Article
Discrete series multiplicities for classical groups over 𝐙 and level 1 algebraic cusp forms
Publications Mathématiques de l'IHÉS, Volume 131 (2020), pp. 261-323

The aim of this paper is twofold. First, we introduce a new method for evaluating the multiplicity of a given discrete series representation in the space of level 1 automorphic forms of a split classical group G over 𝐙, and provide numerical applications in absolute rank 8. Second, we prove a classification result for the level one cuspidal algebraic automorphic representations of GL n over 𝐐 (n arbitrary) whose motivic weight is 24.

In both cases, a key ingredient is a classical method based on the Weil explicit formula, which allows to disprove the existence of certain level one algebraic cusp forms on GL n , and that we push further on in this paper. We use these vanishing results to obtain an arguably “effortless” computation of the elliptic part of the geometric side of the trace formula of G, for an appropriate test function.

Thoses results have consequences for the computation of the dimension of the spaces of (possibly vector-valued) Siegel modular cuspforms for Sp 2g (𝐙): we recover all the previously known cases without relying on any, and go further, by a unified and “effortless” method.

Received:
Accepted:
Online First:
Published online:
DOI: 10.1007/s10240-020-00115-z
@article{PMIHES_2020__131__261_0,
     author = {Ga\"etan Chenevier and Olivier Ta{\"\i}bi},
     title = {Discrete series multiplicities for classical groups over $\mathbf {Z}$ and level 1 algebraic cusp forms},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {261--323},
     year = {2020},
     publisher = {Springer Berlin Heidelberg},
     address = {Berlin/Heidelberg},
     volume = {131},
     doi = {10.1007/s10240-020-00115-z},
     zbl = {1455.22003},
     language = {en},
     url = {https://pmihes.centre-mersenne.org/articles/10.1007/s10240-020-00115-z/}
}
TY  - JOUR
AU  - Gaëtan Chenevier
AU  - Olivier Taïbi
TI  - Discrete series multiplicities for classical groups over $\mathbf {Z}$ and level 1 algebraic cusp forms
JO  - Publications Mathématiques de l'IHÉS
PY  - 2020
SP  - 261
EP  - 323
VL  - 131
PB  - Springer Berlin Heidelberg
PP  - Berlin/Heidelberg
UR  - https://pmihes.centre-mersenne.org/articles/10.1007/s10240-020-00115-z/
DO  - 10.1007/s10240-020-00115-z
LA  - en
ID  - PMIHES_2020__131__261_0
ER  - 
%0 Journal Article
%A Gaëtan Chenevier
%A Olivier Taïbi
%T Discrete series multiplicities for classical groups over $\mathbf {Z}$ and level 1 algebraic cusp forms
%J Publications Mathématiques de l'IHÉS
%D 2020
%P 261-323
%V 131
%I Springer Berlin Heidelberg
%C Berlin/Heidelberg
%U https://pmihes.centre-mersenne.org/articles/10.1007/s10240-020-00115-z/
%R 10.1007/s10240-020-00115-z
%G en
%F PMIHES_2020__131__261_0
Gaëtan Chenevier; Olivier Taïbi. Discrete series multiplicities for classical groups over $\mathbf {Z}$ and level 1 algebraic cusp forms. Publications Mathématiques de l'IHÉS, Volume 131 (2020), pp. 261-323. doi: 10.1007/s10240-020-00115-z

[AJ87] J. Adams; J. F. Johnson Endoscopic groups and packets of nontempered representations, Compos. Math., Volume 64 (1987), pp. 271-309 | MR | Zbl | Numdam

[AMR18] N. Arancibia; C. Moeglin; D. Renard Paquets d’Arthur des groupes classiques et unitaires, Ann. Fac. Sci. Toulouse Math. (6), Volume 27 (2018), pp. 1023-1105 | MR | Zbl | DOI

[Art88] J. Arthur The invariant trace formula. II. Global theory, J. Am. Math. Soc., Volume 1 (1988), pp. 501-554 | MR | Zbl | DOI

[Art89] J. Arthur The L 2 -Lefschetz numbers of Hecke operators, Invent. Math., Volume 97 (1989), pp. 257-290 | MR | Zbl | DOI

[Art13] J. Arthur The Endoscopic Classification of Representations: Orthogonal and Symplectic groups, 61, Am. Math. Soc., Providence, 2013 | Zbl

[BFvdG17] J. Bergström, C. Faber and G. van der Geer, Siegel modular forms of degree two and three, 2017, retrieved June 2019, http://smf.compositio.nl.

[BFW98] R. E. Borcherds; E. Freitag; R. Weissauer A Siegel cusp form of degree 12 and weight 12, J. Reine Angew. Math., Volume 494 (1998), pp. 141-153 (dedicated to Martin Kneser on the occasion of his 70th birthday) | MR | Zbl | DOI

[Bö89] S. Böcherer Siegel modular forms and theta series, Theta functions—Bowdoin 1987, Part 2, Volume 49 (1989), pp. 3-17 | DOI | Zbl

[Chea] G. Chenevier, An automorphic generalization of the Hermite-Minkowski theorem, Duke Math. J., to appear.

[Cheb] G. Chenevier, The characteristic masses of Niemeier lattices, preprint, 2020.

[Che19] G. Chenevier Subgroups of Spin (7) or SO (7) with each element conjugate to some element of G 2 and applications to automorphic forms, Doc. Math., Volume 24 (2019), pp. 95-161 | MR | Zbl | DOI

[CL19] G. Chenevier; J. Lannes Automorphic Forms and Even Unimodular Lattices, 69, Springer, Berlin, 2019 | Zbl | DOI

[Con14] B. Conrad Reductive group schemes, Autour des schémas en groupes. Vol. I, 42/43, Soc. Math. France, Paris, 2014, pp. 93-444 | Zbl

[CR15] G. Chenevier; D. Renard Level One Algebraic Cusp Forms of Classical Groups of Small Rank, 237, 2015 (no. 1121, v+122) | Zbl

[CT19a] G. Chenevier and O. Taïbi, Siegel modular forms of weight 13 and the Leech lattice, preprint, 2019.

[CT19b] G. Chenevier and O. Taïbi, Tables and source of some computer programs used in this paper, 2019, https://gaetan.chenevier.perso.math.cnrs.fr/levelone/, , or the Electronic Supplementary Material published online by Springer along with this article.

[CvdG18] F. Cléry; G. van der Geer On vector-valued Siegel modular forms of degree 2 and weight (j,2), Doc. Math., Volume 23 (2018), pp. 1129-1156 (with two appendices by Gaëtan Chenevier) | MR | Zbl | DOI

[DI98] W. Duke; Ö. Imamoḡlu Siegel modular forms of small weight, Math. Ann., Volume 310 (1998), pp. 73-82 | MR | Zbl | DOI

[Fer96] S. Fermigier Annulation de la cohomologie cuspidale de sous-groupes de congruence de GL n (𝐙), Math. Ann., Volume 306 (1996), pp. 247-256 | MR | Zbl | DOI

[FP85] U. Fincke; M. Pohst Improved methods for calculating vectors of short length in a lattice, including a complexity analysis, Math. Comput., Volume 44 (1985), pp. 463-471 | MR | Zbl | DOI

[Fre75] E. Freitag Holomorphe Differentialformen zu Kongruenzgruppen der Siegelschen Modulgruppe, Invent. Math., Volume 30 (1975), pp. 181-196 | MR | Zbl | DOI

[Fre77] E. Freitag Stabile Modulformen, Math. Ann., Volume 230 (1977), pp. 197-211 | MR | Zbl | DOI

[Fre82] E. Freitag Die Wirkung von Heckeoperatoren auf Thetarihen mit harmonischen Koeffizienten, Mathematische Annalen, Volume 258 (1982), pp. 419-440 | Zbl | DOI

[GM02] B. H. Gross; C. T. McMullen Automorphisms of even unimodular lattices and unramified Salem numbers, J. Algebra, Volume 257 (2002), pp. 265-290 | MR | Zbl | DOI

[Gro97] B. H. Gross On the motive of a reductive group, Invent. Math., Volume 130 (1997), pp. 287-313 | MR | Zbl | DOI

[GS01] S. Gelbart; F. Shahidi Boundedness of automorphic L-functions in vertical strips, J. Am. Math. Soc., Volume 14 (2001), pp. 79-107 | MR | Zbl | DOI

[How81] R. Howe Automorphic forms of low rank, Noncommutative Harmonic Analysis and Lie Groups, Volume 880 (1981), pp. 211-248 | Zbl | DOI

[Ike01] T. Ikeda On the lifting of elliptic cusp forms to Siegel cusp forms of degree 2n, Ann. Math. (2), Volume 154 (2001), pp. 641-681 | MR | Zbl | DOI

[Jac40] N. Jacobson A note on Hermitian forms, Bull. Am. Math. Soc., Volume 46 (1940), pp. 264-268 | MR | Zbl | DOI

[JPSS83] H. Jacquet; I. I. Piatetskii-Shapiro; J. A. Shalika Rankin-Selberg convolutions, Am. J. Math., Volume 105 (1983), pp. 367-464 | MR | Zbl | DOI

[JS81] H. Jacquet; J. A. Shalika On Euler products and the classification of automorphic forms. II, Am. J. Math., Volume 103 (1981), pp. 777-815 | MR | Zbl | DOI

[Kin03] O. D. King A mass formula for unimodular lattices with no roots, Math. Comput., Volume 72 (2003), pp. 839-863 | MR | Zbl | DOI

[Kna94] A. W. Knapp Local Langlands correspondence: the Archimedean case, Motives, Volume 55 (1994), pp. 393-410 | Zbl | DOI

[Knu91] M.-A. Knus Quadratic and Hermitian Forms Over Rings, 294, Springer, Berlin, 1991 | Zbl | DOI

[KSM04] W. Kohnen; R. Salvati Manni Linear relations between theta series, Osaka J. Math., Volume 41 (2004), pp. 353-356 | MR | Zbl

[KT87] K. Koike; I. Terada Young-diagrammatic methods for the representation theory of the classical groups of type B n , C n , D n , J. Algebra, Volume 107 (1987), pp. 466-511 | MR | Zbl | DOI

[Lac] G. Lachaussée, Ph. D. dissertation, Paris-Saclay university, forthcoming.

[Még18] T. Mégarbané Traces des opérateurs de Hecke sur les espaces de formes automorphes de SO7, SO8 ou SO9 en niveau 1 et poids arbitraire, J. Théor. Nr. Bordx., Volume 30 (2018), pp. 239-306 | Zbl | Numdam | DOI

[Mes86] J.-F. Mestre Formules explicites et minorations de conducteurs de variétés algébriques, Compos. Math., Volume 58 (1986), pp. 209-232 | Zbl | Numdam

[Mil02] S. D. Miller The highest lowest zero and other applications of positivity, Duke Math. J., Volume 112 (2002), pp. 83-116 | MR | Zbl | DOI

[Miz91] S. Mizumoto Poles and residues of standard L-functions attached to Siegel modular forms, Math. Ann., Volume 289 (1991), pp. 589-612 | MR | Zbl | DOI

[Miz19] S. Mizumoto, Erratum to: Poles and residues of standardL-functions attached to Siegel modular forms, personal communication, 2019.

[MR] C. Moeglin; D. Renard Sur les paquets d’arthur de Sp (2n,𝐑) contenant des modules unitaires de plus haut poids, scalaires, Nagoya Math. J. (2019) | Zbl | DOI

[MW89] C. Moeglin; J.-L. Waldspurger Le spectre résiduel de GL (n), Ann. Sci. Ec. Norm. Super., Volume 22 (1989), pp. 605-674 | Zbl | DOI | Numdam

[MW94] C. Moeglin; J.-L. Waldspurger Décomposition spectrale et séries d’Eisenstein, 113, Birkhäuser Verlag, Basel, 1994 (Une paraphrase de l’Écriture. [A paraphrase of Scripture]) | Zbl

[Poi77a] G. Poitou Minorations de discriminants (d’après A. M. Odlyzko), 479, Springer, Berlin, 1977, pp. 136-153 (Lecture Notes in Math., 567) | Zbl | Numdam

[Poi77b] G. Poitou Sur les petits discriminants, Séminaire Delange-Pisot-Poitou, 18e année: (1976/77), 6, Secrétariat Math., Paris, 1977, p. 18 | Zbl | Numdam | MR

[Ral82] S. Rallis Langlands’ functoriality and the Weil representation, Am. J. Math., Volume 104 (1982), pp. 469-515 | MR | Zbl | DOI

[Ral84] S. Rallis On the Howe duality conjecture, Compos. Math., Volume 51 (1984), pp. 333-399 | MR | Zbl | Numdam

[Res75] H. L. Resnikoff Automorphic forms of singular weight are singular forms, Math. Ann., Volume 215 (1975), pp. 173-193 | MR | Zbl | DOI

[S+14] W. A. Stein, et al., Sage Mathematics Software (Version 6.1.1), The Sage Development Team, 2014, http://www.sagemath.org.

[Ser71] J.-P. Serre Cohomologie des groupes discrets, Prospects in Mathematics, Volume 70 (1971), pp. 77-169 | Zbl

[Sie69] C. L. Siegel Berechnung von Zetafunktionen an ganzzahligen Stellen, Nachr. Akad. Wiss. Gött. Math.-Phys. Kl. II, Volume 1969 (1969), pp. 87-102 | MR | Zbl

[Taï17] O. Taïbi Dimensions of spaces of level one automorphic forms for split classical groups using the trace formula, Ann. Sci. Éc. Norm. Supér. (4), Volume 50 (2017), pp. 269-344 | MR | Zbl | Numdam | DOI

[Taï19] O. Taïbi Arthur’s multiplicity formula for certain inner forms of special orthogonal and symplectic groups, J. Eur. Math. Soc., Volume 21 (2019), pp. 839-871 | MR | Zbl | DOI

[Tat79] J. Tate Number theoretic background, Automorphic Forms, Representations and L -Functions, Part 2, Volume XXXIII (1979), pp. 3-26 | Zbl | DOI

[vdG08] G. van der Geer Siegel modular forms and their applications, The 1-2-3 of Modular Forms, Springer, Berlin, 2008, pp. 181-245 | Zbl | DOI

[Wal63] G. E. Wall On the conjugacy classes in the unitary, symplectic and orthogonal groups, J. Aust. Math. Soc., Volume 3 (1963), pp. 1-62 | MR | Zbl | DOI

[Wei83] R. Weissauer Vektorwertige Siegelsche Modulformen kleinen Gewichtes, J. Reine Angew. Math., Volume 343 (1983), pp. 184-202 | MR | Zbl

[Zas62] H. Zassenhaus On the spinor norm, Arch. Math., Volume 13 (1962), pp. 434-451 | MR | Zbl | DOI

Cited by Sources: