The aim of this paper is twofold. First, we introduce a new method for evaluating the multiplicity of a given discrete series representation in the space of level 1 automorphic forms of a split classical group over , and provide numerical applications in absolute rank . Second, we prove a classification result for the level one cuspidal algebraic automorphic representations of over ( arbitrary) whose motivic weight is .
In both cases, a key ingredient is a classical method based on the Weil explicit formula, which allows to disprove the existence of certain level one algebraic cusp forms on , and that we push further on in this paper. We use these vanishing results to obtain an arguably “effortless” computation of the elliptic part of the geometric side of the trace formula of , for an appropriate test function.
Thoses results have consequences for the computation of the dimension of the spaces of (possibly vector-valued) Siegel modular cuspforms for : we recover all the previously known cases without relying on any, and go further, by a unified and “effortless” method.
@article{PMIHES_2020__131__261_0,
author = {Ga\"etan Chenevier and Olivier Ta{\"\i}bi},
title = {Discrete series multiplicities for classical groups over $\mathbf {Z}$ and level 1 algebraic cusp forms},
journal = {Publications Math\'ematiques de l'IH\'ES},
pages = {261--323},
year = {2020},
publisher = {Springer Berlin Heidelberg},
address = {Berlin/Heidelberg},
volume = {131},
doi = {10.1007/s10240-020-00115-z},
zbl = {1455.22003},
language = {en},
url = {https://pmihes.centre-mersenne.org/articles/10.1007/s10240-020-00115-z/}
}
TY - JOUR
AU - Gaëtan Chenevier
AU - Olivier Taïbi
TI - Discrete series multiplicities for classical groups over $\mathbf {Z}$ and level 1 algebraic cusp forms
JO - Publications Mathématiques de l'IHÉS
PY - 2020
SP - 261
EP - 323
VL - 131
PB - Springer Berlin Heidelberg
PP - Berlin/Heidelberg
UR - https://pmihes.centre-mersenne.org/articles/10.1007/s10240-020-00115-z/
DO - 10.1007/s10240-020-00115-z
LA - en
ID - PMIHES_2020__131__261_0
ER -
%0 Journal Article
%A Gaëtan Chenevier
%A Olivier Taïbi
%T Discrete series multiplicities for classical groups over $\mathbf {Z}$ and level 1 algebraic cusp forms
%J Publications Mathématiques de l'IHÉS
%D 2020
%P 261-323
%V 131
%I Springer Berlin Heidelberg
%C Berlin/Heidelberg
%U https://pmihes.centre-mersenne.org/articles/10.1007/s10240-020-00115-z/
%R 10.1007/s10240-020-00115-z
%G en
%F PMIHES_2020__131__261_0
Gaëtan Chenevier; Olivier Taïbi. Discrete series multiplicities for classical groups over $\mathbf {Z}$ and level 1 algebraic cusp forms. Publications Mathématiques de l'IHÉS, Volume 131 (2020), pp. 261-323. doi: 10.1007/s10240-020-00115-z
[AJ87] Endoscopic groups and packets of nontempered representations, Compos. Math., Volume 64 (1987), pp. 271-309 | MR | Zbl | Numdam
[AMR18] Paquets d’Arthur des groupes classiques et unitaires, Ann. Fac. Sci. Toulouse Math. (6), Volume 27 (2018), pp. 1023-1105 | MR | Zbl | DOI
[Art88] The invariant trace formula. II. Global theory, J. Am. Math. Soc., Volume 1 (1988), pp. 501-554 | MR | Zbl | DOI
[Art89] The -Lefschetz numbers of Hecke operators, Invent. Math., Volume 97 (1989), pp. 257-290 | MR | Zbl | DOI
[Art13] The Endoscopic Classification of Representations: Orthogonal and Symplectic groups, 61, Am. Math. Soc., Providence, 2013 | Zbl
[BFvdG17] J. Bergström, C. Faber and G. van der Geer, Siegel modular forms of degree two and three, 2017, retrieved June 2019, http://smf.compositio.nl.
[BFW98] A Siegel cusp form of degree 12 and weight 12, J. Reine Angew. Math., Volume 494 (1998), pp. 141-153 (dedicated to Martin Kneser on the occasion of his 70th birthday) | MR | Zbl | DOI
[Bö89] Siegel modular forms and theta series, Theta functions—Bowdoin 1987, Part 2, Volume 49 (1989), pp. 3-17 | DOI | Zbl
[Chea] G. Chenevier, An automorphic generalization of the Hermite-Minkowski theorem, Duke Math. J., to appear.
[Cheb] G. Chenevier, The characteristic masses of Niemeier lattices, preprint, 2020.
[Che19] Subgroups of or with each element conjugate to some element of and applications to automorphic forms, Doc. Math., Volume 24 (2019), pp. 95-161 | MR | Zbl | DOI
[CL19] Automorphic Forms and Even Unimodular Lattices, 69, Springer, Berlin, 2019 | Zbl | DOI
[Con14] Reductive group schemes, Autour des schémas en groupes. Vol. I, 42/43, Soc. Math. France, Paris, 2014, pp. 93-444 | Zbl
[CR15] Level One Algebraic Cusp Forms of Classical Groups of Small Rank, 237, 2015 (no. 1121, v+122) | Zbl
[CT19a] G. Chenevier and O. Taïbi, Siegel modular forms of weight 13 and the Leech lattice, preprint, 2019.
[CT19b] G. Chenevier and O. Taïbi, Tables and source of some computer programs used in this paper, 2019, https://gaetan.chenevier.perso.math.cnrs.fr/levelone/, , or the Electronic Supplementary Material published online by Springer along with this article.
[CvdG18] On vector-valued Siegel modular forms of degree 2 and weight , Doc. Math., Volume 23 (2018), pp. 1129-1156 (with two appendices by Gaëtan Chenevier) | MR | Zbl | DOI
[DI98] Siegel modular forms of small weight, Math. Ann., Volume 310 (1998), pp. 73-82 | MR | Zbl | DOI
[Fer96] Annulation de la cohomologie cuspidale de sous-groupes de congruence de , Math. Ann., Volume 306 (1996), pp. 247-256 | MR | Zbl | DOI
[FP85] Improved methods for calculating vectors of short length in a lattice, including a complexity analysis, Math. Comput., Volume 44 (1985), pp. 463-471 | MR | Zbl | DOI
[Fre75] Holomorphe Differentialformen zu Kongruenzgruppen der Siegelschen Modulgruppe, Invent. Math., Volume 30 (1975), pp. 181-196 | MR | Zbl | DOI
[Fre77] Stabile Modulformen, Math. Ann., Volume 230 (1977), pp. 197-211 | MR | Zbl | DOI
[Fre82] Die Wirkung von Heckeoperatoren auf Thetarihen mit harmonischen Koeffizienten, Mathematische Annalen, Volume 258 (1982), pp. 419-440 | Zbl | DOI
[GM02] Automorphisms of even unimodular lattices and unramified Salem numbers, J. Algebra, Volume 257 (2002), pp. 265-290 | MR | Zbl | DOI
[Gro97] On the motive of a reductive group, Invent. Math., Volume 130 (1997), pp. 287-313 | MR | Zbl | DOI
[GS01] Boundedness of automorphic -functions in vertical strips, J. Am. Math. Soc., Volume 14 (2001), pp. 79-107 | MR | Zbl | DOI
[How81] Automorphic forms of low rank, Noncommutative Harmonic Analysis and Lie Groups, Volume 880 (1981), pp. 211-248 | Zbl | DOI
[Ike01] On the lifting of elliptic cusp forms to Siegel cusp forms of degree , Ann. Math. (2), Volume 154 (2001), pp. 641-681 | MR | Zbl | DOI
[Jac40] A note on Hermitian forms, Bull. Am. Math. Soc., Volume 46 (1940), pp. 264-268 | MR | Zbl | DOI
[JPSS83] Rankin-Selberg convolutions, Am. J. Math., Volume 105 (1983), pp. 367-464 | MR | Zbl | DOI
[JS81] On Euler products and the classification of automorphic forms. II, Am. J. Math., Volume 103 (1981), pp. 777-815 | MR | Zbl | DOI
[Kin03] A mass formula for unimodular lattices with no roots, Math. Comput., Volume 72 (2003), pp. 839-863 | MR | Zbl | DOI
[Kna94] Local Langlands correspondence: the Archimedean case, Motives, Volume 55 (1994), pp. 393-410 | Zbl | DOI
[Knu91] Quadratic and Hermitian Forms Over Rings, 294, Springer, Berlin, 1991 | Zbl | DOI
[KSM04] Linear relations between theta series, Osaka J. Math., Volume 41 (2004), pp. 353-356 | MR | Zbl
[KT87] Young-diagrammatic methods for the representation theory of the classical groups of type , , , J. Algebra, Volume 107 (1987), pp. 466-511 | MR | Zbl | DOI
[Lac] G. Lachaussée, Ph. D. dissertation, Paris-Saclay university, forthcoming.
[Még18] Traces des opérateurs de Hecke sur les espaces de formes automorphes de SO7, SO8 ou SO9 en niveau 1 et poids arbitraire, J. Théor. Nr. Bordx., Volume 30 (2018), pp. 239-306 | Zbl | Numdam | DOI
[Mes86] Formules explicites et minorations de conducteurs de variétés algébriques, Compos. Math., Volume 58 (1986), pp. 209-232 | Zbl | Numdam
[Mil02] The highest lowest zero and other applications of positivity, Duke Math. J., Volume 112 (2002), pp. 83-116 | MR | Zbl | DOI
[Miz91] Poles and residues of standard -functions attached to Siegel modular forms, Math. Ann., Volume 289 (1991), pp. 589-612 | MR | Zbl | DOI
[Miz19] S. Mizumoto, Erratum to: Poles and residues of standard-functions attached to Siegel modular forms, personal communication, 2019.
[MR] Sur les paquets d’arthur de contenant des modules unitaires de plus haut poids, scalaires, Nagoya Math. J. (2019) | Zbl | DOI
[MW89] Le spectre résiduel de , Ann. Sci. Ec. Norm. Super., Volume 22 (1989), pp. 605-674 | Zbl | DOI | Numdam
[MW94] Décomposition spectrale et séries d’Eisenstein, 113, Birkhäuser Verlag, Basel, 1994 (Une paraphrase de l’Écriture. [A paraphrase of Scripture]) | Zbl
[Poi77a] Minorations de discriminants (d’après A. M. Odlyzko), 479, Springer, Berlin, 1977, pp. 136-153 (Lecture Notes in Math., 567) | Zbl | Numdam
[Poi77b] Sur les petits discriminants, Séminaire Delange-Pisot-Poitou, 18e année: (1976/77), 6, Secrétariat Math., Paris, 1977, p. 18 | Zbl | Numdam | MR
[Ral82] Langlands’ functoriality and the Weil representation, Am. J. Math., Volume 104 (1982), pp. 469-515 | MR | Zbl | DOI
[Ral84] On the Howe duality conjecture, Compos. Math., Volume 51 (1984), pp. 333-399 | MR | Zbl | Numdam
[Res75] Automorphic forms of singular weight are singular forms, Math. Ann., Volume 215 (1975), pp. 173-193 | MR | Zbl | DOI
[S+14] W. A. Stein, et al., Sage Mathematics Software (Version 6.1.1), The Sage Development Team, 2014, http://www.sagemath.org.
[Ser71] Cohomologie des groupes discrets, Prospects in Mathematics, Volume 70 (1971), pp. 77-169 | Zbl
[Sie69] Berechnung von Zetafunktionen an ganzzahligen Stellen, Nachr. Akad. Wiss. Gött. Math.-Phys. Kl. II, Volume 1969 (1969), pp. 87-102 | MR | Zbl
[Taï17] Dimensions of spaces of level one automorphic forms for split classical groups using the trace formula, Ann. Sci. Éc. Norm. Supér. (4), Volume 50 (2017), pp. 269-344 | MR | Zbl | Numdam | DOI
[Taï19] Arthur’s multiplicity formula for certain inner forms of special orthogonal and symplectic groups, J. Eur. Math. Soc., Volume 21 (2019), pp. 839-871 | MR | Zbl | DOI
[Tat79] Number theoretic background, Automorphic Forms, Representations and -Functions, Part 2, Volume XXXIII (1979), pp. 3-26 | Zbl | DOI
[vdG08] Siegel modular forms and their applications, The 1-2-3 of Modular Forms, Springer, Berlin, 2008, pp. 181-245 | Zbl | DOI
[Wal63] On the conjugacy classes in the unitary, symplectic and orthogonal groups, J. Aust. Math. Soc., Volume 3 (1963), pp. 1-62 | MR | Zbl | DOI
[Wei83] Vektorwertige Siegelsche Modulformen kleinen Gewichtes, J. Reine Angew. Math., Volume 343 (1983), pp. 184-202 | MR | Zbl
[Zas62] On the spinor norm, Arch. Math., Volume 13 (1962), pp. 434-451 | MR | Zbl | DOI
Cited by Sources: