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ABSTRACT

We give a simple expression for the integral of the canonical holomorphic volume form in degenerating families
of varieties constructed from wall structures and with central fiber a union of toric varieties. The cycles to integrate over
are constructed from tropical 1-cycles in the intersection complex of the central fiber.

One application is a proof that the mirror map for the canonical formal families of Calabi-Yau varieties con-
structed by Gross and the second author is trivial. We also show that these families are the completion of an analytic
family, without reparametrization, and that they are formally versal as deformations of logarithmic schemes. Other appli-
cations include canonical one-parameter type III degenerations of K3 surfaces with prescribed Picard groups.

As a technical result of independent interest we develop a theory of period integrals with logarithmic poles on
finite order deformations of normal crossing analytic spaces.
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1. Introduction

A period of a complex manifold X is the integral
∫
β
α of a holomorphic differential

k-form α over a singular k-cycle β on X. The classical example is the elliptic integral∫
dx/

√
x3 + ax + b, an integral over a closed curve of the holomorphic one form y−1dx on

the elliptic curve y2 = x3 + ax + b. More modern accounts emphasize the interpretation
of periods in terms of Hodge theory and their dependence on varying X and α in a holo-
morphic family [Gt70]. This interpretation is of fundamental importance in the study of
moduli spaces [CMSP]. Another fascinating aspect of period integrals is the countable
set of values obtained for algebraic varieties defined over Q [KZ].

The main result of this paper gives a simple closed formula of a class of period
integrals for families of complex manifolds naturally arising in mirror symmetry and in
the study of cluster varieties. The families X → S considered have a special fiber X0

that is a union of projective toric varieties of dimension n, glued pairwise along toric
divisors. In particular, X0 is normal crossings outside a subset of codimension two. The
special fiber is conveniently represented by the union of momentum polytopes, glued
pairwise along their facets according to the gluing of the irreducible components of X0,
thus forming a cell complex P with underlying topological space B a pseudo-manifold,
possibly with boundary. Outside codimension two, the family X → S is built from toric
pieces via special isomorphisms encoded in a wall structure on B. The special isomorphisms
respect the toric holomorphic differential n-forms z−1

1 dz1 ∧· · ·∧z−1
n dzn, which thus define

a global relative holomorphic n-form � for X over the parameter space S.
For example, for any Laurent polynomial f ∈ C[u±1

1 , . . . , u±1
n−1], the family of sub-

varieties

(1.1) zw = f · tκ

of C2 × (C∗)n−1 parametrized by t ∈ C is of this form. Such families arise as mirrors
to local Calabi-Yau manifolds [CKYZ], [GS14], and in mirror symmetry for varieties
of general type [GKR], [AAK]. If the wall structure is not locally finite, this picture is
accurate only at finite orders in the deformation parameter. A careful treatment of period
integrals with logarithmic poles at t = 0 in this setup is given in Appendix A.

In the simplest versions [GS06], [GS11a], S is the spectrum of a discrete valuation
ring, or a disk analytically, but in any case, S is an open subset of an affine toric variety or
its completion along a toric divisor [GHK], [GHS]. Thus there is a well-defined notion
of monomial function on S.

For the domain of integration, we consider continuous deformations βt of a class
of n-cycles β on X0 that generically fiber as a real (n − 1)-torus bundle over a graph in
B and which intersect the singular locus of X0 transversely in some sense. In a nutshell,
our main result says that in the best cases, which include [GS11a] and [GHK], there are
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constants c ∈ C and a monomial tq on S with

1

(2π
√−1)n−1

∫

βt

�Xt
= c + log tq,

as a holomorphic function outside tq = 0 and up to multiples of 2π
√−1. This result is

highly remarkable since for algebraically parametrized families, period integrals of this
form typically lead to transcendental functions. In fact, replacing t by h · t for some in-
vertible analytic function h changes the right-hand side by a summand log h. Thus while
the logarithmic monomial behavior can be expected for cycles of our form, the fact that c

is a constant is very special to the particular construction of the family X → S via a wall
structure.

The most obvious application of this result is to mirror symmetry. On the complex
side of mirror symmetry, one is looking at families X → S of Calabi-Yau varieties with
topological monodromy around the critical locus unipotent of maximal possible expo-
nent [CdGP], [De], [Mr93]. In this situation, the limiting mixed Hodge structure on
the cohomology of a nearby smooth fiber turns out to be of Hodge-Tate type [De], and
exponentials of the kind of period integrals studied here provide a distinguished set of
holomorphic functions on the parameter space. These functions provide a set of coor-
dinates at points where the family is semi-universal, that is, where the Kodaira-Spencer
map is an isomorphism. Since these functions only depend on discrete choices, they are
known as canonical coordinates in mirror symmetry. The identification of the complexified
Kähler moduli space of the mirror with complex moduli works by canonical coordinates.
Thus our result says that the mirror map is monomial on the subspace generated by
our cycles. In favorable situations one obtains full-dimensional pieces of the complexified
Kähler cone on the mirror side.

As another important application, we prove a strong analyticity result for the canon-
ical toric degenerations of [GS11a] and their universal refinement in [GHS], Theo-
rem A.7. This result should be important for the symplectic study of canonical toric
degenerations.

1.1. Toric degenerations from wall structures. — For more precise statements we now
give more details on the setup and construction. We work in the general setting of [GHS]
and fix a finitely generated C-algebra A and some k ∈ N. The algebra A provides mod-
uli for the construction and may be assumed to be C at first reading. The base ring of
our degeneration is Ak = A[t]/(tk+1), so k determines the order of deformation to be
considered.

1.1.1. Polyhedral affine manifolds (B,P). — The basic arena of all constructions
is a cell complex P of integral polyhedra with underlying topological space B an n-
dimensional pseudo-manifold with possibly empty boundary ([GHS], Definition 1.1). All
constructions happen away from codimension two. We reserve the letter σ for maximal
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cells and ρ for codimension one cells of P , respectively, possibly adorned. For a cell
τ ∈ P we denote by �τ 
 Zdim τ the group of integral tangent vector fields on the interior
Int τ of τ . We also need maximal cells of the barycentric subdivision of a codimension one
cell ρ, and these are denoted ρ. By writing ρ it is understood that ρ is the codimension
one cell of P containing ρ.

Denote by � ⊂ B the union of all (n − 2)-cells of the barycentric subdivision that
lie in the (n − 1)-skeleton of P , that is, which are disjoint from the interiors of maximal
cells. On B \ � we assume given an integral affine structure that restricts to the usual
integral affine structure on the interiors of maximal cells. Note that this amounts merely
to specifying, for each ρ not contained in ∂B, the parallel transport through ρ of a prim-
itive integral vector complementary to �ρ on one of the two neighboring maximal cells
σ of ρ to the other neighboring cell σ ′. The polyhedral complex P along with the affine
structure on B = |P| away from � is what we call a polyhedral affine pseudo-manifold. We
use the notation �2 ⊂ � for the smaller set defined by the (n − 2)-skeleton of P .

1.1.2. Kinks κρ and multivalued piecewise affine function ϕ. — The second piece of data
is the collection of exponents κ ∈ N \ {0} appearing in the local models (1.1) in codimen-
sion one. There is one such exponent for each ρ, so these exponents may vary1 along a
codimension one cell ρ. As a matter of notation, we denote the collection of all κρ by the
associated multivalued piecewise affine function ϕ ([GHS], Definition 1.8).

1.1.3. Wall structures. — The third piece of data is a wall structure S on our
polyhedral affine pseudo-manifold, as defined in [GHS], Definition 1.22. The wall struc-
ture consists of a finite collection of walls, each wall being an (n − 1)-dimensional rational
polyhedron p contained in some cell of P , along with an algebraic function fp. The walls
define an (n − 1)-dimensional cell complex, assumed to cover all (n − 1)-cells ρ ∈ P and
to subdivide each maximal cell of P into (closed) convex chambers, denoted u. There are
thus two kinds of walls, depending on whether the minimal cell of P containing p is a
maximal cell σ or a codimension one cell ρ. In the first case, walls of codimension zero, fp is
of the form2

fp =
∏

i

(1 + aiz
mi t�i),

with ai ∈ A, �i > 0 and zmi the monomial in the Laurent polynomial ring C[�σ ] 

C[z±1

1 , . . . , z±1
n ] defined by some mi ∈ �σ \ {0} tangent to p. The second case, walls of codi-

mension one, cover the sources of the inductive construction of the wall structure. Such a

1 In [GS11a] and [GHK], kinks depend only on ρ, but they do depend on ρ ⊂ ρ in some proofs of [GHK].
2 The definition in [GHS] admits fp of the more general form 1 +∑i aiz

mi t�i with �i > 0 and mi ∈ �σ tangent to
p. Such a wall is of the more restrictive form considered here iff the (finite) Taylor series expansion of log fp at 1 ∈ A has no
terms that are pure powers of t. This property is crucial for walls of codimension 0 not to contribute to the period integral.
It is fulfilled in all known cases.
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wall is therefore also called slab and written with a different symbol b instead of p for eas-
ier distinction. In this case, there are no conditions on fb other than that the exponents of
monomials be tangent to ρ, that is,

fb ∈ A[�ρ][t].
Here �ρ 
 Zn−1 denotes the group of integral tangent vector fields on ρ.

1.1.4. Construction of the scheme X◦
k/Ak . — From the wall structure we build a

scheme X◦
k over Ak = A[t]/(tk+1) assuming a consistency condition, by taking one copy

Spec Ru with Ru = Ak[�σ ] for each chamber u⊆ σ and one copy of Spec Rb with

(1.2) Rb = Ak[�ρ][Z+,Z−]/(Z+Z− − fbtκρ )

for each slab b. A wall p of codimension zero defines a wall crossing automorphism of Ak[�σ ],
for σ the maximal cell containing p, see (3.12) below and [GHS], §2.3. The consistency
condition in codimension zero ([GHS], Definition 2.13) is equivalent to saying that se-
quences of such automorphisms identify all Spec Ru for chambers contained in the same
maximal cell σ in a consistent fashion.

If a slab b⊆ ρ is a facet of a chamber u ⊆ σ , there is an open embedding

(1.3) Spec Ru −→ Spec Rb

defined by the inclusion �ρ ⊂ �σ and by identifying Z+ with zζ for ζ ∈ �σ a generator of
�σ/�ρ pointing from ρ into σ . For the other chamber u′ containing b, contained in the
maximal cell σ ′ with σ ∩σ ′ = ρ, the corresponding homomorphism Rb → Ru′ maps Z−
to zζ ′

with ζ ′ the parallel transport of −ζ through ρ. In this procedure there is a choice
of co-orientation of ρ that determines which maximal cell to take for σ , and a choice of
ζ ∈ �σ , but any two choices lead to isomorphic results. Consistency in codimension one
provides the necessary cocycle condition to assure the existence of a scheme X◦

k with open
embeddings of all Spec Ru and Spec Rb compatible with all wall crossing automorphisms
and all open embeddings (1.3).

If ∂B �= ∅, the codimension one cells ρ contained in ∂B require a slightly different
treatment that turns ∂B into a divisor in X◦

k . We do not review this construction here
because all our arguments take place on the complement of ∂B.

1.1.5. Codimension two locus, partial completion and theta functions. — The fiber X◦
0 of

X◦
k over t = 0 is a product of Spec A with a union of toric varieties, one for each maximal

cell σ , glued pairwise canonically along toric divisors as prescribed by the combinatorics
of P . By construction, the toric varieties do not contain any toric strata of codimension
larger than one. For a maximal cell σ , the fan of the corresponding toric variety is the
1-skeleton of the normal fan of σ , so consists only of the origin and the rays. While it is
always possible to add the codimension two strata to X◦

0 to arrive at a scheme X0, the
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extension Xk of the flat deformation X◦
k of X◦

0 to X0 is a lot more subtle and in particular,
requires a consistency condition in codimension two. The approach taken in [GHK] and
[GHS] to produce Xk is to rely on the construction of a canonical Ak-module basis of
the homogeneous coordinate ring, consisting of (generalized) theta functions. For B = (S1)n

these functions indeed agree with Riemannian theta functions. Theta functions will only
be used once in this paper, for the construction of the degenerate momentum map in
Proposition 2.1. There is one generalized theta function ϑm for each integral point m

of B. We refer to [GHS] for details. Our periods are computed entirely on X◦
k and hence

the extension from X◦
k to Xk is largely irrelevant here.

1.1.6. Gluing data. — One obvious way to introduce parameters in the construc-
tion is to compose the open embeddings Spec Ru → Spec Rb from (1.3) with an Ak-linear
toric automorphism of Spec Ru. For Ru = Ak[�σ ] such an automorphism is given by a
homomorphism �σ → A×. The choices sσρ ∈ Hom(�σ ,A×) for each ρ,σ with ρ ⊂ σ is
called (open) gluing data. All previous notions generalize, with consistency in codimension
one and two now checked with the open embeddings (1.3) twisted by the given gluing
data. Gluing data may spoil projectivity or even the existence of the completed central
fiber X0 ⊃ X◦

0. Since the details of this extension are not relevant for the present paper,
we refer the interested reader to [GHS], Section 5. Gluing data change the period in-
tegral and will play an important role in the application to analyticity, hence have to be
taken into consideration.

For simplicity of notation we write X0 and Xk instead of X◦
0 and X◦

k in the following
discussion, but work only away from strata of codimension larger than one.

1.2. Singular cycles on X0 from tropical 1-cycles. — The n-cycles considered are defined
from n-cycles β on X0 that generically fiber as a finite union of real (n − 1)-torus bundles
over a graph βtrop in B. The torus fiber over a non-vertex point of βtrop in the interior
of a maximal cell σ ∈ P is an orbit under the conormal torus ξ⊥ ⊗ U(1) 
 U(1)n−1,
for some ξ ∈ �σ \ {0}, inside the real torus Hom(�σ ,Z)⊗Z U(1) 
 U(1)n acting on the
toric irreducible component Xσ ⊆ X0 defined by σ . The matching of the various orbits
at a vertex amounts to the local vanishing of the boundary of βtrop as a singular 1-cycle
with twisted coefficients3 in the local system �.

1.2.1. The degenerate momentum map μ : X0 → B. — To globalize we observe that
each maximal cell σ comes with a momentum map μσ : Xσ → σ of the corresponding
irreducible component Xσ ⊆ X0. For trivial gluing data (all sσρ = 1), the μσ agree on
codimension one strata to define a degenerate momentum map μ : X0 → B. This map
should be viewed as a limiting SYZ-fibration [SYZ]. There is a partial collapse of torus
fibers over the deeper strata of X0 described explicitly by the Kato-Nakayama space of

3 See [Br], §VI.12, for singular homology with coefficients in a sheaf.
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X0 as a log space, see [AS] for some details. For non-trivial gluing data, the μσ have to
be composed with diffeomorphisms of the maximal cells σ to make them match over
common strata. In the projective setting one can use generalized theta functions for a
canonical construction, otherwise there may be obstructions to the existence of μ in
codimension two. The following is Proposition 2.1.

Proposition 1.1. — If X0 is projective, there exists a degenerate momentum map μ : X0 → B.

Without the projectivity assumption, such a map exists at least on the complement of the union of toric

strata of X0 of codimension two.

1.2.2. The log singular locus Z ⊂ X0, its amoeba image A ⊂ B and the adapted affine

structure on B \ (�2 ∪ A). — For each codimension one cell ρ ∈ P and any slab b ⊂ ρ,
the closure of the zero locus of fb defines a hypersurface Zρ in the codimension one locus
Xρ ⊂ X0. By consistency, this zero locus is independent of the chosen slab on ρ. From
the local equation in codimension one (1.1), (1.2), it follows that Zρ is the locus where the
degeneration is not semi-stable and is indeed singular even from the logarithmic point of
view. We define the log singular locus,

Z =
⋃

ρ

Zρ,

a codimension two subset of X0 lying in the singular locus of X0. The image of Z under
our degenerate momentum map,

A= μ(Z),

is called its amoeba image. In fact, for each codimension one cell, A ∩ Intρ is a diffeo-
morphic image of the hypersurface amoeba of fb, for any slab b ⊂ ρ. If the base ring
A is higher dimensional, we first take a base change A → C to restrict to a slice of the
deformation Xk → Spec Ak or work with a small analytic subset of Spec A for otherwise
A may be too large to be useful.

For x ∈ B \ (�2 ∪A) and b a slab containing x, the restriction of fb to μ−1(x) has
no zeros. Thus there exists a unique mx ∈ �ρ with the restriction of z−mx fb : μ−1(x) → C∗

contractible. This means that the adapted local equation

(1.4) Z+
(
z−mxZ−

)= (z−mx fb
)
tκρ

locally analytically describes the toric normal crossings degeneration

zw = tκρ

by taking z = Z+, w = Z−/fb. This observation motivates the definition of an adapted
integral affine structure on B \ (�2 ∪A) that defines the parallel transport of −ζ ′ ∈ �σ ′
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through x to be ζ −mx instead of ζ , the integral tangent vector chosen in connection with
the gluing (1.3).

The set of integral tangent vectors for the adapted affine structure now defines a
local system � on B \ (�2 ∪ A) of free abelian groups of rank n. The dual local system
Hom(�,Z) is denoted �̌. Note that if x ∈ B \ (�2 ∪A) lies in a maximal cell σ , we have
a canonical isomorphism of the stalk �x with �σ .

1.2.3. Tropical 1-cycles. — With the adapted affine structure on B \ (�2 ∪ A) we
are now in a position to define the affine geometric data representing our singular n-cycles
on X0.

Definition 1.2. — A tropical one-cycle βtrop is a twisted singular one-cycle on B\ (�2 ∪A)

with coefficients in the sheaf of integral tangent vectors �, that is, βtrop ∈ Z1(B \ (�2 ∪A),�).

Thus a tropical one cycle is an oriented graph � together with a map h : � →
B \ (�2 ∪A) and for each edge e ⊆ � a section ξe of (h|e)∗� such that for each vertex v

the cycle (balancing) condition

(1.5)
∑

e�v

±ξe = 0

holds, with sign depending on e being oriented toward or away from v. We typically
assume without restriction that ξe �= 0 for all e. One way to obtain such cycles is from a
tropical curve with a chosen orientation on each edge; the tangent vector for an edge e is
then given by the oriented integral generator of the tangent space of e multiplied by the
weight of the edge. The balancing (cocycle) condition for tropical curves implies that the
associated twisted singular chain is a cycle. We may thus think of twisted singular cycles
carrying integral tangent vectors as flabby versions of tropical curves. This motivates the
use of the word “tropical”.

1.2.4. The singular cycle β associated to a tropical 1-cycle βtrop. — Fix a parameter value
a ∈ Spec(A)an and let X0(a) be the fiber of X0 over a. Let us now assume for simplicity
that βtrop is transverse to the (n−1)-skeleton of P and that each of its edges e is embedded
into a single maximal cell σ . For each edge e, choose a section Se ⊂ Xσ of μσ : Xσ → σ

over e, chosen compatibly over vertices. Then define a chain βe over e as the orbit of Se

under the subgroup of Hom(�σ ,U(1)) 
 U(1)n mapping ξe to 1. If ξe is primitive, this
subgroup equals ξ⊥ ⊗ U(1) 
 U(1)n−1, otherwise it is the product of this (n − 1)-torus
with Z/meZ for me ∈ N \ {0} the index of divisibility of ξe. At a vertex v of βtrop the cycle
condition

∑
e�v ±ξe = 0, with signs adjusting for the orientation of the edges at v, implies

that the boundaries over v of the chains βe bound an n-chain �v over v. The singular
n-cycle associated to βtrop is now defined as

β =
∑

e

βe −
∑

v

�v.
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The section Se is only unique in homology up to adding closed circles in fibers; the orbit
of such a circle yields a copy of the fiber class of μσ , which is homologically trivial in
X0(a), so we obtain the following.

Lemma 1.3. — The association βtrop �→ β induces a well-defined homomorphism

H1(B \ (�2 ∪A),�) → Hn(X0(a),Z).

Remark 1.4. — For n = 2, the construction of n-cycles from tropical one-cycles
was done before in [Sy] with a minor variation: Symington’s tropical cycles have bound-
ary in the amoeba image A of the affine structure, that is, they are relative cycles in
H1(B,A; ι∗�) for ι : B \ A ↪→ B the inclusion. Note that in this dimension, A ⊂ B is
a finite set. Symington’s alternative definition gives nothing new compared to our cy-
cles since relative one-cycles with boundary on A are homologous to cycles with little
loops around A and this process lifts to singular cycles on X0(a). Similar relative cycles in
higher dimension are more peculiar; one needs to replace ι∗� by a subsheaf of ι∗�, see
[Ru20] for details.

If βtrop is the tropical cycle associated to a tropical curve and the section S the
restriction of the positive real locus in a real degeneration situation, as discussed in [AS],
then β is a Lagrangian cell complex. A related situation for n = 3 arises in [MR] for
n = 3.

More generally, a similar procedure produces singular cycles in Hn−p+q(X0(a),Z)

from cycles in Hq(B, ι∗
∧p

�), well-defined up to adding cycles constructed from
Hq−1(B, ι∗

∧p−1
�). For tropical cycles with boundary in A, more care needs to be taken.

See [CBM] for an application of relative tropical 2-cycles to conifold transitions, and also
[Ru20].

The point of using the adapted affine structure on B \ (�2 ∪ A) is as follows. For
any analytic family X → D over a disk D ⊂ C with central fiber X0(a) and given by (1.2)
locally in codimension one, there is a continuous family of n-cycles β(t) for t ∈ D \ R<0

with β(0) = β . The reason for having to remove R<0 in this statement is the topological
monodromy action on β(t) for varying t in a loop around the origin.

At a vertex v of βtrop on a slab b ⊆ ρ, the local situation is as follows. If ξe ∈ �ρ ,
then, in adapted coordinates, zw = tκρ describes X locally, and the cycle β is locally a
product of an (n − 2)-chain γ ≈ U(1)n−2 with the union of two disks |z| ≤ 1, |w| ≤ 1. In
this case, β(t) equals γ times the cylinder zw = tκρ , |z|, |w| ≤ 1 and the local topological
monodromy is trivial. Otherwise, β is locally the product of an (n−1)-chain γ ≈ U(1)n−1

with a curve ι connecting z = 1, w = 0 with z = 0, w = 1. In deforming to t �= 0 we can
again leave γ untouched, but the curve ι deforms to a curve ι(t) on the cylinder connect-
ing (z,w) = (1,1/tκρ ) to (z,w) = (1/tκρ ,1). The topological monodromy acts on ι(t) by
a κρ-fold Dehn twist. These Dehn-twists leave an expected ambiguity of the construction
of β(t) by multiples of the vanishing cycle α ≈ (S1)n. Note that there are also continuous
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families of cycles homologous to α that converge to a fiber of the degenerate momentum
map μ. In particular, α can be interpreted as a fiber of the SYZ fibration. Note also that
α can be viewed as constructed from a generator of H0(B \ (�2 ∪ A), ι∗

∧0
�) in the

generalized construction mentioned in Remark 1.4.

1.2.5. Picard-Lefschetz transformation and c1(ϕ). — The effect of Picard-Lefschetz
transformations on our singular cycles can be written down purely in terms of affine ge-
ometry. Since this expression appears in our period integrals, we review it here. The mul-
tivalued piecewise affine function ϕ defines a cohomology class in H1(B \ (�2 ∪A), �̌)

denoted c1(ϕ), see [GHS], §1.2. Cap product then defines an integer valued pairing with
tropical cycles, that we denote

(1.6) 〈c1(ϕ),βtrop〉 ∈ Z.

Explicitly, this pairing can be computed as follows, see [Ru20], Theorem 6. Assume with-
out restriction that βtrop is transverse to the (n − 1)-skeleton of P . Then for a vertex v

of βtrop on a slab b ⊆ ρ, let e, e′ be the adjacent edges following the orientation of βtrop.

Denoting σ the maximal cell containing e, let ďe ∈ �̌σ be the primitive generator of �⊥
ρ

evaluating positively on tangent vectors pointing from ρ into σ . Then v contributes the
summand 〈ďe, ξe〉 · κρ to 〈c1(ϕ),βtrop〉, the sum taken over all vertices of βtrop on slabs.

The following is Proposition 2.8.

Proposition 1.5. — Let βtrop ∈ Z1(B \ (�2 ∪ A),�) be a tropical one-cycle and let β ∈
Hn(X0(a),Z) be the associated singular n-cycle. Then the Picard-Lefschetz transformation of the de-

formation βt of β to an analytic smoothing Xt of X0(a) acts by

βt �−→ βt + 〈c1(ϕ),βtrop〉 · α.
Here α ∈ Hn(Xt,Z) is the vanishing cycle.

1.3. Statements of main results. — We need two more ingredients before being able
to state the main theorem.

1.3.1. Pairing β with gluing data. — Our gluing data s = (sσρ) also produces a first

cohomology class, this time in H1(B \ (�2 ∪A), �̌⊗ A×). Just as c1(ϕ), this cohomology
class can be evaluated on tropical cycles via the cap product to obtain an element of A×.
We write

(1.7) 〈s, βtrop〉 ∈ A×

for this pairing. In the notation used for c1(ϕ) above, a vertex v of βtrop on a slab contained

in ρ now contributes
(
sσ ′ρ/sσρ

)〈ďe,ξe〉 as a multiplicative factor in the definition of 〈s, βtrop〉.
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1.3.2. The complex Ronkin function. — For each value of the parameter space Spec A,
each slab function fb defines a holomorphic function on Hom(�ρ,C∗) 
 (C∗)n−1. Such
a holomorphic function f has an associated Ronkin function [Ro] on Rn−1, defined by

Nf (x) = 1

(2π
√−1)n−1

∫

Log−1(x)

log |f (z1, . . . , zn−1)|
z1 · · · zn−1

dz1 . . . dzn−1,

with Log(z1, . . . , zn) = (log |z1|, . . . , log |zn|). This function is piecewise affine on the
complement of the hypersurface amoebae Af = Log(f = 0) and is otherwise continu-
ous and strictly convex. It plays a fundamental role in the study of amoebas [PR]. The
derivative of Nf at a point x ∈ Rn \ Af is the homology class of the restriction of f to
Log−1(x), as a map U(1)n−1 → C∗. In particular, Nf is locally constant near x if and only
if this map is contractible.

Our period integrals involve the complex version of the Ronkin function for our
slab functions fb. Let x ∈ Intb and mx ∈ �ρ be as in the definition of the adapted affine
structure above. Taking z1, . . . , zn−1 any toric coordinates on Spec C[�ρ], we define the
complex Ronkin function of fb at x as a germ of holomorphic function in t by

(1.8) R(z−mx fb, x) := 1

(2π
√−1)n−1

∫

μ−1(x)

log
(
z−mx fb(z1, . . . , zn−1)

)

z1 · · · zn−1
dz1 . . . dzn−1 ∈ C{t}.

Here C{t} denotes the ring of convergent power series. Under variation of parameters,
that is, changing A → C, the log singular locus Z and in turn the image A moves. But
as long as x /∈ A, the complex Ronkin function varies analytically with the parameters,
hence defines a holomorphic function on appropriate open subsets of Spec(A[t])an. Note
also that the real part of R(z−mx fb, x) equals Nz−mx fb . But z−mx fb is topologically con-
tractible by the definition of mx and hence Nz−mx fb is locally constant. In turn, the complex
Ronkin function is also locally constant, so does not depend on the choice of x inside a
connected component of b \A. Reference [PR] contains some more results on the com-
plex Ronkin function, notably a power series expansion in terms of the coefficients of fb.
In general the information captured by the complex Ronkin function does not seem to
be well-understood.

Given a tropical cycle βtrop as before, we weight the complex Ronkin function at
a vertex v of βtrop on a slab b by 〈ďe, ξe〉R(z−mv fb, v), notations as above. The sum of all
these contributions is denoted

(1.9) R(βtrop) ∈O(U){t},
for U ⊂ Spec(A)an an open subset preserving the condition x /∈A as discussed.

The complex Ronkin function R(z−mv fb, v) is trivial (constant 0) in one important
situation. For the statement we view fb ∈ A[�ρ][t] as a holomorphic function on

Spec
(
A[z±1

1 , . . . , z±1
n−1, t])

an
= Spec(A)an × (C∗)n−1 × C,
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by means of an isomorphism �ρ 
 Zn−1. The amoeba image A⊂ B is defined by restrict-
ing fb to a parameter value a ∈ Spec(A)an, and we are interested in R(fb, x) for x ∈ b \A.
In particular, we now view μ−1(x) as a real (n−1)-torus contained in {a}× (C∗)n−1 ×{0}.

Proposition 1.6. — Assume that in a neighborhood U ⊂ Spec(A)an × (C∗)n−1 × C of

μ−1(x) there is a uniformly absolutely convergent infinite product expansion

z−mx fb =
∞∏

i=1

(1 + aiz
mi t�i)

of z−mx fb as a holomorphic function, with ai ∈ A, all mi �= 0, and such that |aiz
mi | < 1 for those i with

�i = 0.4 Then R(z−mx fb, x) = 0.

Proof. — By assumption we have a convergent Laurent expansion of log(z−mx fb):

log
(
z−mx fb

)=
∑

i

log
(
1 + aiz

mi t�i
)=
∑

i

∑

j>0

(−1)j−1

j
a

j

iz
jmi tj�i .

The integral defining the complex Ronkin function can then be done term-wise. Since
mi �= 0 for all i, the integral of zjmi over the real torus μ−1(x) vanishes. �

For the slab functions appearing in the wall structures of [GS11a], the criterion of
Proposition 1.6 is fulfilled by the so-called normalization condition, see [GS11a], §3.6.

1.3.3. Period integrals. — Let us now assume that we have a polyhedral affine man-
ifold (B,P), gluing data s = (sσρ) and a wall structure on B consistent in codimen-
sion zero and one to order k, parametrized by a finitely generated C-algebra A. We
then obtain X◦

k , the flat deformation of X◦
0 over Ak = A[t]/(tk+1) and, for each point

a ∈ Spec(A)an, the amoeba image A = μ(Z) ⊂ B of the log singular locus Z in the fiber
X◦

0(a) of X◦
0 over a. Let � be the canonical relative holomorphic n-form on X◦

k/Ak com-
ing with the construction.

Here is the first main result of the paper, proved in §3.6.

Theorem 1.7. — Let βtrop ∈ Z1(B\(�2 ∪A),�) be a tropical one-cycle and β an associated

singular n-cycle on X◦
0(a). Then using notations introduced in (1.6), (1.7) and (1.9), it holds

(1.10) exp
(

1

(2π
√−1)n−1

∫

β

�

)

= exp
(
R(βtrop)

) · 〈s, βtrop〉 · t〈c1(ϕ),βtrop〉.

4 Recall from the theory of complex functions that the convergence assumption is equivalent to requiring conver-
gence of the series

∑∞
i=1 |ai|rmi τ �i of real numbers for some r = (r1, . . . , rn−1) ∈ Rn−1

>0 with |zi(μ
−1(x))| < ri for all i and

some τ > 0.
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According to Proposition A.5 and Proposition A.6, this result is well-defined up to multiplication with

exp(h · tk+1) with h ∈ Â�t� for Â the completion of A at the maximal ideal corresponding to a,

and it agrees up to such changes with the corresponding analytic integral for any flat analytic family

X → U × D over an analytic open subset U × D ⊂ Spec(A[t])an with reduction modulo tk+1 equal

to X◦
k .

In the statement of Theorem 1.7, the ambiguity of β from adding multiples of the
vanishing cycle α disappears by exponentiation since

∫
α
� = (2π

√−1)n (Lemma 3.1).
In practice one has a mutually compatible system of wall structures Sk consistent

to increasing order k and with an increasing, often unbounded number of walls for k →
∞. Theorem 1.7 then gives a formula for the exponentiated period integral as an element
of Â�t�t . In this formula only the complex Ronkin function R(βtrop) potentially varies
with k, capturing higher order corrections to the slab functions fb as k → ∞.

Remark 1.8. — A straightforward generalization of Theorem 1.7 deals with base
spaces A�Q� for Q a toric monoid as in [GHS]. Then c1(ϕ) ∈ H1(B\ (�2 ∪A), �̌⊗Qgp)

and fb ∈ A[�ρ][Q]. Thus 〈c1(ϕ),βtrop〉 ∈ Qgp and the right-hand side of formula 1.10
makes sense as an element of Â[Qgp] when writing the monomials of C[Qgp] as tq for
q ∈ Qgp. This more general form follows easily from the stated version by testing the state-
ment on a dense set of Spf A�Q� by base-changing via various morphisms Spf

(
Â�t�
)→

Spf
(
Â�Q�

)
.

A particularly nice situation occurs when B has simple singularities, as introduced
in [GS06], Definition 1.60. Morally, these are the singularities that are indecomposable
from the affine geometric point of view. In dimension two, simple singularities lead to
local models with slab functions with at most one simple zero, that is zw = (1 + λu) · tκ

for some λ ∈ C. In dimension three, the local models are zw = (1 + μu1 + νu2) · tκ or
xyz = (1+λu) · tκ with λ,μ, ν ∈ C. Then the algorithm of [GS11a] produces a canonical
formal family X → Spf

(
A�t�
)

with central fiber Spec A classifying log Calabi-Yau spaces
over the standard log point with intersection complex (B,P), see [GHS], Theorem A7.
Our second main theorem says that locally this family is the completion of an analytic
family.

Theorem 1.9 (Theorem 4.4). — Assume that (B,P) has simple singularities, B is orientable

and ∂B is again an affine manifold with singularities (e.g. empty). Then for each closed point a ∈ Spec A
there exists an analytic open neighborhood U of a in Spec(A)an, a disk D ⊂ C and an analytic toric

degeneration

Y −→ U × D

with completion at (a,0) isomorphic, as a formal scheme over A�t�, to the corresponding completion of

the canonical toric degeneration X → Spf
(
A�t�
)

from [GHS], Theorem A.8.
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FIG. 1. — A one-dimensional slab ρ with two focus-focus singularities is shown on the left, a two-dimensional slab with
amoeba image A on the right. Tropical one-cycles βtrop are given respectively. On the left, vectors are attached to the edges
of βtrop to indicate the respective sections of �

Moreover, this completion is a hull for the logarithmic divisorial log deformation functor defined in

[GS10], Definition 2.7.

The proof occupies Section 4. The hard part of this theorem is that it is not just an
approximation result: the isomorphism of the two formal families does not require any
change of parameters. Thus the canonical toric degenerations from [GS11a] really are
just an algebraic order by order description of an analytic log-versal family with mono-
mial period integrals, that is, written in canonical coordinates.
History of the results. The tropical construction of n-cycles and the main period compu-
tation in this paper, for the case of [GS11a] with trivial gluing data, has been sketched
by the second author in a talk at the conference “Symplectic Geometry and Physics” at
ETH Zürich, September 3–7, 2007. Details have been worked out in a first version of
the paper in 2014 [RS]. The present paper is an essentially complete rewriting of that
version, carefully treating period integrals with logarithmic poles in finite order defor-
mations, giving an intrinsic formulation of all terms in the main period theorem (Theo-
rem 1.7), including a treatment of non-normalized slab functions via the Ronkin function
and giving a proof of analyticity and versality of canonical toric degenerations (Theo-
rem 4.4 and §4.3).

1.4. Applications. — We apply Theorem 1.7 in several interesting examples.

1.4.1. Mirror dual of KP1 . — We consider (1.1) alias (1.2) for fb ∈ C[u, u−1] featur-
ing two zeros as follows

(1.11) zw = (au−1 + 1)(1 + bu)tκ

with κ > 0 and a, b ∈ C×, |ab| �= 1. The corresponding affine manifold B is shown on the
left in Figure 1, c.f. Figure 2.2 in [GS14]. The two focus-focus singularities are the images
of the zeros of fb under the momentum map. Figure 1 also shows a tropical one-cycle βtrop,
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and Theorem 1.7 yields

(1.12) exp
( 1

2π
√−1

∫

β

�
)

= a · b,

for β the associated singular 2-cycle. Indeed, one checks that the contributions in t arising
from the two orange points on the same green circle cancel. There are also no contribu-
tions from the trivial gluing data. By the product expansion (1.11) and Proposition 1.6,
the Ronkin term vanishes at the two inner crossing points where this expansion is valid.
However, for the two outer crossings, fb is to be multiplied by z−mx , which is u and u−1,
respectively. These crossings produce the constant factors a and b in (1.12).

The geometry here arises as the mirror dual of KP1 , a smoothing of the A1-
singularity. Indeed, a = b−1 yields an A1-singularity at x = y = u + a = 0. Our period
computes the integral over the vanishing 2-sphere.

1.4.2. Mirror dual of KP2 . — We go up one dimension and consider a particular
fb ∈ C[x±1, y±1] whose zero-set is an elliptic curve so that (1.1) gives

(1.13) zw = (1 + x + y + s(xy)−1)tκ

for s ∈ C× a parameter. This geometry arises as the mirror dual of KP2 , as studied before
in [CKYZ], §2.2 and from a toric degeneration point of view in [GS11b], Example 5.2
and [GS14], Figure 2.1. The corresponding real affine manifold is shown on the right
of Figure 1 with the amoeba of the elliptic curve the solid red area. The amoeba com-
plement in the slab has one bounded and three unbounded components. The monomial
z−mp at a point p inside one of the components equals 1, x−1, y−1, xy, respectively. To com-
pute the contribution of the Ronkin function, we write z−mp · fb as an infinite product as
discussed in [GS14]. Define integers aijk by the identity

(1.14) 1 + x + y + z =
∞∏

i,j,k=0

(1 + aijkx
iyjzk)

and then h :=∏∞
k=1(1 + akkks

k), a constant depending only on the parameter value s.
Inserting z = s(xy)−1 in (1.14) now yields a factorization of the slab function fb in (1.13) as
the product of h and a holomorphic function q fulfilling the hypothesis of Proposition 1.6.
Thus the Ronkin term of the period integral at each of the three crossings v of the tropical
cycle in the bounded center region of the amoeba complement equals

R(fb, v) =R(h · q, v) = log(h) +R(q, v) = log(h).

The Ronkin terms for crossings of the unbounded regions vanish readily by Proposi-
tion 1.6, except for the constant term of xy · fb, which yields log(s).
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Thus, by Theorem 1.7, the exponentiated period integral for the tropical cycle βtrop

depicted in green in Figure 1 yields

(1.15) exp
( 1

(2π
√−1)2

∫

β

�
)

= h3 · s.

The smoothing algorithm of [GS11a] replaces fb by fb + g, where g = −2s + 5s2 −
32s3 + · · · is determined by the normalization condition saying that log(fb + g) has no pure
s-powers ([GS11a], §3.6). See also [GZ], p.14 and [GS14], Example 3.1,(2). With the nor-
malized slab function fb + g, the factor h3 disappears, leaving only s for the exponentiated
period integral (1.15). This illustrates the mechanism relating the normalization condi-
tion and the fact that the exponentials of periods for the canonical toric degenerations
of [GS11a] are monomials in the base of the family, see also §1.4.5 below. For a related
enumerative interpretation of the normalization condition see [CCLT], Theorem 1.6.

1.4.3. Degenerations of K3 surfaces with prescribed Picard group. — For a K3 surface
Y with holomorphic volume form �, an integral homology class β ∈ H2(Y,Z) is the
first Chern class of a holomorphic line bundle if and only if its Poincaré-dual class β̂ ∈
H2(Y,C) is of type (1,1). Since β̂ is real, this condition can be detected by the vanishing
of
∫
β
�:

(1.16)
∫

β

� =
∫

β

� =
∫

Y
β̂ ∧ �

!= 0.

Combining this observation with Theorem 1.7 and Theorem 1.9, we obtain the following
computation of the Picard lattice of general fibers of the canonical toric degenerations of
K3 surfaces constructed in [GS11a]. In this case B is a 2-sphere and the amoeba locus
A consists of at most 24 points. This number is achieved if all singularities are of focus-
focus type, that is, have local affine monodromy conjugate to

(
1 0
1 1

)
. This is the case iff all

slab functions have simple zeroes with pairwise different absolute values, for example if
(B,P) has simple singularities as explained before Theorem 1.9. In any case, we assume
that the affine structure on B extends over the vertices of P , so we can disregard �2.
The result is then expressed in terms of the singular homology group H1(B, ι∗�) with
ι : B \ A → B the inclusion. Before stating the result, we make some comments on this
homology group and how it relates to the K3 lattice.

First, if a singular 1-cycle βtrop with coefficients in ι∗� passes through a point x of
A, then by assumption x lies in the interior of a 1-cell of the polyhedral decomposition P
of B. The tangent space of this 1-cell is left invariant under local monodromy and hence
spans the stalk of ι∗�. Thus the integral tangent vector carried by βtrop at x is invariant
under local integral affine monodromy and βtrop can therefore be perturbed away from
A. Since the affine structure extends over �2, we can also perturb βtrop away from �2.
In other words, push-forward by ι defines a surjection

(1.17) ι∗ : H1(B \ (�2 ∪A),�) −→ H1(B, ι∗�).
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Second, for Y → U × D the analytic family from Theorem 1.9 and a ∈ U ⊂ Spec(A)an,
t ∈ D \ {0}, let Yt = Yt(a) denote the fiber over (a, t). Our construction of tropical cycles
defines a homomorphism

H1(B \A,�) −→ H2(Yt,Z)/〈α〉, βtrop �−→ β,

with α the vanishing cycle. This homomorphism is compatible with the respective inter-
section pairings (cap product), as is the previous homomorphism (1.17). Third, H1(B \
A,�) together with its intersection pairing only depends on the linear part of the mon-
odromy representation, hence can be computed in any model, by the classical uniqueness
result for this monodromy representation ([ML], Theorem on p. 225). For one particular
model, Symington in [Sy], §11, has given a basis of tropical cycles5 spanning the even
unimodular lattice −E⊕2

8 ⊕ H⊕2 of rank 20 and signature (2,18), and these also map to
a basis of H1(B, ι∗�) under (1.17) by unimodularity and a rank computation. This lattice
is the orthogonal complement of a hyperbolic plane H in the K3 lattice spanned by a
fiber and a section of a K3 surface fibered in Lagrangian tori over B. In our situation this
fiber class is αt and we have identifications of lattices

H1(B, ι∗�) = {βt ∈ H2(Yt,Z)
∣
∣βt ∈ α⊥

t

}/〈α〉 
 −E⊕2
8 ⊕ H⊕2.

Our period integrals now identify the Picard lattice of H2(Yt,Z) inside this lattice.

Corollary 1.10. — Let π : Y → U × D be the analytic version from Theorem 1.9 of the

canonical degenerating family of K3 surfaces defined by a polyhedral affine structure (B,P) with under-

lying topological space S2 and simple singularities, strictly convex multivalued piecewise affine function ϕ

and gluing data s ∈ H1(B, ι∗�̌⊗ C∗). Then the Picard group of a general fiber Yt of π is canonically

isomorphic to

{
βtrop ∈ H1(B, ι∗�)

∣
∣βtrop ∈ c1(ϕ)

⊥, 〈s, βtrop〉 = 1
}
.

Proof. — Theorem 1.7 implies that
∫
βt
�Yt

can only be constant if 〈c1(ϕ),βtrop〉 = 0.
If this is the case then

∫
βt
�Yt

extends holomorphically over t = 0 and thus 〈s, βtrop〉 = 1 is
equivalent to

∫
βt
�Yt

∈ (2π
√−1)nZ. Noting that

∫
αt
�Yt

= (2π
√−1)n for αt ∈ H2(Yt,Z),

the class of the vanishing cycle from Proposition 1.5, the equality in (1.17) implies that
βt is the image of the Poincaré-dual of an integral (1,1) class under the quotient map
H2(Yt,Z) → H2(Yt,Z)/〈αt〉. Since αt can be chosen Lagrangian, it can not be Poincaré-
dual to the class of a holomorphic line bundle. Hence the image of βt in H2(Yt,Z)/〈αt〉
is enough to determine the Picard lattice. �

5 The cycles in [Sy] use a different construction for the cycles, but it is clear how to obtain cycles homologous to
hers in our fashion.
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Thus for trivial gluing data s = 1, or s of finite order in H1(B, ι∗�̌⊗C∗), the Picard
lattice of Yt has next to largest rank 19. We thus retrieve families studied intensely, see
e.g. [Mr84], [Do].

It is also possible to treat the more general families with non-simple singularities
from [GHS], §A.4, by treatment as a limit of a situation with focus-focus singularities.
Such models lead to one-parameter families with Ak-singularities. For trivial gluing data,
their resolution still provides families of K3 surfaces with Picard rank 19. Non-simple
singularities are necessary for producing families of K3 surfaces with large Picard rank of
low degree. Further details will appear in [GHKS].

Related results from a more elementary perspective have been obtained in [Ya].

1.4.4. Degenerations of rational elliptic surfaces. — Another application is to toric de-
generations of rational elliptic surfaces. In this case, the formula for period integrals in
Theorem 1.7 has been used in the thesis of Lisa Bauer to prove a Torelli theorem for toric
degenerations of rational elliptic surfaces with simple singularities. We refer to [Ba],§5 for
details.

1.4.5. Canonical coordinates in mirror symmetry. — A canonical system of holomorphic
coordinates on the base V of a maximally unipotent Calabi-Yau degeneration Y → V
was first proposed in [Mr93], [De] as follows. Let Y0 denote the maximally degenerate
fiber, V ⊂ Cr a small neighborhood of 0 and Yt a regular fiber. Assume the discriminant
D = D1 + · · · + Ds ⊂ V is the intersection with V of a union of coordinate hyperplanes
and let Ti : Hn(Yt,Z) → Hn(Yt,Z) be the monodromy transformation along a simple
loop around Di . If Y0 is reduced with simple normal crossings then the Ti are unipotent,
so Ni = − log(Ti) is well-defined. Set N =∑i λiNi for any λi > 0.

The monodromy weight filtration is the unique filtration W0 ⊆ W1 ⊆ W2 ⊆ · · · ⊆ W2n

on Hn(Yt,Q) with the properties N(Wi) ⊆ Wi−2 and that Nk : GrW
n+k → GrW

n−k is an iso-
morphism for GrW

i = Wi/Wi−1. Schmid gave a decreasing filtration F•
lim on Hn(Yt,C)

which combines with the Poincaré dual filtration W̃i := W⊥
2n−i to give a mixed Hodge

structure. The degeneration Y → V is maximally unipotent if this mixed Hodge structure
is Hodge-Tate. The latter property implies that W2i = W2i+1. If Yt is Calabi-Yau, then
dimQ W0 = 1 and dimQ W2/W0 = dim H1(Yt,�Yt

), so at least dimension-wise it makes
sense to expect that a set of cycles β1, . . . , βr ∈ Hn(Yt,Z) that descends to a basis of
W2/W0 gives rise to a set of coordinates hi := exp(

∫
βi
�) for � a suitably normalized rel-

ative n-form of Y → V. This was proved in [Mr93], [De]. These coordinates are canonical

in the sense of being unique up to an integral change of basis of W2/W0. The hi also agree
with exponentials of flat coordinates for the special geometry on the Calabi-Yau moduli
space defined by the Weil-Petersson metric [Ti], [Sr], [Fr].

Motivated from [SYZ], the Leray filtration of the momentum map was found to
coincide with the above weight filtration for n = 3 [Gr98] §4, so generators for W2/W0

should be obtained from one-cycles in B with values in �, as also suggested in [KS]
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§7.4.1. Note however, this can only work if H1(B, ι∗�) has large enough rank and it is easy
to produce examples where this fails. A way to ensure the rank matches is by requiring
B to be simple, see [GS10], [Ru20]. In the simple situation, Corollary 4.6 and §4.3 give
directly that the exponentiated periods from cycles in H1(B, ι∗�) provide coordinates on
a versal family. At least in the case with simple singularities, it is expected that the image
of the homomorphism

(1.18) H1(B \ (�2 ∪A),�) → Hn(Yt,Q)/〈αt〉
generates W2. In general, W0 = im Nn and

W2 = ( im Nn−2 ∩ ker N
)+ ( im Nn−1 ∩ ker N2

)
.

By Proposition 1.5, αt ∈ ker(N) and β ∈ ker(N2) for every β obtained from a tropical
one-cycle. By [GS10], N can be identified with the Lefschetz operator on the mirror.
Thus, by the rotation of the Hodge diamond [GS10] and up to identifying the com-
position Yt → Y0

μ→ B with a compactification of T∗
B\(�2∪A)/�̌ → B \ (�2 ∪ A) in the

upcoming work [RZb], announced in [RZa], we find αt ∈ im Nn and the image of (1.18)
indeed generates W2. The geometry over B \ (�2 ∪A) has been investigated extensively
in [AS].

1.5. Relation to other works. — Beyond algebraic curves, explicit computations of
period integrals we found to be quite rare in the literature. In higher dimensions, residue
calculations can sometimes be used to compute certain periods by the Griffiths-Dwork
method of reduction of pole order [Dw], [Gt69]. Equation (3.7) in [CdGP] gives a fa-
mous example of such a computation in the context of mirror symmetry. More recently
the same type of period calculation became the main protagonist in a prominent conjec-
ture for the classification of Fano manifolds [CCGGK]. Other period integrals are often
determined indirectly as solutions of differential equations coming from the flatness of
the Gauss-Manin connection, usually at the expense of losing the connection to topol-
ogy, that is, to the integral structure. Even more recently, [AGIS] computed periods of
a section of the SYZ fibration to small t-order in a maximal degeneration as considered
also in this article. Also worth mentioning are the explicit computation of periods for lo-
cal Calabi-Yau manifolds, Proposition 3.5 in [DK] and the numerical approximation of
period integrals over polyhedral cells carried out in §2 in [CS]. A particular local situ-
ation similar to the example in §1.4.1 has been computed independently by Sean Keel
(unpublished).

2. From tropical cycles to singular chains

Throughout let B be an oriented tropical manifold possibly with boundary and
with polyhedral decomposition P , convex MPL-function ϕ, open gluing data s and a
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consistent order k structure for this data, as explained in §1.1. Let X◦
k be the scheme over

C[t]/(tk+1) obtained from this data by gluing the standard pieces Spec Rk
b

and Spec Ru.
Our computation of the period integrals is entirely on X◦

k . For this computation in Sec-
tions 2 and 3 we therefore do not impose the additional consistency requirements needed
to assume the existence of the partial compactification Xk or even the existence of X0,
nor do we need an extension of X◦

k to an analytic family. An exception is the discussion
of the degenerate momentum map X0 → B, which is of independent interest.

For simplicity of presentation we work here with fixed gluing data s, that is, with
A = C as base ring in §1.1. General A can easily be treated by either introducing analytic
parameters in all formulas or, for reduced A, by verifying the claimed period formula
(1.10) on a dense set of gluing data.

2.1. A generalized momentum map for X0. — For trivial gluing data, X0 exists as a
projective variety with irreducible components the toric varieties Xσ with momentum
polyhedra the maximal cells σ of P . If σ,σ ′ intersect in a codimension one cell ρ of P
then the (n − 1)-dimensional toric variety Xρ is a joint toric prime divisor of Xσ ,Xσ ′ ,
with the identification toric, that is, mapping the distinguished points in the big cells to
one another. It is then not hard to see that the momentum maps μσ : Xσ → σ patch to
define a generalized momentum map μ : X0 → B =⋃σ∈P σ .

For general gluing data, the momentum maps μσ may not agree on joint toric
strata and it is not clear that μ exists. Assuming projectivity, we present here a canonical
construction of μ and otherwise prove the existence of μ away from codimension two
strata.

Proposition 2.1. — Assume that X0 is projective. Then there is a continuous map

μ : X0 −→ B

which on each irreducible component Xσ ⊂ X0 restricts to a momentum map for the toric U(1)n-action

and some U(1)n-invariant Kähler form on Xσ .

Without the projectivity assumption, μ can be constructed on the complement X◦
0 of the codimen-

sion two toric strata.

Proof. — In the projective case, the central fiber X0 can be constructed as Proj S
with S a graded C-algebra generated by one rational function ϑm on X◦

0 for each integral
point m of B, see [GHS], §5.2 (where S is denoted S[B]( ˜̄s)). If m lies in a maximal cell
σ then ϑm restricts to a non-zero multiple of the monomial zm on Xσ defined by toric
geometry. Define the Kähler form ω on X0 as the pull-back of the Fubini-Study form
ωFS on projective space under the embedding � : X0 → PN defined by the ϑm, with
N + 1 the number of integral points on B. Denote by t the Lie algebra of the n-torus Tσ
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acting on Xσ and write σ as a momentum polytope in t∗. Now define μ on Xσ by

(2.1) μσ : Xσ −→ σ ⊂ t
∗, μσ (z) =

∑
m∈σ∩�σ

|ϑm(z)|2 · m
∑

m∈σ∩�σ
|ϑm(z)|2 .

We claim that μσ is a momentum map for the U(1)n-action on Xσ with respect to ω|Xσ
.

Indeed, denote by �N the N-simplex with one vertex vm for each integral point m ∈ B(Z).
We view �N as an integral polytope in t̃∗ with t̃ the Lie algebra of the torus U(1)N+1

acting diagonally on PN. Let μ : PN → t̃∗ be the usual momentum map defined by a
formula analogous to (2.1) with ϑm replaced by the monomials of degree 1. Then there is
an integral affine map �N → t∗, which for m ∈ σ maps the vertex vm to m and the other
vertices to arbitrary integral points. The induced map t̃∗ → t∗ defines a morphism of tori

κ : Tσ → U(1)N+1 for which the composition Xσ → X0
�→ PN is equivariant.

Now μσ factors over the momentum map μ for PN as follows:

μσ : Xσ −→ X0
�−→ PN μ−→ t̃

∗ κ∗−→ t
∗.

Thus if ξ ∈ t and ξ̃ is the induced vector field on Xσ , we can check the momentum map
property for μσ as follows:

d(ξ ◦ μσ) = d(ξ ◦ κ∗ ◦ μ ◦ �) = �∗d(κ∗(ξ) ◦ μ) = �∗(ι�∗ ξ̃ωFS) = ιξ̃ω.

If X0 is not projective, the complement X◦
0 of the codimension two locus is the

fibered sum of its irreducible components, with a toric divisor X◦
ρ contained in two com-

ponents X◦
σ , X◦

σ ′ identified via a toric automorphism, that is, by multiplication with an
element g of the (n − 1)-torus Tρ acting on Xρ .6 Let μσ : Xσ → σ and μσ ′ : Xσ ′ → σ ′

be the standard toric momentum maps. Since σ ∩ σ ′ = ρ, the restrictions of μσ , μσ ′ to
Xρ , viewed as a toric divisor in Xσ and Xσ ′ , agree with the standard momentum map
μρ : Xρ → ρ. By equivariance of μρ with respect to the torus action there exists a diffeo-
morphism ψ : ρ → ρ such that

μρ(g · z) = ψ
(
μρ(z)

)

holds for any z ∈ Xρ . Use ψ to change the identification of ρ as a facet of σ ′, but leave the
embedding ρ → σ unchanged. Repeating this construction for all ρ leads to a directed
system of all polyhedra ρ,σ ∈ P of dimensions n − 1 and n. After removing all faces
of dimension strictly less than n − 1, a colimit of this directed system in the category of
topological spaces exists and is a topological manifold. It is also not hard to see that this
colimit is homeomorphic and cell-wise diffeomorphic to the complement B \ �2 ⊂ B of
the (n − 2)-skeleton of P . Since we have a compatible description of X◦

0 as a colimit, we

6 This fibered sum is the description of X◦
0 in terms of closed gluing data discussed in [GHS], §5.1. This description

may not extend over the codimension two locus.
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obtain the desired momentum map μ : X◦
0 −→ B \ �2 that on Xσ is the composition of

μσ with the restriction σ → B of the cell-wise diffeomorphism. �

Note that by [Dl], Théorème 2.1, two momentum maps on a toric variety are
related by a homeomorphism that is a diffeomorphism at smooth points. In particu-
lar, for non-trivial gluing data our global momentum map restricts on any irreducible
component Xσ ⊂ X0 to the standard toric momentum map Xσ → σ composed with a
homeomorphism of Xσ that is a diffeomorphism away from strata of codimension at least
two. Note also that in the Kähler setting, the Hamiltonian vector field on Xσ defined by
a co-vector δ ∈ �∗

σ is given by the action of the algebraic subtorus Gm = Spec C[Z] ⊆
Spec C[�σ ] given by δ : �σ → Z.

2.2. Canonical affine structure on B \ (�2 ∪A). — Let μ : X◦
0 → B \�2 be a general-

ized momentum map as produced by Proposition 2.1. Denote by Z ⊂ X◦
0 the log singular

locus, an algebraic subset of dimension n − 2 defined by the vanishing of the slab func-
tions. Further denote by �k ⊂ B the (n − k)-skeleton of P , that is, the union of all cells
of P of dimensions at most n − k. The amoeba image A := μ(Z) is contained in the
(n − 1)-skeleton �1 ⊂ B. For ρ ∈ P an (n − 1)-cell, A ∩ Intρ is diffeomorphic to the
classical amoeba in Rn−1 defined by any of the slab functions fb for b ⊂ ρ, viewed as an
element of the ring of Laurent polynomials C[�ρ]. For the following discussion only the
reduction fρ of fb modulo t is relevant. The notation fρ is justified because by consistency
in codimension one, the reduction of fb modulo t only depends on the cell ρ ⊂ ρ of the
barycentric subdivision containing b. The fiber of μ over a point x ∈ ρ \ A is the torus
fiber of Xρ → ρ over x. We will now show that there is a natural extension of the integral
affine structure on B \�1, the union of the interiors of maximal cells, to B \ (�2 ∪A) as
follows.

Construction 2.2 (Construction of the affine structure on B\(�2 ∪A)). — On the interior of
a maximal cell σ ⊆ B define the integral affine structure by the Arnold-Liouville theorem
for the restriction of our momentum map from Proposition 2.1. For ρ an (n−1)-cell with
σ,σ ′ the adjacent maximal cells and b ⊆ ρ a slab, recall from §1.1.4 that the defining
equation

(2.2) Z+Z− = fbtκρ

involves monomials Z+ = c+zζ , Z− = c−zζ ′
on the toric varieties Xσ ,Xσ ′ . Here ζ, ζ ′ gen-

erate the normal spaces �σ/�ρ and �σ ′/�ρ , respectively, and parallel transport through
any point in ρ ⊇ b in the affine structure on B\� carries ζ to −ζ ′. The constants c± ∈ C∗

are determined by gluing data, namely c+ = sσρ(ζ ), c− = sσ ′ρ(ζ
′). This equation depends

on the choice of ρ ⊂ ρ, a cell of the subdivision of ρ defined by � ∩ ρ, but any other
choice just leads to a multiplication of the equation with a monomial cz

mρρ′ with mρρ′ ∈ �ρ

and c ∈ C.
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We now use these local models to define an adapted affine structure on B outside
�2 ∪A. Since the integral affine structures on σ,σ ′ already agree on ρ, for the definition
of a chart at x ∈ Int(ρ) \ A it remains to declare the parallel transport of ζ through
Intρ as −ζ ′ + mx for some mx ∈ �ρ . The restriction of the reduction fρ of fb modulo t to
μ−1(x) = Hom(�ρ,U(1)) 
 (S1)n−1 defines a map

Hom(�ρ,U(1)) −→ C∗ arg−→ U(1).

The image of the first arrow lies in C∗ because fρ|μ−1(x) has no zeroes for x /∈ A. The
positive generator of H1(U(1),Z) 
 Z pulls back to the desired element

(2.3) mx ∈ �ρ = H1
(

Hom(�ρ,U(1)),Z
)
.

It is worthwhile noticing that mx agrees with the order of the amoeba complement selected
by x, as defined in [FPT], Definition 2.1. In particular, mx is locally constant on Intρ \A.

Remark 2.3. — With the definition of the affine structure in Construction 2.2 we
are now in a position to rewrite the local equation (2.2) in a form suitable for the local
construction of n-cycles from tropical curves. For x ∈ Int(ρ)\A let ζ̃ ∈ �σ be any tangent
vector generating �σ/�ρ and pointing from ρ into σ . Then ζ̃ = ζ + m for some m ∈ �ρ .
Thus defining

Z̃+ = zm · Z+, Z̃− = z−m−mxZ−,

Equation (2.2) can also be written as

(2.4) Z̃+Z̃− = (z−mx fb)t
κρ .

The point is that by the definition of mx in (2.3), this equation differs from a standard
normal crossings equation zw = tκρ by the factor z−mx fb. This factor is homotopically
trivial as a map from μ−1(x) to C∗. This is a crucial property in the construction of an
n-cycle in Lemma 2.7 below fulfilling the condition (Cy II) needed in our treatment of
finite order period integrals in Appendix A.

We emphasize that while these conventions look technical, our formula (1.10) for
the period integral involves the Ronkin function associated to z−mx fb and hence is sensitive
to the definition of mx. See §1.4.1 and §1.4.2 for two simple examples.

Remark 2.4. — We defined an affine structure on B\ (�2 ∪A) in Construction 2.2.
On the other hand, [GHS] works with an affine structure on B \ � for the formulation
of the wall structure. These two affine structures are related in the following way. Recall
that � ⊂ B is the (n − 2)-skeleton of the barycentric subdivision of the (n − 1)-skeleton of
P . Let �ess denote the minimal subcomplex of � that allows an extension of the affine
structure from B \ � to B \ �ess. In many cases, including [GS11a] and [GHK], there
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FIG. 2. — Refinement of the affine structure of [GHS] and the common enlargement Ã of A and �ess shown for a
pentagonal slab in a 3-dimensional B. Parallel transport through the shaded areas with the same labels agrees

is an enlargement Ã of �ess ∪ A with (�2 ∪ �ess) ⊂ Ã such that there is a deformation
retraction Ã→ �ess. See Figure 2 for a sketch of a typical situation. In particular, tropical
1-cycles on B \ �ess can be identified with tropical 1-cycles on B \ Ã. Replacing Ã by A
then potentially allows the consideration of further tropical cycles, those that are not
homologous to tropical cycles on B \ Ã, that is, “passing through holes of A”. In this
sense our affine structure on B \A is a refinement of the affine structure used in [GHS].

2.3. Construction of n-cycles on X◦
0 from tropical cycles on B \ (�2 ∪A). — We consider

tropical cycles βtrop as defined in Definition 1.2 for the integral affine structure from
Construction 2.2. The purpose of this section is to construct an n-cycle β on X◦

0 suitable
for applying the results of Appendix A for the computation of the period integral

∫
β
� on

X◦
k .

Assumption 2.5. — For our computation we make a few more assumptions on βtrop

that with hindsight can be imposed without restriction and with no influence on the
period integral.
(βI) Each point of intersection of βtrop with a wall is a vertex of βtrop and an interior

point of the wall. Any edge contains at most one vertex contained in a wall.
(βII) Any vertex of βtrop of valency at least three is contained in the interior of a chamber.
(βIII) Let v be a vertex of βtrop contained in an (n − 1)-cell ρ ∈ P . Denote by e, e′ the

edges adjacent to v with βtrop oriented from e to e′, by σ ∈ P the maximal cell
containing e, and by Tρ the 1-dimensional subtorus of the algebraic n-torus acting
on Xσ that fixes the toric divisor Xρ ⊂ Xσ corresponding to ρ pointwise.
Then v is an interior point of a unique slab b, v ∈ b \A, and all vertices of e and e′

are bivalent.
We also assume that e is contained in the image under the momentum map μ :
Xσ → σ of the closure of a Tρ-orbit, and similarly for e′ and σ ′.7

Finally, we assume ξe to be a primitive vector and if ξe /∈ �ρ then ξe generates
�σ/�ρ .

7 In coordinates C[�σ ] 
 C[z1, . . . , zn] with z2, . . . , zn ∈ C[�ρ], this one-dimensional torus acts trivially on
z2, . . . , zn and with weight ±1 on z1. Hence the orbits are the level sets of z2, . . . , zn and their μ-image defines an in-
tegrable foliation of Intσ by real curves. Our assumption says that locally βe maps to the closure of a leaf of this foliation.
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All these assumptions can be realized without changing the class of βtrop in H1(B \ (�2 ∪
A),�). For example, the last assumption stated in (βIII) can always be achieved as follows.
Write ξe = aζ + bm in �σ with ζ ∈ �σ a generator of �σ/�ρ , a, b ∈ Z and m ∈ �ρ

primitive. Then replace both e, e′ by a + b copies, with the first a copies carrying ζ and
the last b copies carrying m. This replacement preserves the cycle property, that is, the
balancing condition at vertices (2.9). A further subdivision of each new edge is needed to
obtain bivalent vertices for all edges intersecting the slab.

Note in particular that each edge e of our tropical cycles βtrop is considered a subset
of B and the map h : βtrop → B mentioned after Definition 1.2 is defined on e by the
inclusion e → B.

Construction 2.6 (Construction of the n-cycle β on X◦
0). — For each edge e of βtrop let

S(e) ⊆ X◦
0 be a differentiable section of μ over e, chosen compatibly over vertices. Note

that for trivial gluing data and σ the maximal cell containing e, one may choose for S(e)
the intersection of μ−1(e) with the positive real locus of Xσ , but in general there is no
such canonical choice. For arbitrary gluing data, we make an arbitrary choice, except if
the edge e has a vertex v on an (n − 1)-cell ρ. In this case, if σ denotes the maximal cell
containing e, we require S(e) to be contained in the closure of an orbit of the action of
the one-dimensional subtorus of Spec C[�σ ] fixing Xρ ⊂ Xσ point-wise. Note that this
condition is in agreement with the conditions imposed on e in (βIII) of Assumption 2.5.
Note also that an equivalent way to state this additional condition is to ask any monomial
zm ∈ C[�σ ] with m ∈ �ρ to take constant values on S(e).

For an edge e of βtrop contained in a maximal cell σ and carrying the tangent vector
ξe ∈ �σ , define β e ⊆ Xσ as the orbit of S(e) under the subgroup

(2.5) T̃e = {φ ∈ Hom(�σ ,U(1))
∣
∣φ(ξe) = 1

}

of the real n-torus Tσ = Hom(�σ ,U(1)) acting on Xσ . In coordinates, the orbits of
Hom(�σ ,U(1)) 
 U(1)n are the loci of constant absolute values of all monomials, that is,
|zm| = const for all m ∈ �σ . An orbit of T̃e inside such an orbit is then given by arg(zξe) =
const. Note also that if ξe is an me-fold multiple of a primitive vector ξ̄e then T̃e is a product
of Z/meZ with the real (n − 1)-torus

(2.6) Te = {φ ∈ Hom(�σ ,U(1))
∣
∣φ(ξ̄e) = 1

}= ξ⊥
e ⊗Z U(1).

The cyclic group Z/meZ acts by multiplication by roots of unity on zξ̄e . Thus if e is disjoint
from all (n − 1)-cells, β e is topologically a disjoint union of me copies of the product of an
interval with Te.

If one of the vertices v of e is contained in an (n − 1)-cell ρ, then over v one has to
replace Te by its image Te,v = (ξ⊥

e /(Zďρ ∩ ξ⊥
e )) ⊗Z U(1) under the restriction map

(2.7) Hom(�σ ,U(1)) −→ Hom(�ρ,U(1)).
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Here ďρ ∈ �̌σ = Hom(�σ ,Z) is a primitive normal vector to �ρ ⊂ �σ . Note that Te →
Te,v is a finite cover of degree8 |〈ďρ, ξe〉| = 1 unless ξe ∈ �ρ . In the latter case Te → Te,v

contracts the circle generated by ďρ .
To define the orientation of β e note that �σ is oriented since B is by assumption.

Then ξe induces a distinguished orientation on Te as follows. Define a basis v̄2, . . . , v̄n of
�σ/Zξ̄e to be oriented if ξ̄e, v2, . . . , vn is an oriented basis of �σ , for any lift v2, . . . , vn ∈
�σ of v̄2, . . . , v̄n. Then also ξ⊥

e = (�σ/Zξ̄e)
∗ is oriented and in turn Te. Now define the

orientation of β e by means of the identification

β e 
 Se × T̃e 
 Se × Te × (Z/meZ),

with Se oriented by e. After triangulating we can view β e as a singular chain. If e in the
interior of a maximal cell is oriented from vertex v− to v+, the boundary ∂β e decomposes
as follows:

(2.8) ∂β e = ∂+β e − ∂−β e, ∂+β e = {v+} × T̃e, ∂−β e = {v−} × T̃e.

If e intersects the codimension one cell ρ in one of the vertices v±, the same formula
holds with the factor T̃e in the boundary component over v± replaced by the image T̃e,v±
under the map (2.7) above, with multiplicity |〈ďρ, ξe〉|. In particular, for ξe ∈ �ρ , we have
∂±β e = 0 for the appropriate index ±.

In any case, if v ∈ βtrop is a vertex of valency two with adjacent edges e, e′ ordered
according to the orientation of βtrop, then ∂+β e = ∂−β e′ , so these two parts of the bound-
ary cancel in ∂(β e + β e′).

By (βII), a vertex v of valency at least three is contained in the interior of a maximal
cell σ . Denote by S(v) the point of intersection of S(e) with μ−1(v), for any edge e adja-
cent to v. As discussed above, T̃e ·S(v) is a union of translations of the (n−1)-dimensional
subtorus Te of μ−1(v) = Hom(�σ ,U(1)). The class of T̃e in Hn−1(μ

−1(v),Z) is Poincaré-
dual to ξe ∈ �σ = H1(μ−1(v),Z). Define εe,v = 1 if T̃e · S(v) is positively oriented as part
of the boundary of β e and εe,v = −1 otherwise. By (2.8) we have εe,v = 1 if e is oriented
toward v. Now the balancing condition (1.5) for βtrop at v says

(2.9)
∑

e�v

εe,vξe = 0.

Hence
∑

e�v εe,v · [T̃e · S(v)] = 0 in Hn−1(μ
−1(v),Z). Thus there exists an n-chain �v ⊂

μ−1(v) whose boundary equals the negative of this sum. The chain �v is unique up to
adding integral multiples of μ−1(v). For brevity of notation we define �v = 0 if v is a
bivalent vertex. By construction, the sum of chains

∑
e β e +

∑
v �v defines an n-cycle on

X◦
0.

8 By our last condition in (βIII) of Assumption 2.5, ξe generates �σ/�ρ , so 〈ďρ, ξe〉 = 1.
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To arrive at a cycle of the form treated in Construction A.3, we may need to adjust
some of the boundary components of edges adjacent to slabs, as will become clear in
the proof of Lemma 2.7 below. To this end we admit the insertion of chains on some of
such edges as follows. Let v be a vertex contained in a slab and e, e′ the adjacent edges,
with β oriented from e to e′. Denote by u′ the chamber containing e′. We now change β e′
by subtracting a chain �e′ , while adding the same chain �e′ in the chart Spec Rk

u′ to the
collection of chains. For notational convenience we define �e = 0 for all other edges e and
�v = 0 for all two-valent vertices v. The resulting chain for any edge e (modified or not)
is now denoted βe. Thus we have βe = β e unless e is oriented away from a vertex v− lying
on a slab.

Finally we define

(2.10) β :=
∑

e

βe +
∑

v

�v +
∑

e

�e.

It follows from the construction that ∂β = 0, so β is a singular cycle on X◦
0. Up to speci-

fying the slab add-ins �e′ in Lemma 2.7 below, this ends the construction of β .

For the remainder of the section we assume familiarity with the content of Ap-
pendix A and notably the conditions on adapted charts and cycles from Construction A.3.
To decompose β in the form

∑
i βi demanded in Construction A.3, take for the con-

stituents βi one of the following.
(1) βe with e disjoint from (n − 1)-cells;
(2) �v for v a vertex of valency at least three;
(3) The sum βe +βe′ for the two edges e, e′ adjacent to a vertex v contained in an (n − 1)-

cell;
(4) A slab add-in �e′ whenever this chain is non-zero.

Lemma 2.7. — For a cycle β =∑i βi from Construction 2.6 there exist charts �i : Ũi → X◦
k

and a choice of slab add-ins �e′ , such that the charts �i and chains βi fulfill (Ch I), (Ch II) and (Cy I),
(Cy II) of Construction A.3, respectively.

Proof. — Step I: Construction of adapted charts. By (βI) of Assumption 2.5 for the tropical
cycle βtrop, the constituents of the form βi = βe or βi = �v are contained in a single
chamber u. Denote by σ the maximal cell containing u. As explained in §1.1.4, the chart
of X◦

k defined by u provides an open embedding

(2.11) Spec Rk
u
= Spec

(
C[�σ ]

)× Ok −→ X◦
k ,

which, viewed as a morphism of analytic log spaces, we take for �i . Thus Ũi =
Spec
(
C[�σ ]

) × Ok . Here we write Ok = Spec C[t]/(tk+1) as in Appendix A. The re-
duction Ui of Ũi is isomorphic to (C∗)n. In the notation of Construction A.3, such �i are
charts of type I.
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In the third instance of two edges e, e′ with βi = βe + βe′ and βtrop oriented from
e to e′ and meeting in a vertex v on a slab b ⊆ ρ, by (1.2) we similarly have an open
embedding

Spec Rk
b
−→ X◦

k ,

with Rk
b
= C[�ρ][Z̃+, Z̃−, t]/(Z̃+Z̃− − z−mv fbtκi , tk+1), κi = κρ

b
. Here we use the adapted

coordinates Z̃± from (2.4) with ζ̃ = ±ξe in case ξe /∈ �ρ .9 Denote also by u,u′ and σ,σ ′

the chambers and maximal cells containing the images of e, e′, respectively.
To bring the ring Rk

b
into the form required by (Ch II) of Construction A.3, we

now set

(2.12) z = Z̃+, w = Z̃−/(z−mv fb),

to obtain an open embedding of the open neighborhood Spec(Rk
b
)fb ⊆ Spec Rk

b
of μ−1(v)

into

(2.13) Spec
(
C[�ρ][z,w, t]/(zw − tκi , tk+1)

)
.

A further shrinking of neighborhood leads to the desired chart of the form Ũi = Vi × Hκi

with Vi ⊂ Hom(�ρ,C∗) 
 (C∗)n−1 open and Hκi
the base change to Ok of an appropri-

ate bounded open subset of
{
(z,w, t) ∈ C3

∣
∣ zw = tκi

}
. With the possible rescaling of z,w

from Remark A.4 understood, this is a chart of type II. Denote by σ the maximal cell
containing e, and by σ ′ the other maximal cell adjacent to b.

Note also that the projection Vi × Hκi
→ Vi is a restriction of the map

(2.14) Spec Rk
b
−→ Spec C[�ρ]

induced by the inclusion �ρ ⊂ �σ , and this map is equivariant for the homomorphism
of tori10 Te → Te,v discussed in Construction 2.6. By construction, S(e) lies in the fiber of
this projection since any monomial zm with m ∈ �ρ is constant on S(e).

Step II: Checking (Cy I),(Cy II) for βe = β̄e and for �v . We need to check that βi is of the
form specified in (Cy II) of Construction A.3. This discussion is entirely on the cen-
tral fiber X◦

0, with the toric local model C[�σ ′ ] = C[�ρ][Z̃±1
− ] and the non-toric one

C[�ρ][z,w]/(zw).
Condition (Cy I) is readily fulfilled if βi = βe and e is disjoint from all slabs, and for

βi = �v . It remains to consider the case βi = βe and e ∩ ρ �= ∅ for some ρ.
The part βe of βi lying over σ is again easily seen to be of the required form, with

the added flexibility of Remark A.4 understood:

9 Note that we use here condition (βIII) of Assumption 2.5 that if ξe /∈ �ρ then ξe is a generator of �σ/�ρ .
10 We have Te = T̃e by the assumption of primitivity of ξe according to (βIII) in Assumption 2.5.
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(i) If ξe ∈ �ρ then the action of the (n − 1)-torus T̃e = Te defined in (2.5) on C[�ρ]
has a one-dimensional kernel, which acts non-trivially on z = Z̃+. Hence, in the chart
(2.13), we have βe = γi × {|z| ≤ εi

}
with γi an (n − 2)-dimensional orbit of the action

of Te,v 
 U(1)n−1 on Spec C[�ρ] 
 (C∗)n−1 and some εi ∈ R>0. We do not bother to
compute γi explicitly because our integral over such chains vanishes in any case.

(ii) If ξe /∈ �ρ then ξe = ±ζ̃ . Hence the action of T̃e = Te is trivial on z = Z̃+ and
the restriction map Te → Te,v of (2.7) is an isomorphism. Thus βe = γi × z(S(e)) with γi

a Te-orbit and z(S(e)) a curve inside C connecting z
(
S(v−)

)
to 0 for v− the other vertex

of e.

Step III: Construction of βe′ . The situation for the other constituent βe′ of βi is less straight-
forward. Recall that βe′ = β e′ −�e′ with β e′ constructed above via the torus action and the
momentum map μ, while the slab add-in �e′ was still to be determined. Denote by v+
the vertex of e′ mapping to the interior of σ ′, the maximal cell containing e′. By construc-
tion, β e′ has the boundary component ∂+β e′ mapping to v+ by the momentum map. This
boundary component ∂+β e′ is the torus orbit Te′ · S(v+) = T̃e′ · S(v+) in Hom(�σ ′,C∗),
the reduction modulo t of the chart Spec Rk

u′ .
For the following discussion, let e1, . . . , en ∈ �σ ′ be an oriented basis with

(2.15) e1 = ζ̃ ′

the parallel transport of −ζ̃ ∈ �σ through v, and e2, . . . , en ∈ �ρ , and let ẑ1, . . . , ẑn ∈ Rk
u′

denote the corresponding monomials. Then Te′ is identified with a subtorus of U(1)n act-
ing diagonally on ẑ1, . . . , ẑn. For θ ∈ Te′ denote by (θ1, . . . , θn) the corresponding image
in U(1)n, with U(1) = {z ∈ C

∣
∣ |z| = 1

}
.

In these coordinates, ∂+β e′ has the parametrization

Te′ � θ = (θ1, . . . , θn) �−→ θ · a = (θ1a1, θ2a2, . . . , θnan

)
,

with aμ = ẑμ

(
S(v+)

)
for μ = 1, . . . , n and a = (a1, . . . , an).

On the other hand, Condition (Cy II) of Construction A.3 tells us that βe′ must be
homologous relative to its boundary to the chain β̂e′ defined analogously, but using the
chart �i modeled on C[�ρ][z,w, t]/(zw− tκi , tk+1) and w replacing ẑ1. Explicitly, in the
coordinates w, z2, . . . , zn of the chart �i , with z2, . . . , zn defined by e2, . . . , en ∈ �ρ , the
chain β̂e′ is defined by the parametrization

(2.16) S(e′) × Te′ −→ (C∗)n, (p, θ) �−→ (θ1w(p), θ2z2(p), . . . , θnzn(p)
)
.

The two sets of coordinates are related by

(2.17) c1ẑ1 = (fb/zmv )w, c2ẑ2 = z2, . . . , cnẑn = zn,

with constants cμ = sσ ′ρ(eμ) ∈ C∗ given by gluing data. The action of U(1)n on z2, . . . , zn

is compatible with the action on ẑ2, . . . , ẑn, but not so on w. Let f̂b ∈ C[t][ẑ±1
2 , . . . , ẑ±1

n ]
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be a Laurent polynomial with the property that the reduction of ẑ−mv f̂b modulo tk+1 is
the image of z−mv fb under the gluing map Rk

b
→ Rk

u′ , and denote by f̂ρ the reduction of

f̂b modulo t. Then the first equation in (2.17) can be rewritten as

(2.18) ẑ1 = c−1
1 (f̂b/ẑmv )w.

To describe ∂+β̂e′ only the reduction modulo t is relevant and hence fb reduces to fρ . Thus

in the coordinates ẑ1, . . . , ẑn, the boundary ∂+β̂e′ has the parametrization

(2.19) Te′ � θ = (θ1, . . . , θn) �−→
(

c−1
1

(
f̂ρ/ẑmv

)
(θa) · θ1b1, θ2a2, . . . , θnan

)
,

where b1 = w
(
S(v+)

)
. For simplicity of notation we view here f̂ρ/ẑmv as a Laurent poly-

nomial in n variables by the inclusion �ρ ⊂ �σ ′ .

Step IV: Construction of slab add-ins �e′ . Now that we have explicit parametrizations of both
∂β̂e′ and ∂β̄e′ , we are ready to construct the slab add-in �e′ as a chain connecting these
boundary cycles. Note that the factor in the first entry of the right-hand side of (2.19)
agrees with the restriction of fρ/zmv on the fiber of the momentum map μ : X◦

0 → B over
v:

(
f̂ρ/ẑmv

)
(θa) = (f̂ρ/ẑmv

)
(θ2a2, . . . , θnan) = (fρ/zmv

)(
θ2b2, . . . , θnbn

)
,

with b2 = z2(S(v)), . . . , bn = zn(S(v)). The point is that, by the definition of mv in Con-
struction 2.2, this map is homotopically trivial as a map Te′ → C∗. Thus there is a differ-
entiable homotopy γ : [0,1] × Te′ −→ C∗ with

γ (0, θ) = (f̂ρ/ẑmv
)
(θa), γ (1, θ) = a1c1/b1,(2.20)

where a1 = ẑ1

(
S(v+)

)
, b1 = w

(
S(v+)

)
and c1 = sσ ′ρ(ζ̃

′) with ζ̃ ′ the parallel transport of
−ζ̃ through v (2.15). We now define the slab add-in �e′ in the coordinates ẑ1, . . . , ẑn of
Rk

u′ by the parametrization

[0,1] × Te′ −→ Hom(�σ ′,C∗)

(s, θ) �−→ (γ (s, θ) · θ1b1/c1, θ2a2, . . . , θnan

)
,(2.21)

with the given orientation of the domain. Figure 3 provides a sketch for the case ξe′ ∈ �ρ .
The horizontal planes indicate the level sets of ẑ2, . . . , ẑn, which for both β e′ and β̂e′ vary
in the same U(1)n−2-orbit, the orbit containing (ẑ2, . . . , ẑn)

(
S(v+)

)= (ẑ2, . . . , ẑn)(S(e′)).
The shaded region is the part of �e in this level set. The circle and curve show the in-
tersection of ∂+β e′ and ∂+β̂e′ with one of the level sets in this U(1)n−2-orbit. In the other
case ξe′ /∈ �ρ there is a U(1)n−1-orbit of level sets and on each level set in this orbit, ∂+β e′ ,
∂+β̂e′ define two points in the ẑ1-plane, connected by the homotopy γ .
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FIG. 3. — A slab add-in (case ξe′ ∈ �ρ )

By construction, ∂�e′ = ∂+β e′ − ∂+β̂e′ and hence βe′ = β e′ − �e′ has boundary
∂+β̂e′ − ∂−β e′ . Letting the endpoint S(v+) vary as s ∈ S(e′), γ can be extended to a con-
tinuous family γs of homotopies between the Te′ -orbits in β e′ and in β̂e′ containing s. The
corresponding family of n-chains sweeps out an (n + 1)-chain �̃ with

∂�̃ = β e′ − �e′ − β̂e′ .

Thus βe′ and β̂e′ are homologous relative to their boundaries as needed in (Cy II).
We add the slab add-in �e′ as an additional chain, taken inside the chart (2.11) for

the chamber u′ containing e′. With this definition for the slab add-ins, we have verified
the requirements of Construction A.3 for all constituents βi of β . �

Proposition 2.8. — Let X → D be a family with X◦
0 as central fiber and locally analytically

isomorphic to (1.4), together with a family of n-cycles β(t) with β(0) = β as in Proposition A.6.

Then the Picard-Lefschetz monodromy T along a counter-clockwise loop in D based at t0 �= 0 acting on

n-homology classes is given by

(T − id)(βt0) = 〈c1(ϕ),βtrop〉 · [α] =
∑

i

κi〈ďρi
, ξi〉[α].

Here α denotes the vanishing cycle and the sum is over the points v of intersection of βtrop with codimension

one cells ρ = ρi as explained in §1.2.5.

Proof. — We apply Lemma A.7 to the specific situation laid out in the proof of
Lemma 2.7. This already justifies what we are summing over. For each summand, we are
in the situation (ii) stated in Step II of the proof, where ξe /∈ �ρ and βe = γi × z(S(e)).
A clockwise loop in the w-plane gives a counter-clockwise loop in the z-plane, call this
S1. Hence, by Lemma A.7, (T − id)(βe + βe′) = κi[γi × S1], on the level of chains up
to homology. The vanishing cycle α is represented by an orbit of the diagonal action of
U(1)n in the coordinates zξe, z2, . . . , zn obtained from an oriented basis ξe, e2, . . . , en with
ej ∈ �ρ . Relating this orbit to γi × S1, we have z = zεξe for ε = 〈ďρ, ξe〉 = ±1. Recall that
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γi is a Te-orbit, so taken together with S1, the circle in the z-plane, this cycle is indeed
homologous to α up to sign. The signs work out as stated. �

3. Computation of the period integrals

The purpose of this section is to prove Theorem 1.7. We continue to use the
setup from Section 2. In particular, we have X◦

k , an n-dimensional log scheme over Ok =
Spec C[t]/(tk+1) with restriction to X◦

k \ Z log smooth over Ok . Here Ok is given the log
structure induced from the toric log structure on Spec C[t]. Denote by �n

X◦
k /Ok

the sheaf
of relative log differentials of degree n, which is locally free away from Z. The construc-
tion of X◦

k comes with a canonical relative logarithmic n-form � ∈ �(X◦
k ,�

n
X◦

k /Ok
). If σ is

a maximal cell and e1, . . . , en is an oriented lattice basis of �σ , then, in the correspond-
ing local coordinates z1 = ze1, . . . , zn = zen of Spec(Rk

σ ) = Spec
(
C[t, z1, . . . , zn]/(tk+1)

)
, it

holds

(3.1) � = dlog z1 ∧ · · · ∧ dlog zn = z−1
1 dz1 ∧ · · · ∧ z−1

n dzn.

We often also work with polar coordinates zj = rj e
√−1αj . To avoid cluttering some formulas

with exponentials, we work with θj = e
√−1αj ∈ U(1) = S1 rather than with αj ∈ R/2π , as

already in the proof of Lemma 2.7. In particular, dlog zj = dlog rj +
√−1dαj now reads

dlog zj = dlog rj + dlog θj and it holds

(3.2)
∫

S1
dlog θj =

√−1
∫

S1
dαj = 2π

√−1.

Recall that Z intersected with the interior of a codimension one stratum Xρ ∩ X◦
0 ⊂ X◦

0
is given by the zero locus of fρ , the reduction of fb modulo t for any slab b ⊆ ρ ⊂ ρ.
In Construction 2.2 we defined an adapted affine structure on B \ (�2 ∪ A) for A =
μ(Z) the image of Z under the generalized momentum map μ : X◦

0 → B. For a tropical
cycle βtrop on B \ (�2 ∪ A) fulfilling Assumption 2.5 and β the associated n-cycle from
Construction 2.6, we now compute

∫
β
� in the form h + g log t with h, g ∈ C[t]/(tk+1)

following Appendix A.
We first compute the period of � over a general fiber of the momentum map

μ : X◦
0 → B of Proposition 2.1.

Lemma 3.1. — Let v ∈ B be contained in the interior of a maximal cell σ and α = μ−1(v),

viewed as an n-cycle in X◦
0 with the natural orientation. Then, in the sense of finite order period integrals

(Construction A.3),

∫

α

� = (2π
√−1)n ∈ C[t]/(tk+1).
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Proof. — The cycle α is contained in a single chart Ũ1 = Spec Rk
u

of type (Ch I), for
any chamber u ⊆ σ . Using (3.2), we obtain

∫

α

� =
∫

(S1)n

dlog θ1 ∧ · · · ∧ dlog θn = (2π
√−1)n. �

According to Proposition A.6, Lemma 3.1 proves the ambiguity of
∫
β
� up to

multiples of (2π
√−1)n, hence the stated well-definedness of the exponentiated period

integral in Theorem 1.7.
We now turn to the computation of

∫
β
� for β as in (2.10).

3.1. Integration over βi = βe with �i a chart of type I. — Let e be an edge of βtrop in
the interior of a maximal cell σ , with vertices v± and e oriented from v− to v+. As in
Construction 2.6 write ξe = me · ξ̄e with me ∈ N and ξ̄e ∈ �σ primitive. Complete ξ̄e = e1

to an oriented basis e1, . . . , en of �σ . Then the inclusion Zn−1 → �σ defined by e2, . . . , en

induces an identification of Te with U(1)n−1 acting diagonally on (C∗)n−1 with coordi-
nates z2 = ze2, . . . , zn = zen and acting trivially on zξ e . Recall also from Construction 2.6
that βe = β e is defined as the orbit of S(e) under T̃e = Te × Z/meZ, with Z/meZ acting on
zξ e by roots of unity.

According to Definition A.1 and (3.1), it holds

�+
i (�) = dlog zξ̄e ∧ dlog z2 ∧ · · · ∧ dlog zn.

In view of (A.6), we now compute
∫

βi

�+
i (�) =

∫

S(e)×T̃e

dlog zξ e ∧ dlog z2 ∧ · · · ∧ dlog zn

=
∫

S(e)×Te×Z/meZ
dlog zξ e ∧ dlog θ2 ∧ · · · ∧ dlog θn

= (2π
√−1)n−1

∫

S(e)×Z/meZ
dlog zξ e

= (2π
√−1)n−1

me−1∑

ν=0

(
log
(
ενzξ e
(
S(v+)

))− log
(
ενzξ e
(
S(v−)

)))
,

where ε denotes a primitive me-th root of unity. Expanding log(ενzξ e(S(v±)) = log εν +
log zξ e(S(v±)), each term log εν in the sum occurs twice with opposite signs, leaving us
with an me-fold sum of log zξ e

(
S(v+)

)− log zξ e

(
S(v−)

)
. Thus the sum equals the difference

of log zξe = me log zξ̄e at the two endpoints of S(e), that is,

(3.3)
∫

βe

� = (2π
√−1)n−1

(
log zξe

(
S(v+)

)− log zξe
(
S(v−)

))
,

for e oriented from v− to v+.
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3.2. Integration over �v . — We need the following lemma.

Lemma 3.2. — Let μk ⊂ U(1) denote the subgroup of k-th roots of unity. For any two positive

integers n and m, the subsets

A = μm ∪ μn and B = μm+n \ ((μm ∪ μn) ∩ μm+n)

of U(1) = S1 alternate, that is, following the circle, we alternately cross a point from A and B.

Proof. — First assume m = n. Then we have A = {exp(2π
√−1 2k

2m
) | k ∈ Z} and

B = {exp(2π
√−1 2k+1

2m
) | k ∈ Z} and the assertion holds. Next assume m �= n. Set d =

gcd(m, n). We may view the situation as a d-fold cover of the case where m and n are
coprime. As the assertion transfers to the cover, we may assume that gcd(m, n) = 1 and
then μm ∩μn = {1} and lcm(m + n, n) = n(m + n) and lcm(m + n,m) = m(m + n). Hence

μm+n ∩ (μm ∪ μn) = {1},
so in particular A and B have the same number of elements, m + n − 1. Now assume to
the contrary of the assertion that there are consecutive elements in B with no element of
A in between. This means there are integers a, b, c such that

a

m
,

b

n
<

c

m + n
<

c + 1
m + n

<
a + 1

m
,

b + 1
n

.

Multiplying common denominators yields

0 < (a + 1)(m + n) − (c + 1)m, 0 < (b + 1)(m + n) − (c + 1)n,

a(m + n) < cm, b(m + n) < cn.

Plugging the third and fourth inequalities into the first and second, respectively, with
subsequent summation of the resulting equations yields

0 < (a + b + 2)(m + n) − (c + 1)(m + n) < m + n

which has no solution with a, b, c ∈ Z. �

Recall the definition of �v ⊂ μ−1(v) = Hom(�v,U(1)) from Construction 2.6.

Lemma 3.3. — Let v ∈ βtrop be a vertex of valency ν ≥ 3. Then

(3.4)
1

(2π
√−1)n

∫

�v

� =
{

0, ν is even,

1/2, ν is odd.

up to adding integers.
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FIG. 4. — Making a vertex trivalent by the insertion of new edges and a 2-chain (in grey) that deletes one of the new edges:
f2

Proof. By construction, �v is a singular n-chain on the n-torus μ−1(v). The restriction of
� to this torus is dlog θ1 ∧ · · · ∧ dlog θn, which agrees with (2π

√−1)n times the U(1)n-
invariant volume form dvol of total volume 1. Thus the statement concerns the volume
of �v as a fraction of the volume of μ−1(v).

We have
∑

e�v εe,vξe = 0. Set ξj := εej ,vξej for e1, . . . , er an enumeration of the edges
containing v. We decompose v into trivalent vertices via insertion of ν − 3 new edges
f1, . . . , fν−3 meeting the existing edges in the configuration, depicted in Figure 4. Pre-
cisely, we replace v by a chain of new edges f1, . . . , fν−3 such that the ending point of fj
is the starting point of fj+1. Let w1, . . . ,wν−2 denote the vertices in this chain, the indices
arranged so that w1 meets e1, e2, w2 meets e3, w3 meets e4 and so forth, finally wν−2 meets
eν−1, eν. The edge fj is decorated with the section ξ1 + · · · + ξj+1. One checks that at each
vertex wj the balancing condition (2.9) holds. One also checks that the new tropical curve
is homologous to the original one. Indeed, adding boundaries of suitable 2-cycles, we
can successively slide down the edges e3, e4, . . . to w1. In this process the sections along
f1, . . . , fν−3 get modified and when all ej have been moved to the first vertex, the sections
of the fj are all trivial and so we end up in the original setup by setting w1 = v. Since
there is an injection of groups of chains

Cj(Rn,�) → Cj(Rn ×Hom(Zn,U(1))), (c, ξ) �→ c×Hom(Zn/ξ,U(1))

compatible with boundary maps, we conclude that the associated n-cycles to the original
and modified βtrop are homologous as well. Hence

∫

�v

� =
∫

�w1

� + · · · +
∫

�wν−2

� mod (2π
√−1)nZ.

We have reduced the assertion to the case where v is trivalent. So we assume ν = 3 now.
As before, set ξj := εej ,vξej for j = 1,2,3. By the balancing condition (2.9), the saturated
integral span V of ξ1, ξ2, ξ3 has either rank one or two. In either case, we have a product
situation where we can split �v 
 V ⊕ W which yields a splitting of the torus

Hom(�v,U(1)) 
 Hom(V,U(1))× Hom(W,U(1)),
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FIG. 5. — Two Z2-invariant sets of lattice triangles in Z2 ⊗Z R

and �v also splits as �̄v × Hom(W,U(1)). The integral over the invariant volume form
splits similarly with the integral over Hom(W,U(1)) giving a factor of 1. It remains to
treat the case �v = V.

We treat the one-dimensional case first. Let e be a primitive generator of V and
ξj = aje. We have −a3 = a1 + a2. Canceling coincidental points (as these have opposite
orientation) between the multi-sets Â = exp(2π

√−1 1
a1

Z) ∪ exp(2π
√−1 1

a2
Z) and B̂ =

exp(2π
√−1 1

a1+a2
Z), we obtain sets A and B as in the setup of Lemma 3.2. The lemma

implies that �v up to addition of multiples of the fundamental class is homologous to a
union of non-intersecting intervals with the union of endpoints being A ∪ B. This implies
that �v is homologous to the sum of every other interval between the pairs of points in
A ∪ B. We claim that the area of �v is half the area of S1. Indeed, the sets A and B are
both invariant under conjugation κ : z �→ z̄. Moreover, κ takes �v to the closure of its
complement, so �v and κ(�v) have the same area. Thus

∫

�v

dvol = 1
2

∫

S1
dvol = 1

2

up to adding integers.
We next turn to the case where V is two-dimensional. In the universal cover V∗

R =
Hom(V,R) of Hom(V,U(1)), the cycles in Hom(V,U(1)) given by requiring ξj �→ 1 for
j = 1,2,3, respectively, pull back to the infinite, discrete union of distinct straight lines⋃3

j=1(ξ
⊥
j + Z2). Let U ⊂ V∗

R denote the open complement of these lines. We claim that
the pullback �̃v of �v to V∗

R can be taken as the closure in V∗
R of a set of components of

U such that −�̃v is the closure of V∗
R \ �̃v . If this holds then by a similar argument as in

the one-dimensional case we obtain
∫
�v

dvol = 1
2 up to integers.

To see the claim, consider the map of lattices Z2 → V mapping e1 to ξ1 and e2 to
ξ2. By the balancing condition, −e1 − e2 then maps to ξ3. Dually we obtain an inclusion of
lattices V∗ → Z2 of the same index as the sublattice Zξ1 + Zξ2 ⊆ V. Now ξ⊥

j maps to the
lines in directions (0,1), (−1,0) and (1,−1), respectively, with the stated orientations.
Together with their Z2-translations these lines subdivide R2 = Z2 ⊗Z R into triangular
domains, see Figure 5: Z2-translations of the two triangles with vertices (0,0), (1,0),
(0,1) and (1,0), (1,1), (0,1). The first triangle with the natural orientation of R2 and its
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Z2-translations define a Z2-invariant chain A ⊂ R2 with the union of lines as its boundary.
Moreover, multiplication by −1 leads to the other triangle and its Z2-translations. Take
for �̃v ⊂ V∗

R the preimage of A under the map V∗
R → R2. Then �̃v ∪ (−�̃v) = V∗

R and
�̃v ∩ (−�̃v) is the infinite union of lines, as claimed. �

3.3. Integration over βi = βe + βe′ with �i a chart of type II. — Let v be a vertex
of βtrop in the interior of a slab b ⊆ ρ with adjacent edges e, e′ and βi = βe + βe′ . We
use the notation from Construction 2.6 and in addition denote v−, v+ the vertices of
e, e′ different from v. The chart �i was defined in the proof of Lemma 2.7 from Rk

b
=

C[�ρ][Z̃+, Z̃−, t]/(Z̃+Z̃− − z−mv fbtκρ , tk+1) by substituting z = Z̃+, w = Z̃−/(z−mv fb). De-
note by ζ̃ ∈ �σ the exponent with Z̃+ = c+zζ̃ for some c+ ∈ C∗ as discussed in Con-
struction 2.2 and Remark 2.3. Let e1, . . . , en−1 ∈ �ρ be such that e1, . . . , en−1, ζ̃ ∈ �σ is
an oriented basis. Differing from the choice in Construction 2.6 and Lemma 2.7, we
now take ζ̃ as the last element of the basis to turn our cycles into the form required in
Appendix A. In these coordinates, the logarithmic n-form � reads

� = dlog z1 ∧ · · · ∧ dlog zn−1 ∧ dlog Z̃+

= −dlog z1 ∧ · · · ∧ dlog zn−1 ∧ dlog Z̃−.

Since fb does not depend on Z̃+, Z̃−, the pull-back of � to Ũi equals

�∗
i (�) = dlog z1 ∧ · · · ∧ dlog zn−1 ∧ dlog z

= −dlog z1 ∧ · · · ∧ dlog zn−1 ∧ dlogw.

Thus in (A.7), all the coefficients gr, hr of the Laurent expansion vanish and we have

�+
i (�) = 0, res�i

(�) = dlog z1 ∧ · · · ∧ dlog zn−1.

Recall from Lemma 2.7 that βe = β e, while βe′ = β e′ − �e′ is homologous relative to
its boundary to the chain β̂e′ defined in (2.16). Let us first assume ξe /∈ �ρ . Applying
Formula (A.10) then gives

(3.5)
∫

βi

� = (−1)n−1
(∫

Te

dlog z1 ∧ · · · ∧ dlog zn−1

)(
κρ log t − log b − log a

)
.

Here the terms with b = w
(
S(v+)

)
and a = z

(
S(v−)

)
adjust for z(S(e)) and w(S(e′)) to

be curves not starting or ending at 1, see Remark A.4. The factor (−1)n−1 comes from
the fact that we oriented βi as S(e)× Te rather than as Te × S(e) as done in the appendix.
With ξe /∈ �ρ we have ξe = ξ e = ±ζ̃ by (βIII) in Assumption 2.5. Hence, up to orientation,
Te acts as the diagonal U(1)n−1 on (z1, . . . , zn−1). Thus by Lemma 3.1 in dimension n−1,
the integral over Te equals ±(2π

√−1)n−1. To determine the sign recall that we oriented
Te from an adapted oriented basis of �σ with first element ξ e = ξe. Placing ξ e at the last
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place rather than the first changes the orientation of Te by (−1)n−1, canceling the sign
factor in (3.5). Finally, ξe = ±ζ̃ with the sign positive iff ξe points into the maximal cell
σ containing e. Thus denoting by ďe ∈ �̌σ the generator of �⊥

ρ 
 Z with 〈ďe, ζ̃ 〉 = 1 we
have

(3.6) ξe = ξ e = 〈ďe, ξ e〉 · ζ̃ .
With this discussion, (3.5) yields the following:

(3.7)
∫

βi

� = (2π
√−1)n−1〈ďe, ξe〉

(
κρ log t − logw

(
S(v+)

)− log z
(
S(v−)

))
.

The coordinate z = Z̃+ maps to sσρ(ζ̃ )z
ζ̃ under the generization map Rk

b
→ Rk

u
. Using

(3.6) we can thus rewrite (3.7) for later use as

(3.8)

1

(2π
√−1)n−1

∫

βi

� =〈ďe, ξe〉
(
κρ log t − logw

(
S(v+)

))

− log sσρ(ξe) − log zξe
(
S(v−)

)
.

In the other case, ξ ∈ �ρ , our chain βi is of type (ii) in (Cy II) of Construction A.3 and∫
βi
� = 0 by Formula (A.10). Thus (3.8) also holds in this case because 〈ďe, ξe〉 = 0.

3.4. Integration over a slab add-in βi = �e′ . — Let v be a vertex of βtrop mapping
to a slab b ⊆ ρ, with adjacent edges e, e′. For the following computation we adopt the
notation of the construction of a slab add-in �e′ in Step IV of the proof of Lemma 2.7.
Formula (2.21) gives the parametrization of �e′ with respect to coordinates ẑ1, . . . , ẑn of
Hom(�σ ′,C∗), the reduction modulo t of the relevant chart Spec Rk

u′ , where u′ is the
chamber containing the image of e′:

[0,1] × Te′ −→ Hom(�σ ,C∗),

(θ, s) �−→ (γ (s, θ) · θ1b1/c1, θ2a2, . . . , θnan

)
.

The map γ : [0,1] × Te′ → C∗ is a differentiable homotopy with

(3.9) γ (0, θ) = (f̂ρ/ẑmv )(θa), γ (1, θ) = a1c1/b1.

Since the chart �i for βi is of type (Ch I) of Construction A.10, the first case of Defini-
tion A.1 gives

�+
i � = dlog ẑ1 ∧ · · · ∧ dlog ẑn.

If ξe ∈ �ρ , the period integral
∫

[0,1]×Te′
�+

i � involves two-dimensional integrals over level
sets of z2, . . . , zn, see Figure 3. Since ẑ2, . . . , ẑn differ from z2, . . . , zn only by constants,
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integrating �+
i (�) over the corresponding annulus [0,1] × S1 ⊆ [0,1] × Te′ leads to a

zero-form. Hence
∫

[0,1]×Te′
�+

i � vanishes. In the other case ξe /∈ �ρ , the torus Te′ acts
trivially on z1 and the restriction map

Te′ −→ U(1)n−1, θ �−→ (θ2, . . . , θn)

is an isomorphism. Since ẑ1 = zζ̃ ′
with ζ̃ ′ as in (2.15), this isomorphism is orientation

preserving if ξe points into the same maximal cell as ζ̃ ′, and then ζ̃ ′ = ξe. In terms of
ďe ∈ �̌σ used in (3.6) this is the case if and only if 〈ďe, ξe〉 = −1. We can now compute

(3.10)

∫

�e′
� =

∫

[0,1]×Te′
�+

i (�)

= −〈ďe, ξe〉
∫

[0,1]×U(1)n−1
∂s logγ (s, θ) ds ∧ dlog θ2 ∧ · · · ∧ dlog θn

= −〈ďe, ξe〉
∫

U(1)n−1

(
logγ (1, θ) − logγ (0, θ)

)
dlog θ2 ∧ · · · ∧ dlog θn

= −〈ďe, ξe〉(2π
√−1)n−1

(
log(a1c1/b1) −R

(
z−mv fρ, v)

)
.

As in (3.8) the sign −〈ďe, ξe〉 adjusts the orientation of Te′ with the orientation of U(1)n−1.
Note that this factor renders the formula also correct in the case ξe ∈ �ρ . The last equality
follows from (3.9) and the definition of the complex Ronkin function in (1.8), see §1.3.2.
The term a1c1/b1 ∈ C∗ is the constant endpoint of the homotopy γ defined in (2.20). In
the notation used there, provided ξe /∈ �ρ , we have

a1 = ẑ1(S(v+)) = z−〈ďe,ξe〉ξe′
(
S(v+)

)
, b1 = w

(
S(v+)

)
,

c1 = sσ ′ρ(ζ̃
′) = sσ ′ρ(ξe′)

−〈ďe,ξe〉.

Thus we can write (3.10) more intrinsically as

(3.11)

1

(2π
√−1)n−1

∫

�e′
� =〈ďe, ξe〉

(
R(z−mv fρ, v) + logw

(
S(v+)

))

+ log zξe′
(
S(v+)

)+ log sσ ′ρ(ξe′)

Note that this formula also holds if ξe ∈ �ρ and that the term w
(
S(v+)

)
appears in (3.8)

with opposite sign.

3.5. Interpolation between charts. — There are two cases where we work with different
charts at a vertex v of β . In the first case, v lies on a wall p and the two edges e, e′

adjacent to v according to (βI) are contained in different chambers u, u′. In the second
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case, v is adjacent to an edge intersecting a slab. In these cases there is a potentially non-
trivial contribution of the interpolation term

∫
[0,1]×γ

μ
i
�+

ij (�) in (A.9). In all other cases,
intersecting chains βi and βj lie in the interior of the same chamber and hence �i = �j .
We now determine the contribution of the interpolation term in the remaining cases.

Let us first treat the case that v lies on a wall p separating chambers u, u′. Let �i :
Ũi → X◦

k , �j : Ũj → X◦
k be the charts for the adjacent edges e ⊆ u, e′ ⊆ u′, respectively,

as defined in the proof of Lemma 2.7. Then Ũi = Ũj = Spec C[t]/(tk+1)[�σ ] and �j =
�i ◦ !ij with !ij defined by the wall crossing isomorphism

(3.12) θp : Rk
u
−→ Rk

u′, zm �−→ f
〈ďp,m〉
p zm.

Here ďp ∈ �̌σ is the generator of �⊥
p


 Z evaluating positively on tangent vectors point-
ing from p into u. Writing fp = 1+ tf̃p, the homotopy �ij : [0,1]×Ui ×Ok → X◦

k between
�i and �j of (A.5) can be defined by the family of C-algebra homomorphisms

θp(s) : Rk
u
−→ Rk

u′, zm �−→ (1 + stf̃p)
〈ďp,m〉zm,

s ∈ [0,1]. Let e1, . . . , en be an oriented basis of �σ with 〈ďp, e1〉 = 1 and e2, . . . , en spanning
�p. Then in the corresponding coordinates z1, . . . , zn, the function f̃p does not depend
on z1, while θp(s)(z1) = (1 + stf̃p)z1 and θp(s)(zμ) = zμ for μ = 2, . . . , n. Hence

(3.13) �+
ij (�) = (dlog z1 + ∂s log(1 + stf̃p)ds

)∧ dlog z2 ∧ · · · ∧ dlog zn.

With ai = zi(S(v)) the coordinates of S(e) over v, integrating out s, we obtain
∫

[0,1]×Te

�+
ij (�) =

∫

Te

log
(
1 + tf̃p(t, z2, . . . , zn)

)
dlog z2 ∧ · · · ∧ dlog zn(3.14)

=
∫

Te

log
(
1 + tf̃p(t, θ2a2, . . . , θnan)

)
dlog θ2 ∧ · · · ∧ dlog θn

Expanding the logarithm yields a finite sum of constant multiples of t�θ
�2
2 . . . θ �n

n with
�, �2, . . . , �n ∈ Z and �μ �= 0 for at least one μ. If ξe ∈ �p, then similar to the situation
along codimension one cells discussed in Construction 2.6, the action of Te on (z2, . . . , zn)

has a kernel and the integral in (3.14) vanishes for trivial reasons. In the other case ξe /∈
�ρ , the torus Te acts on (z2, . . . , zn) via a finite covering Te → U(1)n−1 and the integral
vanishes because

∫
S1 θ

�μ
μ dlog θμ = 0 for an index μ with �μ �= 0. Hence in any case, there

is no interpolation contribution from changing chambers at walls.

In the second case, βi = βe + βe′ maps to a chart of type (Ch II). Let e, e′ map to
chambers u,u′ separated by the slab b containing the common vertex v of e and e′. As
in the construction of βi in Lemma 2.7, assume β is oriented from e to e′ and hence e′
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attaches to the non-trivial slab add-in �e′ . Then βe was constructed with the toric co-
ordinate z = Z̃+ and the chart Ũi is compatible with Rk

u
in that the localization map

Rk
b

→ Rk
u

is toric.11 In particular, both charts provide the same local product decompo-
sition with respect to t and hence the change of coordinates map !ij in Construction A.3
is the identity. Thus there is also no interpolation contribution from this boundary of βi .

The interesting change of coordinates happens between βe′ and the slab add-in �e′ .
According to Construction A.3 we need to interpolate between the chart �i : Ũi → X◦

k ,
modeled on C[�ρ][z,w, t]/(zw − tκi , tk+1) and used for βe′ , and the chart �j : Ũj → X◦

k ,
modeled on Rk

u′ and used for �e′ . In (2.17) this change of coordinates has already been
made explicit, by using toric coordinates ẑ1, . . . , ẑn for Ũj and w, z2, . . . , zn for Ũi \ (w =
0). In the notation of Construction A.3 and of (2.17)(2.18), the pull-back by !ij : Uij ×
Ok → Uij × Ok is the map

w �−→ c1ẑ1/(ẑ
−mv f̂b), z2 �−→ c2ẑ2, . . . , zn �−→ cnẑn,

while the map denoted “id” in the appendix has the same form, but with f̂b replaced
by the reduction fρ modulo t. Indeed, “id” is defined as the map Uij × Ok → Uij × Ok

induced by the identity map of Uij as a subset of X◦
0 and extended by the product structure

in the charts Ũi and Ũj , respectively. Writing f̂b = f̂ρ + tgb, define for s ∈ [0,1],

f̂b(s) = f̂ρ + stgb.

Then the family of maps !ij(s), s ∈ [0,1], defined by

(3.15) w �−→ c1ẑ1/(ẑ
−mv f̂b(s)), z2 �−→ c2ẑ2, . . . , zn �−→ cnẑn

is a homotopy connecting id to !ij . Thus we can take �ij(s) = �
(j)

i ◦ !ij(s) as the homo-
topy between the two restrictions of charts �

(j)

i = �i|Uij×Ok
and �

(i)

j = �j|Uij×Ok
. Since

ẑ1, . . . , ẑn was defined by an oriented basis e1 = ζ̃ ′, e2, . . . , en of �σ ′ , replacing ẑ1 by
w = c1ẑ1/(ẑ

−mv f̂b) shows �+
i (�) = dlogw ∧ dlog z2 ∧ · · · ∧ dlog zn. Pulling back by (3.15)

then gives

�+
ij (�) = (dlog ẑ1 − ∂s log(ẑ−mv f̂b(s)) ds

)∧ dlog ẑ2 ∧ · · · ∧ dlog ẑn.

Similar to (3.11), the interpolation contribution to the period integral is now computed
as

∫

[0,1]×Te′
�+

ij (�)

11 With non-trivial gluing data the localization map Rk
b

→ Rk
u

identifies monomials only up to scale, but for this
argument it only matters that the map commutes with the torus action.
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=
∫

Te′

(− log(ẑ−mv f̂b) + log(ẑ−mv f̂ρ)
)

dlog ẑ2 ∧ · · · ∧ dlog ẑn

= 〈ďe, ξe〉
∫

U(1)n−1

(
log(ẑ−mv f̂b) − log(ẑ−mv f̂ρ)

)
dlog θ2 ∧ · · · ∧ dlog θn(3.16)

= 〈ďe, ξe〉(2π
√−1)n−1

(
R(z−mv fb, v) −R(z−mv fρ, v)

)
.

As in (3.8), a factor −〈ďe, ξe〉 was inserted for the second equality to adjust for the ori-
entation of Te′ and for the non-trivial kernel of the map to U(1)n−1 in case ξe ∈ �ρ ,
respectively.

Note that the Ronkin function for z−mv fρ in this result cancels with the contribution
(3.11) from the slab add-in, thus only leaving the Ronkin function for z−mv fb to contribute
to the global period integral.

3.6. Proof of Theorem 1.7. — To compute 1
(2π

√−1)n−1

∫
β
�, it remains to take the sum

over all the computed terms. We had contributions from βe for edges disjoint from slabs
(3.3), from �v for a vertex of higher valency (3.4), from βi = βe + βe′ for pairs of edges
crossing a slab (3.8), from slab add-ins �e′ (3.11), and from interpolation terms (3.16).
Note that in view of Lemma 3.1 and Proposition A.5 the result is only well-defined up to
adding integral multiples of 2π

√−1.
First, for a vertex of valency val(v) ≥ 3 the chain �v contributes val(v) ·π√−1 up

to adding integral multiples of 2π
√−1. But a graph without one-valent vertices can be

built inductively by successively connecting two vertices (possibly equal) by an edge. Each
such addition increases

∑
v val(v) by 2. Thus

∑
v

∫
�v

� is a multiple of (2π
√−1)n and

hence can be omitted.
The other terms are easiest to gather according to the types of vertices. For a

vertex v in the interior of a maximal cell σ and each edge e with vertex v, we have a
contribution ± log zξe(S(v)) from (3.3), (3.8) or (3.11). The sign εe,v = 1 is positive if e is
oriented towards v and εe,v = −1 otherwise. By the balancing condition (2.9), the sum
over all these terms vanishes:

∑

e�v

log zεe,vξe = log z
∑

e�v εe,vξe = 0.

Collecting the remaining terms now gives

(3.17)

1

(2π
√−1)n−1

∫

β

�

=
∑

v

(
〈ďe, ξe〉R(z−mv fb, v) + log

sσ ′ρ(ξe′)

sσρ(ξe)
+ 〈ďe, ξe〉 · κρ log t

)
.

The sum runs over all vertices v of βtrop mapping to a slab, and in the sum e, e′, b, ρ
denote the corresponding incoming and outgoing edges, the slab containing v and the
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corresponding codimension one cell of the barycentric subdivision, respectively. The sum
over the terms containing the gluing data gives log〈s, βtrop〉. The sum involving κρ gathers
the terms involving res�i

(α) in (A.9). We rewrite the coefficient of log t thus obtained as
∑

〈ďe, ξe〉 · κρ = 〈c1(ϕ),βtrop〉.
Thus (3.17) can be written more intrinsically as

(3.18)

1

(2π
√−1)n−1

∫

β

�

= log〈s, βtrop〉 + 〈c1(ϕ),βtrop〉 · log t +
∑

v

〈ďe, ξe〉R(z−mv fb, v).

Exponentiating finally gives the expression for exp
(
(2π

√−1)−(n−1)
∫
β
�
)

claimed in The-
orem 1.7.

4. Analyticity of formal toric degenerations

As an application of the period computations we prove analyticity of the canonical
toric degenerations constructed in [GS11a] in the case that (B,P) has simple singular-
ities. Simple singularities are locally indecomposable from the affine geometric point of
view and they give rise to locally rigid logarithmic singularities. We won’t need any details
of simple singularities in this paper and refer to [GS06], Definition 1.60 for the formal
definition and to [GS10], §2.2, for the local algebraic description and deformation theory.
For (B,P) with simple singularities and a choice of multivalued, strictly convex piece-
wise affine function ϕ on B, it has been shown in [GS11a] and [GHS], Theorem A.2,
that there is a canonical formal toric degeneration

(4.1) X−→ S= Spf
(
A�t�
)
.

Here A is a Laurent polynomial ring, so the base of this family is the product of an
algebraic torus with Spf

(
C�t�
)
.12 If ∂B �= ∅, by [GHS], Remark 2.18 and Remark 4.13,

the family in (4.1) comes equipped with a divisor D ⊂ X that is flat over S.
To describe the ring A, recall from [GS06], Theorem 5.4, that for simple singu-

larities, the affine cohomology group13 H1(B, ι∗�̌ ⊗ C∗) is canonically in bijection with
the set of isomorphism classes of log schemes (X0,MX0) over the standard log point with

12 Assuming projectivity of the central fiber, Theorem A.2 of [GHS] constructs a projective scheme over a closed
subspace Spec

(
AP �t�

)⊆ Spec
(
A�t�
)
. Our analyticity holds more generally in the formal setup, only requiring properness

of the map in (4.1).
13 Note that here we have ι∗�̌ rather than ι∗� as in loc.cit. because we work in the cone picture rather than in

the fan picture, that is, for us a polyhedron τ ∈ P indexes a closed stratum of X0 isomorphic to the toric variety with
momentum polytope τ .
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associated discrete data (B,P, ϕ). Here ι : B0 → B is the inclusion of the regular locus
and �̌ = Hom(�,Z) is the sheaf of integral cotangent vectors on B0.14 The bijection
works by identifying the set of isomorphism classes of log schemes with the set of equiv-
alence classes of lifted, normalized gluing data, which in turn can be identified with the
mentioned affine cohomology group. The base ring is

A = C[H1(B, ι∗�̌)∗],
the Laurent polynomial ring over H1(B, ι∗�̌)∗ = Hom(H1(B, ι∗�̌),Z). Thus, Spec A
parametrizes choices of lifted, normalized gluing data.

The construction of the family (4.1) depends on the choice of a splitting σ0 of the
quotient map

qf : H1(B, ι∗�̌) −→ H1(B, ι∗�̌)f = H1(B, ι∗�̌)/H1(B, ι∗�̌)t

by the torsion submodule H1(B, ι∗�̌)t ⊆ H1(B, ι∗�̌). Such a splitting σ0 is unique only up
to a homomorphism H1(B, ι∗�̌)f → H1(B, ι∗�̌)t . Thus, if H1(B, ι∗�̌) has non-trivial tor-
sion, there are finitely many such canonical families, with any two becoming isomorphic
after base change to a common finite étale cover. We fix σ0 and the resulting canonical
family throughout this chapter, with an additional technical requirement imposed on σ0

in (4.11) below.
If H2(B, ι∗�̌) has torsion, the set of gluing data H1(B, ι∗�̌⊗C∗) is a disjoint union

of torsors for H1(B, ι∗�̌) ⊗ C∗, with only one of them containing trivial gluing data.
Indeed, the construction of the family also depends on the choice of a possibly non-trivial
element s0 ∈ H1(B, ι∗�̌⊗C∗), which selects one of these torsors. If H2(B, ι∗�̌) is torsion-
free, trivial gluing data s0 = 1 is a canonical choice. In any case, we fix s0 throughout.

As a further ingredient in this section, recall from [GS06], Definition 1.45 (using
the notation of [GHS], §A.2) that the short exact sequence

(4.2) 0 −→ ι∗�̌ −→ P̆L(B) −→ ˘MPA(B) −→ 0,

gives rise to the connecting homomorphism

c1 : ˘MPA(B) −→ H1(B, ι∗�̌).

This homomorphism sends a multivalued piecewise affine function ϕ to its characteristic
class c1(ϕ). Dually, we have

(4.3) c∗
1 : H1(B, ι∗�̌)∗ −→ ˘MPA(B)∗.

14 In the case with simple singularities, the singular locus can be taken to be the union of the (n − 2)-cells of the
barycentric subdivision of P not containing barycenters of vertices or of maximal cells.
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The trace homomorphism ι∗�⊗ ι∗�̌ → Z combined with the sheaf homology-cohomo-
logy pairing gives a bilinear map

(4.4) 〈 , 〉 : H1(B, ι∗�̌) ⊗ H1(B, ι∗�) −→ Z.

The induced homomorphism

(4.5) H1(B, ι∗�) −→ H1(B, ι∗�̌)∗, βtrop �−→ β∗
trop,

is an isomorphism over Q by the following result from [Ru20], Theorem 3.

Theorem 4.1. — Let (B,P) be an oriented simple tropical manifold. Then (4.4) tensored with

Q is a perfect pairing of Q-vector spaces.

The composition of c∗
1 from (4.3) with the map from (4.5) and evaluation on ϕ

yields the homomorphism

(4.6) H1(B, ι∗�) −→ Z, βtrop �−→ 〈c1(ϕ),βtrop〉,
with 〈c1(ϕ),βtrop〉 given explicitly after (1.6). By Proposition 2.8, this map measures the
monodromy of the n-cycle associated to βtrop in the base space of the universal family
about t = 0. Denote by

(4.7) H1(B, ι∗�)+ ⊆ H1(B, ι∗�)

the preimage of N ⊂ Z under (4.6). If c1(ϕ) �= 0, this subset is a half-space and in any
case, H1(B, ι∗�)+ spans H1(B, ι∗�). If B is compact without boundary, c1(ϕ) �= 0 holds
always:

Proposition 4.2. — Let (B,P, ϕ) be a compact polarized affine manifold with singularities of

the affine structure disjoint from the vertices of P . We have c1(ϕ) �= 0 in each of the following situations,

(i) H1(B,Q) = 0 and ∂B is again an affine manifold (including ∂B = ∅),

(ii) (B,P) is simple and ∂B = ∅.

Proof. — First assume (i), so in particular H1(B,Z) is torsion. For now, assume
that actually H1(B,Z) = 0. By chasing the long exact cohomology sequences for the
third row and second column of the diagram in [GS06], Definition 1.45, and taking
into account H1(B,Z) = 0, it follows that (1) c1(ϕ) ∈ H1(B, ι∗�̌) is the image of a class
c̃1(ϕ) ∈ H1(B,Aff (B,Z)) with Aff (B,Z) the sheaf of integral affine functions on B,
(2) c1(ϕ) = 0 implies c̃1(ϕ) = 0 and (3) if c̃1(ϕ) = 0 then ϕ can be represented by a
piecewise-affine function. Thus under the assumptions, if c1(ϕ) = 0 there is a piecewise
affine function ϕ̃ representing ϕ. If, more generally, H1(B,Z) has torsion we can still
run the same argument for some suitable multiple kϕ with k > 0 which suffices for the
reasoning in the next paragraph.
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Since B is compact there is a point in B where ϕ has maximal value, and ϕ being
piecewise affine, this point can be taken to be a vertex. By assumption, there is an affine
chart near this vertex, yielding a strictly convex, piecewise affine function on the fan
defined by P in this chart. But such a function cannot have a maximum at the origin
since, by assumption (i), the origin is contained in the interior of a straight line segment.
Thus c1(ϕ) �= 0.

Now assume (ii). The case H1(B,Q) = 0 is covered by (i), so assume H1(B,Q) �= 0.
We claim that H0(B, ι∗�) �= 0. In fact, the ranks of H0(B, ι∗�) and of H1(B,Z) agree
with the Hodge numbers h1,0, h0,1 of a projective scheme Xη over C((t)), the generic fiber
of the canonical degeneration over C�t� associated to (B,P, ϕ) with trivial gluing data
([GHS], Proposition A.3, [GS10], Theorem 3.22 and Theorem 4.2, with a gap closed
in [FFR], Theorem 1.10). Thus h1,0 = h0,1 provided Xη is smooth. In general, Xη has
orbifold singularities and the result follows from [St77], (1.5) and (1.6) (iii), by base change
to the algebraic closure K of C((t)), noting that K is isomorphic to C as an algebraically
closed field extension of Q of the same cardinality. Let ξ ∈ H0(B, ι∗�) \ {0}. Assuming
c1(ϕ) = 0, a similar diagram chase as above yields a section ϕ̂ ∈ H0(B,PL/Z). For each
maximal cell σ , denote by ασ the cotangent vector defined by the slope of ϕ̂|σ . Let σ

be a maximal cell with ∇ξ ϕ̂ = 〈ασ , ξ〉 maximal. Then σ has a facet where ξ is outward-
pointing to another maximal cell σ ′ and the convexity of ϕ̂ leads to the contradiction
〈ασ , ξ〉 < 〈ασ ′, ξ〉. �

Remark 4.3. — If (B,P, ϕ) is a regular subdivision of a lattice polytope, viewed
as an integral affine manifold without singularities, then H1(B, ι∗�̌) = 0, so in particular
c1(ϕ) = 0. We may call this the purely toric case and then the resulting family (4.1) is trivial
away from t = 0, so this case is not very interesting anyway. However, if one additionally
straightens the boundary of B by trading corners with affine singularities, Case (i) of
Proposition 4.2 then shows c1(ϕ) �= 0. While the family could then still be trivial outside
t = 0, we expect that at least the divisor D ⊂ X varies non-trivially. The simplest example
here is P2 with D a toric degeneration of elliptic curves—the j-invariant of the elliptic
curve varies with t, see [GHS], Example 6.2.

From now on, we restrict to the case c1(ϕ) �= 0. Here is the main result of this
section.

Theorem 4.4. — Let (B,P, ϕ) be a compact orientable polarized integral affine manifold

with simple singularities and c1(ϕ) �= 0 and either ∂B = ∅ or ∂B itself an affine manifold. Denote

by X → S = Spf
(
A�t�
)

the associated canonical toric degeneration from (4.1). Then for every closed

point x = (a,0) ∈ Spec
(
A[t]) there exists an open neighborhood U ⊂ Spec(A)an of a, and a proper,

flat analytic family

Y −→ U × D,

with D a disk and with completion at x isomorphic over S to the completion of X →S at x.



PERIOD INTEGRALS FROM WALL STRUCTURES 47

Remark 4.5. — In the non-orientable case one can take the orientable double cover
and study the Z/2-quotient over the Z/2-invariant locus in S.

Combining this result with Theorem 1.7, we obtain monomial period integrals. To
state this result, denote by sm ∈ A the Laurent monomial associated to m ∈ H1(B, ι∗�̌)∗

as well as the corresponding holomorphic function on Spec(A)an or on Spec
(
A[t])

an
.

Corollary 4.6. — In the situation of Theorem 4.4, let βu ∈ Hn(Xu,Z), u ∈ U × D, be a

family of cycles in the fibers of Y → U × D constructed from a tropical cycle βtrop ∈ H1(B, ι∗�),

well-defined up to homology and up to adding multiples of the family of vanishing cycles αu. Denote by �

the relative holomorphic n-form on Y with
∫
α
� = (2π i)n. Then

exp
(

1

(2π
√−1)n−1

∫

βu

�

)

= s−β∗
trop · t〈c1(ϕ),βtrop〉,

holds as an equality of meromorphic functions on U × D, with β∗
trop introduced in (4.5). If βtrop ∈

H1(B, ι∗�)+ then both sides are holomorphic.

Proof. — The formula follows readily by applying Proposition A.6 and Theorem 1.7
to the reductions modulo tk+1 of Y → U×D from Theorem 4.4 and letting k → ∞. The
term R(βtrop) does not appear since the criterion of Proposition 1.6 holds for all slab
functions thanks to the normalization condition in the smoothing algorithm, see §1.4.2
and [GS11a], §3.6. The sign in s−β∗

trop differs from the sign in Theorem 1.7 due to opposite
sign conventions in [GHS] and [GS11a], as discussed in [GHS], §A.1. �

The proof of Theorem 4.4 requires several preparations and steps, which will be
put together only at the end of this section.

4.1. The Gm-action on the canonical family. — Let βtrop be a tropical cycle with
〈c1(ϕ),βtrop〉 = 0. Then Theorem 1.7 applied to the reduction modulo tk+1 and taking
k → ∞ gives

(4.8) exp
(

1

(2π
√−1)n−1

∫

β

�

)

= s−β∗
trop

for the corresponding period integral of X → S. Thus such period integrals produce
the pull-back of a Laurent monomial in A = C[H1(B, ι∗�̌)∗] via the projection S =
Spf
(
A�t�
)→ Spec A. The exponents of monomials thus obtained form the sublattice

(4.9) K∗ = {β∗
trop ∈ H1(B, ι∗�̌)∗

∣
∣βtrop ∈ H1(B, ι∗�), 〈c1(ϕ),βtrop〉 = 0

}

of c1(ϕ)
⊥ ⊂ H1(B, ι∗�̌)∗. Theorem 4.1 implies that K∗ ⊆ c1(ϕ)

⊥ has full rank. Hence
the period integrals of the form (4.8) generate the coordinate ring of a finite quotient
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(isogenous) torus Spec
(
C[K∗]) of Spec

(
C[c1(ϕ)

⊥]). Since c1(ϕ) �= 0 by hypothesis, these
tori have dimension one less than dim A. The explanation for the missing dimension
is that the action of the one-dimensional subtorus Gm ⊆ Spec(A) defined by c1(ϕ) ∈
H1(B, ι∗�̌) extends to an action on X → Spf

(
A�t�
)
, possibly after a finite base change:

Proposition 4.7. — There exists a finite index sublattice H ⊕ F ⊆ H1(B, ι∗�̌) containing

c1(ϕ) such that the pull-back

X̃→ S̃= Spf
(
Ã�t�
)

of X → S = Spf
(
A�t�) by the induced isogeny of tori Spec Ã → Spec A, Ã = C[H∗ ⊕ F∗], is

equivariant for a free Gm-action acting with weight 1 on t. The Gm-action on Spec Ã is defined by the

Z-grading given by evaluation at c1(ϕ):

deg sm = m
(
c1(ϕ)
)
, m ∈ H∗ ⊕ F∗.

Proof. — The group action is defined in [GHS], §A.3 with a universal choice of
piecewise linear function ϕ̆, taking kinks in a universal monoid Q. The monoid Q is
the toric monoid with Hom(Q,Z) the group ˘MPA(B) of multivalued piecewise affine
functions on B and such that Hom(Q,N) is the submonoid of such functions with non-
negative kinks. Our piecewise affine function ϕ is the composition of ϕ̆ with a homo-
morphism h : Q → N. This universal point of view produces a canonical family over
Spf
(
A�Q�

)
, and our family is obtained15 by base change via the homomorphism of C-

algebras

(4.10) A�Q� −→ A�t�

defined by h.
The group action in [GHS], Proposition A.13, has character lattice L∗ for L ⊆

˘MPA(B) a complement to the kernel of c1 : ˘MPA(B) → H1(B, ι∗�̌), up to finite index.
The lattice L has to be chosen in such a way that the isomorphic image H = c1(L) ⊆
H1(B, ι∗�̌) lies in the image of the splitting σ0 ([GHS], Lemma A.12). We now assume
that σ0 has been chosen in such a way that

(4.11) c1(ϕ) ∈ imσ0.

This is possible without restriction because any two choices lead to étale locally isomor-
phic families X → S. With this assumption we can also choose L in such a way that
ϕ ∈ L. Going over to a sublattice, we may also assume that ϕ is primitive as an element of
L. The construction in [GHS] then provides a finite index sublattice H⊕F of H1(B, ι∗�̌),

15 The universal construction also involves a choice of splitting σ0 of qf : H1(B, ι∗�̌) → H1(B, ι∗�̌)f . We assume the
same σ0 as in the construction of X → Spf

(
A�t�
)

above has been chosen.
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thus a finite unramified ring extension Ã = C[H∗ ⊕ F∗] of A, or geometrically an isogeny
Spec Ã → Spec A of tori. By Proposition A.14 in [GHS], the algebraic torus Spec

(
C[L∗])

acts on the pull-back of the universal family after the corresponding base change by

(4.12) S̃= Spf
(
Ã�Q�

)−→S = Spf
(
A�Q�

)
.

The action is given by the following L∗-grading on monomials. For exponents in Q ⊂
˘MPA∗, the grading is the dual of the inclusion L → ˘MPA, while for monomials in Ã =

C[H∗ ⊕ F∗], the grading is the dual of the composition

L
c1−→ H −→ H ⊕ F.

Now since ϕ ∈ L we can compose these gradings with the dual L∗ → Z of multiplication
with ϕ to obtain an induced Z-grading on Ã�Q�. The composition

Q −→ L∗ −→ Z

defining the Z-grading on Q is given by evaluating at ϕ ∈ ˘MPA, so agrees with the homo-
morphism of monoids h inducing (4.10). Combining with (4.12), we see that the change
of base morphism

Spf
(
Ã�t�
)→ Spf

(
Ã�Q�

)

is equivariant with respect to the inclusion of tori Gm → Spec
(
C[L∗]). The induced

Gm-action then also lifts to the pull-back X̃ → Spf
(
Ã�t�
)

of our family as claimed. The
statements on the weights of the Gm-action are immediate from our construction. �

Remark 4.8. — Since ϕ ∈ L is primitive, so is c1(ϕ) in the isomorphic image H =
c1(L) ⊆ H1(B, ι∗�̌) of L. Thus there exists a splitting H∗ = Z⊕ H̄∗, with H̄∗ the image of
c1(ϕ)

⊥ under the map H1(B, ι∗�̌)∗ → H∗ dual to the inclusion of H. Then the Z-grading
on H∗ ⊕ F∗ = Z ⊕ H̄∗ ⊕ F∗ is given by projection to the first factor. This implies that we
have a Gm-equivariant product decomposition

(4.13) X̃= Gm × X̄−→ S̃ = Gm × S̄

of the family, with S̄ = Spf
(
Ā�t�
)
, Ā = C[H̄∗ ⊕ F∗], and Gm acting by multiplication on

the first factor and trivially on X̄ and S̄. Note that this product decomposition depends
on the splitting H∗ = Z⊕H̄∗, which is only unique up to changing the embedding of Z by
an element of H̄∗. We fix one such choice from now on and denote the ring epimorphism
induced by the projection H∗ = Z ⊕ H̄∗ → H̄∗ to the second factor by

(4.14) χ : Ã = C[H∗ ⊕ F∗] −→ Ā = C[H̄∗ ⊕ F∗].
The corresponding morphism Spf

(
Ā�t�
)→ Spf

(
Ã�t�
)

identifies S̄ with the slice {e} ×
S̄ ⊂ S̃ for e ∈ Gm the unit point. The Gm-action acts transitively on the set of slices
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{λ} × S̄⊂ S̃. Choosing λ appropriately, we can therefore assume w.l.o.g. that a lift ā of a

to the finite cover S̃ →S lies in the slice S̄⊂ S̃.
To prove Theorem 4.4 it is therefore enough to prove the existence of an analytic

family Ȳ → Ū × D with completion at (ā,0) isomorphic to the completion of X̄ → S̄

at ā. Indeed, (4.13) is the base-change of X̄ → S̄ by the completion at t = 0 of the C∗-
invariant map

(4.15) Spec(Ā)an × C∗ × C −→ Spec(Ā)an × C, (s, λ, t) �−→ (s, λ−1t).

Thus we can construct Y → U × D by base change of Ȳ → Ū × D with the restriction
of (4.15) to an appropriate neighborhood of (ā,1,0).

4.2. Analytic approximation with monomial period functions. — According to Remark 4.8,
it suffices to prove local analyticity of the slice X̄ → S̄ of the discussed Gm-action on a
finite unramified cover of our family X → S. Denote by D̄ ⊂ X̄ the restricted divisor
defined by ∂B. For S̄ ⊂ Spec

(
Ā[t])

an
an open neighborhood of x̄ = (ā,0), for any k ≥ 0

write S̄k for the closed analytic subspace of S̄ given by (tk+1). Note that S̄k agrees with an
open subset of the analytification of the closed subscheme of S̄ given by (tk+1). Let X̄k ,
D̄k denote the subschemes of X̄ and D̄ given by (tk+1).

For the following statement recall the notion of divisorial log deformation from [GS10],
Definition 2.7, a version of log smooth deformation appropriate for our particular rela-
tively coherent log structures.

Proposition 4.9. — Assume (B,P) is simple, B compact and either ∂B = ∅ or ∂B is again

an affine manifold. Then there is an integer k0 > 0 with the following property.

Let π̄ : Ȳ → S̄ be a flat analytic family together with a Cartier divisor D̄ ⊂ Ȳ that is also flat

over S̄. Assume that for some k ≥ k0 there is an isomorphism fk over S̄k of the base change of the pair

(Ȳ, D̄) to S̄k with the restriction of
(
(X̄k)an, (D̄k)an

)
to S̄k . Then (Ȳ, D̄) → S̄ with the divisorial

log structure defined by t = 0 is a divisorial log deformation, that is, the complex analytic analogue

of [GS10], Definition 2.7.16

Furthermore, fk induces an isomorphism of the fibers over t = 0 as log spaces when equipped

with the restriction of the divisorial log structures obtained from the divisors {t = 0} ∪ D̄ ⊂ Ȳ and

{t = 0} ∪ D̄ ⊂ X̄ respectively, compatible with the log morphism to S̄0 also given the restriction of the

divisorial log structure via t on S̄.

Proof. — Since ∂B is again an affine manifold, it is also simple and D̄ is the cor-
responding canonical deformation. By simplicity, [GS10], Proposition 2.2 and [Al], (6.5)
Corollary, the fibers in the local models for the log structure of both X̄ and D̄ away from
t = 0 are locally rigid. Hence, by [Ru18], Lemma 2.5 and properness, there is N > 0
such that tNT 1

X̄/S̄
= 0 and tNT 1

D̄/S̄
= 0 where T i

X/Y refers to the sheaf RiHom(L•
X/Y,OX),

16 The case ∂B �= ∅ (⇔ D̄ �= ∅) wasn’t actually covered in [GS10], Definition 2.7, but its inclusion is straightforward.
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etc. with L• the cotangent complex. Let I be the ideal sheaf of D̄ in X̄. By increasing N if
needed and using properness again, we may assume that the kernel of multiplication by
tN in T 2

X̄/S̄
(I) and in T 2

D̄/S̄
is stationary, that is, does not change with larger N (see [Ru18]

§3.8). Choose k0 > 4N and assume (Ȳ, D̄) → S̄ satisfies the assumptions for this k0. If
X̄an ← V → U is a local model at a point y ∈ X̄an then by [Ru18], Theorem 2.4, possibly
after shrinking V,U, we find that also y ∈ Ȳ has this local model. The case y /∈ D̄ follows
directly (Z = ∅). For y ∈ D̄, let D ⊂ U denote the divisor in the local model. We first
apply [Ru18], Theorem 2.4 to D and D̄ to obtain an isomorphism ϕ : D → D̄ locally
at y. Then use this isomorphism ϕ as input in a second application of [Ru18], Theorem
2.4, now with Z = D, Z′ = D̄, to find the pair (Ȳ, D̄) isomorphic to (U,D) locally at y.
This implies that Ȳ has the same local models as X̄ and since the latter is a divisorial log
deformation, so is the former. That the log structures on the central fibers agree follows
from [Ru18], Theorem 5.5. �

By Theorem B.1, a flat analytic family π̄ : Ȳ → S̄ and D̄ ⊂ Ȳ satisfying the as-
sumptions in Proposition 4.9 exists and we take one. Without loss of generality we may
assume k0 > δ with δ ∈ N the positive generator of the image of the map in (4.6). Thus δ
is the minimal strictly positive value of

〈
c1(ϕ),βtrop

〉
for βtrop ∈ H1(B, ι∗�).

For both families, X̄ → S̄ and Ȳ → S̄ we have our exponentiated period inte-
grals constructed from certain n-cycles on Xx̄. In the first case these are formal rational
functions on S̄, in the second case germs of meromorphic functions on S̄ at x̄ = (ā,0).
To obtain regular functions, we restrict to those n-cycles constructed from tropical cy-
cles βtrop ∈ H1(B, ι∗�)+ from (4.7), that is, with 〈c1(ϕ),βtrop〉 ≥ 0. By Theorem 1.7, on
X̄ → S̄, the exponentiated period integral for such cycles equals the monomial

(4.16) s−β̄∗
trop · t〈c1(ϕ),βtrop〉 ∈ Ā�t�.

Here we write s−β̄∗
trop for the monomial in Ā defined by the image of s−β∗

trop ∈ Ã = C[H∗ ⊕
F∗] under the projection H∗ ⊕ F∗ → H̄∗ ⊕ F∗ defining χ (4.14). We now want to apply a
holomorphic coordinate change to S̄ to achieve the same formula for the period integrals
on Ȳ → S̄.

For the following statement, we assume without loss of generality that the neigh-
borhood S̄ of x̄ is of the form Ū×D with Ū ⊂ Spec(Ā)an an analytic open set and D ⊂ C
a small open disc with coordinate t.

Proposition 4.10. — After a holomorphic change of coordinates of S̄ = Ū × D at x̄ = (ā,0)
restricting to the identity on Ū × {0} and leaving t unchanged modulo t2, for every tropical cycle βtrop ∈
H1(B, ι∗�)+, the exponentiated period integral on Ȳ → S̄ is the monomial function

(4.17) hβtrop = s−β̄∗
trop · t〈c1(ϕ),βtrop〉.
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Proof. — The choice of slice S̄ ⊂ S̃ was made in order for the periods of X̄ → S̄

to yield a system of coordinates at x̄ ∈ S̄. The statement will follow by an application of
the implicit function theorem once we show that the same is also true for Ȳ → S̄.

By the theory of period integrals developed in Appendix A, the exponentiated pe-
riod integral hβtrop for a tropical cycle βtrop ∈ H1(B, ι∗�)+ on Ū×D∗ extends holomorphi-
cally to the fiber over t = 0; moreover, the restriction to t = 0 depends only on the restric-
tion of Ȳ → S̄ to t = 0. Since the analytic family Ȳ → S̄ agrees with the canonical family
X̄ → S̄ to order k0 ≥ 1, the exponentiated period integrals for βtrop ∈ c1(ϕ)

⊥ agree with
the monomial exponentiated periods s−β̄∗

trop for the canonical family modulo tk0+1. The ex-
ponents −β̄∗

trop thus obtained cover the image under the projection H∗ ⊕ F∗ → H̄∗ ⊕ F∗

of the sublattice K∗ ⊂ H1(B, ι∗�̌)∗ ⊆ H∗ ⊕ F∗ from (4.9). Now K∗ agrees with c1(ϕ)
⊥

up to finite index and c1(ϕ)
⊥ maps onto a finite index sublattice of H̄∗ ⊕ F∗. Thus since

Ā = C[H̄∗ ⊕ F∗] and Ū is an open subset of Spec(Ā)an, differentials of period functions
hβtrop for βtrop with 〈c1(ϕ),βtrop〉 = 0 span the relative cotangent space T∗

S̄/D,x̄
= T∗

Ū,ā
.

Let β1
trop, . . . , β

r
trop ∈ H1(B, ι∗�) map to a basis of K∗. Then dhβ1

trop
, . . . , dhβr

trop are
a basis of the relative cotangent space T∗

S̄/D,x̄
, hence define local coordinates on Ū × {0}.

Additionally pick some β0
trop ∈ H1(B, ι∗�)+ with 〈c1(ϕ),β

0
trop〉 = δ. By (4.16) and since

Ȳ → S̄ agrees with X̄ → S̄ to order k0 > δ, the exponentiated period integral for β0
trop

on S̄ has the form

hβ0
trop

= s · tδ,

with s an invertible function on S̄ restricting to s−(β̄0
trop)

∗
on the fiber over t = 0. We claim

that there exists a local biholomorphism � of S̄ with

�∗(hβ0
trop

)= s−(β̄0
trop)

∗ · tδ, �∗(hβ i
trop

)= s−(β̄ i
trop)

∗
, i = 1, . . . , r,

restricting to the identity on t = 0 and leaving t unchanged modulo t2. In fact, since
hβ1

trop
, . . . , hβr

trop restrict to local coordinates s1 = s−(β1
trop)

∗
, . . . , sr = s−(βr

trop)
∗

on Ū × {0}, the
implicit function theorem applied with t as a parameter produces a local biholomorphism
�1 with

�∗
1(t) = t, �∗

1

(
hβ i

trop

)= si = s−(β i
trop)

∗
, i = 1, . . . , r.

Another application of the implicit function theorem with parameters s = (s1, . . . , sr)

finds a local holomorphic function a(t, s) such that the local biholomorphism �2 defined
by

�∗
2(t) = (1 + a(t, s)t

) · t, �∗
2(si) = si, i = 1, . . . , r

fulfills

�∗
2

(
hβ0

trop

)= s−(β0
trop)

∗ · tδ.
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Note that the two sides of the last equation already agree modulo tδ+1; the equation to
solve to find a is the difference of the two sides divided by tδ . Then � = �2 ◦ �1 defines
the sought-after local biholomorphism.

Finally, the claimed identity (4.17) holds for all βtrop since β0
trop, . . . , β

r
trop span the

image of the map βtrop �→ β∗
trop from (4.5). �

In the proof, we have also shown the following statement.

Corollary 4.11. — Restricted to t = 0, the differentials of the functions s−β̄∗
trop for βtrop ∈

H1(B, ι∗�) with 〈c1(ϕ),βtrop〉 = 0 span the relative cotangent space of S̄ over D.

We endow all our spaces with the divisorial (analytic or formal) log structures de-
fined by the divisors given by t = 0 and D ⊂ X or D ⊂ Y and write MX, MY etc.
for the respective monoid sheaves. By Proposition 4.9 and Remark 4.8, the restriction of
(Y,MY) → (S,MS) to t = 0 is isomorphic to the restriction of (X,MX) → (S,MS)

to t = 0 as a morphism of log spaces over the standard log point. Note that for this last
statement to be true it is important that in Proposition 4.10 we left t unchanged mod-
ulo t2.

For the final step of the proof we need to restore the Gm-factor from Remark 4.8
from the logarithmic perspective as follows.

Proposition 4.12. — With the log structures defined as in Proposition 4.9, there is an isomor-

phism of analytic log spaces over the standard log point between the restrictions to the closed subspace

U × Spec
(
C[t]/(tk0+1)

)
an

of the analytic family Y → U × D ⊆ Spec
(
A[t])

an
constructed in

Remark 4.8 and of Xan →San, respectively.

Proof. — In Remark 4.8 the family Y → U × D was constructed from Ȳ → Ū × D
by a base-change with completion at t = 0 the base change producing X̃ → S̃ out of
X̄ → S̄. The statement therefore follows from the corresponding statement for Ȳ →
Ū × D and X̄ → S̄. �

Remark 4.13. — Recall that the base change C[t] → C[λ±1, t] from (4.15) maps t

to λ−1t. Thus as a log space over the standard log point, the fiber of Y → U × D over
t = 0 is not the product of the fiber of Ȳ → Ū × D with the standard log point, the
product structure is modified by rescaling the pull-back of t as a generator of the log
structure of the standard log point by the coordinate λ−1 of the C∗-orbit.

4.3. Log-versality of the canonical family. — To finish the proof of Theorem 4.4 and
Corollary 4.6, we need to compare two formal schemes over Ŝ = Spf

(
Â�t�
)
, where Â is

the completion of A = C[H1(B, ι∗�̌)∗] at the maximal ideal ma defining the closed point
a. The first is the completion X̂→ Ŝ of the formal family X → S= Spf

(
A�t�
)

at x ∈S;
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the second is the completion Ŷ → Ŝ of the analytic family Y → U × D ⊆ Spec
(
A[t])

an
at x = (a,0). To make sense of the comparison in the category of formal schemes, note
also that the fiber of Y → U × D over x is the analytification of a scheme, the fiber Xx

of X→ S over x. By GAGA for proper schemes ([SGA1], Théorème 4.4), the restriction
of Y → U × D to the k-th order thickening Spec

(
OU×D/m

k+1
x

)
of x is then also the

analytification of a scheme. We can thus also view Ŷ → Spf
(
Â�t�
)

as a morphism of
formal schemes, with the same base Ŝ and same closed fiber Xx as X̂ → Ŝ.

We do the comparison of the two families by showing that both are a hull17 for a
certain functor of log deformations of (Xx,MXx

) as log spaces over C�t�, with the log
structure on C�t� defined by the chart N → C�t� mapping 1 ∈ N to t. This situation fits
into the traditional framework of functors of ordinary Artinian C�t�-algebras as treated
by Schlessinger [Sl], by defining the log structure on an Artinian C�t�-algebra by pull-
back from C�t�. Uniqueness of the hull in [Sl], Proposition 2.9, then implies that X̂ → Ŝ

and Ŷ → Ŝ are isomorphic as formal schemes over C�t�. Moreover, since the period
integrals only depend on the formal family, by Proposition 4.10 and Corollary 4.11, this
isomorphism turns out to be a morphism even over Ŝ = Spf

(
Â�t�
)
. We now carry out

the details of this idea of proof.
Recall that X̂ and Ŝ come with log structures and the morphism X̂ → Ŝ indeed

lifts to a morphism of formal log schemes. For Xx ⊂ X̂ the closed fiber with induced log
structure MXx

, consider the deformation functor D that sends a local Artinian C�t�-
algebra R, viewed as a log ring by the structure homomorphism C�t� → R, to the set
D(R) of isomorphism classes of flat divisorial log deformations of X†

x = (Xx,MXx
),

defined16 in [GS10], Definition 2.7. As in [GS10] we now use a dagger superscript to
indicate log spaces. We check in Theorem C.6 in Appendix C that the deformation func-
tor D has a pro-representable hull. Thus there exists a complete local C�t�-algebra R
and a divisorial log deformation ξ ∈D(R) that is a hull for D.

By the defining property of pro-representable hulls, our two formal divisorial log
deformations X̂ → Ŝ and Ŷ → Ŝ now arise as respective pull-backs of ξ by two classi-
fying morphisms

(4.18) h
X̂

: Ŝ −→ Spf R, hŶ : Ŝ−→ Spf R

of formal schemes over C�t�. We claim that both h
X̂

and hŶ are isomorphisms. Since Ŝ

is smooth, it suffices to check this statement at the level of cotangent spaces. We provide
a proof in the needed setup for lack of a reference.

17 The notion of hull arises in deformation situations where the functor may not be representable, but one has a
versal object that produces any family by pull-back. The hull is a minimal such family. A hull is unique up to an iso-
morphism over the base ring C�t�. The isomorphism may not be unique, but its differential at the closed point is ([Sl],
Proposition 2.9).
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Lemma 4.14. — Let ϕ : (A,m) → (B,n) := (C�x1, . . . , xr, t�, (x1, . . . , xr, t)
)

be a lo-

cal map of complete local Noetherian C�t�-algebras with residue field C. Assume that ϕ induces an

isomorphism m/(tA + m2) → n/(tB + n2) of relative Zariski cotangent spaces. Then ϕ is an iso-

morphism.

Proof. — By the proof of [Sl], Lemma 1.1, ϕ also induces an isomorphism m/m2 →
n/n2. By Cohen’s structure theorem for complete local rings, we have a surjection B → A
that induces an isomorphism n/n2 → m/m2. The composition B � A

ϕ→ B induces an
isomorphism on n/n2. By Nakayama’s lemma, every lift of a basis of n/n2 generates n
and is a regular sequence. Hence, the composition B → B is an isomorphism by [Ei],
§10.3 and thus also ϕ is an isomorphism. �

To finish the proof of Theorem 4.4 it essentially remains to show that the differ-
entials of the maps in (4.18) relative C�t� are isomorphisms. We equip C[ε]/(ε2) with
the C�t�-algebra structure t �→ 0. Note that, by the definition of the hull, the relative
Zariski-tangent space of R is the tangent space to our functor

tD =D
(
C[ε]/(ε2)

)= HomC�t�

(
R,C[ε]/(ε2)

)

= HomC

(
mR/(tR +m

2
R),C
)
.

By [GS10], Theorem 2.11,2, we furthermore have a canonical isomorphism

tD = H1(Xx,�X†
x /C†),

where C† denotes the standard log point (Spec C,N ⊕ C∗). With this identification, the
differentials Dh

X̂
, DhŶ relative C�t� of 4.18 are the Kodaira-Spencer maps of our two

families:

(4.19) Dh
X̂
,DhŶ : T

Ŝ/C�t�,x −→ H1(Xx,�X†
x /C†).

Proposition 4.15. — The relative differential

Dh
X̂

: T
Ŝ/C�t�,x = H1(B, ι∗�̌) ⊗ C → H1(Xx,�X†

x/C†)

of the classifying morphism h
X̂

: Ŝ → Spf R for X̂ → Ŝ from (4.18) coincides with the natural map

given in Proposition D.1. In particular, this map is an isomorphism.

Proof. — Since we work with relative tangent spaces, only the restriction to t = 0 is
relevant. For n̄ ∈ H1(B, ι∗�̌) ⊗ C denote by

∂n̄ : A = C[H1(B, ι∗�̌)∗] −→ C
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the associated C-linear derivation defined by ∂n̄(s
m) = 〈m, n̄〉a(m) for m ∈ H1(B, ι∗�̌)∗.

Here a(m) ∈ C is the reduction of sm modulo ma defining the given closed point a ∈
Spec A. The pair (a, n̄) is equivalent to the associated C-algebra map

ψ : A −→ C[ε]/(ε2), sm �−→ a(m) + ∂n̄(s
m)ε = a(m)

(
1 + 〈m, n̄〉ε).

We are going to describe the pullback Xε → Spec
(
C[ε]/(ε2)

)
of X → S under ψ . By

functoriality in the base S of the construction [GS06], Definition 2.28, Xε is the toric log
CY space constructed from (B,P, ϕ) for the image under ψ of the gluing data (s0, σ0)

for X. In writing these gluing data as a pair, we used the identification

H1(B, ι∗�̌ ⊗ A×) = H1(B, ι∗�̌ ⊗ C∗) ⊕ (H1(B, ι∗�̌) ⊗ H1(B, ι∗�̌)∗
)
,

observing that A× = C∗ ⊕ H1(B, ι∗�̌)∗, the set of monomials with coefficients in C∗.
For the gluing data describing Xε, we have

(4.20)
(
C[ε]/(ε2)

)× = C∗ ⊕ C,

as an abelian group, mapping the pair (λ, c) ∈ C∗ ⊕ C to λ(1 + cε). Thus we have the
decomposition

H1
(
B, ι∗�̌ ⊗ (C[ε]/(ε2))×

)= H1(B, ι∗�̌ ⊗ C∗) ⊕ (H1(B, ι∗�̌) ⊗ C
)
,

to describe the gluing data of Xε as a pair as well. Since the map on invertibles induced
by ψ ,

C∗ ⊕ H1(B, ι∗�̌)∗ −→ C∗ ⊕ C, (λ,m) �−→ (λa(m), 〈m, n̄〉),
respects the decompositions as pairs, so does the map on cohomology induced by ψ . The
first summand maps s0 to as0, the translation of s0 ∈ H1(B, ι∗�̌ ⊗ C∗) by a as an element
of the algebraic torus H1(B, ι∗�̌) ⊗ C∗ acting on gluing data. This is expected since as0

is the gluing data giving rise to the central fiber Xx of X.
To describe the image of Xε in H1(Xx,�X†

x /C†) under the Kodaira-Spencer map,
we need to work at the level of cocycles. We use the coverings by the open sets Wτ ⊂ B
and Vτ ⊂ Xx from Appendix D. Let n̄ and as0 be represented by the cocycles n = (nωτ ) ∈
Č1({Wτ }τ , ι∗�̌ ⊗ C) and s = (sωτ ) ∈ Č1({Wτ }τ , ι∗�̌ ⊗ C∗), respectively. Write s(1 + nε)

for the image of (s, n) under the identification

Č1({Wτ }τ , ι∗�̌ ⊗ C∗) ⊕ Č1({Wτ }τ , ι∗�̌ ⊗ C)

= Č1
({Wτ }τ , ι∗�̌ ⊗ (C[ε]/(ε2))×

)

induced by (4.20). Then Xε is canonically isomorphic to the toric log CY space for
(B,P, ϕ) defined by gluing data s(1 + nε). Now for ω ⊂ τ , the section nωτ of �̌ ⊗ C
over Wωτ = Wω ∩ Wτ defines a logarithmic vector field ∂nωτ

on Vωτ = Vω ∩ Vτ , and this
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vector field describes the infinitesimal deformation Xε of Xx on Vω ∪ Vτ . It thus follows
from the Čech description of the Kodaira-Spencer map that the image of Xε under the
Kodaira-Spencer map is the cohomology class of the Čech 1-cocycle

(
∂nωτ

)
ω,τ

. Now the
map

Č1({Wτ }τ , ι∗�̌ ⊗ C) −→ Č1({Vτ }τ ,�X†
x /C†), (nωτ ) �−→ (∂nωτ

)

indeed agrees with the natural isomorphism in Proposition D.1 at the level of cochains,
as claimed. �

Proof of Theorem 4.4 and of Corollary 4.6. — Proposition 4.15 and Lemma 4.14 show
that the classifying map h

X̂
: Ŝ → Spf R for X̂ → Ŝ from (4.18) is an isomorphism.

The argument in Proposition 4.15 only required knowing X̂ → Ŝ as a divisorial log
deformation to first order on the fiber over t = 0 and, by Proposition 4.12, hence also
applies to Ŷ → Ŝ. Thus also the classifying map hŶ : Ŝ → Spf R for Ŷ → Ŝ is an
isomorphism. Taking the composition hŶ ◦ h−1

X̂
, we now obtain an isomorphism of formal

divisorial log deformations of (Xx,MXx
), that is, a cartesian diagram

(4.21)

X̂ −−−→ Ŷ
⏐
⏐
�

⏐
⏐
�

Ŝ
hŶ◦h−1

X̂−−−→ Ŝ

over C�t� with horizontal maps isomorphisms. But by Proposition 4.10 and (4.16), the
exponentiated period functions for X̂ → Ŝ and Ŷ → Ŝ agree and contain a system of
coordinate functions on the fiber over t = 0 of S̄. Since furthermore t maps to t, in view
of Remark 4.13, the lower horizontal arrow hŶ ◦ h−1

X̂
in (4.21) is the identity. This finishes

the proof of both Theorem 4.4 and of Corollary 4.6. �
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Appendix A: Finite order period integrals

The main result of this paper computes certain period integrals of a relative logarithmic
holomorphic n-form for a flat analytic map Xk → Spec C[t]/(tk+1) over a family of n-
cycles. The result is given in the form g log t + h with g, h ∈ C[t]/(tk+1). The purpose
of this section is to define such integrals unambiguously despite only working in a finite
order deformation and despite the appearance of the log-pole. It is also straightforward to
incorporate analytic parameters by replacing the ground field C by an analytic C-algebra
A = C{s1, . . . , sn}/(f1, . . . , fk). For the sake of readability all formulas are given over C.

The log-pole arises by the intersection of the cycle with the singular locus (X0)sing ⊂
X0, where locally X0 is assumed to be normal crossings and (X0)sing smooth. As a prepa-
ration, we take a closer look at relative logarithmic differential forms near a double locus.
We work analytically and denote by D the unit disk in C and by D̂ a slightly larger disk.
Let κ ∈ N \ {0} and denote

(A.1) Ĥκ = {(z,w, t) ∈ D̂2 × D
∣
∣ zw = tκ

}
,

viewed as an analytic log space with log structure induced by the divisor with normal
crossings t = 0. The function t defines a log morphism Ĥκ → D, for D endowed with the
divisorial log structure for {0}. To not overburden the notation, the log structure is not
made explicit in the notation, but should always be clear from context. A crucial fact for
the following is that a holomorphic function f on Ĥκ can be written uniquely as a sum

(A.2) f (z,w, t) = z · g(z, t) + w · h(w, t) + c(t)

with g ∈ C{z, t}, h ∈ C{w, t} and c ∈ C{t}, by replacing mixed terms zw by tκ and then
collecting the respective monomials.

By definition, the sheaf of relative logarithmic 1-forms �1
Ĥκ /D

is the invertible OĤκ
-

submodule of the sheaf of relative meromorphic differential forms on Ĥκ generated by

dz

z
= −dw

w
.

Recall that this relation arises by applying dlog to the equation zw = tκ and modding out
by dt

t
. Together with

wl+1dz = −wl+1zw−1dw = −tκwl−1dw,
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zl+1dw = −zl+1wz−1dz = −tκzl−1dz

for l ≥ 0, we see that similarly to (A.2), any α ∈ �(Ĥκ,�
1
Ĥκ /D

) can be uniquely written in
the form

(A.3) α = g(z, t)dz + h(w, t)dw + c(t)
dz

z
= g(z, t)dz + h(w, t)dw − c(t)

dw

w

with g, h holomorphic functions on D̂ × D and c a holomorphic function on D.
A similar statement holds after reduction modulo tk+1 and for forms of higher

degree in higher dimensions as follows. Fix k > 0 throughout this appendix. Let Ok be
the zero-dimensional analytic log space Spec C[t]/(tk+1) with the restriction of the log
structure on D. Let Hκ be the base change of Ĥκ to Ok . Then the reduction of (A.3)
modulo tk+1 also yields a unique decomposition, now for α ∈ �(Hκ,�

1
Hκ /Ok

) and with

g, h ∈O(D̂)[t]/(tk+1), c ∈ C[t]/(tk+1).
For the higher dimensional case consider Ũ = V × Hκ with V a complex manifold

of dimension n − 1 and let U denote the reduction of Ũ by t. If U = U′ ∪ U′′ is the
decomposition of U into the two irreducible components defined by w = 0 and z =
0 respectively, and Ṽ = V × Ok , various combinations of the functions z,w, t and the
product structure of Ũ define projections

pV : Ũ −→ V pHκ
: Ũ −→ Hκ,

pṼ : Ũ −→ Ṽ = V × Ok, p1 : Ũ −→ U′ × Ok, p2 : Ũ −→ U′′ × Ok.

With this notation, the sheaf �
p

Ũ/Ok
of relative holomorphic logarithmic p-forms on Ũ

decomposes as a direct sum,

�
p

V×Hκ/Ok
= (p∗

V�
p−1
V ⊗OŨ

p∗
Hκ

�1
Hκ /Ok

)⊕ p∗
V�

p

V.

Note also that this formula can be rewritten using p∗
V�

r
V = p∗

Ṽ
�r

Ṽ/Ok
with r = p − 1, p.

In view of the decomposition of relative (holomorphic) logarithmic 1-forms of Hκ/Ok

arising from (A.3), a logarithmic p-form α on Ũ can thus be written uniquely as a sum

(A.4) α = (p∗
1α

′)∧ dz + (p∗
2α

′′)∧ dw + (p∗
Ṽαres

)∧ dz

z
+ αṼ,

with α′ ∈ �(U′ × Ok,�
p−1
U′×Ok/Ok

), α′′ ∈ �(U′′ × Ok,�
p−1
U′′×Ok/Ok

), αres ∈ �(Ṽ,�
p−1
Ṽ/Ok

) and

αṼ ∈ �(Ũ, p∗
V�

p

V). All these differential forms can be expanded as polynomials in t by
means of the canonical isomorphisms

�
p−1
U′×Ok/Ok

= �
p−1
U′ ⊗ C[t]/(tk+1), �

p−1
U′′×Ok/Ok

= �
p−1
U′′ ⊗ C[t]/(tk+1)

�
p−1

Ṽ/Ok
= �

p−1
V ⊗ C[t]/(tk+1), p∗

V�
p

V =OŨ ⊗p−1
V OV

p−1
V �

p

V.
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In the last instance, for αṼ, we use the analogue of (A.2) on Ũ = V × Hκ to write the
coefficient functions as polynomials in t.

Definition A.1. — Let � : Ũ → Xk be a logarithmic morphism relative Ok with Ũ = U×Ok

and U non-singular, or Ũ = V × Hκ and V a complex manifold of dimension n − 1. In the first case

define

�+ : �(Xk,�
p

Xk/Ok
) −→ �(U,�

p

U) ⊗C C[t]/(tk+1)

by composing �∗ with the canonical isomorphism �
p

U×Ok/Ok
= �

p

U ⊗C C[t]/(tk+1). In the second

case define

�+ : �(Xk,�
p

Xk/Ok
)

−→ [(�(U′,�p−1
U′ ) ⊕ �(U′′,�p−1

U′′ )
)⊗C C[t]/(tk+1)

]⊕ �(Ũ, p∗
V�

p−1
V ),

by decomposing α ∈ �(Xk,�
p

Xk/Ok
) according to (A.4) and omitting the term with the simple pole:

�+(α) := (α′, α′′, αṼ

)
.

We call �+(α) the special pull-back of α.

In the second case, the αres-component of �∗α in the decomposition (A.4) also provides a homo-

morphism

res� : �(Xk,�
p

Xk/Ok
) −→ �(V,�

p−1
V ) ⊗C C[t]/(tk+1).

Note that res�(α) = αres in Definition A.1 agrees with the residue of the restriction
of �∗(α) to the branch w = 0. Restricting to the other branch z = 0 changes the sign,
but up to the choice of branch, res�(α) is well-defined as a (p − 1)-form on the thickened
double locus (X0)sing × Ok .

Lemma A.2. — The homomorphism �+ commutes with the exterior differential d.

Proof. — This follows easily from the definition. �

With the notion of special pull-back at hand we are now in position to define our
finite order period integrals.

Construction A.3. — Let Xk → Ok be a morphism of analytic log spaces with Ok

the fat log point introduced above. Denote by X0 the central fiber and let β be a singular
differentiable p-cycle on X0. Here differentiability is defined on each singular simplex by
locally composing with an embedding of X0 into some CN. In a neighborhood of the
image |β| ⊂ X0 of β we assume X0 to be normal crossings and π log smooth. Since
the discussion is local around |β| we may just as well assume these conditions to hold
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everywhere. We assume β =∑i βi with each βi a chain mapping into the image of �i :
Ũi → Xk , a logarithmically strict open embedding over Ok with either

Ũi = Ui × Ok with Ui ⊂ Cn open, or(Ch I)

Ũi = Vi × Hκi
with Vi ⊂ Cn−1 open.(Ch II)

We identify the reduction Ui of Ũi with its image in X0 and we assume the Ui for the
second type are mutually disjoint. The index i runs over a finite subset of N.

Concerning β we assume that

(Cy I) For either type of chart, ∂βi =∑μ γ
μ

i with (p − 1)-cycles γ
μ

i , the number of
summands depending on i. Moreover, for each (i,μ) there exists exactly one
j �= i and one ν with |γ μ

i | ∩ |γ ν
j | �= ∅. For such (i,μ), (j, ν), it necessarily holds

γ
μ

i = −γ ν
j since ∂β = 0.

(Cy II) If �i is of type II (i.e., Ui ∩ (X0)sing �= ∅) then βi is homologous relative to ∂βi

either to (i) γi × $ with $ the two-chain
[
D × {0} × {0}]+ [{0} × D × {0}] in

Hκi
, or to (ii) γi × ι, with

ι : [−1,1] −→ Hκi
, λ �−→

{
(−λ,0,0), −1 ≤ λ ≤ 0
(0, λ,0), 0 ≤ λ ≤ 1.

In the two cases, γi is a (p − 2)- and (p − 1)-cycle in Vi , respectively. In particular,
∂βi = γ 1

i − γ 2
i with γ

μ

i = γi × S1 homologous to zero in the first case and γ
μ

i

homologous to γi × {0} in the second case.

For i �= j denote Uij = Ui ∩Uj = Uji . We then have two open embeddings �(j)

i ,�
(i)

j : Uij ×
Ok → Xk , defined by the restrictions of �i and �j , respectively. Note that if Uij �= ∅, at
most one of the two charts can be of type II, say Uj . In this case, Uj = U′

j ∪U′′
j decomposes

into two irreducible components with only one of them intersecting Uij , say U′
j . In the

coordinates z,w, t for Hκj
assume that U′

j is defined by w = 0. Then for z �= 0 we can
eliminate w via w = z−1tκj to obtain an identification Ũj \U′′

j = (U′
j \U′′

j )×Ok . The map
�

(i)

j : Uij × Ok → Xk is then defined by the composition

Uij × Ok −→ (U′
j \ U′′

j ) × Ok −→ Vj × Hκj

�j−→ Xk,

with the first two arrows the canonical open embeddings.
In any case, since �

(j)

i , �(i)

j agree on the reduction Uij , there is a biholomorphism

!ij of Uij ×Ok = Uji ×Ok fulfilling �
(i)

j = �
(j)

i ◦!ij . Using the linear structure on Ui ⊂ Cn

we may then define a homotopy between �
(j)

i and �
(i)

j as follows:

(A.5) �ij : [0,1] × Uij × Ok −→ Xk, �ij(s, .) = �
(j)

i

(
(1 − s) · id+s!ij

)
.
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Note that �ij is really a homotopy of the homomorphism between the structure sheaves,
the underlying map of topological spaces stays constant throughout the homotopy.18 For
a relative logarithmic p-form α on Xk we define �+

ij (α) by using the product structure of
Uij × Ok .

Now let α be a closed relative logarithmic p-form on Xk/Ok . If �i is a chart of
type I, we can easily define

∫
βi
α by integrating over the first factor in �(Ui,�

p

Ui
) ⊗C

C[t]/(tk+1). Explicitly, expanding �+
i (α) =∑l αl t

l , we have

(A.6)
∫

βi

�+
i (α) =

∑

l

(∫

βi

αl

)
tl .

An analogous formula defines
∫

[0,1]×γ
μ
i
�+

ij (α) needed for the treatment of ∂βi below.
For charts of type II we need a different definition of the integral to take into

account the change of topology that βi would undergo under deformation to t �= 0. Ex-
panding the three entries of �+

i (α) in power series yields

(A.7) �+
i (α) =

(∑
r≥0 zrp∗

Ṽi
gr,
∑

r≥0 w
rp∗

Ṽi
hr, αṼi

)
,

with gr, hr ∈ �
p−1

Ṽi
(Ṽi) = �

p−1
Vi

(Vi)⊗C[t]/(tk+1), αṼi
∈ �(Ũi, p∗

Vi
�

p

Vi
). Since Ĥκ is a closed

subset of D̂2 ×D with D̂ a slightly larger disk than the unit disk (A.1), the two power series
are absolutely and uniformly convergent for |z| ≤ 1 and |w| ≤ 1, respectively. For the two
cases listed in (Cy II), define now

(A.8)
∫

βi

�+
i (α) =

{
0, βi = γi × $
∑

r≥0
1−t(r+1)κi

r+1

∫
γi

(
hr − gr

)
, βi = γi × ι.

The motivation for this definition will become clear in the proof of Proposition A.6. The
factor in front of the integral should be recognized as the integral of wrdw over a curve
in D connecting tκi and 1. But note that here t is only defined up to order k, so this
interpretation should be taken with care.

Finally define
∫
β
α as a formal linear combination g + h log t with coefficients g, h ∈

C[t]/(tk+1) as follows:

(A.9)
∫

β

α :=
∑

i

∫

βi

�+
i (α) +

∑

i,μ

∫

[0,1]×γ
μ
i

�+
ij α +

(∑

i

κi

∫

γi

res�i
(α)
)

log t.

Here the first sum runs over all i. The second sum runs over all (i,μ) with �i of type I;
in the summand, j is the unique index with j �= i and γ

μ

i mapping also to Uj as explained

18 The particular form of homotopy is not important and can be chosen according to convenience.



PERIOD INTEGRALS FROM WALL STRUCTURES 63

in Construction A.3, (Cy I); if also �j is of type I we assume i < j. The third sum runs
over all i with �i of type II. Note that the integral over the residue vanishes if βi is a cycle
of type (i), that is, of the form γi × $.

Remark A.4. — Formula (A.9) depends on the specific choice of ι for chains of type
(ii) in (Cy II) above as a curve connecting z = 1 to w = 1. For curves connecting z = a to
w = b, the term κi log t in (A.9) has to be replaced by κi log t − log b − log a, the result of

computing
∫ tκi b−1

a
dlog z. Varying a and b implies that the result depends on the choice of

a branch of the logarithm, and hence can only be well-defined up to changing any of the
terms κi

∫
γi

res�i
(α) by integral multiples of 2π

√−1
∫
γi

res�i
(α).

This generalized formula also shows that by replacing z,w, t by εz, εw, ε2/κi t for a
small ε ∈ C∗, the same Formula (A.9) applies if we replace the unit disks above by disks
with any radius.

For convenient referencing, for charts �i of type (Ch II) we also introduce the
notation

(A.10)
∫

βi

α :=
∫

βi

�+
i (α) + κi

(∫

γi

res�i
(α)
)

log t.

Note that this definition depends on �i whereas (A.9) does not depend on choices, as we
show next.

Proposition A.5. — The integral of the closed logarithmic p-form α on Xk/Ok over the p-cycle

β on X0 defined in Equation (A.9) of Construction A.3 as a formal expression
∫

β

α = g log t + h

with g, h ∈ C[t]/(tk+1), does not depend on any choices up to changing g by adding integral multiples

of 2π
√−1

∫
γi

res�i
(α) for any i. Moreover, up to this ambiguity, the result is invariant under changing

α by an exact form or under homotopy of β through cycles of the same form.

Proof. — First observe that for a given cycle β , we can make βi with �i of type II
arbitrarily small. Indeed, let �i be of type II and βi split into a sum β ′

i + β smaller
i with β ′

i

mapping to Ŭi := U′
i \ U′′

i ⊂ X0. Viewing Ŭi × Ok as an open subspace of Ũi = Vi × Hκi

by means of p1 : Ũi → U′
i × Ok , the restriction �′

i := �i|Ŭi×Ok
defines a chart of type I. A

straightforward check now shows
∫

βi

�+
i α =

∫

β ′
i

(�′
i)

+α +
∫

βsmaller
i

�+
i α.

A similar refinement argument holds if we swap the roles of U′
i and U′′

i and also for
charts of type I. Thus given two systems of open embeddings �i , �̂j we may go over to a
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larger indexing set and shrink the domains of definition to arrive at the situation that the
indexing sets and the open sets Ui ⊂ X0 agree.

We use the notation from Construction A.3, with a hat indicating the use of �̂i .
If �i , �̂i are charts of type I, the same argument as in the definition of �ij defines a
homotopy

!i : [0,1] × Ũi −→ Xk,

between �i = !i(0, .) and �̂i = !i(1, .). There also exists such a homotopy !i for charts
�i, �̂i : Vi × Hκi

→ Xk of type II, but the construction has to be modified to preserve the
equation zw = tκi as follows. By composing with �−1

i , we may replace Xk by Vi ×Hκi
and

assume �i = id for the construction of the homotopy. Write �̂i : Vi × Hκi
→ Vi × Hκi

component-wise as

�̂i(u, z,w, t) = (U(u, z,w, t),Z(u, z,w, t),W(u, z,w, t), t
)
.

Note that �̂i commutes with the map to Ok and reduces to the identity modulo t. Hence
ZW = tκi and Z,W reduce to z,w modulo t. A straightforward induction on the degree
in t shows that there exists an invertible function h on Vi ×Hκi

with Z = z · h, W = w · h−1

and h ≡ 1 modulo t. Thus we can define log h uniquely with log h ≡ 0 modulo t, and in
turn hs = exp(s · log h) for any s ∈ R is also defined. Then

!i : [0,1] × Vi × Hκi
−→ Vi × Hκi

,

(s, u, z,w, t) �−→ ((1 − s)u + sU, z · hs,w · h−s, t)
)

defines the desired homotopy between �i = id and �̂i .
Similarly, there exist homotopies

!ij : [0,1] × [0,1] × Uij × Ok −→ Xk

between �ij = !ij(0, . , .) and �̂ij = !ij(1, . , .). By constructing !ij by linear interpolation
between !i and !j as we have done, we can also achieve !ij(. ,0, .) = !i, !ij(. ,1, .) =
!j . Since dα = 0 by assumption, these homotopies give rise to exact forms in the usual
way by integration over the first entry:

�∗
i α − �̂∗

i α = d
(∫ 1

0
!∗

i α
)
, �∗

ijα − �̂∗
ijα = d

(∫ 1

0
!∗

ij α
)
.

Taking the respective parts of the product decomposition of Ũi yields the analogous for-
mulas for special pull-back:

�+
i (α)− �̂+

i (α) = d
(∫ 1

0
!+

i (α)
)
, �+

ij (α)− �̂+
ij (α) = d

(∫ 1

0
!+

ij (α)
)
,
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where we view the parameters first complex-valued and then restrict to [0,1] × [0,1] ⊂
D2. Note this computation requires Lemma A.2.

The difference of the terms appearing in the first sum on the right-hand side of
(A.9) now can be written as

∫

βi

(
�+

i (α) − �̂+
i (α)
)=
∫

βi

d
(∫ 1

0
!+

i (α)
)

=
∫

∂βi

∫ 1

0
!+

i (α)

=
∑

μ

∫

γ
μ
i

∫ 1

0
!+

i (α).

For the second term one computes similarly
∫

[0,1]×γ
μ
i

(
�+

ij (α)− �̂+
ij (α)
)=
∫

[0,1]×γ
μ
i

d
(∫ 1

0
!+

ij (α)
)

=
∫

γ
μ
i

∫ 1

0

(
!+

j (α)− !+
i (α)
)
.

Now each γ
μ

i from Ũi of type I equals a unique −γ ν
j with j �= i. If Ũj is of type I the

contribution of γ ν
j occurs with opposite sign in

∫
βj

(
�+

i (α) − �̂+
i (α)
)
. If Ũj is of type II

a similar cancellation arises with a contribution of the second term in (A.9), and each
summand in the latter occurs exactly once. Thus the first two terms in (A.9) give the same
result for �i and �̂i , while the integral over the residue is already defined independently
of choices.

A similar argument shows invariance under homotopies of β and the vanishing of∫
β
α for exact α. �

If Xk → Ok is the reduction modulo tk+1 of an analytic family, our period integral
agrees with the usual period integral, up to order k, assuming

∫
γi

res�i
(α) ∈ Z for all i.

Otherwise we have agreement up to integral multiples of
(
2π

√−1
∫
γi

res�i
(α)
)

log(t).

Proposition A.6. — In the situation of Construction A.3, assume that Xk → Ok and α are the

reductions modulo tk+1 of a holomorphic map X → D to the unit disk and of a closed, relative logarithmic

p-form α̃ on X , respectively. Let βt be a continuous extension of the p-cycle β on X0 = π−1(0) to the

fibers Xt for t ∈ D \ (R>0e
√−1ζ ) for some ζ ∈ [0,2π). Then possibly after replacing D by a smaller

disk, there are holomorphic functions g̃, h̃ ∈O(D) with
∫

βt

αt = g̃ log(t) + h̃, t ∈ D \ R≥0e
√−1ζ ,

whose reductions modulo tk+1 agree with g, h ∈ C[t]/(tk+1) from (A.9), respectively, for some choice of

branch of log t on D \ R≥0e
√−1ζ , and up to changing g by integral multiples of 2π

√−1
∫
γi

res�i
(α)

for any i.
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FIG. A.1. — The curve ι(t)

Proof. — After composing X → D with multiplication by e
√−1(π−ζ ) on D we may

assume ζ = π . The charts �i from Construction A.3 extend to analytic open embeddings
into X , possibly after shrinking Ui ⊂ X0 slightly. To reduce the amount of notation, we
use the same symbols as before, except Ok is replaced by the unit disk D. Thus �i : Ũi →
X continues to be a logarithmically strict open embedding, but now Ũi = Ui × D or
Ũi = Vi ×Ĥκi

with Ĥκi
= {(z,w, t) ∈ D̂2 ×D | zw = tκi}. Similarly, we have the homotopy

�ij between the restrictions of �i and �j to a neighborhood of |γ μ

i | = |γ ν
j |, all assumed

to agree to order k with their respective versions in Construction A.3.
We now extend β =∑i βi as a cycle to small t by the sum of the following three

types of singular chains.
(A) If Ũi = Ui × D is of type I define βi(t) = �i∗(βi × {t}).
(B) If Ũi = Vi × Ĥκi

is of type II, then by (Cy II) either βi = γi × $ or βi = γi × ι.
In the first case, $ = Ĥκi

∩ (D × D × {0}) and γi is a chain in Vi of dimension p − 2. In
this case define βi(t) = γi × $(t) with $(t) = Ĥκi

∩ (D × D × {t}). In the second case, ι
is a union of two line segments in Ĥκi

in the fiber over t = 0, while γi is a chain in Vi of
dimension p − 1. For t ∈ R>0 define βi(t) = γi × ι(t) with

ι(t) = {(tκi/λ,λ, t) ∈ Ĥκi
| tκi ≤ λ ≤ 1}.

For t ∈ D\R≤0 take the same definition for βi(t), now with ι(t) a continuous family
of curves in Ĥκi

in the fiber over t that, projected to the w-plane, connects tκi and 1 inside
the annulus |tκi | ≤ |w| ≤ 1.

For example, writing t = |t|e√−1θ with −π < θ < π , we could take ι(t) : [0,1] →{
w ∈ C

∣
∣ |t|κi ≤ |w| ≤ 1} to map the three intervals (a) [0,1/3], (b) [1/3,2/3] and (c)

[2/3,1] to (a) the radial line segment connecting tκi = |t|κi e
√−1θ with |t|κi/2e

√−1θ , (b) an arc
on a circle, with endpoint |t|κi/2, (c) the radial line segment from |t|κi/2 to 1, respectively,
and each interval parametrized with constant speed. Then indeed ι(t) varies continuously
with t ∈ C\R≤0. Moreover, decomposing Ĥκi

∩ (D̂2 ×{t}) into two annuli of outer radius
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1 and inner radius |t|1/2, we see that ι(t) for t → 0 converges to the curve ι in (Cy II) of
Construction A.3.

(C) For each i with �i of type I and each component γ μ

i = −γ ν
j of ∂βi define the

interpolating p-chain

βi,μ(t) := �ij∗
([0,1] × γ

μ

i × {t}).
If also �j is of type I we only consider βi,μ if i < j.

Finally, define

β(t) =
∑

i

βi(t) +
∑

i,μ

βi,μ(t).

Note that β(t) is a cycle since by construction: ∂βi(t) =∑μ γ
μ

i (t) with γ
μ

i (t) a continuous
family of cycles converging to γ

μ

i for t → 0, while by (C) it holds ∂βi,μ(t) = −γ
μ

i (t) −
γ ν

j (t).
To finish the proof, it remains to compute

∫
β(t)

α and to match the various contri-
butions with the terms in (A.9), modulo tk+1. For contributions from (A) we have

∫

βi(t)

α =
∫

βi×{t}
�∗

i α.

Developing the integrand in t up to order k yields
∫
βi
�+

i (α).

For (B) and t = |t|e√−1θ �= 0 we may eliminate z = tκi/w and work over the w-plane.
The choice of w over z is motivated by the fact that for the case βi = γi × ι, the curve
ι moves radially inwards in the z-plane and outwards in the w-plane. In this coordinate,
using zrdz = −t(r+1)κiw−r−2dw and following (A.4), (A.7), we can write uniquely

(A.11) �∗
i α =
∑

r≥0

p∗
Ṽi

hr ∧ wrdw + p∗
Ṽi

h−1 ∧ dw

w
−
∑

r≥0

p∗
Ṽi

gr ∧ t(r+1)κi

wr+2
dw + αṼi

,

with hr, gr ∈ �(Vi × D,�
p−1
Vi×D/D) and αṼi

∈ �(Ũi, p∗
Vi
�

p

Vi
). Projected to the w-plane, ι(t)

is a curve connecting tκi and 1. If βi(t) = γi ×$(t), the integral over �∗
i α involves integra-

tion of a holomorphic one-form over $ and hence it vanishes identically, in agreement
with the first line in (A.8).

For the other case, βi(t) = γi × ι(t), we have
∫

ι(t)

wrdw =
∫ 1

tκi

wrdw =
{

1
r+1

(
1 − t(r+1)κi

)
, r �= −1

−κi log t, r = −1.

Moreover,
∫
γi×ι(t)

αṼi
= 0 since αṼi

vanishes on ker(pṼi ∗). Integration of (A.11) over γi ×
ι(t) now gives

(

−κi

∫

γi

h−1

)

log t +
∑

r≥0

1 − t(r+1)κi

r + 1

(∫

γi

hr − gr

)

.
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Since gr, hr for r ≥ 0 reduce modulo tk+1 to the differential forms with the same symbols
in Construction A.3 and since −h−1 = res�i

(α), this result agrees to order k with the
contributions to

∫
β
α in (A.9) from (A.8) and with κi

( ∫
γi

res�i
(α)
)

log t.
For the interpolation integrals (C) it holds

∫

βi,μ(t)

α =
∫

[0,1]×γ
μ
i ×{t}

�∗
ijα,

which agrees with
∫

[0,1]×γ
μ
i
�+

ij (α) in (A.9) upon reduction modulo tk+1 by the same argu-
ment as in (A).

Any other choice of β(t) differs from our choice up to homology by a sum of
integrals over vanishing cycles of the form

∫
�i∗(γi×S1×{t}) α for �i of type II. Here S1 ×

{t} ⊂ Ĥκi
is defined by |z| = |w|. Integrating over the S1-factor yields 2π

√−1
∫
γi

res�i
(α),

hence only changes the result as stated. �

Lemma A.7. — In the situation of Proposition A.6, let T denote the monodromy transformation

on n-cycle classes along a counter-clockwise simple loop in the base disk D of the family X → D based

at a fiber Xt0 for some t0 �= 0. We have

(T − id)(βt0) =
∑

κi[γi × S1]
where, in the notation of the proof of the proposition, the sum is over all charts of type (B) for which

βi = γi × ι and S1 denotes a clockwise simple loop around the origin in the w-plane, see Figure A.1.

Proof. — The cycle βt0 decomposes into chains βi according to cases (A),(B),(C)
as in the proof of Proposition A.6. For (A) and (C), it is straightforward to see that βi

is invariant under monodromy because the family is trivial here. Hence, (T − id) only
yields contributions for case (B). Note further that the factor γi is also invariant under
monodromy, so we only need to consider the local situation of the map Hκi

→ D given by
zw = tκi . In the sub-situation where βi = γi ×$(t), we find that $(t0) is the fundamental
chain of the fiber of Hκi

→ D which is also invariant under monodromy. Thus, only the
situation βi = γi × ι contributes, as claimed in the assertion. Studying how ι changes when
following a simple counter-clockwise t0-based loop in D, as illustrated in Figure A.1, we
see that ι gets mapped to ι + κi[S1] under T. Adding the invariant factor γi yields the
assertion. �

Appendix B: Analytic approximation of proper formal families

Theorem B.1. — Let R = C{t, z1, . . . , zr}/(g1, . . . , gs) be a convergent power series algebra,

(S,0) ⊂ (Cr+1,0) the corresponding germ of analytic space and (̃S,0) the completion in the closed

subspace defined by t. Let π̃ : (X,X0) → (̃S,0) be a proper and flat formal analytic map and πk :
Xk → Sk its reduction modulo tk+1.
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Then for any k ≥ 0 there exists a proper flat analytic map of germs of pairs π : (X ,X0) →
(S,0) with reduction modulo tk+1 isomorphic to πk .

Analogous approximation statements hold for morphisms of complex spaces (Z,Z0) → (X,X0),

both of which are proper and flat over (S̃,0), and for pairs
(
(X,D), (X0,D0)

)
with (D,D0) an

(S̃,0)-flat analytic subspace of (X,X0).

Proof. — We first treat the case (X,X0) → (S̃,0). By a result of Douady and
Grauert, the compact complex space X0 admits a versal deformation, a proper analytic
map h : Y → V with a point v ∈ V and an isomorphism h−1(v) 
 X0 which is versal for
proper flat analytic deformations of X0 ([Du74], VII.8, Théorème Principal and [Gr],
§5, Hauptsatz). Possibly by shrinking V, we may assume V is an analytic subspace of an
open subset in Cn given by some f1, . . . , fm ∈ C{x1, . . . , xn} and v = 0. Thus for any given
k there exists a cartesian diagram of analytic spaces

(B.1)

Xk

πk

Y

h

Sk

�k

V

We are going to construct (X ,X0) → (S,0) by extending �k to an analytic map � :
(S,0) → (V,0), first formally and then analytically using Artin approximation.

To do so, denote by π̂ : X̂ −→ Ŝ and by ĥ : Ŷ → V̂ the completions of π̃ and h at
the origins, respectively. By results of Schuster and Wavrik [St71], [Wa], the family ĥ is
formally versal. Hence there exists a cartesian square

X̂

π̂

Ŷ

ĥ

Ŝ
�̂

V̂

We can also achieve that the reduction of �̂ modulo tk+1 agrees with the completion of
�k at 0. Indeed, if m ⊂ R is the maximal ideal, constructing �̂ amounts to finding a
compatible system of lifts

�̂l :OV̂,0 = C�x1, . . . , xn �/(f1, . . . , fm) −→ R/ml+1 =OSl ,0, l ∈ N,

along with a compatible system of isomorphisms of Xl → Sl with the pull-back of ĥ by
�̂l . Assuming �̂l−1 given, the construction of �̂l can be done in two steps: First construct
an intermediate deformation X′

l of X0 over

(B.2) R′
l := R/

(
m

l+1 + (tk+1) ∩m
l
)= R/ml ×R/(ml+(tk+1)) R/

(
m

l+1 + (tk+1)
)
,
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by gluing the family over R/ml given by �̂l−1 with the reduction modulo ml+1 of Xk/Sk ,
using the given isomorphism of the common reductions modulo ml + (tk+1). The fibered
sum of analytic spaces involved in this step exists due to [St70], Satz 2.7. We have now
arrived at the following sequence of Artinian C-algebras

R/ml+1 −→ R′
l −→ R/ml,

and a compatible system of deformations of X0, which are Xl over R/ml+1, the fibered
sum X′

l over R′
l just constructed, and Xl−1 over R/ml . In the second step we can now

use formal versality of ĥ : Ŷ → V̂ to extend the morphism �̂l : OV̂,0 → R/ml first to
R′

l and then to R/ml+1, in a way inducing the two families X′
l over R′

l and Xl over
R/ml+1, respectively. The intermediate step assures that the lift preserves the already
given completion to all orders modulo tk+1, namely the reduction of �k at 0. Thus �̂

with the requested properties exists.
Writing z = (z1, . . . , zr), the map �̂ is given by equations xi = ϕ̂i(t,z) for 1 ≤ i ≤ n

with ϕ̂i ∈ C�t,z�. Since the ideal (f1, . . . , fm) gets mapped into the ideal (g1, . . . , gs), the
ϕ̂i fulfill the system of equations

(B.3) fj
(
ϕ̂1(t,z), . . . , ϕ̂n(t,z)

)=
s∑

σ=1

âjσ (t,z)gσ (t,z), 1 ≤ j ≤ m

for some âjσ ∈ C�t,z�. Since we already have the analytic solution �k on Sk , that is, an
analytic solution modulo tk+1, we now rewrite

ϕ̂i = ϕi + tk+1ψ̂i, i = 1, . . . ,m,

with ϕi ∈ C{t,z} the components of �k and ψ̂i ∈ C�t,z�. Plugging into (B.3) we see that
yi = ψ̂i(t,z), xjσ = âjσ (t,z) are a formal solution of the system of analytic equations

(B.4) fj
(
ϕ1(t,z) + tk+1y1, . . . , ϕn(t,z) + tk+1yn

)=
s∑

σ=1

xjσ gσ (t,z), 1 ≤ j ≤ m.

By Artin’s approximation theorem [At], Theorem 1.2, there exist germs of analytic func-
tions ψ1(t,z), . . . ,ψn(t,z) and ajσ (t,z) that solve (B.4). Now ϕ1 + tk+1ψ1, . . . , ϕn + tk+1ψn

defines an analytic map (S,0) → (V,0) with the property that the reduction modulo
tk+1 equals �k . The base change X := Y ×V S of Y → V by � is the requested analytic
approximation of π̃ . This finishes the proof for the case (X,X0) → (S̃,0).

The proof for the case of a morphism (Z,Z0) → (X,X0) is similar, replacing the
versal deformation of X0 by the versal deformation of the morphism Z0 → X0, with
varying domain and target. This latter versal deformation space exists by first construct-
ing versal deformations T → W of Z0 and Y → V of X0 separately, and then taking the
relative hom space HomW×V(T × V,W ×Y) from [Du69], Ch.10, for the pull-backs to
W×V of the versal deformations of domain and target. The case of an analytic subspace
is a special case, noting that the condition that a morphism is a closed embedding is an
open property. �
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Appendix C: The divisorial log deformation functor has a hull

In this section, XC denotes a simple toric log Calabi-Yau space over (Spec C,N × C×).
We consider divisorial log deformations of XC as defined in [GS2], Definition 2.7. Let
D : (Artinian C�t�-algebras) → (Sets) be the divisorial log deformation functor that as-
sociates to an Artinian C�t�-algebra A the set of isomorphism classes of divisorial log
deformations XA of XC over Spec A equipped with the divisorial log structure defined
by t = 0. The definition requires XA → Spec A to be flat in the ordinary sense, to be
log smooth away from Z and to permit local models of a particular type along Z. The
last condition requires that each x̄ ∈ Z has an étale neighborhood VA with strict étale
Spec A-morphisms XA ← VA → YA = Spec A ×C�t� U where U → Spec C�t� is a par-
ticular affine toric variety with monomial function t uniquely determined by x̄. In the
following we call such an étale neighborhood VA → XA a model neighborhood. The only
feature of these local models needed for the present discussion is the following result from
[GS10].

Lemma C.1 ([GS10], Lemma 2.15). — For every x̄ ∈ Z, there exists a model neighborhood

VC of x̄ in XC, so that for every Artinian C�t�-algebra A, any two divisorial log deformations of VC

over Spec A are isomorphic.19

A standard fact about étale maps (Theorem I.3.23 in [Mi]) is the following:

Lemma C.2. — If Y is a log scheme and Y0 ⊂ Y a closed subscheme defined by a nilpotent

sheaf of ideals with restriction of the log structure from Y, then the category of strict étale Y-schemes is

equivalent to the category of strict étale Y0-schemes by means of V �→ V ×Y Y0.

Lemma C.3. — Assume that A1 → A0 ← A2 are maps of Artinian C�t�-algebras and

XA1 ← XA0 → XA2 maps of divisorial log deformations above these. Given x̄ ∈ Z, there is the following

commutative diagram with all squares cartesian, rows local models at x̄, left column the given maps of

deformation and the right column the maps induced via pullback by U → Spec C�t�,

XA1 VA1 YA1

XA0 VA0 YA0

XA2 VA2 YA2

19 The statement in [GS10] only asserts the existence of some étale neighborhood, but the proof in fact shows the
stronger statement given here.
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Proof. — Let XC ← VC → YC be a model neighborhood of x̄ ∈ Z in XC provided
by Lemma C.1. Then Lemma C.2 implies that for any Artinian C�t�-algebra A and
divisorial log deformation XA ∈ D(A) of XC, there exists a model neighborhood XA ←
VA → YA restricting to XC ← VC → YC. Moreover, this model neighborhood is unique
up to unique isomorphism. Thus the extension of the given model neighborhood XC ←
VC → YC to divisorial log deformations of XC is functorial, which in particular gives the
stated commutative diagram. �

An important fact implied from the definition is that the log structure on XA

has integral stalks even though it typically is not coherent. Recall that a morphism f :
(X,MX) → (Y,MY) of log spaces with integral monoid stalks is strict if and only the
induced map f −1MY →MX is an isomorphism.

Lemma C.4. — If f : XA → XA′ is a map of divisorial log deformations over a homomorphism

of Artinian C�t�-algebras, then f is strict.

Proof. — By strictness of XC → XA, XC → XA′ , the map f −1MXA′ → MXA in-
duced by f is an isomorphism. The statement now follows by integrality of stalks. �

Lemma C.5. — Assume we have a commutative diagram of Noetherian rings

B1 −−−→ B0
b←−−− B2

⏐
⏐
�

⏐
⏐
�

⏐
⏐
�

C1 −−−→ C0
c←−−− C2

with b, c surjective with nilpotent kernel, the squares co-cartesian and all vertical maps flat and unrami-

fied, then the natural map f : B1 ×B0 B2 → C1 ×C0 C2 is also flat and unramified.

Proof. — The question is local, so we can assume all rings local. Furthermore, since
an étale morphism is locally standard étale, e.g. by Theorem I.3.14 in [Mi], we may assume
that Bi → Ci are standard, that is, Ci = Bi[T]/(Pi) for Pi ∈ Bi[T] monic with simple roots.
By co-cartesianness, we may assume P0 is the image of P1,P2 under Bi[T] → B0[T]. Thus
P1,P2 define a polynomial P ∈ (B1 ×B0 B2)[T], which is clearly monic. Moreover, P also
has simple roots because any double root would imply a double root also for all the other
Pi using that Spec(B1 ×B0 B2) → Spec B1 is bijective by surjectivity of b : B2 → B0. Finally,
we find that C1 ×C0 C2 = (B1 ×B0 B2)[T]/(P), which implies the assertion. �

Let A1 → A0 ← A2 be homomorphisms of Artinian C�t�-algebras. Consider the
natural map

(C.1) D(A1 ×A0 A2) −→D(A1) ×D(A0) D(A2).

The Schlessinger criteria that provide a hull are the following ([Sl], Theorem 2.11).
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(H1) The map (C.1) is surjective whenever A2 → A0 is surjective.
(H2) The map (C.1) is bijective whenever A0 = C and A2 = C[ε] := C[E]/E2.
(H3) dimk(tD) < ∞ where tD :=D(C[ε]).
Theorem C.6. — The divisorial log deformation functor D has a hull.

Proof. — The last criterion (H3) is proved in [GS10], Theorem 2.11,(2). It re-
mains to verify (H1) and (H2). We begin with (H1). Let A2 → A0 be surjective. Set A :=
A1 ×A0 A2 and note this is naturally an Artinian C�t�-algebra. Let (Xi,Mi) → Spec Ai

be divisorial log deformations lifting the maps A0 → Ai . Just as in the proof of (H1) for
the log smooth deformation functor in [Kf], we obtain a glued log space (XA,N ) via
N := M1 ×M0 M2 → OX1 ×OX0

OX2 =: OXA with log map to (Spec A,N × A×) com-
patible with restrictions to X0,X1,X2. In view of Lemma C.4, we have M1 = M0 =
M2 =: M and there is a natural map α : N → M1 ×M0

M2 = M that we claim is
an isomorphism. Indeed, since M2 → M0 is surjective, α is easily seen to be surjective.
Now assume (m1,m2), (m

′
1,m′

2) ∈N map to the same element when composing N →N
with α. Then m1 = ε1m′

1, m2 = ε2m′
2 for εi ∈ M×

i . The cancellation law in M0 gives
that ε1 and ε2 map to the same element in M×

0 , hence glue to an element of N×. Thus
(m1,m2) and (m′

1,m′
2) map to the same element in N , proving injectivity of α. By the

same argument as in Lemma C.4, we now know that Xi → XA are strict.
Away from the incoherent locus Z, it was argued in [Kf] that (XA,N ) is a log

smooth lifting of X0. It remains to show the existence of local models along Z (which then
also implies the flatness along Z). Let x̄ ∈ Z be a geometric point. Lemma C.3 provides
a diagram of local models and we use the push-out for each row to obtain the following
commutative diagram

V0

X0 V1 V2 Y0

X1 X2 VA Y1 Y2

XA YA U

The dashed maps are étale by Lemma C.5 and YA agrees with Spec A ×Spec C�t� U.
The strictness of all vertical maps follows from the strictness of Xi → XA proved above.
Lemma C.4 then also gives strictness of the dashed maps, using that X1 → XA is a home-
omorphism on underlying spaces. We now have obtained local models for XA, so XA is
a divisorial log deformation of XC that maps to (X1,X2) under the map in (C.1). Thus
this map is surjective, finishing the proof of (H1).
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Finally we turn to (H2), for which only injectivity is left to be shown. Let A0 = C
and A2 = C[ε]. Using the same reasoning as in [Kf], Proof of (H2), it suffices to prove
the following assertion (Lemma 9.2 in [Kf]).

If (X′
A,N ′) → (Spec Ai,N × A×

i ) is a divisorial log deformation that fits in a com-
mutative square

(X1,M1) −−−→ (X′
A,N ′)

�
⏐
⏐

�
⏐
⏐

(X0,M0) −−−→ (X2,M2)

so that the restriction maps to (Xi,Mi) for i = 1,2 induce isomorphisms, then the natu-
ral map f : (XA,N ) → (X′

A,N ′) is an isomorphism. The proof in [Kf] works for us away
from Z, so it remains to prove f is an isomorphism along Z. Let x̄ ∈ Z be a point and let
V′

A → X′
A be the strict étale neighborhood of x̄ obtained from the neighborhood VC of

x̄ in XC via Lemma C.2. Then Lemma C.1 provides a Spec A-isomorphism V′
A

∼→ VA.
Since the restrictions to XC ← VC are compatible isomorphisms, Lemma C.2 shows this
isomorphism commutes with f . In particular, f is an isomorphism at x̄, completing the
proof. �

Appendix D: Isomorphism of affine and algebraic H1(�)

Let (B,P, ϕ) be a simple tropical n-manifold and x ∈ Spec(C[H1(B, i∗�̌)∗]) a closed
point. Let Xx denote the fiber of the canonical family above it. In particular (B,P)

is the intersection complex of X0(B,P) and also of Xx. Occurrences of τ, σ with various
indices below will always refer to cells in P . Inclusions of closed strata are covariant:
τ0 ⊂ τ1 ⇒ Xτ0 ⊂ Xτ1 . Note that, inconveniently, in order to parse all upcoming references
to [GS10], a mental translation to the dual intersection complex as used in [GS10] must
be made. The translation is straightforward, but nonetheless potentially confusing. For
σ ∈ P , let Vσ denote the standard open set of Xx that is the open star of the dense
torus of the stratum Xσ , i.e. the disjoint union of the dense torus orbits of all Xσ ′ for σ ′

containing σ . Note the contravariance: Vσ1 ⊂ Vσ0 for σ0 ⊂ σ1. Refine the partial order
⊆ of P to a total order ≤ so that for any sheaf F on Xx we obtain a Čech complex
Čj({Vσ }σ ,F) =⊕σ0<···<σj

�(Vσ0 ∩ · · · ∩ Vσj
,F) with the usual Čech differential Čj →

Čj+1. A decoration with † refers to the space with log structure (given by t = 0). Following
[GS10], let j : Xx \Zx ↪→ Xx denote the open inclusion of the locus where the log structure
is coherent and then we write short

�r := j∗�r

X†
x/x†, � := j∗�X†

x/x† .

The main purpose of this section is to prove the following proposition. For the statement,
recall that Wτ ⊂ B denotes the open set given by the disjoint union of the relative interiors
of all cells in the barycentric subdivision of P that contain the barycenter of τ .
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Proposition D.1. — We have a natural isomorphism of Čech cohomologies

Ȟ1
({Wτ }τ , ι∗∧n−1

� ⊗ C
)−→ Ȟ1({Vτ }τ ,�n−1).

Moreover, if B is orientable, a choice of global volume form ι∗
∧n

� 
 Z and matching choice �n 

OXx

turns the above isomorphism into an isomorphism

Ȟ1
({Wτ }τ , ι∗�̌ ⊗ C

)−→ Ȟ1({Vτ }τ ,�).

Explicitly, the image of a cocycle
(
nωτ

)
ω,τ

with nωτ ∈ �(Wω ∩ Wτ , ι∗�̌⊗ C) is the cocycle
(
∂nωτ

)
ωτ

with ∂nωτ
∈ �(Vω ∩ Vτ ,�) the logarithmic vector field defined by nωτ .

Lemma D.2 ([GS06], Lemma 5.5). — For all r ≥ 0, the cover {Wτ }τ∈P is acyclic for

ι∗
∧r

� ⊗ C.

For τ0 ⊆ τ1, recall from [GS10], Lemma 3.20,20 the isomorphism

(D.1) �(Wτ0 ∩ Wτ1, ι∗
∧r

� ⊗ C) = �(Xτ0, (�
r
τ1
|Xτ0

)/T ors)

where �r
τ = κτ,∗κ∗

τ (�
r|Xτ

) for κτ : Xτ \ Zτ ↪→ Xτ the open embedding defined in loc.cit..
Note that, by the argument in the proof of Theorem 3.21 of [GS10], for a chain τ0 ⊆
· · · ⊆ τi , we have

(D.2) �(Wτ0 ∩ · · · ∩ Wτi
, ι∗
∧r

� ⊗ C) = �(Wτ0 ∩ Wτi
, ι∗
∧r

� ⊗ C).

The observation that Wτ1 ∩ Wτ2 = ∅ unless τ1 ⊆ τ2 or τ2 ⊆ τ1 implies that only chains
τ0 < · · · < τi of the shape τ0 ⊆ · · · ⊆ τi contribute to the Čech complex for the cover
{Wτ }τ∈P . Thus, in view of (D.2), the Čech complex takes the form

(D.3) Či
(
{Wτ }τ∈P , ι∗

r∧
� ⊗ C

)
=
⊕

τ0�...�τi

�(Wτ0 ∩ Wτi
, ι∗

r∧
� ⊗ C).

Next consider the following variant of this Čech complex, the double complex

(D.4) �i,j =⊕σ0�...�σj⊆τ0�...�τi
�((Wτ0 ∩ Wτi

) ∩ (Wσ0 ∩ Wσj
), ι∗
∧r

� ⊗ C).

The differential i → i + 1 is the usual alternating sum of the Čech-differential, and simi-
larly for the differential j → j + 1.

Lemma D.3. — There is a natural injection Či
({Wτ }τ∈P, ι∗

∧r
� ⊗ C

)
↪→ �i,0 that

yields a quasi-isomorphism Č• ({Wτ }τ∈P, ι∗
∧r

� ⊗ C
)→⊕i+j=• �i,j to the total complex of the

double complex �i,j .

20 [GS10] uses the notation e : τ0 → τ1 but we stick with τ0 ⊆ τ1 assuming no self-intersecting cells, as in [GHS].
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Proof. — In view of (D.3) and (D.4), the map a is defined via the restriction map

⊕

τ0�...�τi

�(Wτ0 ∩ Wτi
, ι∗

r∧
� ⊗ C)

→
⊕

σ0⊆τ0�...�τi

�((Wτ0 ∩ Wτi
) ∩ Wσ0, ι∗

r∧
� ⊗ C)

that takes a tuple (λτ0�...�τi
)τ0�...�τi

to (λτ0�...�τi
|(Wτ0∩Wτi

)∩Wσ0
)σ0⊆τ0�...�τi

. The map a is
injective because {(Wτ0 ∩ Wτi

) ∩ Wσ0}σ0 covers Wτ0 ∩ Wτi
. To see that a yields a quasi-

isomorphism of total complexes, observe that, for a fixed chain τ0 ⊆ · · · ⊆ τi , the complex

(D.5)
⊕

σ0⊆τ0

�(Wσ0 ∩Wτi
, ι∗

r∧
�⊗C) →

⊕

σ0�σ1⊆τ0

�(Wσ0 ∩Wτi
, ι∗

r∧
�⊗C) → ·· ·

is the Čech complex for the space Wτ0 ∩ Wτi
with the cover {Wσ ∩ Wτ0 ∩ Wτi

}σ⊆τ0 . By
Lemma D.2, the cohomology of (D.5) is concentrated at the first term, yielding the direct
summand �(Wτ0 ∩ Wτi

, ι∗
∧r

�⊗ C) of Či({Wτ }τ∈P, ι∗
∧r

�⊗ C). The assertion about
the quasi-isomorphism follows. �

The second double complex is

(D.6) �i,j =
⊕

σ0�...�σj⊆τ0�...�τi

�(Xτ0 ∩ Vσ0 ∩ · · · ∩ Vσj
, (�r

τi
|Xτ0 ∩Vσj

)/T ors).

The differential i → i + 1 is the differential dbct given in [GS10], p.736, just before Theo-
rem 3.9, and the differential j → j + 1 is a Čech-type-differential analogous to the one in
�i,j . Note however that, unlike for the cover {Wσ }σ , we may have Vσ1 ∩ Vσ2 �= ∅ even if
none of σ1, σ2 is contained in the other. We will later use Lemma D.6 to take care of this
fact.

Lemma D.4. — There is a natural injection of double-complexes � : �i,j → �i,j .

Proof. — Given σ0 ⊆ · · · ⊆ σj ⊆ τ0, the torus-invariant open subset Xτ0 ∩ Vσ0 ∩
· · · ∩ Vσj

= Xτ0 ∩ Vσj
of the toric variety Xτ0 is of the form V = Spec C[P] for P a toric

monoid. By [GS10], Lemma 3.12 and Proposition 3.17, there is an injection �r
τ ↪→

�r
Xτ̂
(log ∂Xτ̂ )|Xτ

= OXτ
⊗Z
∧r

�τ̂ for every maximal cell τ̂ containing τ . Here, 1 ⊗
(m1 ∧ · · · ∧ mr) gets identified with dzm1

zm1 ∧ · · · ∧ dzmr

zmr
. When changing the choice of τ̂ ,

identifying �τ̂ with another �τ̂ ′ generally depends on the chosen path in B \ �, and
furthermore the gluing data rescale the monomials. Both of these won’t bother us for
the following reasons. We will only be interested in the subsheaf C ⊗Z

∧r
�τ̂ which is

actually invariant under this torus action, because the scaling operation z �→ λz leaves
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dz

z
invariant. Even better, we will actually only care about the monodromy invariant part

of this subsheaf. With this in mind, in view of (D.4), it is straightforward to produce the
following map

�((Wτ0 ∩ Wτi
) ∩ (Wσ0 ∩ Wσj

), ι∗
∧r

� ⊗ C)

(D.2)= C ⊗ �(Wσ0 ∩ Wτi
, ι∗
∧r

�)

↪→ �(Xτ0 ∩ Vσj
, (�r

τ̂ |Xτ0 ∩Vσj
)/T ors)

and its image is contained in �(Xτ0 ∩ Vσj
, (�r

τi
|Xτ0∩Vσj

)/T ors). This gives an injection
from the sum in (D.4) to the one in (D.6). The map respects the differentials by what we
said before and by the functoriality of Čech-type complexes. �

Remark D.5. — The statement of Lemma D.4 can be upgraded to an injection of
triple complexes when taking the de Rham differential for �i,j and an additional trivial
differential r → r + 1 on �i,j .

We need a technical lemma before we can prove Proposition D.1. For a sheaf F
on Xx, consider the exact sequence of complexes

0 →
Kj :=

︷ ︸︸ ︷⊕

σ0<···<σj

∃k<j :σk �⊂σk+1

�(Vσ0 ∩ . . . . ∩ Vσj
,F) → Čj({Vσ }σ ,F)

e→
⊕

σ0�...�σj

�(Vσ0 ∩ . . . . ∩ Vσj
,F) → 0.(D.7)

Lemma D.6. — (a) The surjection e is a quasi-isomorphism.

(b) Denoting by d2 the differential in the second index of �i,j , it holds

(D.8) Hp

d2
(�i,•) =

⊕

τ0�...�τi

Hp(Xτ0, (�
r
τi
|Xτ0

)/T ors).

Proof. — For (a) we show that K• is acyclic. Note that Vσ0 ∩ · · · ∩ Vσj
= ∅ unless

there is a σ ∈ P that contains σ0, . . . , σj . Let 〈σ0, . . . , σj〉 denote the set of minimal
elements with respect to ⊆ in the set of all σ ∈ P that contain σ0, . . . , σj (e.g. for (B,P)

two intervals glued to form a circle and σ0, σ1 being the two vertices, we have 〈σ0, σ1〉 is
the set containing the two intervals). The use of this definition is the following observation

Vσ0 ∩ . . . . ∩ Vσj
=
⊔

σ∈〈σ0,...,σj 〉
Vσ .
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Ignoring the differentials for a moment, the exact sequence (D.7) decomposes as a direct
sum
⊕

σ∈P of sequences with the summand for σ being

(D.9) 0 →
Kj

σ :=
︷ ︸︸ ︷⊕

σ0<···<σj

∃k<j :σk �⊂σk+1
σ∈〈σ0,...,σj 〉

�(Vσ ,F) →
⊕

σ0<···<σj

σ∈〈σ0,...,σj 〉

�(Vσ ,F)
e→
⊕

σ0�...�σj

σ∈〈σ0,...,σj 〉

�(Vσ ,F) → 0.

In particular, it holds Kj =⊕σ Kj
σ . Moreover, the differential on K• preserves the sum-

mands K•
i =⊕dimσ≥i K•

σ , which hence define a filtration of K•. We show that the grad-
eds of this filtration are acyclic, which then implies that K• itself is acyclic. We have
K•

i /K•
i+1 =⊕dimσ=i K•

σ is a direct sum of complexes. Similar filtrations exist on the other
terms of (D.7) so that their gradeds turn (D.9) into an exact sequence of complexes. For a
fixed σ and τ ⊆ σ define the open set Uτ ⊂ σ by

Uτ =
⋃

{ω | τ⊆ω⊆σ }
Intω.

Now observe that the nerve N of the cover {Uτ } of σ agrees with the nerve of the cover
{Vσ ∩Vτ }τ⊆σ of Vσ . On the other hand, the Wτ for τ ⊆ σ define another cover {Wτ ∩σ }
of σ , by the open stars of the barycentric subdivision. Since Wτ ∩Wτ ′ = ∅ unless τ ⊆ τ ′ or
τ ′ ⊆ τ , the nerve of this cover is the simplicial subcomplex of N given by sets {τ0, . . . , τj}
with τ0 � τ1 � . . . � τj ⊆ σ . Summing over the cells σ of fixed dimension i, we thus find
that the associated graded of the sequence (D.9) is the result of applying �(Vσ ,F)⊗Z to
the sequence

0 → R• → Č•({Uτ }τ⊆σ ,Z)
ρ→ Č•({Wτ ∩ σ }τ⊆σ ,Z) → 0.

Here ρ is the refinement map of Čech complexes from the cover {Uτ }τ⊆σ to the cover
{Wτ ∩ σ }τ⊆σ and R• := ker(ρ). Since both covers of σ are acyclic for Z, ρ is a quasi-
isomorphism and hence R• is acyclic. We finished showing the acyclicity of K•.

For (b) observe that Vσ is affine for each σ and so are their intersections. Hence
{Vσ }σ forms an affine cover of Xx. Let qτ : Xτ → Xx denote the inclusion of the stratum.
For F := (qτ0)∗(�

r
τi
|Xτ0

)/T ors the quasi-isomorphism e is a map between the Čech com-
plex of F and a summand of the complex (�i,•, d2). Summing the maps e for all these
summands and taking cohomology yields (D.8). �

Proof of Proposition D.1. — The main tool is the injection of double complexes �

from Lemma D.4. For � to induce a quasi-isomorphism of the total complexes, it matters
that we now set r := n−1. Consider taking cohomology for the second differential d2 that
modifies the index j → j + 1 for both complexes �i,j and �i,j . By Lemma D.2, we know
that Hp

d2
(�i,•) = 0 for p > 0. Lemma D.6 computes Hp

d2
(�i,•) and we want to show this
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cohomology group vanishes for p > 0. Indeed, the claimed vanishing follows noting that
for r = n−1, the statement of Lemma 3.20 in [GS10] holds without the standard-simplex
assumption,21 as also argued in the proof of Theorem 3.22. Thus, taking cohomology by
the differential j → j + 1 on source and target of � simultaneously yields a map induced
by � that is concentrated in degrees (i,0). This map is the isomorphism

⊕
τ0�...�τi

�
(

Wτ0 ∩ Wτi
,
∧n−1

� ⊗ C
)

→
⊕

τ0�...�τi

�
(
Xτ0, (�

n−1
τi

|Xτ0
)/T ors

)

of barycentric complexes that led to the proof of [GS10], Theorem 3.22. Relevant for us
is the conclusion that � : �i,j → �i,j is a quasi-isomorphism on the total complex of the
double complex.

We next consider what happens when we first take cohomology under the first
differential d1, that is, i → i + 1. All cohomology groups at i > 0 vanish: for �i,j by a
similar argument as for the proof of Lemma D.5 using the acyclicity of the cover {Wτ }τ
and for �i,j by the exactness of the barycentric differentials [GS06], Proposition A.2 and
[GS10], Theorem 3.5.

Therefore, since � is a quasi-isomorphism, also the induced map on d1-cohomolo-
gy that is concentrated in i = 0,

�̃ :⊕σ0�...�σj
�(Wσ0 ∩ Wσj

, ι∗
∧n−1

� ⊗ C) −→⊕σ0�...�σj
�(Vσj

,�n−1)(D.10)

is a quasi-isomorphism under the remaining differential d2, that is, j → j + 1. Equation
(D.3) identifies the domain of �̃ with the Čech complex for ι∗

∧n−1
�⊗C. The codomain

of �̃ is the complex that appears in the exact sequence just before Lemma D.6. Taking
cohomology with respect to d2 on source and target of �̃ and composing with the inverse
of the quasi-isomorphism e from Lemma D.6, we conclude the first assertion. The second
assertion follows from the definition of � in the proof of Lemma D.4. �
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