0 00 <+ <0 00 C...Coj
k<j:orZ ok 0€(0y,....0) 0€(00,..,0;)
(TE(O’(),,..,QZ') s

In particular, it holds K/ = @, K/ . Moreover, the differential on K* preserves the sum-
mands K? =@, ... K, which hence define a filtration of K*. We show that the grad-
eds of this filtration are acyclic, which then implies that K* itself is acyclic. We have
K2 /K2 = D im0 K is a direct sum of complexes. Similar filtrations exist on the other
terms of (D.7) so that their gradeds turn (D.9) into an exact sequence of complexes. For a
fixed o and t C o define the open set U; C o by

U, = U Intw.

{w|tCwCo}

Now observe that the nerve N of the cover {U.} of o agrees with the nerve of the cover
{V, NV, }.co 0of V. On the other hand, the W, for T € ¢ define another cover {W, No'}
of o, by the open stars of the barycentric subdivision. Since W; "W, = @ unless T C 7’ or
7" C 7, the nerve of this cover is the simplicial subcomplex of N given by sets {1y, ..., 7}
with 7o C 7, € ... € 7; € 0. Summing over the cells o of fixed dimension 7, we thus find
that the associated graded of the sequence (D.9) is the result of applying I'(V,, F)®z to
the sequence

0—R* = C*({Ushico, Z) > C*({W, N0 }icy, Z) — 0.

Here p is the refinement map of Cech complexes from the cover {U,},c, to the cover
{(W;: No},c, and R* :=ker(p). Since both covers of o are acyclic for Z, p is a quasi-
isomorphism and hence R* is acyclic. We finished showing the acyclicity of K*.

For (b) observe that V, is affine for each o and so are their intersections. Hence
{V,}, forms an affine cover of X,. Let ¢, : X; — X, denote the inclusion of the stratum.
For F 1= (¢4,)«(£2, |x, )/ T 015 the quasi-isomorphism e is a map between the Cech com-
plex of F and a summand of the complex (R"°, d;). Summing the maps ¢ for all these
summands and taking cohomology yields (D.8). 0J

Proof of Proposition D.1. — The main tool is the injection of double complexes ®
from Lemma D.4. For ® to induce a quasi-isomorphism of the total complexes, it matters
that we now set 7 := n— 1. Consider taking cohomology for the second differential ¢, that
modifies the index j — j + 1 for both complexes A and 7. By Lemma D.2, we know
that H’ZQ (A"*) =0 for p > 0. Lemma D.6 computes H‘ZQ(SZZ”') and we want to show this
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cohomology group vanishes for p > 0. Indeed, the claimed vanishing follows noting that
for r = n— 1, the statement of Lemma 3.20 in [GS10] holds without the standard-simplex
assumption,*' as also argued in the proof of Theorem 3.22. Thus, taking cohomology by
the differential j — 7 4+ 1 on source and target of ® simultaneously yields a map induced
by ® that is concentrated in degrees (z, 0). This map is the isomorphism

@TO,C‘“.,CJ[ F(Wm nW, /\n_l A® C)

o D @ )T

70C...C1

of barycentric complexes that led to the proof of [GS10], Theorem 3.22. Relevant for us
is the conclusion that ® : A”Y — € is a quasi-isomorphism on the total complex of the
double complex.

We next consider what happens when we first take cohomology under the first
differential 4,, that is, i — 7 4+ 1. All cohomology groups at i > 0 vanish: for A" by a
similar argument as for the proof of Lemma D.5 using the acyclicity of the cover {W.},
and for £ by the exactness of the barycentric differentials [GS06], Proposition A.2 and
[GS10], Theorem 3.5.

Therefore, since ® is a quasi-isomorphism, also the induced map on d;-cohomolo-
gy that is concentrated in : = 0,

D.10) & @ o TWa MW, te AT A®C) — By T (Ve 7

=9 = ’

is a quasi-isomorphism under the remaining differential dy, that is, j — 7 4+ 1. Equation
(D.3) identifies the domain of ® with the Cech complex for ¢, A"~' A ® C. The codomain
of ® is the complex that appears in the exact sequence just before Lemma D.6. Taking
cohomology with respect to d on source and target of ® and composing with the inverse
of the quasi-isomorphism ¢ from Lemma D.6, we conclude the first assertion. The second
assertion follows from the definition of ® in the proof of Lemma D.4. U
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