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ABSTRACT

The aim of this paper is twofold. First, we introduce a new method for evaluating the multiplicity of a given
discrete series representation in the space of level 1 automorphic forms of a split classical group G over Z, and provide
numerical applications in absolute rank ≤ 8. Second, we prove a classification result for the level one cuspidal algebraic
automorphic representations of GLn over Q (n arbitrary) whose motivic weight is ≤ 24.

In both cases, a key ingredient is a classical method based on the Weil explicit formula, which allows to disprove
the existence of certain level one algebraic cusp forms on GLn, and that we push further on in this paper. We use these
vanishing results to obtain an arguably “effortless” computation of the elliptic part of the geometric side of the trace
formula of G, for an appropriate test function.

Thoses results have consequences for the computation of the dimension of the spaces of (possibly vector-valued)
Siegel modular cuspforms for Sp2g(Z): we recover all the previously known cases without relying on any, and go further,
by a unified and “effortless” method.
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1. Introduction

1.1. Siegel modular forms for Sp2g(Z). — We denote by Sk(�g) and Sk(�g) respec-
tively the space of cuspidal Siegel modular forms for the full Siegel modular group
�g = Sp2g(Z), which are either scalar-valued of weight k ∈ Z, or more generally vector-
valued of weight k = (k1, k2, . . . , kg) in Zg with k1 ≥ k2 ≥ · · · ≥ kg (we refer to [vdG08]
for a general introduction to Siegel modular forms). Recall that Sk(�g) trivially vanishes
when

∑
i ki is odd, and also for kg < g/2 (Freitag, Reznikoff, Weissauer).

The question of determining the dimension of Sk(�g), very classical for g = 1, has a
long and rich history for g > 1. It has first been attacked for g = 2 using geometric meth-
ods, in which case concrete formulas were obtained by Igusa (1962) in the scalar-valued
case, and by Tsushima (1983) for the weights1 k1 ≥ k2 ≥ 3. There is still no known formula
for k2 = 2, although we have Sk(�2) = 0 for k2 = 1 (Ibukiyama, Skoruppa): see [CvdG18]
for a discussion of these singular cases. An analogue of Igusa’s result for g = 3 was proved
by Tsuyumine in 1986, but only quite recently a conjectural formula was proposed by
Bergström, Faber and van der Geer, in the vector valued case k1 ≥ k2 ≥ k3 ≥ 4, based
on counting genus three curves over finite fields (2011). Their formula, and more gener-
ally a formula2 for dim Sk(�g) for arbitrary g ≤ 7 and kg > g was proved by the second
author in [Taï17], using a method that we will recall in Sect. 1.4. Actually, the general
formulas given in [Taï17] apply to any genus g and any weights with kg > g. However,
they involve certain rational numbers, that we shall refer to later as masses, that are rather
difficult to compute. Taïbi provided loc. cit. a number of algorithms to determine them
(more precisely, certain local orbital integrals, see Sect. 1.4) that allowed him to numer-
ically compute those masses for g ≤ 7, using algorithms which were implemented and
optimized case-by-case. It is fair to say that reproducing these computations from the
generic algorithm explained in [Taï17] would require a considerable effort.

Our first main result in this paper is a completely different and comparatively
much easier method to compute the aforementioned masses. This method allows us to
recover, in a uniform and rather “effortless” way, all the computations of masses done in
[Taï17] for g ≤ 7, and even to go further:

Theorem 1. — There is an explicit and implemented formula computing dim Sk(�g) for any

g ≤ 8, and any k with kg > g.

See Theorems 6 and 7 for equivalent, better formulated, statements. Theorem 1 is
about Siegel modular forms of arbitrary weights k such that kg > g, but with genus g ≤ 8.
A second result concerns the Siegel modular forms of arbitrary genus, but of weights ≤ 13

1 More precisely, Tsushima could only prove that his formula works for k2 ≥ 5, and later Petersen (2013) and Taïbi
(2016) independently showed that it holds as well for k2 ≥ 3 and (k1, k2) �= (3,3), as conjectured by Ibukiyama.

2 These are pretty huge formulas, which can’t be printed here already for g > 2, but see Theorem A loc. cit. for their
general shape.
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(there are really finitely many relevant pairs (k, g) here). It is very much in the spirit of
the determination of dim Sk(�g) by Chenevier-Lannes in [CL19] in the cases g ≤ k ≤ 12.

Theorem 2. — The dimension of Sk(�g) for 13 ≥ k1 ≥ · · · ≥ kg > g, and k non scalar, is

given by Table 5. The dimension of Sk(�g) for any k ≤ 13 and any g ≥ 1 is given by Table 6.

The notations for these tables are explained in Sect. 5.3. Table 5 shows in partic-
ular that Sk(�g) has dimension ≤ 1 for k non scalar and 13 ≥ k1 ≥ · · · ≥ kg > g, and is
nonzero for exactly 29 values of k. Table 6 includes the fact that Sk(�g) vanishes whenever
k ≤ 13 and g ≥ k, except in the three following situations:

dim S12(�12) = dim S13(�16) = dim S13(�24) = 1

(a nonzero element in the first and last spaces has been constructed in [BFW98] and
[Fre82]). We obtain for instance the following result.

Corollary 1. — S13(�g) has dimension 1 for g = 8,12,16,24, and 0 otherwise.

An inspection of standard L-functions, and general results of Böcherer, Kudla-
Rallis and Weissauer, show that these four spaces are spanned by certain Siegel theta
series build on Niemeier lattices (see Sect. 5.4). In a companion paper [CT19a] we come
back to these constructions and study them in a much more elementary way. Combined
with [CL19, Sect. 9.5], this provides an explicit construction of all the cuspidal Siegel modular

eigenforms of weight k ≤ 13 and level �g for an arbitrary genus g. In Sect. 5.4, we also prove
that Eichler’s basis problem holds in weights k = 8 and 12 for arbitrary genus g, completing the
results of [CL19] for g ≤ k.

Last but not least, let us mention that in the past, several other authors have com-
puted dim Sk(�g) for a number of isolated and small pairs (g, k), sometimes with much ef-
fort, e.g. Igusa, Witt, Erokhin, Duke-Immamoglu,3 Nebe-Venkov, and Poor-Yuen among
others. We would like to stress that none of the results of this paper depend on a previous computa-

tion of the dimension of a space of Siegel modular forms, not even of Sk(SL2(Z)) ! see Sect. 1.4.
Moreover, as far as we know, the dimensions given by Theorems 1 and 2 seem to recover
all the previously known4 dimensions of spaces of Siegel modular cuspforms for �g .

Our proof of Theorems 1 and 2 will use automorphic methods, building on a strat-
egy developed in the recent works [CR15, CL19, Taï17]: we will review this strategy in

3 We warn the reader that the proofs of Duke and Immamoglu in [DI98] are not valid in the case g > k since they
rely on the incorrect Corollary 3 p. 601 in [Miz91]: see [Miz19] for a recent erratum. Note also that a preliminary version
of [CL19] did include a proof of the vanishing of Sk(�g) for k ≤ 12, g > k and g �= 24, but this statement was deleted in the
published version for the same reason. Our proofs here show that all these incriminated results for g > k were nevertheless
correct, and actually do not rely anymore on the results in [Miz91].

4 More precisely, the only cases not covered by these two theorems seem to be the vanishing of Sk(�2) for k2 = 1,
and for the pairs k = (k1,2) with k1 ≤ 50 [CvdG18, Thm. 1.3]. However, this vanishing for k2 = 1 can also be proved by
arguments in the spirit of the ones employed here, as explained by the first author in an appendix of [CvdG18], and we
can actually prove it as well for all k = (k1,2) with k1 ≤ 54: see Sect. 2.4.7.
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Sect. 1.4 and Sect. 5. An important ingredient is Arthur’s endoscopic classification of the dis-
crete automorphic spectrum of classical groups in terms of general linear groups [Art13],
including the so-called multiplicity formula. A special feature of this approach is that even if
we were only interested in dim Sk(�g), we would be forced to compute first the dimension
of various spaces of automorphic forms for all the split classical groups over Z of smaller
dimension. By a split classical group over Z we will mean here either the group scheme Sp2g

over Z, or the special orthogonal group scheme SOn of the quadratic form
∑n/2

i=1 xixn+1−i

(case n even �= 2) or
∑(n−1)/2

i=1 xixn+1−i + x2
(n+1)/2 (case n odd) over Zn. An important gain of

this approach, however, is that in the end we do not only compute dim Sk(�g), but also
the dimension of its subspace of cuspforms of any possible endoscopic type, a quantity
which is arguably more interesting than the whole dimension itself: see Tables 5 and 6
for a sample of results.

1.2. Level one algebraic cusp forms on GLm. — Let m ≥ 1 be an integer and π a cus-
pidal automorphic representation of PGLm over Q. We say that π has level 1 if πp is
unramified for each prime p. We say that π is algebraic if the infinitesimal character of π∞,
that we may view following Harish-Chandra and Langlands as a semi-simple conjugacy
class in Mm(C), has its eigenvalues in 1

2Z, say w1 ≥ w2 ≥ · · · ≥ wm, and with wi −wj ∈ Z.
Those eigenvalues wi are called the weights of π , and the important integer w(π) := 2w1

is called the motivic weight of π . The Jacquet-Shalika estimates imply wm+1−i =−wi for all
i, and in particular, w(π) ≥ 0 (see Sect. 2.1).

The algebraic cuspidal π are especially interesting to number theorists, as for such
a π standard conjectures (by Clozel, Langlands) predict the existence of a compatible
system of pure and irreducible �-adic Galois representations ρ with same L-function as
π |.|w1 , the Hodge-Tate weights of ρ being the wi + w1, and its Deligne weight being
w(π). The level 1 assumption in this work has to be thought as a simplifying, but still
interesting, one (see [CL19] for several motivations).

An important problem is thus the following. For an integer m ≥ 1, we denote by
Wm the set of w = (wi) in 1

2Zm with w1 ≥ w2 ≥ · · · ≥ wm, wi −wj ∈ Z and wi =−wm+1−i

for all 1 ≤ i, j ≤ m.

Problem 1. — For w ∈ Wm, determine the (finite) number N(w) of level 1 cuspidal algebraic

automorphic representations of PGLm whose weights are the wi , and the number N⊥(w) of those π

satisfying furthermore π∨ 	 π (self-duality).

Let us say that an element (wi) in Wm is regular if for all i �= j we have either wi �= wj ,
or m ≡ 0 mod 4, i = j − 1 = m/2 and wi = wj = 0 (hence w1 ∈ Z). Despite appearances,
the question of determining the N⊥(w) for regular w is very close to that discussed in
Sect. 1.1. Indeed, as was observed and used in [CR15, CL19, Taï17], the level 1 self-dual
π of regular weights are the exact building blocks for Arthur’s endoscopic classification
of the discrete automorphic representations of split classical groups over Z which are
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unramified at all finite places and discrete series at the Archimedean place (with a very
concrete form of Arthur’s multiplicity formula, relying on [AMR18]). As an illustration
of this slogan, the following fact was observed in [CR15, Chap 9].

Key fact 1. — Fix g ≥ 1 and k = (k1, . . . , kg) ∈ Zg with k1 ≥ k2 ≥ · · · ≥ kg > g. Then the

dimension of Sk(�g) is an explicit function of the (finitely many) quantities N⊥(w) with w = (wi) ∈
Wm regular, m ≤ 2g + 1 and w1 ≤ k1 − 1.

See [CR15, Prop. 1.11] for explicit formulas for g ≤ 3, [Taï17, Chap. 5] for g = 4,
and [CL19, Thm. 5.2] for the general recipe. This general recipe will actually be recalled
in Sect. 5, in which we will also apply the recent results of [MR] to give an analoguous
statement for Sk(�g) (scalar-valued case) in the case k ≤ g. This last case is quite more
sophisticated, in particular it also involves certain slightly irregular weights. We will come
back later on the relations between the Problem above and Theorems 1 and 2.

1.3. Classification and inexistence results. — Let us denote by �alg the set of cuspidal
automorphic representations of PGLm, with m ≥ 1 arbitrary, which are algebraic and
of level 1. The second main result of this paper is a partial classification of elements π

in �alg having motivic weight ≤24. The first statement of this type, proved in [CL19,
Thm. F], asserts that there are exactly 11 elements π in �alg of motivic weight ≤22:
the trivial representation of PGL1, the 5 representations �k−1 of PGL2 generated by the
1-dimensional spaces Sk(SL2(Z)) for k = 12,16,18,20,22 (whose weights are ± k−1

2 ),
the Gelbart-Jacquet symmetric square of �11 (with weights −11,0,11), and four other
4-dimensional self-dual π with respective weights

{±19/2,±7/2}, {±21/2,±5/2}, {±21/2,±9/2}
and {±21/2,±13/2}.

In this paper we significantly simplify the proof of [CL19, Thm. F]: see Sect. 2.4.6. More
importantly, these simplifications allow us to prove the following theorems for motivic
weights 23 and 24.

Theorem 3. — There are exactly 13 level 1 cuspidal algebraic automorphic representations of

PGLm over Q, with m varying, with motivic weight 23, and having the weight 23/2 with multiplic-

ity 1:

(i) 2 representations of PGL2 generated by the eigenforms in S24(SL2(Z)),

(ii) 3 representations of PGL4 of weights ±23/2, ±v/2 with v = 7,9 or 13,

(iii) 7 representations of PGL6 of weights ±23/2, ±v/2, ±u/2 with

(v, u) = (13,5), (15,3), (15,7), (17,5), (17,9), (19,3)

and (19,11),
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(iv) 1 representation of PGL10 of weights ±23/2, ±21/2, ±17/2, ±11/2, ±3/2.

They are all self-dual (symplectic) and uniquely determined by their weights.

The representations in (ii) and (iii) above were first discovered in [CR15], using a
conditional argument that was later made unconditional in [Taï19]. Their existence was
also confirmed by the different computation of the second author in [Taï17], who also
discovered the 10-dimensional form in (iv).

Despite our efforts, we have not been able to classify the representations π of mo-
tivic weight 23 such that the multiplicity of the weight 23/2 is > 1. We could only prove
that there is an explicit list L of 182 weights w = (wi) with w1 = w2 = 23 such that
(a) the weight of any such π belongs to L, (b) for any w in L there is at most one π

with this weight (necessarily self-dual symplectic), except for the single weight w = (vi/2)

in W14 ∩ L with (v1, v2, . . . , v7) = (23,23,21,17,13,7,1), for which there might also
be two such π which are the dual of each other: see Proposition 4.1. Nevertheless, we
conjecture that all of those putative 183 representations do not exist, except perhaps one.
Indeed, we prove in Sect. 4.3 the following result, assuming a suitable form of (GRH).

Theorem 4. — Assume (GRH) and that there exists a level 1 cuspidal algebraic automorphic

representation π of PGLm over Q having motivic weight 23 and having the weight 23/2 with multi-

plicity > 1. Then we have m = 16, the weights of π are ±1/2, ±7/2, ±11/2, ±15/2, ±19/2,

±21/2 as well as ±23/2 with multiplicity 2, and π is the unique element of �alg having these 16
weights.

We now state our partial classification result in motivic weight 24.

Theorem 5. — There are exactly 3 level 1 algebraic cuspidal self-dual automorphic representa-

tions of PGLm over Q, with m varying, with motivic weight 24 and regular weights. They have respective

sets of weights

{±12,±8,±4,0}, {±12,±9,±5,±2} and {±12,±10,±7,±1}.
Again, those three forms were first discovered in [CR15, Cor. 1.10 & 1.12] and

confirmed in [Taï17]. Interestingly, as explained in [CR15], we expect that their Sato-
Tate groups are respectively the compact groups G2, Spin(7) and SO(8). See [Che19,
Thm. 6.12] for a proof that the first form, which is 7-dimensional, has G2-valued �-adic
Galois representations.

Proofs. — Our proofs of Theorems 3 and 5 are in the same spirit of the one of
[CL19, Thm. F]. As already said, all the representations appearing in the theorem were
already known to exist by the works [CR15, Taï19, Taï17] (and we will give another
proof of their existence in Sect. 3), so the main problem is to show that there are no oth-
ers. The basic idea that we will use for doing so is to consider an hypothetical π , consider
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an associate L-function of π , and show that this function cannot exist by applying to it
the so-called explicit formula for suitable test functions. This is a classical method by now,
inspired by the pioneering works of Stark, Odlyzko and Serre on discriminant bounds of
number fields. It was developed by Mestre in [Mes86] and applied loc. cit. to the stan-
dard L-function of π (see also [Fer96]), then by Miller [Mil02] to the Rankin-Selberg
L-function of π , and developed further more recently in [CL19, §9.3.4].

Two important novelties were discovered in [CL19] in order to obtain the afore-
mentioned classification result in motivic weight ≤ 22. The first one, developed further
in [Chea], is a finiteness result which implies that there are only finitely many level 1
cuspidal algebraic automorphic representations π of PGLm, with m varying, of motivic
weight ≤ 23. This finiteness is also valid in motivic weight ≤ 24 assuming a suitable form
of GRH. This result is effective and produces a finite but large list of possible weights
for those π (for instance, it leads to 12295 possible weights in motivic weight 23). The
hardest part is then to eliminate most of those remaining weights. The second novelty
found in [CL19] was the observation that we obtain efficient constraints by applying as
well the explicit formula to all the L-functions L(s,π × πi), where the πi are the known
representations. See [CL19, Scholia 9.3.26 & 9.3.32] for the two useful criteria obtained
there using this idea.

In this paper, we discovered a criterion that may be seen as a natural generalisation
of [CL19, Scholia 9.3.26], and that happened to be (in practice, and quite surprisingly)
much more efficient than the aforementioned ones. Moreover, contrary to [CL19, Scholia
9.3.32], we do not need to know any Satake parameter for the known elements of �alg

(which allows us to use test functions with arbitrary supports). Our basic idea here is
to apply the explicit formula to the Rankin-Selberg L-function of all linear combinations
t1π1 ⊕· · ·⊕ tsπs where π1 is unknown of given weights, the πi with i > 1 are known (in the
sense that they exist and we know their weights), and the ti are arbitrary nonnegative real

numbers. More precisely, for any test function F we associate a certain symmetric bilinear
form CF on the free vector space R�alg over �alg, which represents the computable part
of the explicit formula for the test function F. Assuming a certain positivity assumption
on F, the quadratic form x 
→ CF(x, x) is then ≥ 0 on the cone of R�alg generated by
�alg: see Proposition 2.2. In order to reach a contradiction we have thus to show that at
least one quadratic form CF takes a negative value on the cone generated by π1, . . . , πs.
See Sect. 2.4 for the description of the minimisation algorithm that we have used for
this purpose, as well as the homepage [CT19b] for related sources. One charm of this
method is that although it requires some computational work to find a concrete element
x of that cone and a test function F leading to a contradiction (and all is fair for that!),
once we have found it is quick and easy to rigorously check that we have CF(x, x) < 0: see
Sect. 2.4.3.
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1.4. The effortless computation of masses. — Fix G a rank n split classical group over Z
in the sense of Sect. 1.1. In other words, G belongs to one of the families

(SO2n+1)n≥1, (Sp2n)n≥1 and (SO2n)n≥2

Assume that G(R) has discrete series representations, i.e. that G is not isomorphic to
SO2n with n odd, and fix K a maximal compact subgroup of G(R). There is an analogue
of Key fact 1 with Sk(�g) replaced by the multiplicity of any discrete series representa-
tion of G(R) in the space A2(G) of K-finite square-integrable automorphic forms over
G(Z)\G(R). In this paper, as in [Taï17], we will use a variant of this key fact involving
rather certain Euler-Poincaré characteristics. Our first aim is to state this variant (Key
fact 2 below). For any dominant weight λ of G(C), we denote by Vλ an irreducible rep-
resentation of G(C) with highest weight λ and consider

EP(G;λ) =
∑

i≥0

(−1)i dim Hi
(
g,K;A2(G)⊗ V∨

λ

) ∈ Z,

where H∗(g,K;−) denotes (g,K)-cohomology. Attached to G is a certain integer de-
noted nĜ, defined as the dimension of the standard representation of Ĝ, the Lang-
lands dual group of G: concretely, we have nĜ = 2n + 1 for G = Sp2n, and nĜ = 2n

for G = SO2n+1 or SO2n. The infinitesimal character of Vλ, namely “λ + ρ”, defines
a unique regular element w(λ) in Wm with m = nĜ. Concretely, using the standard5 no-
tation λ = ∑n

i=1 λiei for dominant weights of classical groups (as in [Taï17, §2]), w(λ) is
explicitly given by the following formulas:

w(λ)i =

⎧
⎪⎨

⎪⎩

λi + n + 1/2 − i for 1 ≤ i ≤ n if G = SO2n+1,

λi + n + 1 − i for 1 ≤ i ≤ n if G = Sp2n,

|λi| + n − i for 1 ≤ i ≤ n if G = SO2n and n ≡ 0 mod 2.

The promised second key fact, explained in Sects. 4.1 and 4.2 of [Taï17] is:

Key fact 2. — Fix G and λ as above, and set w = w(λ) = (wi). Assume we know N⊥(v)

for all regular v = (vi) ∈ Wm with m < nĜ and v1 ≤ w1, then it is equivalent to know EP(G;λ) or

N⊥(w).

It follows from the formula above for w(λ) that any regular w in Wm, with m ≥ 1
arbitrary, is of the form w(λ) for a unique split classical group G over Z and some dom-
inant weight λ of G. As a consequence, Key fact 2 paves the way for a computation of
N⊥(w) for all regular w, by induction on nĜ.

5 The conditions on the λi are the following: λi ∈ Z for each i, λ1 ≥ · · · ≥ λn, and either λn ≥ 0 (cases G = Sp2n or
SO2n+1) or |λn| ≤ λn−1 (case G = SO2n with n ≥ 2).
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Contrary to the case of Key fact 1, we will not reproduce here the precise claimed
relation between EP(G;λ) and the quantities N⊥(−) stated in Key fact 2, and simply
refer to [Taï17, §4]. As for Key fact 1, it crucially depends on Arthur’s endoscopic classi-
fication [Art13] and on the explicit description of Archimedean Arthur packets in the reg-
ular algebraic case given by [AJ87] and [AMR18] (they are the so-called Adams-Johnson
packets, see [Taï17, §4.2.2]). The full combinatorics, when written down explicitly and
case-by-case, are rather complicated but computable, and implemented since [Taï17].

The second ingredient is Arthur’s L2-Lefschetz trace formula developed in [Art89]
applied to the relevant test function. A detailed analysis of this formula has been made
in [Taï17] that we will follow below. We use this version of the trace formula as it is the
one with the simplest geometric terms. Its spectral side is exactly EP(G;λ), a quantity in
principle harder to interpret (the price to pay for a simple geometric side), but this can be
done precisely by Key fact 2 above.

We fix a Haar measure dg = ∏′
v dgv on G(A), with A the adèle ring of Q, such that

the Haar measure dgp on G(Qp) gives G(Zp) the volume 1. Fix a dominant weight λ of G.
We apply Arthur’s formula [Art88] to a test function ϕ of the form ϕ∞ ⊗′

p 1G(Zp), where
1G(Zp) is the characteristic function of G(Zp), and where ϕ∞(g∞)dg∞ is the sum, over all
the discrete series δ of G(R) with same infinitesimal character as Vλ, of a pseudocoeffi-
cient of δ. According to [Art89] the resulting identity, which only depends on G and λ,
is

(1.4.1) EP(G;λ) = Tgeom(G;λ).

The geometric side Tgeom(G;λ) is a finite sum of terms indexed by Levi subgroups of G
of the form

(1.4.2) GLa
1 × GLb

2 × G′

with G′ a split classical group over Z and a, b ≥ 0. The main term, corresponding to G
itself and called the elliptic term, is

(1.4.3) Tell(G;λ) =
∑

γ

vol
(
Gγ (Q)\Gγ (A)

) · Oγ (1G(Ẑ)) · tr(γ |Vλ),

where γ runs over representatives of the (finitely many) G(Q)-conjugacy classes of finite
order elements in G(Q) whose G(Qp)-conjugacy class meets G(Zp) for each prime p

(see Sect. 3.1). For each such γ , we have denoted by Gγ its centralizer in G (defined
over Q), choosed on Gγ (A) a signed Haar measure dh = ∏′

v dhv with dh∞ an Euler-
Poincaré measure on Gγ (R) (in the sense of [Ser71]), and we have denoted by Oγ (1G(Ẑ))

the product over all primes p of the classical orbital integrals

(1.4.4)
∫

G(Qp)/Gγ (Qp)

1G(Zp)

(
gpγ g−1

p

) dgp

dhp

.
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Taïbi developed in [Taï17] a number of algorithms to enumerate the γ , compute their
local orbital integrals (with dhp Gross’s canonical measure), and the associated global
volumes. Here we shall simply write

(1.4.5) Tell(G;λ) =
∑

c∈C(G)

mc tr(c |Vλ),

where C(G) denotes the set of G(Q)-conjugacy classes of finite order elements in G(Q)

(essentially, a characteristic polynomial: see Sect. 3.1) and mc is a certain number depend-
ing only on c and called the mass of c (note that tr(c |Vλ) is well-defined). By definition,
mc is a concrete sum of volumes times adelic orbital integrals; it essentially follows from
[Gro97, Theorem 9.9] and Siegel’s theorem on the rationality of the values of Artin L-
functions at non-negative integers [Sie69] that we have mc ∈ Q.

The character of Vλ may be either evaluated using the (degenerate) Weyl char-
acter formula as in [CR15], or much more efficiently for small λ using Koike-Terada’s
formulas [KT87] as was observed in [Cheb]. Last but not least, the term in the sum
defining Tgeom(G;λ) corresponding to a proper Levi subgroup of the form (1.4.2) is ex-
pressed in terms of Tell(G′;λ′), as well as Tell(SO3;λ′′) if b �= 0, for suitable auxilliary
λ′, λ′′: see [Taï17, §3.3.4] for the concrete formulas, that will not be repeated here. As a
consequence, the key problem is to be able to compute the masses mc for c ∈ C(G).

The strategy. — We are finally able to explain our strategy. Fix m ≥ 1 an integer. We
may assume, by induction, that we have computed the masses mc for all split classical
groups H over Z such that H(R) has discrete series and nĤ < m, and all c ∈ C(H). By
Key fact 2 and the trace formula (1.4.1), note that we have an explicit and computable
formula for N⊥(w) for all regular w ∈ Wm′ with m′ < m. Fix a split classical group G over
Z such that G(R) has discrete series and nĜ = m. Assume we have found a finite set � of
dominant weights of G(C) with the following two properties:

(P1) For all λ ∈ � we have N⊥(w(λ)) = 0.
(P2) The � × C(G) matrix (tr(c |Vλ))(λ,c) has rank |C(G)|.
Then from (P1) and the Key fact 2 we know EP(G;λ) for all λ ∈ �. It follows

that for all λ ∈ � we know Tgeom(G;λ) as well, by the trace formula (1.4.1), hence also
Tell(G;λ) since the non-elliptic geometric terms are also known by induction. By (1.4.5)
and (P2), we deduce the masses mc for all c ∈ C(G) by solving a linear system. As a con-
sequence, for an arbitrary dominant weight λ of G we may then compute Tgeom(G;λ),
hence EP(G;λ) by (1.4.1), and N⊥(w(λ)) by Key fact 2.

Amusingly, we end up proving the existence of self-dual cusp forms for PGLm

mostly by showing that many others do not exist ! (namely the ones with weights of the
form w(λ) with λ in �.)
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A simple example. — Let us illustrate this method in the (admittedly too) simple case
m = 2 and G = SO3. In this case C(G) has 5 classes, of respective order 1,2,3,4 and 6:
say ci has order i. The dominant weights of G are of the form ke1 for an integer k ≥ 0, and
will be simply denoted by k. For k ≥ 0, we have w(k) = (k + 1/2,−k − 1/2), N(w(k)) =
dim S2k+2(SL2(Z)), the analysis of the spectral side gives

EP(G; k) =−N
(
w(k)

) + δk,0,

with δi,j the Kronecker symbol, and the geometric side is

Tgeom(G; k) = Tell(G; k)+ 1
2
.

Assume we know that there is no cuspidal modular form for SL2(Z) of usual weight
2,4,6,8,10. This may for instance be shown by applying the explicit formula to the
Hecke L-function of a putative eigenform of such a weight, as observed in [Mes86, Rem.
III.1]. This also follows very easily from the methods of Sect. 1.3. Using dim Vk = 2k + 1
and the identity tr(ci|Vk) = sin( (2k+1)π

i
)/sin2π

i
for i > 1 we obtain with � = {0,1,2,3,4}

the linear system
⎡

⎢
⎢
⎢
⎢
⎣

1 1 1 1 1
3 −1 0 1 2
5 1 −1 −1 1
7 −1 1 −1 −1
9 1 0 1 −2

⎤

⎥
⎥
⎥
⎥
⎦

.

⎡

⎢
⎢
⎢
⎢
⎣

mc1

mc2

mc3

mc4

mc6

⎤

⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎣

1/2
−1/2
−1/2
−1/2
−1/2

⎤

⎥
⎥
⎥
⎥
⎦

.

Luckily, the matrix on the left-hand side is invertible: we find mc1 = − 1
12 , mc2 = 1

4 ,
mc3 = 1

3 and mc4 = mc6 = 0. As a consequence, we recover the classical formula for
dim S2k(SL2(Z)).

Remark 1.1. — In certain classes c in C(G), there is no element γ whose G(Q)-
conjugacy class meets G(Zp) for each p and such that Gγ (R) has discrete series: this
forces mc = 0 by (1.4.3). This actually explains mc4 = mc6 = 0 above.

This remark will lead us in Sect. 3.2, and following [Taï17, Remark 3.2.8], to
replace C(G) by a smaller set C1(G), and to rather apply our strategy with C(G) replaced
by C1(G) in (P2). See also Sect. 3.1 for other more elementary reductions, using the center
of G or an outer automorphism of SO2n.

The crucial last ingredient for this method to work is to be able to find sufficiently
many w ∈ WnĜ

such that N⊥(w) = 0. We will use of course for this the method explained
in Sect. 1.3 (the explicit formula for Rankin-Selberg L-functions). Rather miraculously,
it provides enough vanishing results up to rather a high rank: see Sect. 3.3 for a proof of
the following final theorem, obtained by applying only this “effortless” strategy:
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Theorem 6 (“Effortless” computation). — Assume G = SOn with n ≤ 17, or G = Sp2n with

2n ≤ 14. Then the masses mc, for all c ∈ C(G), are given in [CT19b].

As already said, these results are in accordance with all the orbital integral compu-
tations done in [Taï17]. This method is both conceptually simpler and faster: for compar-
ison, computing all the orbital integrals for Sp14 takes several weeks, whereas finding �

and solving the linear system to determine all the mc, for c ∈ C(Sp14), only takes minutes
on the same computer. The cases SOm with m = 15,16,17 are new. Last but not least,
if we combine the methods of this paper with those of [Taï17], we obtain the following
new result in the symplectic case (see Sect. 3.3).

Theorem 7. — The masses mc, for all c ∈ C(Sp16), are given in [CT19b].

Following Key fact 2, these two theorems allow to compute EP(G;λ) for all those
G and an arbitrary weight λ, as well as the quantity N⊥(w) for any w ∈ Wm for m ≤ 16:
see loc. cit. for tables.

1.5. Limits of the method and possible generalizations. — At present, it seems very diffi-
cult to us to improve any of the classification Theorems 3, 4 and 5, or to extend signif-
icantly the number of vanishing results needed for the effortless computation of masses
in Sect. 3.3, without a really new idea. Our numerical experiments suggest that those
results are at the limit of what can be extracted from the explicit formula, or at least from
Proposition 2.2, but whether there is a deeper reason for that remains a mystery to us.
As an example, we still do not know, even conjecturally, if there should be finitely many
cuspidal level 1 algebraic π of PGLn, with n ≥ 1 arbitrary, whose motivic weight is 25:
see Example 6.7 in [Chea].

These limitations have consequences for the applications to the dimensions of
spaces of Siegel cuspforms: Theorems 1, 2 and 6 seem to be the optimal results that
can be obtained using our method. In particular, as already explained in Sect. 1.4, our
computation of the masses of Sp16 in Theorem 7 is already not “effortless” anymore.
Also, it seems unlikely to us that the computation of dim Sk(�g) could be extended to a
weight k much higher than 13: already in the case k = 16 and arbitrary g, this question
is closely related (via Siegel theta series) to that of determining the size of the set X32

of isometry classes of even unimodular lattices of rank 32, a classical problem usually
considered as out of reach using any known computational method. In particular, we
have 1 + ∑

g≥1 dim S16(�g) ≥ |X32|, and the huge lower bound |X32| > 109 due to King
[Kin03] (compare with Table 6).

There are nevertheless several possible generalizations of the results of this paper
that would deserve to be studied, the most obvious ones being to work over arbitrary base
number fields, to include non trivial conductors, other groups, or to compute traces of
Hecke operators of small degree rather than dimensions. Along these lines, we mention
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the forthcoming Ph.D. dissertation of Lachaussée [Lac] for some variants of the results of
Sect. 1.3 for cuspidal algebraic representations of GLn over Q whose conductor is a small
prime number.

2. Weil’s explicit formula for Rankin-Selberg L-functions: a refined
positivity criterion

2.1. Algebraic Harish-Chandra modules and automorphic representations. — Let π be a
cuspidal automorphic representation of PGLn over Q. As recalled in Sect. 1.2, we say
that π has level 1 if πp is unramified for every prime p. We also explained loc. cit. what it
means for π to be algebraic. It will be useful to have an alternative point of view on this
last condition in terms of the Langlands correspondence (see e.g. [CL19, §8.2.12]). Recall that
�alg denotes the set of level 1 algebraic cuspidal automorphic representations of PGLn

(with n ≥ 1 varying).
We denote by WR the Weil group of R: we have WR = C× ∐

jC×, where j2 is
the element −1 of C× and with jzj−1 = z for all z ∈ C×. The Langlands correspondence
for GLn(R) is a natural bijection V 
→ L(V) between the set of isomorphism classes of
irreducible admissible Harish-Chandra modules for GLn(R), and the set of isomorphism
classes of n-dimensional (complex, continuous and semi-simple) representations of WR

[Kna94]. We say that the Harish-Chandra module V is algebraic if every element in the
center R× of WR acts as a homothety with factor ±1 in L(V). In particular, L(V) factors
through the (compact) quotient of WR by R>0, which is an extension of Z/2 by the
unit circle. We denote by 1 the trivial representation of WR, by εC/R its unique order 2
character, and for w ∈ Z we set Iw = IndWR

C× ηw where η(z) = z/|z|. Up to isomorphism,
the irreducible representations of WR trivial on R>0 are

1, εC/R, and Iw for w > 0.

We also have I0 	 1 ⊕ εC/R, and Iw 	 Iw′ if and only if w =±w′.
If π is a cuspidal automorphic representation of PGLn over Q, Clozel’s purity

lemma (or the Archimedean Jacquet-Shalika estimates) shows that the Harish-Chandra
module π∞ is algebraic in the sense above if, and only if, π is algebraic in the sense of
Sect. 1.2 [CL19, Prop. 8.2.13]. Moreover, for all v ∈ Z the multiplicity of the weight v/2
of π is the same as the multiplicity of the character ηv in the restriction of L(π∞) to
C×. In other words, all the weights 0 (resp. ±v/2 with v > 0) of π∞ are explained by
occurrences of 1 or εC/R (resp. of Iv ) in L(π∞). It will be convenient to introduce:

• the Grothendieck ring K∞ of complex, continuous, finite dimensional, repre-
sentations of WR which are trivial on its central subgroup R>0,

• for w an integer, the sugroup K≤w
∞ of K∞ generated by the Iv with 0 ≤ v ≤ w

and v ≡ w mod 2, and also by 1 and εC/R in the case w is even.
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An element U of K∞ will be called effective if it is the class of a representation of WR.
The weights of such a U are the w/2 in 1

2Z such that ηw occurs in U|C× , counted with the
multiplicity of ηw in U|C× (a nonnegative integer as U is effective).

It follows from this discussion that for π in �alg, we have L(π∞) ∈ K≤w
∞ for some

integer w ≥ 0, and that the smallest such integer w coincides with the motivic weight
w(π) of π introduced in Sect. 1.2. Moreover, the weights of π are that of L(π∞).

For later use, we now recall Langlands’ definition for the ε-factors and �-factors of
algebraic Harish-Chandra modules. The �-factor of an element U in K∞ is a meromor-
phic function s 
→ �(s,U) on the whole complex plane, characterized by the additivity
property �(s,U ⊕ U′) = �(s,U)�(s,U′) and the following axioms [Tat79]:

�(s,1) = π− s
2 �

(
s

2

)

and �(s, Iw) = 2(2π)−s− |w|
2 �

(

s + |w|
2

)

for all w ∈ Z,

in which s 
→ �(s) is the classical gamma function. Similarly,6 the ε-factor of U ∈ K∞
is the element ε(U) of {±1,±i} characterized by the additivity property ε(U ⊕ U′) =
ε(U)ε(U′) and the identities ε(1) = 1 and ε(Iw) = iw+1 for every integer w ≥ 0.

2.2. Regular and self-dual elements of �alg. — Let π be a level 1 algebraic cuspidal
automorphic representation of PGLn over Q. We will say that π is regular if the represen-
tation L(π∞) of WR is multiplicity free. It is thus equivalent to say that for each weight w

of π , either w has multiplicity 1 or we have w = 0 and L(π∞) contains both 1 and εC/R

with multiplicity 1. This latter case can only occur of course if both the motivic weight of
π and n are even. Moreover, we observe that:

• if all the nonzero weights of π have multiplicity 1, and if the weight 0 has mul-
tiplicity 2, then π is regular if, and only if, we have n ≡ 0 mod 4.

• π is regular if, and only if, the vector (wi) ∈ 1
2Zn, where w1 ≥ w2 ≥ · · · ≥ wn are

the weights of π , is regular in the sense of Sect. 1.2.
• if π is regular and n = 2g + 1 is odd, then L(π∞) contains ε

g

C/R.

Indeed, as π has trivial central character, we must have det L(π∞) = 1, and we conclude
by the formula det Iv = εv+1

C/R for v ∈ Z.

Assume now that π is self-dual, that is, isomorphic to its contragredient (or dual)
π∨. Then π is either symplectic or orthogonal in the sense of Arthur [Art13, Thm. 1.4.1].
Moreover, if π is symplectic (resp. orthogonal) then L(π∞) preserves a nondegenerate
alternating (resp. symmetric) pairing [Art13, Thm. 1.4.2]. In particular, if π ∈ �alg is self-
dual, and if some weight of π has multiplicity 1 (e.g. if π is regular), then π is symplectic
if and only if w(π) is odd [CL19, Prop. 8.3.3].

6 What we denote by ε(U) here is what Tate denotes ε(U,ψ, dx) in [Tat79, (3.4)], with choice of additive character
ψ(x) = e2iπx , and with dx the standard Lebesgue measure on R.
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2.3. The explicit formula for L-functions of pairs of elements in �alg. — Let π and π ′

be level 1 cuspidal automorphic representations of PGLn and PGLm respectively. For p

prime we denote by cp(π) the semi-simple conjugacy class in SLn(C) associated with the
unramified representation πp, following Langlands, under the Satake isomorphism. The
Rankin-Selberg L-function of π and π ′ is the Euler product

L
(
s,π × π ′) =

∏

p

det
(
1 − p−scp(π)⊗ cp

(
π ′))−1

.

By fundamental works of Jacquet, Piatetski-Shapiro, and Shalika [JS81, JPSS83], this
Euler product is absolutely convergent for Re s > 1, and the completed L-function

(2.3.1) �
(
s,π × π ′) = �

(
s,L(π∞) ⊗ L

(
π ′

∞
))

L
(
s,π × π ′),

has a meromorphic continuation to C and a functional equation of the form

(2.3.2) �
(
s,π × π ′) = ε

(
π × π ′)�

(
1 − s,π∨ × (

π ′)∨)

where ε(π × π ′) is a certain nonzero complex number (it does not depend on s as π has
level 1). We set ε(π) = ε(π × 1).

Assuming π and π ′ are algebraic, the only case of interest here, the �(s,−) factor
in (2.3.1) is given by the recipe recalled in Sect. 2.1, and we simply have

(2.3.3) ε
(
π × π ′) = ε

(
L(π∞)⊗ L

(
π ′

∞
))

.

Note that the ring structure of K∞ is determined by the relations Iw · Iw′ = I|w+w′| + I|w−w′|
and εC/R · Iw = Iw.

By Moeglin and Waldspurger [MW89, App.], �(s,π ×π ′) is entire unless we have
π ′ 	 π∨, in which case the only poles are simple and at s = 0,1. Moreover, �(s,π × π ′)
is bounded in vertical strips away from its poles by Gelbart and Shahidi [GS01]. All those
analytic properties are key to establishing the Weil explicit formula (for which we refer to
Poitou [Poi77b, §1]) in this context. The general formalism of Mestre [Mes86, §I] applies
verbatim: we refer to [CL19, Chap. 9, Sect. 3] for the details and only recall here what
we need to prove our criterion.

We denote by R�alg the R-vector space with basis �alg. We fix a test function F, that
is an even function R → R satisfying the axioms (i), (ii) and (iii) of [Mes86, §I.2] with the
constant c loc. cit. equal to 0 (see also [Poi77b, §1]). The reader will not lose anything here
by assuming simply that F is compactly supported and of class C2. We denote by F̂ the
Fourier transform of F, with the convention F̂(ξ) = ∫

R F(x)e−2iπxξdx. Following [CL19,
Chap. 9, Sect. 3], we first define five symmetric bilinear forms on R�alg, that we denote
by BF

f , BF
∞, ZF, e⊥ and δ. The first three of them depend on the choice of F. They are

uniquely determined by their values on any (π,π ′) ∈ �alg × �alg:

(a) BF
f (π,π ′) =�∑

p,k F(k log p)
log p

pk/2 tr (cp(π)k) tr (cp(π
′)k), the sum being over all primes

p and integers k ≥ 1.
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(b) BF
∞(π,π ′) = JF(L(π∞) ⊗ L(π ′

∞)), where JF : K∞ → R is the linear map defined by

(2.3.4) JF(U) =−
∫

R

�′

�

(
1
2
+ 2π t i,U

)

F̂(t)dt.

We will also denote abusively by BF
∞ the real-valued symmetric bilinear form on K∞

defined by BF
∞(U,V) = JF(U · V). With these abusive notations we have BF

∞(π,π ′) =
BF

∞(L(π∞),L(π ′
∞)).

(c) ZF(π,π ′) is the limit of
∑

ρ(ords=ρ�(s,π∨ × π ′)) � F̂( 1−2ρ

4iπ
), the sum being over the

zeros ρ of �(s,π∨ × π ′) with 0 ≤ |�ρ| ≤ T and 0 ≤ �ρ ≤ 1, when the real number T
goes to +∞.

(d) δ(π,π ′) = 1 if π 	 π ′, and δ(π,π ′) = 0 otherwise (Kronecker symbol).

(e) e⊥(π,π ′) = 1 if π and π ′ are self-dual with ε(π × π ′) = −1, and e⊥(π,π ′) = 0
otherwise.

The main result is that for any test function F we have the equality of bilinear forms

(2.3.5) BF
f + BF

∞ + 1
2

ZF = F̂
(

i

4π

)

δ
(
the “explicit formula”

)

on the space R�alg: see [Mes86, §I.2] and [CL19, Prop. 9.3.9]. We finally define a last
bilinear form on R�alg by the formula

(2.3.6) CF := F̂
(

i

4π

)

δ − BF
∞ − 1

2
F̂(0)e⊥.

In our applications, it will represent the “computable” part of the explicit formula. Note
that for any test function F, both F̂(0) and F̂(i/4π) are real numbers, and if F is non-
negative then they are both non-negative.

Definition 2.1. — Let F be a test function. We will say that F satisfies (POS) if we have

F(x) ≥ 0 for all x ∈ R, and � F̂(ξ) ≥ 0 for all ξ ∈ C with |Im ξ | ≤ 1
4π

.

Proposition 2.2. — Let F be a test function satisfying (POS). Then for any integer r ≥ 1, any

π1, . . . , πr in �alg and any nonnegative real numbers t1, . . . , tr , we have

(2.3.7) CF

(∑

i

tiπi,
∑

i

tiπi

)

≥ 0.

Proof. — By density of the rationals in R, we may assume that the ti are rational
numbers, and even that they are integers by homogeneity of the quadratic form x 
→
CF(x, x). But in this case, the statement is [CL19, Cor. 9.3.12]. As the proof is very simple,
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we give a direct argument. By (2.3.5) we have CF = BF
f + 1

2(Z
F − F̂(0)e⊥). By definition

(a) and the assumption F ≥ 0, the symmetric bilinear form BF
f is positive semi-definite

on R�alg. It is thus enough to show that 1
2(Z

F − F̂(0)e⊥) has nonnegative coefficients
in the natural basis �alg of R�alg, i.e. that we have ZF(π,π ′) ≥ F̂(0) e⊥(π,π ′) for all
π,π ′ ∈ �alg. But this follows from the definition of ZF(π,π ′), the assumption on � F̂,
and the fact that if we have e⊥(π,π ′) = 1 then �(s,π∨ × π ′) has a zero at s = 1/2 by
the functional equation (2.3.2). �

2.4. Applications. — In what follows we will apply Proposition 2.2 to disprove the
existence of representations π in �alg such that π∞ is a given algebraic representation,
using the knowledge that there are representations in �alg with known Archimedean
components.

2.4.1. The basic inequalities. — Before doing so, we first recall the following basic
but important consequence of the explicit formula, that we derive here as a very special
case of Proposition 2.2 (see also [CL19, Cor. 9.3.12 & 9.3.14]).

Corollary 2.3. — Let F be a test function satisfying (POS) and fix U in K∞. If there is an

element π in �alg with L(π∞) = U then we have the inequality

(2.4.1) BF
∞(U,U) ≤ F̂(i/4π).

More generally, if there are distinct elements π1, . . . , πm in �alg with L((πj)∞) = U for all j, then we

have

(2.4.2) BF
∞(U,U) ≤ 1

m
F̂(i/4π).

Proof. — Consider the element x = ∑m

i=1 πi of R�alg. We have CF(x, x) ≥ 0 by
Proposition 2.2. We clearly have7 F̂(0)e⊥(x, x) ≥ 0, by the inequality F̂(0) ≥ 0. We con-
clude by the equalities δ(x, x) = m and BF

∞(x, x) = m2 BF
∞(U,U). �

Establishing inequality (2.4.1) is the original application of the explicit formula for
Rankin-Selberg L-function to prove the nonexistence of certain π in �alg with given π∞.
It was used by8 Miller in [Mil02] to show that for n ≤ 12 there is no π in �alg � {1} such
that L(π∞) is either I1 + I3 + · · · + I2n+1 or εn

C/R + I2 + I4 + · · · + I2n. As explained in
[CL19, Sect. 9.3] and [Chea], the simple inequality (2.4.1) is very constraining in motivic

7 We actually have e⊥(x, x) = 0. Indeed, if π , π ′ are in �alg with L(π∞) = L(π ′
∞), then e⊥(π,π ′) = 0. To see this,

we may assume π and π ′ are self-dual, either both symplectic or both orthogonal (they have the same motivic weight by
assumption), and the assertion follows then from the general property ε(π × π ′) = 1 proved in [Art13, Thm. 1.5.3 (b)].
Alternatively, we can easily check ε(U · U) = 1 for U = L(π∞).

8 In the context of Artin L-functions, the advantages of considering Rankin-Selberg L-functions had already been
noticed by Serre, see [Poi77a] p. 150.
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weight ≤ 23: for a suitable choice of F the bilinear form BF
∞ is positive definite on K≤w

∞
for w ≤ 23, and there is an explicit finite list L of elements of K∞ such that whenever U
is in K≤w

∞ −L with w ≤ 23, there is no π in �alg with L(π∞) = U. It has however some
limitations: as we shall see, the list L is quite large, and far from optimal. For instance, it
does not seem possible to exclude in this way the possibility9 L(π∞) 	 I13. Nevertheless,
Inequality (2.4.1) will be extremely helpful to us in Sect. 3.3 and Sect. 4. Inequality (2.4.2)
was first observed by Taïbi. In the case BF

∞(U,U) > 0, it may be seen as an effective form
of Harish-Chandra’s finiteness theorem. We will often use it to show that there is at most
one π in �alg with given L(π∞) = U; note that such a π has to be self-dual if it exists, as
we have L((π∨)∞) = L(π∞)∨ = L(π∞).

2.4.2. A general method. — For π in �alg, set sd(π) = 1 if π is self-dual, and
sd(π) = 0 otherwise. In this section, we will develop a method trying to answer in the

negative the following question.

Question 2.4. — Fix an integer r ≥ 1, and for each 1 ≤ i ≤ r elements Ui in K∞ and

δi in {0,1}. Does there exist distinct representations π1, . . . , πr in �alg with L((πi)∞) = Ui and

sd(πi) = δi for each 1 ≤ i ≤ r?

To do so, assume we are given an integer r ≥ 1 and for each 1 ≤ i ≤ r, elements Ui

in K∞, δi in {0,1}, and an integer mi ≥ 1. In other words, we fix a quadruple

(2.4.3) Q= (r,U, δ,m)

with U = (Ui)1≤i≤r in Kr
∞, δ = (δi)1≤i≤r in {0,1}r and m = (mi)1≤i≤r in Zr

≥1. View Rr as
an Euclidean space for the standard scalar product (xi) · (yi) = ∑

i xiyi . Let e1, . . . , er be
the canonical (orthonormal) basis of Rr . To the choice of Q and of a test function F, we
associate the symmetric bilinear form βF

Q on Rr defined by the formula

(2.4.4) βF
Q(ei, ej) = 1

mi

F̂(i/4π) ei · ej − JF(Ui · Uj) − F̂(0) δiδj

1 − ε(Ui · Uj)

4
.

We will discuss the practical numerical evaluation of βF
Q (i.e. of JF, F̂(0) and F̂( i

4π
)) in

Sect. 2.4.3. Set Sr−1
+ = {(ti) ∈ Rr | ∑r

i=1 t2
i = 1 and ∀i, ti ≥ 0}.

Problem 2. — Fix a test function F and a quadruple Q= (r,U, δ,m) as in (2.4.3). Determine

whether the map x 
→ βF
Q(x, x) takes a negative value on Sr−1

+ .

The relationship between Question 2.4 and this problem (which does not involve
automorphic representations) is the following. Suppose mi = 1 for each 1 ≤ i ≤ r (the

9 An intuitive reason for that is that there actually exists a π ′ in �alg with very close weights, namely π ′ = �11,
with L(π ′

∞) 	 I11. See the discussion in [CL19, Sect. 9.3.19] for many other examples (and how to deal with this case
differently), which allow to develop some intuition.
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general mi will play a role only later). Assume there are distinct π1, . . . , πr in �alg with
L((πi)∞) = Ui and sd(πi) = δi for each 1 ≤ i ≤ r. Denote V = ⊕r

i=1 Rπi ⊂ R�alg viewed
as an Euclidean space with orthonormal basis (π1, . . . , πr). As the πi are distinct we
actually have x · x = δ(x, x) for all x ∈ V. We also have

(2.4.5) BF
∞(πi,πj) = BF

∞(Ui,Uj) = JF(Ui ·Uj), e⊥(πi,πj) = δi δj

1 − ε(Ui · Uj)

2
.

In other words, the linear map ι : Rr → V defined by ei 
→ πi is an isometry satisfying
CF(ι(x), ι(y)) = βF

Q(x, y) for all x, y ∈ Rr . If we are able to find an element t = (ti) ∈ Sr−1
+

with βF
Q(t, t) < 0, then the element ι(t) = ∑r

i=1 tiπi contradicts Proposition 2.2: we have
answered Question 2.4 in the negative.

From now on we thus focus on Problem 2. We fix an arbitrary quadruple Q =
(r,U, δ,m) as in (2.4.3) and a test function F. To simplify the notations we also set E = Rr

and D = Sr−1
+ . Let us introduce, for each non-empty I ⊂ {1, . . . , r}:

• the subspace EI := ⊕
i∈I Rei of E, the intersection DI = D ∩ EI and its interior

D̊I := {∑i∈I tiei ∈ D | ∀i ∈ I, ti > 0}. We have D = ⊔
I D̊I.

• the minimal eigenvalue λI of the Gram matrix (βF
Q(ei, ej))i,j∈I of the restriction

of βF
Q to EI × EI, and the corresponding eigenspace EI,λI .

We also denote by μF
Q the minimum of x 
→ βF

Q(x, x) on D.

Proposition 2.5. — Fix a test function F and a quadruple Q= (r,U, δ,m) as in (2.4.3). Let

I be the set of non-empty I ⊂ {1, . . . , r} such that EI,λI intersects D̊I. Then I is non-empty and we

have μF
Q = minI∈I λI.

Proof. — The minimum μF
Q of x 
→ βF

Q(x, x) on the compact D = ⊔
I∈I D̊I is

reached in D̊J for some J. By Lemma 2.6 below applied to the Euclidean space EJ and to
the restriction b of βF

Q to EJ × EJ, any local minimum of x 
→ βF
Q(x, x) on D̊J is an eigen-

vector for λJ and we have μF
Q = λJ. We have J ∈ I , and the other inequality μF

Q ≤ λI for
any I ∈ I is obvious. �

Lemma 2.6. — Let E be an Euclidean space with scalar product x · y, S its unit sphere, b a

symmetric bilinear form on E and u the (symmetric) endomorphism of E satisfying b(x, y) = x · u(y) for

all x, y in E. Assume that the map S → R, x 
→ b(x, x) has a local minimum at the element v in S.

Then v is an eigenvector of u whose eigenvalue b(v, v) is the minimal eigenvalue of u.

Proof. — Set q(x) = b(x, x). We have q( v+w

|v+w|) = q(v) + 2b(w,v) + O(w2) when w

goes to 0 in v⊥. As v is a local minimum of q, this shows b(w,v) = w · u(v) = 0 for all w

in v⊥. So v is an eigenvector of u. Denote by λ be the corresponding eigenvalue. Assume
u has an eigenvalue λ′ < λ, and choose v′ in S with u(v′) = λ′v′. We have b(v, v′) = 0
and q((1 − ε2)1/2v + εv′) = λ+ ε2(λ′ − λ) < λ for all 0 < ε < 1, a contradiction. �
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Example 2.7. — Assume r = 2 and set (βF
Q(ei, ej))1≤i,j≤2 = (

a b
b c

)
. We have λ{1} = a

and λ{2} = c. We may assume a and c are ≥ 0, otherwise Problem 2 is solved. For I =
{1,2}, the eigenvalue λI is < 0 if and only if the determinant ac − b2 is < 0. In this case,
we have b �= 0 and the eigenspace EI,λI is a line: we easily check that this line meets D̊I if
and only if b < 0. Proposition 2.5 implies that assuming ac < b2 and b < 0, or equivalently
b +√

ac < 0, we have μF
Q < 0.

Lemma 2.8. — Fix a test function F and a quadruple Q= (r,U, δ,m) as in (2.4.3). Assume

μF
Q < 0, F̂(i/4π) > 0, as well as (Ui, δi,mi) = (Uj, δj,mj) for some indices i �= j . Then any

element t in D with βF
Q(t, t) = μF

Q satisfies ti = tj .

Proof. — Set q(x) = βF
Q(x, x). Consider the set B = ⋃

0≤λ<1 λD; then B∪D is convex
and we have q(x) > μF

Q for x ∈ B. Fix t ∈ D with βF
Q(t, t) = μF

Q. An inspection of Formula
(2.4.4) shows that for any real numbers si, sj we have

(2.4.6) q

(

siei + sj ej +
∑

l �=i,j

tl el

)

=− 2
mi

sisjF̂(i/4π)+ (function of si + sj).

The set

(2.4.7)
{

(si, sj) | si, sj ≥ 0, si + sj = ti + tj, s2
i + s2

j +
∑

l �=i,j

t2
l ≤ 1

}

is a compact interval in R2 with end points (ti, tj) and (tj, ti). By assumption we have
F̂(i/4π) > 0, and so the minimum of (2.4.6) on (2.4.7) is reached for si = sj = (ti + tj)/2.
If we assume ti �= tj then siei + sj ej + ∑

l �=i,j tl el belongs to B, a contradiction. �

This lemma leads to the following considerations. Start with a quadruple Q =
(r,U, δ,m) with the property mi = 1 for i = 1, . . . , r. Assume we have a partition

{1, . . . , r} =
r′∐

l=1

Pl

with the property that for each 1 ≤ l ≤ r′, and each i, j ∈ Pl , we have (Ui, δi) = (Uj, δj).
Consider the new quadruple Q′ = (r′,U′, δ′,m′) where for each 1 ≤ l ≤ r′ we define U′

l

(resp. δ′
l ) as the element Ui (resp. δi ) with i ∈ Pl (this does not depend on the choice of

such an i), and set ml = |Pl|. We have a natural inclusion

ρ : Rr′ −→ Rr

sending el to 1√
ml

∑
i∈Pl

ei for each 1 ≤ l ≤ r′. This embedding is an isometry for the stan-
dard Euclidean structures on both sides, and it follows from Formula (2.4.4) that we have
βF
Q(ρ(x), ρ(y)) = βF

Q′(x, y) for all x, y ∈ Rr′ and all test functions F. Lemma 2.8 shows
then (the inequality μF

Q ≤ μF
Q′ being obvious):
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Corollary 2.9. — Let Q and Q′ be as above, and fix a test function F with F̂(i/4π) > 0. We

have μF
Q < 0 if and only if μF

Q′ < 0, and if these inequalities hold we have μF
Q = μF

Q′ .

Remark 2.10. — Assume we have two quadruples of the form Q= (r,U, δ,m) and
Q′ = (r,U, δ′,m) with δ′

i ≥ δi for each 1 ≤ i ≤ r. Choose a test function F with F̂(0) ≥ 0.
Then we have βF

Q′(x, y) ≤ βF
Q(x, y) for all x, y in Rr

≥0 by Formula (2.4.4). This shows
μF

Q′ ≤ μF
Q. In particular, μF

Q < 0 implies μF
Q′ < 0.

2.4.3. A digression on numerical evaluation. — Before discussing the natural algorithm
that follows from Propositions 2.5 and Corollary 2.9, let us discuss the numerical evalua-
tion of the bilinear form CF. Given a test function F, we will have to be able to compute
with enough and certified precision the quantities

(2.4.8) F̂(0), F̂(i/4π) and JF(U) for U = 1 and U = Iw (w ∈ Z).

It amounts to computing certain indefinite integrals. Numerical integration routines of
computer packages such as PARI allow to compute approximations of such integrals,
with increasing and in principle arbitrarily large accuracy. Although these routines have
been very useful in our preliminary computations, and experimentally return highly ac-
curate values when properly used, it would be delicate to rigorously bound the differences
between these computed values and the exact ones. This is why we proceed differently.

In this paper, we only use Odlyzko’s function F = F� with parameter � > 0. This is
the function defined by F�(x) = g(x/�)/cosh(x/2), where g : R → R is twice the convo-
lution square of the function x 
→ cos(πx)1|x|≤1/2: see [Poi77b, Sect. 3] and [CL19, Sect.
9.3.17]. These functions satisfy (POS), F̂�(i/4π) = 8

π2 �, and Proposition 9.3.18 of [CL19]
provides alternative closed formulas for all the other quantities in (2.4.8) (see Proposition
4.4 for similar expressions). Each is a sum of a linear combination of a few special values of
the classical digamma function ψ = �′/� and of its derivative ψ ′(z) = ∑

n≥0 1/(n + z)2,
and of a simple rapidly converging series with given tail estimates [CL19, (3) p.127].
Using these formulas and estimates, we implemented functions in Python using Sage
[S+14] to compute certified intervals containing the real numbers (2.4.8) for F = F�.
See [CT19b] for the source code. For interval arithmetic, Sage relies on the Arb library
http://arblib.org/. Our computations only use the four operations, the exponential and
logarithm functions, the constant π , the function ψ (acb_digamma in this library), and
its derivative (a special case of acb_polygamma).

Remark 2.11. — Fix an integer 0 ≤ w ≤ 23. For suitable � > 0, the restriction of
BF�∞ to K≤w

∞ is positive definite (see e.g. Lemma 9.3.37 and Proposition 9.3.40 in [CL19],
as well as [Chea]). By Corollary 2.3, it is important to be able to enumerate, for c > 0,
all the (finitely many) effective elements U in K≤w

∞ satisfying BF�∞(U,U) ≤ c. We use for
this the Fincke-Pohst algorithm enumerating the short vectors in a lattice. Using interval
arithmetic as explained above we can obtain rational lower bounds for the coefficients of

http://arblib.org/
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the Gram matrix of BF�∞, and since we are only interested in effective elements of K≤w
∞

we can work with this rational Gram matrix instead. Unfortunately PARI’s qfminim
does not (yet?) include an exact variant of the Fincke and Pohst algorithm for Gram ma-
trices with integral entries. For this reason we reimplemented the first (simple) algorithm
of Fincke-Pohst [FP85] using only exact computations, adding the condition of effectivity
in the recursion to avoid unnecessary computations. Of course in practice this algorithm
always leads to the same conclusions as PARI’s qfminim algorithm, if the latter is prop-
erly used. See [CT19b] for our source code.

2.4.4. The algorithm. — The following algorithm tries to solve Problem 2 using the
method discussed in Sect. 2.4.2.

Input: A quadruple Q= (r,U, δ,m) as in 2.4.3.
Output: (if the algorithm terminates) A triple (�, I, t) with � > 0, a non empty I ⊂

{1, . . . , r}, and t ∈ RI with β
F�

Q (t, t) < 0.
Step 1. Choose a real number � > 0 and compute an approximation (Gi,j)1≤i,j≤r

of the Gram matrix (β
F�

Q (ei, ej))1≤i,j≤r . We do this using the formulas (2.4.4)
of Sect. 2.4.2 and the expressions of [CL19] for the quantities (2.4.8) with
F = F� discussed in Sect. 2.4.3.

Step 2. Choose a nonempty subset I of {1, . . . , r} and compute an approximation
λI of the minimal eigenvalue of the Gram matrix (Gi,j)i,j∈I, as well as an ap-
proximate corresponding eigenvector (ti)i∈I. For doing so, we apply PARI’s
qfjacobi function to (Gi,j)i,j∈I (an implementation of Jacobi’s method).

Step 3. If we have λI < 0 and ti > 0 for all i ∈ I, return �, I and t = (ti)i∈I and go
to Step 4. Otherwise, go back to Step 2 and change the subset I. If all the
I have been tried, go back to Step 1 and change the parameter �.

Step 4. Check rigorously, using interval arithmetic as discussed in Sect. 2.4.3, that
we have indeed β

F�

Q (t, t) < 0. If it fails go back to the second part of Step 3.

Let us comment this algorithm and discuss the unexplained choices involved:

• The choice of � in Step 1 is based on some preliminary experiments, and it
seems quite hard to guess a priori a range for the best ones. In our applications,
we will choose � in [ 1

2 ,15] ∩ 10−2Z.
• The loop consisting of Steps 2 and 3, for a given �, can be very long if r is

large, as there are 2r − 1 possibilities for I. In practice, we order the subsets I
by increasing cardinality, and often restrict to I of small cardinality. In practice
again, the eigenspace EI,λI is just a line.

• In practice, whenever we reached Step 4, the rigorous check with interval arith-
metic of the inequality β

F�

Q (t, t) < 0 never failed. This single check is enough to prove

that x 
→ β
F�

Q (x, x) takes a negative value on Sr−1
+ . This is the most important remark

regarding this algorithm. In particular, we do not have to justify any of the com-
putations done in Steps 1, 2 and 3 before: all is fair in order to find a candidate
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(�, I, t). Of course, the experimental fact that the last check in Step 4 never fails
just reflects that the computations made with PARI are highly accurate.

In the end, a charm of this algorithm is that even if the loop of Steps 1, 2 and 3
can be very long, once we get the candidate (�, I, t) we just have to store it, and then the
inequality β

F�

Q (t, t) < 0 can be rechecked instantly.

2.4.5. Final algorithm. — For our applications in Sect. 2.4.6, Sect. 4 and Sect. 3.3,
it will be convenient to apply Algorithm 2.4.4 in the following slightly more restrictive
context.

Set up. — We fix U in K∞, δ in {0,1}, and an integer m ≥ 1. We fix as well a known

set S of elements of �alg and our aim is to show that there does not exist distinct elements
π1, . . . , πm in �alg �S with L((πi)∞) = U and sd(πi) ≥ δ for each 1 ≤ i ≤ m. By “known”
we mean that we assume given L(�∞) and 10 sd(�) for all � ∈ S. We denote by S the
set of triples (U′, δ′,m′) in K∞ × {0,1} × Z≥1 such that there are exactly m′ elements �

in S with (L(�∞), sd(�)) = (U′, δ′).

Algorithm. — Set r = 1+|S|. Assuming |S| ≥ 1 it is convenient to choose a bijection

(2.4.9) S
∼→ {2, . . . , r}

and write S = {(Ui, δi,mi) | 2 ≤ i ≤ r}. Set also (U1, δ1,m1) = (U, δ,m). This defines a
quadruple Q= (r,U, δ,m). We now apply Algorithm 2.4.4 to Q. In Step 2 we obviously
may, and do, restrict to subsets I containing 1, i.e. of the form I = {1}∐S′ with S′ ⊂ S,
via the identification (2.4.9).

Output. — When this algorithm terminates, it produces (�, I, t) such that
β

F�

Q (t, t) < 0. For j = 2, . . . ,m, set xj = 1√
mj

∑
� , the sum being over the � ∈ S with

(L(�∞), δ(�)) = (Uj, δj). Assume there are distinct elements π1, . . . , πm in �alg � S
with L((πi)∞) = U and sd(πi) ≥ δ for each 1 ≤ i ≤ m. Then for the element x =
t1

1√
m
(π1 + · · · + πm) + ∑r

i=2 tixi of R�alg we have CF�(x, x) ≤ β
F�

Q (t, t) < 0 (see Re-
mark 2.10 for the first inequality), contradicting Proposition 2.2.

Remark 2.12. — In the case S = ∅, this method just amounts to applying Corollary
2.3. In the case |S| = 1, it amounts to applying Scholium 9.3.26 of [CL19], by the dis-
cussion of Example 2.7. The case of arbitrary |S| can thus be viewed as a generalisation
of these criteria loc. cit. See [CT19b] for our source code in PARI of the algorithm above.

10 Let us mention that, at present, the authors are not aware of the existence of any non self-dual element in �alg, so
in practice will always actually have sd(�) = 1 for � in S.
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2.4.6. An illustration. — Algorithm 2.4.5 can be used to give another proof of the
Chenevier-Lannes classification theorem [CL19, Thm. 9.3.3] mentioned in Sect. 1.3 of
the introduction, which is both very fast (a few seconds of computations) and systematic.
Although this alternative proof shares many steps with the one loc. cit., it bypasses the ge-
ometric criterion involving Satake parameters explained in Sect. 9.3.29 therein (and does
not rely at all on any computation of Satake parameters of known elements in �alg). Such
an improvement, although not decisive here, will be crucial in the proof of Theorem 3,
because at present we only know rather few Satake parameters for the known elements
of �alg of dimension > 3 (see however [BFvdG17] and [Még18]).

For the convenience of the reader, and in order to illustrate our new method, let us
now explain the aforementioned proof of [CL19, Thm. 9.3.3] in the most complicated
case of motivic weight 22. So we want to prove that there is a unique π in �alg of motivic
weight 22, namely π = Sym2�11 (for which we have L(π∞) = I22 + εC/R). We refer to
the working sheet in [CT19b] for the numerical verifications used below.

Step 1. — We first observe that BF�∞ is positive definite on the lattice K≤22
∞ for � =

4.38 (Lemma [CL19, 9.3.37]). Using the PARI qfminim command, or better Remark
2.11, we may and do list all the effective elements U in K≤22

∞ satisfying

BF�∞(U,U) ≤ F̂�(i/4π)

for � = 4.38. We retain furthermore only those satisfying det U = 1 and containing I22.
The resulting list U has 158 elements. If π in �alg has motivic weight 22, then L(π∞) is
in U by Corollary 2.3. We will study each of these 158 possibilities for L(π∞) mostly case
by case.

Step 2. — Denote by N(U) be the number of elements π in �alg with L(π∞) = U.
We want to bound N(U) for each U in U by applying Inequality (2.4.2) of Corollary 2.3.
For this we check that for all U in U we have BF�∞(U,U) > 1

2 F̂�(i/4π), unless U belongs
to the subset U ′ = {I22 + I12, I22 + I10, I22 + I8}, in which case we only have BF�∞(U,U) >
1
3 F̂�(i/4π) (here � is still 4.38). This shows N(U) ≤ 1 for U in U � U ′, and N(U) ≤ 2 for
U in U ′.

Step 3. — Fix U in U ′. We want to show N(U) ≤ 1. Assume N(U) = 2, i.e.

that there exist distinct π1, π2 in �alg with L((π1)∞) = L((π2)∞) = U. We apply
Algorithm 2.4.5 to U, δ = 0 (see Remark 2.10), m = 2 and to the known set S =
{1,�11,�15,�17,�19,�21,Sym2�11}. For U = I22 + I12 and � = 3.5 it returns for in-
stance an element close to

x = 0.924
1√
2
(π1 + π2)+ 0.383 �11.
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We verify (using interval arithmetic, see Sect. 2.4.3) that we have CF�(x, x) 	 −0.173
up to 10−3: this contradicts Proposition 2.2. The algorithm produces a similar element
x in the case U = I22 + I10, with (0.924,0.383) replaced by (0.900,0.436), and we
have then CF�(x, x) 	 −0.198 up to 10−3. Nevertheless, it does not seem to produce
any contradiction in the remaining case U = I22 + I8, even if we let � vary. To deal
with this last U we add to S the known element �21,9 of �alg, whose Archimedean L-
parameter is I21 + I9 (which is “close” to U). The algorithm returns for � = 3.5 the ele-
ment x := 0.942 1√

2
(π1 +π2)+0.335�21,9 and we verify that we have CF�(x, x) 	−0.147

up to 10−3, which is indeed < 0.

Step 4. — We have proved so far N(U) ≤ 1 for all U ∈ U . In particular, any π in
�alg with L(π) ∈ U is self-dual. Fix U in U . We now apply Algorithm 2.4.5 to U, δ = 1,
m = 1 and to the same set S as above (with |S| ≤ 7). Using the nine � in [3,5] ∩ 1

4Z, it
yields a contradiction in each case! Actually, if we restrict to subsets S′ ⊂ S with |S′| = 1
in Step 2 of the algorithm (in other words, if we only apply the Scholium of [CL19]
mentioned in Remark 2.12) we already get a contradiction for all but the 7 elements U
mentioned in Table 1. These remaining cases were exactly the ones dealt with using the
geometric criterion involving Satake parameters explained in [CL19, §9.3.29]. In these
7 cases, our algorithm produces contradictions for subsets S′ of size 2, such as the ones
gathered in Table 1. This concludes the proof. �

2.4.7. Another illustration: a strengthening of a vanishing result in [CvdG18]. — As another
example, let us show that for all odd 1 ≤ w ≤ 53, there is no cuspidal selfdual algebraic
level 1 automorphic representation π of PGL4 with L(π∞) = Iw + Iw. We apply for this
Algorithm 2.4.5 to U = 2 Iw, δ = m = 1 and to the set S of dim Sw+1(SL2(Z)) cuspidal
automorphic representations generated by level 1 cuspidal eigenforms for SL2(Z). Note
that we have |S| = 0 for w = 13 and w < 11, and |S| = 1 otherwise. We obtain a contra-
diction in each case using S′ = S and � = 5. This shows S(k1,2)(�2) = 0 for all k1 ≤ 54 by
[CvdG18, Lemma A.2].

TABLE 1. — Some elements x with L((π1)∞) = U and CF� (x, x) < 0 for � = 4

U x CF4 (x, x) up to 10−3

I22 + I16 + 1 0.625 π1 + 0.611 �19 + 0.485 Sym2�11 −0.427

I22 + I12 0.640 π1 + 0.582 �15 + 0.502 �17 −0.511

I22 + I12 + 1 0.709 π1 + 0.432 �11 + 0.558 �15 −0.204

I22 + I20 + I10 + εC/R 0.636 π1 + 0.393 �19 + 0.664 Sym2�11 −0.037

I22 + I16 + I10 + εC/R 0.701 π1 + 0.531 �19 + 0.476 Sym2�11 −0.246

I22 + I4 0.630 π1 + 0.608 �11 + 0.483 Sym2�11 −0.204

I22 + I20 + I14 + I4 0.696 π1 + 0.297 1 + 0.654 �21 −0.047
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3. Effortless computation of masses in the trace formula

Let G be a split classical group over Z such that G(R) admits discrete series. In
other words, G belongs to one of the three families

(SO2n+1)n≥1, (Sp2n)n≥1 and (SO4n)n≥1

In this section, we explain how to implement the strategy explained in Sect. 1.4 in order to
determine the masses mc for c ∈ C(G). In Sect. 3.1, we first make elementary observations
that will allow us to replace C(G) by a concrete set P(G)/ ∼ of equivalence classes of
polynomials, and to rewrite the elliptic terms accordingly. In Sect. 3.2, we define an
explicit subset of C(G) containing all conjugacy classes c such that mc �= 0. Using spinor
norms considerations we will show that this subset is significantly smaller than C(G) in
the case of special orthogonal groups. In the last Sect. 3.3, we finally prove Theorems 6
and 7, by discussing how to produce sets � of dominant weights satisfying a variant of
conditions (P1) and (P2) alluded to in Sect. 1.4.

3.1. Conjugacy classes and characteristic polynomials: elementary observations. — Let G be
one of SO2n+1, Sp2n or SO4n. We shall denote by nG the dimension of the standard (or
tautological) representation of G, so nG is respectively 2n + 1, 2n or 4n. (Do not confuse
nG with the integer nĜ introduced in Sect. 1.4).

The indexing set for the sum defining the elliptic part Tell(G;λ) of the geometric
side in Arthur’s L2-Lefschetz trace formula [Art89] recalled in (1.4.3), is the set of conju-
gacy classes of semi-simple elements γ ∈ G(Q) which are R-elliptic (i.e. γ belongs to an
anisotropic maximal torus of GR, in particular the eigenvalues of γ have absolute value
1) and such that the conjugacy class of γ in G(Af ) meets the compact support of the
smooth function we put in the trace formula, in our case the characteristic function of
G(Ẑ). In particular, the characteristic polynomial Pγ of such a γ , a monic polynomial of
degree nG in Q[X], belongs to Z[X] and has all its complex roots of absolute value 1.
Using a celebrated theorem of Kronecker, these conditions imply that the roots of Pγ

are roots of unity, hence that the semi-simple element γ has finite order. This explains
the discussion of Formula (1.4.3) in Sect. 1.4, and the indexing set C(G) of finite order
elements of G(Q) taken up to conjugacy by G(Q) in the sum (1.4.5).

Definition 3.1. — Let P(G) be the set of polynomials P in Q[X] having degree nG, which

are products of cyclotomic polynomials and in which X + 1 has even multiplicity (or equivalently, with

P(0) = (−1)nG ).

If c is a class in C(G), then all the elements γ ∈ c have the same Pγ , and we will
denote by Pc this polynomial. It is an element of P(G) by the above discussion. We have
thus defined a map

(3.1.1) char : C(G) →P(G), c 
→ Pc.
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It is well-known that if two semi-simple conjugacy classes c1, c2 in the classical group
G(Q) have the same characteristic polynomial P, then they are equal, except in the case
G = SO4n, P(−1)P(1) �= 0 and c1 and c2 are conjugate under O4n(Q)/SO4n(Q) 	 Z/2Z.
In particular, for P ∈ P(G) the fiber11 char−1(P) has at most 1 element if G �= SO4n or
P(−1)P(1) = 0, and 0 or 2 elements otherwise. The following elementary lemma (see
[Taï17, Remark 3.2.11]) shows that this latter case does not create complications:

Lemma 3.2. — For G = SO4n and c, c′ ∈ C(G) with Pc = Pc′ , we have mc = mc′ .

Thus we may write

Tell(G;λ) =
∑

P∈P(G)

mP tr(P;λ)

with

mP :=
{

mc if there is c ∈ C(G) with char(c) = P

0 if P does not belong to char(C(G))

and

tr(P;λ) :=
{

tr(c |Vλ) if G �= SO4n or P(1)P(−1) = 0

tr(c |Vλ) + tr(c′ |Vλ) otherwise

with char−1(P) = {c} in the first case and char−1(P) = {c, c′} in the second case. This also
implies Tell(SO4n; θ(λ)) = Tell(SO4n;λ) where θ is the non-trivial outer automorphism
of SO4n induced by O4n(Z)/SO4n(Z) = Z/2Z. This invariance is fortunate also because
Koike and Terada’s simple (and most importantly very effective for small weights) for-
mulas [KT87] for traces in algebraic representations apply to irreducible representations
of symplectic and orthogonal (rather than special orthogonal) groups. Equivalently, their
formula gives tr(P;λ) in terms of P, but not tr(c |Vλ) in the second case above if θ(λ) �= λ.

There is another obvious invariance property of masses. For G = SO4n or Sp2n, the
element −1 of G(Z) is in the center of G, and c 
→ −c preserves C(G). Formula (1.4.4)
thus shows:

Lemma 3.3. — For G = SO4n or Sp2n, and c ∈ C(G), we have m−c = mc.

For G and c as above, we have P−c(X) = (−1)deg PcPc(−X), tr(P−c;λ) = λ(−1)tr(Pc;λ),
as well as mPc

= mP−c
by the lemma. A consequence is that Tell(G;λ) = 0 if the restriction

11 Beware that the map char is not surjective in general. For instance, Corollary 3.6 shows that for any prime
p ≡ 1 mod 4, there is no order p element in SOp−1(Q), as �p(1)�p(−1) = p is not a square.
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TABLE 2. — Size of P(G) modulo the equivalence relation ∼, for G = Sp2g and 1 ≤ g ≤ 8

G Sp2 Sp4 Sp6 Sp8 Sp10 Sp12 Sp14 Sp16

|P(G)/ ∼ | 3 12 32 92 219 530 1157 2521

of λ to the center Z(G) of G is non-trivial.12 Define the following equivalence relation on
P(G): P1 ∼ P2 if P1 = P2 or P2(X) = (−1)nGP1(−X). Assuming λ|Z(G) = 1 we may thus
finally write

(3.1.2) Tell(G;λ) =
∑

P∈P(G)/∼
eP mP tr(P;λ)

where eP ∈ {1,2} denotes the size of the equivalence class of P.
To sum up, for the purpose of implementing our strategy introduced in Sect. 1.4 we

can replace the indexing set C(G) by P(G)/ ∼, which is computable, and we may as well
restrict to dominant weights λ such that λ|Z(G) = 1, and even to a set of representatives for
the orbits under {1, θ} in the even orthogonal case. See Table 2 for the size of P(Sp2g)/ ∼
for 1 ≤ g ≤ 8.

3.2. Conjugacy classes and characteristic polynomials in the orthogonal case: spinor norms. —

As announced in Remark 1.1, it turns out that in the orthogonal cases we can further re-
duce the set parameterizing conjugacy classes. Let C0(G) ⊂ C(G) be the subset of equiv-
alence classes containing a finite order element in G(Q) whose G(Af )-conjugacy class
meets G(Ẑ). In particular C0(G) contains the set of c ∈ C(G) such that mc �= 0. A priori
it may happen that C0(G) is smaller than C(G). Using the analysis in [Taï17, §3.2.2]
and Jacobson’s hermitian analogue of the Hasse-Minkowski theorem [Jac40], one can
argue that C0(Sp2n) = C(Sp2n) for any n ≥ 1. Since this fact is rather unfortunate for our
strategy, we leave the details to the interested reader.

We now focus on special orthogonal groups. Proposition 3.7 below gives an explicit
subset P1(G) of P(G) such that its preimage C1(G) ⊂ C(G) under the map char (3.1.1)
contains C0(G). In contrast with the symplectic case we will see that C1(G) � C(G) in
general, owing to the fact that special orthogonal groups are not simply connected.

Remark 3.4. — The second author had already observed that there was such a
restriction on classes c satisfying mc �= 0 in [Taï17, Remark 3.2.8], unfortunately without
giving details or proofs . . . He was also unaware of related previous work of Gross and
McMullen: [GM02, Theorem 6.1] is similar to Proposition 3.7. Unfortunately we could
not deduce Proposition 3.7 from the results of [GM02], so we give a slightly different
proof below, relying on the Zassenhaus formula for spinor norms.

12 From the perspective of the strategy discussed in Sect. 1.4, this vanishing is in agreement with the vanishing of
N⊥(w(λ)) for all dominant weights λ of Sp2n or SO4n such that λ(−1) = −1, which is a consequence of the property
ε(π) = ε(L(π∞)) = 1 for orthogonal π in �alg: see [Art13, Thm. 1.5.3] and [CR15, Prop. 1.8].
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Let R be a commutative ring, V a projective R-module of finite constant rank
n and q : V → R a quadratic form. We say that q is non-degenerate if the associated R-
bilinear form βq(x, y) = q(x + y) − q(x) − q(y) is a perfect pairing on V. We say that
q is regular if either q is non-degenerate, or n is odd and Zariski-locally on R the half-
discriminant of q is invertible: see [Knu91, Ch. IV §3] (who rather uses the terminology
semi-regular in this case). When V is a free R-module and q is non-degenerate, we denote
by disc(q) ∈ R×/R×,2 the class of the determinant of a Gram matrix of βq, where R×,2

denotes the subgroups of squares in R×.
First we recall a few definitions from [Con14, Appendix C] or [Knu91, Ch.

IV]. Assume n ≥ 3 and q regular. Associated to (V, q) are (reductive) group schemes
Spin(V, q) ⊂ GSpin(V, q) and SO(V, q) over R. The group GSpin(V, q) is the group
of even degree invertible elements in the Clifford algebra C(V, q) which stabilize the
submodule V ⊂ C(V, q) under conjugation. This conjugation action gives a morphism
π : GSpin(V, q) → SO(V, q), with kernel the central GL1 (invertible scalars in the Clif-
ford algebra). See e.g. Propositions C.2.8 and C.4.6 of [Con14] for these properties and
the fact that π factors through the special orthogonal group. The Clifford norm morphism
ν : GSpin(V, q) → GL1 is defined in (C.4.2) and (C.4.4) loc. cit. The restriction of ν to the
central GL1 is t 
→ t2. The group Spin(V, q) can be defined as the kernel of the Clifford
norm: see the proof of Lemma C.4.1 loc. cit. for the case n even and the proof of Propo-
sition C.4.10 loc. cit. and the paragraph following it for the case n odd. We have [Knu91,
(6.2.3) p.231] an exact sequence of sheaves in groups on the Zariski site of R

(3.2.1) 1 → GL1 → GSpin(V, q) → SO(V, q) → 1,

and thus an exact sequence of sheaves in groups on the fppf site of R

1 → μ2 → Spin(V, q) → SO(V, q) → 1.

The (not so) long exact sequence in cohomology associated to the second short exact se-
quence above gives the spinor norm sn : SO(V, q) → H1

fppf(R,μ2). If Pic(R) = 1, which
will always be the case in this paper, the fppf exact sequence 1 → μ2 → GL1 → GL1 → 1
gives the isomorphism H1

fppf(R,μ2) 	 R×/R×,2, and we will implicitly consider the spinor
norm in this last group. The spinor norm of γ ∈ SO(V, q)(R) is then represented by ν(γ̃ )

where γ̃ ∈ GSpin(V, q)(R) is any lift of γ ; such a lift exists by (3.2.1) and Pic(R) = 1. The
spinor norm is additive: if (V, q) = (V1, q1) ⊥ (V2, q2), γi ∈ SO(Vi, qi)(R) for i = 1,2,
and if we set γ = γ1 × γ2 ∈ SO(V, q)(R), then we have snγ = snγ1 × snγ2.

Theorem 3.5 (Zassenhaus). — Let k be a field of characteristic different from 2. Let V be a finite-

dimensional vector space over k, endowed with a non-degenerate quadratic form q. Let γ ∈ SO(V, q)(k)

and write the characteristic polynomial of γ as (X − 1)a(X + 1)2bQ(X) with Q(1)Q(−1) �= 0.

Then the spinor norm snγ of γ is represented by disc(q | ker (γ + 1)2b)Q(−1) in k×/k×,2.
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Recall that our convention for disc(q) was given after Remark 3.4.

Proof. — This is just a reformulation of the main theorem of [Zas62]. Here is a
short argument for the convenience of the reader. Using the orthogonal decomposition
V = ker(γ − 1)a ⊥ ker(γ + 1)2b ⊥ ker Q(γ ), and the additivity of spinor norms, we may
assume a = 0, so dim V ≡ 0 mod 2, and either Q = 1 or b = 0. In the case Q = 1, we
have snγ = sn(−idV) as unipotent elements are squares, and we conclude by the classical
formula sn(−idV) = 2dim Vdisc(q) (that could be proved using an orthogonal basis of V).
The arguments so far have used that the characteristic of k is �= 2, but the following ones
will not.

Assume b = 0, write Q(X) = ∏n

i=1(X − ti)(X − t−1
i ) in k[X], and choose γ̃ ∈

GSpin(V, q)(k) a lift of γ . Write γ̃ = du = ud its Jordan decomposition in GSpin(V, q)(k),
with d semi-simple and u unipotent. There is a decomposition V ⊗k k = P1 ⊥ · · · ⊥ Pn,
where each Pi is a d-stable hyperbolic plane on which the two eigenvalues of d are t±1

i .
Using the natural isomorphism between C(V, q) ⊗k k and the graded tensor product of
the Clifford algebras of the Pi (see e.g. [Knu91, IV. Prop. 1.3.1]) we easily sees that there is
a pair (s, λ) in k

××k
×

such that: s2 = t1 . . . tn, the Clifford norm of d (or equivalently, of γ̃ )
is λ2, and the trace of d (or equivalently, of γ̃ ) in the spin representation of GSpin(V, q)(k)

is λs
∏n

i=1(1 + t−1
i ). The spinor norm of γ is thus represented by λ2 ∈ k×. Note that

although the spin representation may not be defined over k, its trace is. Indeed, this
representation is defined as the tautological morphism GSpin(V, q)(k) ⊂ C(V, q)× and
C(V, q) is a central simple algebra over k, whose reduced trace is k-valued. Since we have
1 + t−1

i �= 0 for each i as Q(−1) �= 0, the spinor norm of γ is represented by s2
∏n

i=1(1 +
t−1
i )2 = ∏n

i=1 ti(1 + t−1
i )2 = ∏n

i=1(1 + ti)(1 + t−1
i ) = (−1)2nQ(−1). �

We deduce the following discriminant formula, which can also be proved directly
(see [GM02, Proposition A.3]).

Corollary 3.6. — Under the same assumptions, assume moreover that a = b = 0. Then

disc(q) ∈ k×/k×,2 is represented by Q(1)Q(−1).

Proof. — The assumption a = 0 implies dim V ≡ 0 mod 2, hence −idV ∈
SO(V, q)(k). The discriminant of q is thus the spinor norm of −IdV, or equivalently
of γ (−γ ) since sn(γ )2 = 1. We conclude by applying the theorem to γ and −γ . �

Proposition 3.7. — Let V be a free Z-module of rank n endowed with a regular quadratic form

q, G = SO(V, q), and P(X) = (X−1)a(X+1)2bQ(X) a monic polynomial of degree n in Q[X]
with Q(1)Q(−1) �= 0. Assume that for every prime p there exists γp ∈ G(Zp) having characteristic

polynomial P. If b = 0 then the integer |Q(−1)| is square, and if a = 0 then the integer |Q(1)| is a

square.

Note that the existence of γp for all primes p implies that Q has integer coefficients.
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TABLE 3. — Sizes of P(G) and P1(G) modulo the equivalence relation ∼, for G = SOm and 1 < m ≤ 17, m �≡ 2 mod 4

G SO3 SO4 SO5 SO7 SO8 SO9 SO11 SO12 SO13 SO15 SO16 SO17

|P(G)/ ∼ | 5 12 19 59 92 165 419 530 1001 2257 2521 4877

|P1(G)/ ∼ | 3 6 12 34 40 99 244 211 598 1339 992 2948

Proof. — Fix a prime p. Since γp ∈ G(Zp) and Pic Zp = 1 the element γp can be
lifted to an element of GSpin(V, q)(Zp) by (3.2.1), so the spinor norm of γp lies in the
image of Z×

p in Q×
p /Q×,2

p . Together with Theorem 3.5, this implies that

disc
(
q | ker(γp + 1)2b

) × Q(−1) ∈ Q×
p /Q×,2

p

lies as well in the image of Z×
p . Assuming b = 0, it follows that the integer Q(−1) has an

even valuation at each prime p, so |Q(−1)| is a square. Assume now a = 0. In particular, n

is even and we have disc(q) ∈ Z×. By Corollary 3.6 applied to the orthogonal of ker(γp +
1)2b in V ⊗ Qp, we have disc(q) × disc(q | ker(γp + 1)2b) ≡ Q(−1)Q(1) in Q×

p /Q×,2
p , or

equivalently:

disc(q)× disc
(
q | ker(γp + 1)2b

) × Q(−1) ≡ Q(1) mod Q×,2
p

But we have seen that the left-hand side is in the image of Z×
p . So the integer Q(1) has

an even valuation at each prime p, and |Q(1)| is a square. �

Definition 3.8. — For G = SO2n+1 or SO4n let P1(G) be the subset of P(G) consisting

of all polynomials of the form (X − 1)a(X + 1)2bQ(X), where Q(X) is a product of cyclotomic

polynomials �m with m ≥ 3, which satisfy

• b > 0 if the positive integer Q(−1) is not a square, and

• a > 0 if the positive integer Q(1) is not a square.

For G = Sp2n denote P1(G) =P(G) (Definition 3.1).

The positive integers �m(±1) for m ≥ 3 may be computed inductively in terms of
the prime decomposition of m: see [GM02, Theorem 7.1]. In terms of the notation mP

defined in Sect. 3.1, Proposition 3.7 asserts:

Corollary 3.9. — If P ∈P(G) satisfies mP �= 0, then we have P ∈P1(G).

This constraint is very useful, particularly in the even case, as Table 3 shows. In
practice, we will see that it is almost sharp: see Remark 3.10. Observe that P1(G) is stable
under the equivalence relation ∼ introduced in the end of Sect. 3.1.
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3.3. Non-existence of level one regular algebraic automorphic cuspidal representations. — In
this paragraph, we prove Theorems 6 and 7 of the introduction. To implement the strat-
egy explained in Sect. 1.4, taking into account the reduced Formula (3.1.2) and Corollary
3.9, it remains to actually produce, for as many “small rank” groups G as possible in the
families (SO2n+1)n≥1, (Sp2n)n≥1 and (SO4n)n≥1, sets � of dominant weights for G satisfying
the following properties:

(P1’) For all λ ∈ � we have λ|Z(G) = 1 and N⊥(w(λ)) = 0.
(P2’) For P =P1(G)/ ∼, the � ×P matrix (eP tr(P;λ))λ∈�,P∈P has rank |P|.

Of course (P2’) implies |�| ≥ |P| so our aim is roughly to produce as many dominant
weights satisfying (P1’) as possible. See also Footnote 12 for an important remark regard-
ing the condition on λ|Z(G) in (P1’).

Notations. — For w ≥ 0 an integer we denote by �G(w) the (finite) set of all dom-
inant weights λ of G such that: 2w(λ)1 ≤ w, λ|Z(G) = 1, as well as λm ≥ 0 in the case
G = SO2m. For a dominant weight λ of G, there is a unique effective element U(λ) ∈ K∞
with det U(λ) = 1 and such that the multi-set of weights of U(λ) (as defined in Sect. 2.1)
coincides with w(λ) (viewed of course as the multi-set {w(λ)i |1 ≤ i ≤ nĜ}). The repre-
sentation U(λ) is multiplicity free, and for any π ∈ �alg having weights w(λ) we have
L(π∞) = U(λ).

In order to produce � we will first use the inequality (2.4.1) in Corollary 2.3.
We choose w big enough, and for every λ ∈ �G(w), and for all parameters � ∈ 1

4Z ∩
[1/2,20], we compute F̂�(i/4π) − BF�∞(U(λ),U(λ)). Whenever we find a negative value
(certified using interval arithmetic as explained in Sect. 2.4.3), we know that N⊥(w(λ)) =
0 by Corollary 2.3 and thus we add λ to �. In other words, we choose

�test
w :=

{

λ∈�G(w)

∣
∣
∣
∣∃� ∈ 1

4
Z∩[1/2,20], F̂�(i/4π) < BF�∞

(
U(λ),U(λ)

)
}

,

for the set �. For our purpose this simple method is already very effective. Table 4 displays
all groups for which it works, i.e. for which, using the given w, the set �test

w satisfies the
rank condition (P2’).

See [CT19b] for the Sage program which checks that each set � in the table
satisfies (P1’) (using Corollary 2.3 and interval arithmetic) and inductively computes, for
each group G appearing in the table:

(1) all masses (mP)P∈P1(G),
(2) Tell(G;λ), EP(G;λ) and N⊥(w(λ)) for all dominant weights λ in any desired

range (only limited by computer memory).

Note that we obtain in particular, independently of the computation of masses in
[CR15] and [Taï17], the existence of 27 self-dual elements of �alg having regular weights
and motivic weight ≤ 24. In Sect. 4 we will prove that there is no other such element in
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TABLE 4. — Integers w such that the set �test
w satisfies the rank

condition (P2’) with respect to G

G |P1(G)/ ∼ | |�test
w | w

SO3 3 3 5
Sp2 3 4 14
SO5 12 44 23
SO4 6 30 26
Sp4 12 28 28
SO7 34 183 27
Sp6 32 97 28
SO9 99 498 27
SO8 40 335 28
Sp8 92 255 28
SO11 244 923 27
Sp10 219 446 28
SO13 598 1294 27
SO12 211 1061 28
Sp12 530 597 28
SO15 1339 1924 35

�alg. The only case which was obtained in [Taï17] and that we cannot recover using this
much simpler method is Sp14. The case of SO15 is new. For G = Sp14, considering all
dominant weights λ in �G(90), we only find a set �test

90 of cardinality 974, whereas we
have |P1(Sp14)/ ∼ | = 1157. Higher motivic weights do not seem to provide any new
non-existence results. Similarly this method does not allow us to conclude either in the
case of SO17.

To go further we use the algorithm explained in Sect. 2.4.5 to find larger sets �

satisfying (P1’). More precisely, for a large enough w and each dominant weight λ ∈
�G(w) we applied this algorithm with U = U(λ), δ = 1, m = 1 and taking for S the set13

of 27 known elements of �alg having motivic weight ≤ 24 found above. As before we try
various � ∈ 1

4Z ∩ [1/2,20]. Using this refined method we obtain the following three new
cases:

• For G = Sp14 we have |P(G)/ ∼ | = 1157 and we found a subset � ⊂ �G(36)

of cardinality 1274 satisfying (P1’) and (P2’).
• The case G = SO16 is easier: we have |P1(G)/ ∼ | = 992 and we found a subset

� ⊂ �G(28) of cardinality 1810 satisfying (P1’) and (P2’).
• For G = SO17 we have |P1(G)| = 2948 and we found a subset � ⊂ �G(63) of

cardinality 3477 satisfying (P1’) and (P2’). (Restricting to �G(61) is not enough,
as it yields a set of dominant weights of cardinality 3461 which does not satisfy
(P2’)).

13 We actually have |S| = 26, explained by the equality dim S23(SL2(Z)) = 2.
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Again our program checking rigorously that these sets satisfy (P1’) and the inductive
computation of masses and of the numbers N⊥(w(λ)) can be found at [CT19b]. This
concludes the proof of Theorem 6.

Remark 3.10. — Let G be as in Theorem 6. An inspection of the masses found
above shows mP �= 0 for all P ∈ P1(G), except for 6 polynomials P in the case G =
SO13, and 6 others in the case G = SO17. This shows that the spinor norms constraints
established in Sect. 3.2 are almost sharp.

This second method only gives us these three additional cases for which we can
compute all masses by solving a linear system. For example the set P1(Sp16)/ ∼ has 2521
elements, but we are not even close to producing �’s with enough elements: we were
only able to produce a subset � ⊂ �Sp16

(116) having 1427 elements satisfying (P1’). To
overcome this scarcity of dominant weights satisfying (P1’), we computed a lot of masses
for Sp16, namely for all P in a certain subset P(Sp16)easy of P(Sp16), using the method of
[Taï17], i.e. by computing orbital integrals directly, and then we computed the remaining
ones by solving a linear system.

To describe the set P(Sp16)easy explicitly, for P ∈P(Sp16) and p a prime write

P =
∏

m

∏

k∈S(p,m)

�
d(p,m,k)

mpk

where the first product is over all integers m coprime to p, S(p,m) ⊂ Z≥0 and d(p,m, k) ≥
1. Then P ∈ P(Sp16)easy if and only if for any prime number p and any m coprime to p

we have |S(p,m)| ≤ 2 and
{

0 ∈ S(p,m) if p > 2 and
∣
∣S(p,m)

∣
∣ = 2,

0 ∈ S(p,m) or 1 ∈ S(p,m) if p = 2 and
∣
∣S(p,m)

∣
∣ = 2.

For such a polynomial P the computation using the method explained loc. cit. of the or-
bital integrals (1.4.4) occurring in the mass mP is purely a combinatorial matter and does
not require any bilinear algebra. To be more precise, in general computing an orbital
integral using the method loc. cit. involves enumerating totally isotropic subspaces stable
under a given unipotent automorphism γ in (possibly degenerate) symplectic or hermi-
tian spaces (V, 〈·, ·〉) over a finite field, enumerating isomorphisms between such triples
(V, 〈·, ·〉, γ ), and/or computing the complete invariants attached by Wall [Wal63] to iso-
morphism classes of such triples with 〈·, ·〉 non-degenerate; we restrict to cases where no
such computation is necessary. Although these easier cases have the obvious benefit of
being much easier to implement, the second advantage here is that these orbital integrals
are computed (by a computer) in a matter of seconds. In contrast, there are relevant or-
bital integrals for Sp16 for which the implementation of [Taï17] does not terminate in
reasonable time.
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Denoting P(Sp16) = P(Sp16)easy � P(Sp16)hard, we have |P(Sp16)hard/ ∼ | = 766.
We found a subset of dominant weights � ⊂ �G(36) for G = Sp16 of cardinality 1086
satisfying (P1’) and the analogue of (P2’) for P(Sp16)hard. This concludes the proof of
Theorem 7.

4. Classification results in motivic weights 23 and 24

This section is in the natural continuation of Sect. 2, of which we shall use freely
the notations. We have decided to postpone it here because, in a few places, we will use
below existence or inexistence results of certain self-dual regular elements of �alg, results
which have been proved in Sect. 3.

4.1. Motivic weight 23. — We now prove Theorem 3 along with the following sup-
plementary result.

Proposition 4.1. — Let U be an effective element of K≤23
∞ containing I23 with multiplicity ≥ 2.

Let T be the subset of elements π in �alg with L(π∞) = U.

(1) If |T| ≥ 2 then we have U = I1 + I7 + I13 + I17 + I21 + 2 I23 and T = {π,π∨} for

some non-self-dual π .

(2) If T = {π} then U belongs to an explicit set of 181 elements and π is of symplectic type.

The set of 181 possible U mentioned above can be found in [CT19b]. They all
satisfy 14 ≤ dim U ≤ 42.

Proof. — [Proof of Theorem 3 and Proposition 4.1] For � = 9.74 the restriction of
the symmetric bilinear form F̂�(i/4π)−1BF�∞ to K≤23

∞ is positive definite. As explained in
Remark 2.11, using interval arithmetic we obtain rational lower bounds (we take them in
10−6Z) for the coefficients of its Gram matrix in the basis I1, . . . , I23. Applying the Fincke-
Pohst algorithm, we obtain the set U2 of all 265 effective elements U in K≤23

∞ containing
I23 and satisfying BF�∞(U,U) ≤ F̂�(i/4π)/2. By Corollary 2.3, U2 contains all the elements
U such that there exist two distinct elements π1, π2 in �alg of motivic weight 23 and with
L((π1)∞) = L((π2)∞) = U.

For each U in U2, we systematically applied Algorithm 2.4.5 to U, δ = 0, m = 2
and to the set S of 27 known elements of �alg having motivic weight ≤ 24, and various �.
For all but one U, namely the one of assertion (1), it led to a contradiction with Inequality
(2.3.7). Let us be more precise about the choices of � and of the subset S′ ⊂ S that we can
make a posteriori in order to reach these contradictions more quickly (see also the source
code [CT19b] for a working sheet). We first replace for the rest of the proof the S above by
its subset whose elements have motivic weight ≤ 23. We now have |S| = 24 and |S| = 23.
If we apply Algorithm 2.4.5 with all � in [3,12] ∩Z and all subsets S′ ⊂ S with 1 ≤ |S′| ≤
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2, we obtain in a few seconds (on a personal computer) a contradiction for all but 12
elements of U2. Using then all � in [7,9.5] ∩ 1

2Z and all S′ ⊂ S with 3 ≤ |S′| ≤ 4 for those
12 elements, the algorithm finds again in a few seconds a contradiction in all but 6 cases.
Two of these six are eliminated in about a minute using � = 11 and all the 33649 subsets
S′ with |S′| = 5. The remaining 4 elements have the form U = U′ + I21 + 2I23 with U′ in
the following list: I3+I7+I13+I17, I1+I5+I9+I11+I15+I17+I19, I1+I7+I11+I15+I19,
I1 + I7 + I13 + I17. In the case U′ = I1 + I7 + I11 + I15 + I19 we use � = 8.75 and all the
100947 subsets S′ with |S′| = 6. To give an example, the algorithm produces in about 2
minutes a linear combination close to

x = 0.860
1√
2
(π1 + π2)+ 0.0834 1 + 0.150 �11 + 0.108 �15

+ 0.335 �19,7 + 0.172 �23,7 + 0.280 �23,15,7

with CF8.75(x, x) =−0.0023 up to 10−4. In the case U′ = I1 + I5 + I9 + I11 + I15 + I17 + I19,
we use similarly � = 11.75 and |S′| = 6. The case U′ = I3 + I7 + I13 + I17 is quite harder
to discard. After many tries, we found a contradiction using � = 10.25 and a certain 11
element subset S′ of S: see the source code in [CT19b] for the details. So far, we have
thus proved the following:

(a) For any U �= I1 + I7 + I13 + I17 + I21 + 2 I23 there is at most one element π of
�alg with motivic weight 23 and L(π∞) = U. In particular any such π is self-dual.

Despite our efforts, we could not find a contradiction in the case of the last element
U = I1 + I7 + I13 + I17 + I21 + 2 I23. We have however BF�∞(U,U) > F̂�(i/4π)/3 for
� = 9.74. By Corollary 2.3, this shows:

(b) For U = I1 + I7 + I13 + I17 + I21 + 2 I23, there are at most 2 elements π of �alg

of motivic weight 23 and with L(π∞) = U.

Note that we have proved assertion (1) except for the non self-duality assertion.
To go further, we determine the set of effective elements U in K≤23

∞ containing I23 and
satisfying BF�∞(U,U) ≤ F̂�(i/4π) for � = 9.74. For this we proceed as in the first paragraph
of the proof and obtain an explicit set U1 with 12230 elements. By Corollary 2.3, U1

contains all the elements U such that there exists π in �alg of motivic weight 23 with
L(π∞) = U. For each U in U1 we applied Algorithm 2.4.5 to U, δ = 1 (we restrict to self-
dual elements), m = 1, and to the set S of all 27 known elements of �alg having motivic
weight ≤ 24, for various choices of � and subsets S′ ⊂ S. We obtained contradictions with
Inequality (2.3.7) for all but 187 elements of U2. We refer to [CT19b] for an explicit list
of 12293− 187 = 12106 triples (�,S′, t) leading to a contradiction in each case (checked
using interval arithmetic). It would be tedious to explain here in details which � and
S′ we did choose to find these triples: this is unnecessary anyway as all the necessary
information for our proof is contained in the aforementioned list! We nevertheless refer
to [CT19b] for the log file of our computations (which took several months).
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Among the 187 aforementioned “resistant” elements of U2, six of them are mul-
tiplicity free: I3 + I11 + I17 + I21 + I23, I7 + I15 + I21 + I23, I3 + I9 + I15 + I21 + I23,
I1 + I9 + I17 + I21 + I23, I5 + I13 + I17 + I21 + I23 and I5 + I13 + I19 + I23. These six
regular weights have dimension ≤ 10, and we know from the results of Sect. 3 that there
is no self-dual π with these Archimedean components. An inspection of the list V of
remaining 181 elements reveals that for any U in V :

(i) U contains I23 with multiplicity ≥ 2,
(ii) U contains Iw for some w ∈ {1,3,5},

(iii) for any w ∈ {1,3,5,7,9}, the multiplicity of Iw in U is at most one.

Assertion (i) concludes the proof of Theorem 3. Assertion (b) above and the fact that
I1 + I7 + I13 + I17 + I21 + 2 I23 is not in V imply assertion (1) of Proposition 4.1. By (ii)
and (iii) above, for any U in V there is some Iw which occurs in U with multiplicity 1.
In particular, such a U has no WR-equivariant nondegenerate symmetric pairing. This
shows that any self-dual π with L(π∞) = U is of symplectic type by [Art13, Theorem
1.4.2], and proves assertion (2) of Proposition 4.1. �

Remark 4.2. — For a given (U, δ,m), it seems hard to us to guess a priori what will be
the best choices of � and S (or S′) to plug into Algorithm 2.4.5 for the purpose of reaching
a contradiction with Inequality (2.3.7). Athough the authors have developed their own
intuition and artisanal methods to find good � and S, they are mostly based on numerical
experiments. In the same vein, in the cases where we did not find any contradiction, it
seems difficult to prove that there cannot be any, as it is always possible to let � vary and
increase the size of S. However, based on the large number of experiments we made, we
find it likely that it is not possible to discard any of the elements of the remaining list V
by changing � or S.

4.2. Motivic weight 24. — The following lemma is the first step in the proof of
Theorem 5.

Lemma 4.3. — Let n ≥ 13. Let π be a self-dual level 1 cuspidal algebraic regular automorphic

representation of PGLn over Q of motivic weight 24. Then L(π∞) belongs to the following list:

• 1 + I6 + I8 + I14 + I20 + I22 + I24 for n = 13,

• 1 + I6 + I10 + I16 + I20 + I22 + I24 for n = 13,

• I2 + I4 + I12 + I14 + I18 + I20 + I22 + I24 for n = 16,

• I2 + I8 + I12 + I14 + I18 + I20 + I22 + I24 for n = 16.

In particular we have n ≤ 16.

Proof. — Let π be as in the lemma and set U = L(π∞). This is a multiplicity free
effective element of K≤24

∞ containing I24 and with det U = 1. There are only finitely many
such elements, with dim U ≤ 25 in all cases. Moreover, π is orthogonal as w(π) is even
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(see the last paragraph of Sect. 2.2). By [Art13, Theorem 1.5.3] loc. cit. we have thus
ε(π) =+1. Since ε(π) = ε(U) this gives an extra constraint on U.

A straightforward computer-aided enumeration gives us the list of the 1260 ef-
fective multiplicity free elements U in K≤24

∞ containing I24, and satisfying dim U > 12,
det U = 1 and ε(U) = 1. We applied Algorithm 2.4.5 to each such U, δ = 1, m = 1, to
the set S of 15 elements of �alg having motivic weight ≤ 23 and dimension ≤ 4. Ex-
cept in the four cases given in the statement, we obtained a contradiction with Inequality
(2.3.7). It is actually enough to choose � in [3,7] ∩ 1

2Z and to restrict to the subsets S′ ⊂ S
with |S′| ≤ 7. We refer to [CT19b] for an explicit list of 1256 triples (�,S′, t) leading to a
contradiction in each case (checked using interval arithmetic). �

Proof of Theorem 5. — Using Theorem 6 we may compute, for any effective multi-
plicity free element U ∈ K≤24

∞ containing I24 and with dim U ≤ 16, the number of self-
dual π in �alg with L(π∞) = U (this uses SOn for n ≤ 16 and Sp2n for 2n ≤ 8). Remark-
ably, we find only three such π , namely the ones in the statement of Theorem 5. We
conclude by Lemma 4.3. �

4.3. Classification results conditional to (GRH). — By (GRH) we shall mean here: for
all π,π ′ ∈ �alg, the zeros s ∈ C of �(s,π × π ′) satisfy � s = 1

2 . Assuming (GRH), Propo-
sition 2.2 holds more generally for any test function F satisfying F(x) ≥ 0 and F̂(ξ) ≥ 0
for all x and ξ in R (a condition weaker than (POS)). This condition is trivially satisfied
by the function G�(x) = g(x/�), where g is the function recalled in Sect. 2.4.3 and � is
a positive real number (these are the classical functions of Odlyzko “under (GRH)”). In
order to apply Algorithms 2.4.4 and 2.4.5 with G� instead of F�, we need the following
variant of [CL19, Prop. 9.3.18]. We set φ(z) = 1

2ψ( z+1
2 )− 1

2ψ( z

2) and r(z) = 2π 2 e−z

(z2+π2)2 .

Proposition 4.4. — Let � > 0 be a real number. For any integer w ≥ 0 we have

JG�
(Iw) = log 2π −�ψ

(

b + iπ

�

)

+ 1
π
�ψ

(

b + iπ

�

)

− 1
�
�ψ ′

(

b + iπ

�

)

+ s1(b, �),

with b = 1+w

2 and s1(b, �) = �
∑∞

n=0 r(�(b + n)). Moreover, we also have

JG�
(1 − εC/R) =�φ

(
1
2
+ iπ

�

)

− 1
π
�φ

(
1
2
+ iπ

�

)

+ 1
�
�φ′

(
1
2
+ iπ

�

)

+ s2(�)
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with s2(�) = �
∑∞

n=0(−1)nr(�(n + 1/2)), as well as Ĝ�(0) = 8�/π 2 and

Ĝ�(i/4π) = 4π 2�
1 + cosh(�/2)

(�2/4 + π 2)2
.

Proof. — We follow the proof of [CL19, Prop. 9.3.18] and omit the straightfor-
ward details. For real numbers b, � > 0, set S(b, �) = ∫ ∞

0 (g(x/�) e−bx

1−e−x − e−x

x
)dx. A com-

putation almost identical to p. 276 loc. cit. shows that we have S(b, �) = −�ψ(b +
iπ

�
) + 1

π
�ψ(b + iπ

�
) − 1

�
�ψ ′(b + iπ

�
) + s1(b, �). On the other hand, by [CL19, Prop.

9.3.8] we have JG�
(Iw) = log 2π + S( 1+w

2 , �) for any integer w ≥ 0 and JG�
(1 − εC/R) =

1
2(S( 1

4 ,2�)−S( 3
4 ,2�)). This shows the first two formulas. Set h(α) = ∫ ∞

0 g(x)e−αxdx for α

in C. By p. 275 loc. cit. we have h(α) = α

α2+π2 + 2π 2 1+e−α

(α2+π2)2 . We conclude by the relations
Ĝ�(0) = 2� h(0) and Ĝ�(i/4π) = �(h(�/2)+ h(−�/2)). �

Upper bounds for the tails of the series s1 and s2 are given in [CL19, (3) p. 277].

Proof of Theorem 4. — In this proof, whenever we apply Algorithms 2.4.4 and
2.4.5 we do it using G� instead of F�. Applying Algorithm 2.4.5 to the element U of
Proposition 4.1 (1), δ = m = 2 and the set S of 27 known elements of �alg with mo-
tivic weight ≤ 24, we obtain a contradiction with Inequality (2.3.7) with � = 5 and
S′ = {�23,7,�23,13,5,�23,15,7} (three elements in the list of Thm. 3). It thus only remains
to show that for any of the 181 elements of the list V of Proposition 4.1 (2), there is no
selfdual π in �alg with L(π∞) = U. For each U in V , we applied Algorithm 2.4.5 to U,
δ = m = 1 and the set S above, using various �. We found a contradiction in all but one
cases. More precisely, we may reach all these contradictions but one using � ∈ [4,7]∩ 1

2Z,
S′ of size ≤ 7, and S′ not containing any of the 3 elements of �alg with motivic weight 24
(see [CT19b] for a working sheet). The two remaining elements of V are then

A = I1 + I7 + I11 + I15 + I19 + I21 + 2 I23

and B = I1 + I9 + I15 + I19 + 2 I23.

For U = B we eventually found a contradiction using � = 6.36 and a certain subset S′ ⊂ S
with 13 elements! (see loc. cit.) The remaining case U = A is the one of the statement of
Theorem 4. �

5. Siegel modular cusp forms for Sp2g(Z)

In this section, we explain how to use our classification Theorems 3 & 5 to prove
Theorem 2. Along the way, we will also reformulate much more precisely the Key fact 1

stated in the introduction.
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5.1. Brief review of Arthur’s results for Sp2g . — Fix g ≥ 1 be an integer. We denote
by �disc(Sp2g) the set of isomorphism classes of discrete automorphic representations π

of Sp2g with π
Sp2g(Zp)

p �= 0 for all primes p. Recall that the Langlands dual group of Sp2g

“is” SO2g+1(C); it has a tautological (often called standard ) representation St of dimension
2g + 1. Let π be in �disc(Sp2g). For each prime p, the Satake parameter c(πp) of πp will
be viewed following Langlands as a semi-simple conjugacy class in SO2g+1(C). Similarly,
the infinitesimal character c(π∞) of π∞ will be viewed as a semi-simple conjugacy class
in the Lie algebra of SO2g+1(C) (and most of the time, as the collection of its 2g + 1
eigenvalues).

Let �(Sp2g) denote the set of level 1 global Arthur parameters for Sp2g . An element
of �(Sp2g) is by definition a finite collection ψ of distinct triples (πi, ni, di), for i in I,
with ni, di ≥ 1 a collection of integers satisfying 2g + 1 = ∑

i∈I nidi , and with πi a level
1 self-dual cuspidal automorphic representation of PGLni

over Q which is orthogonal
if di is odd, symplectic otherwise. It suggestive to view ψ as the isobaric automorphic
representation of GL2g+1 over Q defined as

(5.1.1) ψ = �
i∈I

�
0≤ri≤di−1

πi |.|
di−1

2 −ri .

We often simply write for short 14

ψ =⊕
i∈I

πi[di].

To any ψ in �(Sp2g), viewed as in (5.1.1) as an irreducible admissible represen-
tation of GL2g+1(A), we may attach a collection of Satake parameters ψp (semi-simple
conjugacy classes in GL2g+1(C)), as well as an infinitesimal character ψ∞ (a semi-simple
conjugacy class in M2g+1(C)). We shall say that ψ is algebraic when the 2g + 1 eigenvalues
of ψ∞ are in Z. In this case, the only one that we shall need to study here, all the πi are
algebraic (see Sect. 2.1).

Assume ψ ∈ �(Sp2g) is algebraic. Using the local Langlands correspondence for
the GLni

(R), we may attach to ψ a morphism ψR : WR × SL2(C) −→ SO2g+1(C),
uniquely defined up to SO2g+1(C)-conjugacy, with the property

St ◦ψR 	
⊕

i

L
(
(πi)∞

)
� Symdi−1C2.

(Recall the notation L(−) from Sect. 2.1) By Sect. 2.1, note that ψR is trivial on R>0 × 1,
and in particular, ψR(WR) is bounded (it is thus an Archimedean Arthur parameter). If r is
a representation of WR, and d ≥ 1 is an integer, it will be convenient to write r[d] for the
representation r � Symd−1C2 of WR × SL2(C).

14 For typographical reasons we also replace the symbol πi[di] with [di] if we have πi = 1, and by πi if we have di = 1
and πi �= 1.
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Arthur’s first main result [Art13, Thm. 1.5.2] attaches to any π in �disc(Sp2g) a
unique ψ(π) in �(Sp2g) such that we have ψ(π)v = St ◦ c(πv) for every place v of Q
(see also [Taï17, Lemma 4.1.1]). Arthur’s second main result is a converse statement, the
so-called multiplicity formula, on which we shall focus from now on and until the end of this
section.

Fix ψ = ⊕i∈Iπi[di] in �(Sp2g). We assume that ψ is algebraic for our purposes.
There are both a local and a global ingredient in the multiplicity formula.

We start with the global one. Write I = Ieven
∐

Iodd with i ∈ Ieven if, and only if, nidi

is even. Define Cψ as the abelian group generated by the symbols si for i ∈ Ieven, and by
the symbols sij for all i, j ∈ Iodd, with relations 1 = s2

i = s2
ij and sij sjk = sik (note sii = 1). This

is an elementary abelian 2-group of order 2|I|−1. Arthur defines a global character εψ of
this group in [Art13, p. 48], that we now recall. For each i ∈ I consider the sign

(5.1.2) ε(i) =
∏

j �=i

ε(πi × πj)
Min(di,dj ).

The term ε(πi × πj) here is the Rankin-Selberg root number already encountered in
Sect. 2.3, a (purely Archimedean) sign that we already explained how to compute loc. cit.

It is necessarily +1 by [Art13, Theorem 1.5.3] if πi and πj are both orthogonal or both
symplectic. As the adjoint representation of SO2g+1(C) is isomorphic to �2St, Arthur’s
definition reads (see e.g. [CL19, Sect. 8.3.5] for more details):

(5.1.3) εψ(si) = ε(i) ∀i ∈ Ieven and εψ(sij) = ε(i)ε(j) ∀i, j ∈ Iodd.

We now describe the local ingredient. Fix K a maximal compact subgroup of
Sp2g(R) and denote by g the complexification of the Lie algebra of Sp2g(R). Arthur
associates to ψR a finite multi-set �(ψR), also called an Arthur packet, of unitary irre-
ducible admissible (g,K)-modules. One important property he shows is that we have
π∞ ∈ �(ψ(π)R) for all π ∈ �disc(Sp2g). Moreover, �(ψR) is equipped with a map

�(ψR) → Hom
(
CψR, {±1}), U 
→ χU,

where CψR denotes the centralizer of the image of ψR in SO2g+1(C).

Remark 5.1. — The map U 
→ χU depends on the choice of an equivalence class
of Whittaker datum for Sp2g(R). From now on we fix a global Whitaker datum Wh
for Sp2g such that Whp is unramified with respect to Sp2g(Zp), for each prime p, in the
sense of Casselman and Shalika. Up to conjugating Wh if necessary by the outer action
of GSp2g(Z), its Archimedian component Wh∞ can belong to any of the two classes of
Whittaker data for Sp2g(R).

We can now state Arthur’s multiplicity formula. Fix an algebraic ψ in �(Sp2g).
There is a natural group embedding ι : Cψ ↪→ CψR (“local-global” map). Choose U in
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�(ψR) and assume for simplicity that it has multiplicity one in this multiset (this as-
sumption will be satisfied in the cases that we will consider below). Then there is a π in
�disc(Sp2g) with ψ(π) = ψ and π∞ 	 U if, and only if, we have

(5.1.4) εψ(si) = χU

(
ι(si)

) ∀i ∈ Ieven and εψ(sij) = χU

(
ι(sij)

) ∀i, j ∈ Iodd.

Moreover, if these equalities are satisfied then the multiplicity of π in the automorphic
discrete spectrum of Sp2g is equal to 1. There is a slightly more complicated statement
when we do not assume U has multiplicity one in �(ψR). This multiplicity one property
will always be the case in our applications (see Sect. 5.2). It is believed but not known
that it holds in general, although Moeglin and Renard have a number of results in this
direction.

Remark 5.2. — It is important to remark that (5.1.4) trivially holds when we have
ψ = � [d] for some cuspidal � of PGL(2g+1)/d , because the group Cψ is trivial.

5.2. Lowest-weight modules: results of Arancibia-Moeglin-Renard and of Moeglin-Renard. —

For k = (k1, k2, . . . , kg) ∈ Zg with k1 ≥ k2 ≥ · · · ≥ kg ≥ 0 we denote by ρk the holomorphic,
unitary, lowest weight (g,K)-module of (lowest) weight k.15 The precise meaning here for
“lowest” or “holomorphic” is a convention that we may fix as in [MR, §3] to fix ideas,
nevertheless this choice will play no role in the sequel as we shall see. We are interested in
ρk for the following classical reason. Let us denote by Mk(�g) the vector-space of vector-
valued Siegel modular forms of weight k for �g , and by L2

k (�g) its subspace of square-
integrable forms. We have

Sk(�g) ⊂ L2
k (�g) ⊂ Mk(�g).

Assume F is a Hecke eigenform in L2
k (�g). Then F generates an element π(F) in

�disc(Sp2g) with π(F)∞ 	 ρk . Better, dim L2
k (�g) (resp. dim Sk(�g)) is exactly the num-

ber of π in �disc(Sp2g) with π∞ 	 ρk counted with their global discrete (resp. cuspidal)
multiplicity.

An important property to have in mind is that the 2g + 1 eigenvalues of the in-
finitesimal character of ρk are 0 and the 2g elements ±(ki − i) for i = 1, . . . , g. Note that
these 2g + 1 integers are distinct if, and only if, we have kg > g. This is also exactly the
condition under which ρk is a (holomorphic) discrete series. If F is a Hecke eigenform
in L2

k (�g) as above, the shape of the infinitesimal character of ρk implies that ψ(π(F)) is
always algebraic. Moreover, ρk is an element of the Arthur packet �(ψ(π(F))R).

Conversely, let us fix until the end of Sect. 5.2 a global Arthur parameter

ψ =⊕i∈Iπi[di]
15 These modules have been classified by Enright, Howe and Wallach: they exist if, and only if, we have kg ≥ g −

(u + v/2), with u = |{i, ki = kg}| and v = |{i, ki = kg + 1}|, and they are unique up to isomorphism if they exist.
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in �(Sp2g) such that the eigenvalues of ψ∞ are 0 and the ±(ki − i), with i = 1, . . . , g

(in particular, ψ is algebraic). In order to apply the Arthur multiplicity formula, we want
to know under which condition on ψ the module ρk belongs to �(ψR), whether it has
multiplicity one in this multi-set, and if so, we want to know χρk

. We shall consider only
the two following special, but important, cases.

5.2.1. Vector-valued case, with kg > g. — This situation is studied at length in [CR15,
Chap. 9] and [CL19, Sect. 8.4.7]. In this case, ρk is a discrete series, the eigenvalues of ψ∞
are distinct, and we have Sk(�g) = L2

k (�g) by a general result of Wallach. We have Iodd =
{i0} (a singleton) and πi is regular for all i in I, so we have nidi ≡ 0 mod 4 for i �= i0 by
Sect. 2.2. The parameter ψR is necessarily an Adams-Johnson parameter (see e.g. [CR15,
§3.8, App. A], [CL19, Sect. 8.4.15], [Taï17, §4.2.2]), and the main result of [AMR18]
shows that �(ψR) coincides with the packet that Adams and Johnson associate to ψR

in [AJ87] (any element of this packet having multiplicity one). Arancibia, Moeglin and
Renard also prove the expected form of the map U 
→ χU. As was observed in [CR15,
§9] (see also [CL19, Sect 8.5.1]), this packet contains ρk if and only if we have di0 = 1,
and in this case the corresponding character χρk

is given by the formula, for all i in Ieven:

(5.2.1) χρk

(
ι(si)

) =
{

(−1)
ni di

4 if di ≡ 0 mod 2,

(−1)ei otherwise,

where ei is the number of odd integers 1 ≤ j ≤ g such that kj − j is a weight of πi . Note
that the quantity ei mod 2 does not change if we replace odd with even in the definition of
ei , as we have ni ≡ 0 mod 4 for di odd. This property expresses the fact that the character
above does not depend on the choice of the Whittaker datum Wh∞ in Remark 5.1. All in
all, we have explained fully, and much more precisely, the Key fact 1 of the introduction.

5.2.2. Scalar-valued case, arbitrary genus. — In this case we have k = (k, k, . . . , k)

in Zg with k ≥ 0, and we rather write ρk(g) for ρk . If we have k > g we are in
the case of Sect. 5.2.1, so from now on we assume g ≥ k. The case k = 0 is trivial
so from now on we also assume k ≥ 1. The 2g + 1 eigenvalues of the infinitesimal
character of ρk are now 0 and the 2g elements ±(k − i) for i = 1, . . . , g: the eigen-
value 0 has thus the multiplicity 3, and for g > k > 1 the eigenvalues ±1,±2, . . . ,

±min(k − 1, g − k) have multiplicity 2.
We will use as a key ingredient the recent local results of Moeglin and Renard

[MR],16 that we will specialize in what follows to this level 1 situation. The first main
result of [MR] is that ρk(g) belongs to �(ψR) if, and only if, we are in one of the two
cases called (I) and (H) below. In both cases they show that ρk(g) has multiplicity 1 in
�(ψR) and they determine χρk(g). We use the letter I for the case reminiscent of Ikeda lifts,

16 Note that those authors call n, m, πn(m)∗ what we call g, k, ρk(g) respectively.
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and the letter H for those related to the Howe (or theta) correspondence. The formula
for χρk(g) given in [MR, Prop. 18.3] depends on the class of Wh∞, which is represented
there by a certain sign δ loc. cit. and that we represent the same way here (it may be either
one of ±1: see Remark 5.1). We will express below only the restriction of χρk(g) to Cψ ,
which is the information we need in order to apply the global multiplicity formula (5.1.4).
In all cases we will see in particular that this restriction does not depend on Wh∞, i.e. on
δ, hence neither on the choices discussed in the beginning of Sect. 5.2 that we made (or
rather didn’t) to define ρk : changing of choice amounts to replace δ with −δ by [MR].

Preliminary general notations and remarks. — Recall we have already defined a partition
I = Ieven

∐
Iodd according to the parity of nidi for i in I. We now define I0 ⊂ I as the subset

of elements i in I such that 0 is a weight of πi . We clearly have Iodd ⊂ I0, Iodd �= ∅ and
|I0| ≤ 3. Set

dmax = maxi∈I0di.

It will be convenient to introduce the following definition:

Definition 5.3. — Let k and n be integers ≥ 1, and let π be a cuspidal algebraic automorphic

representation of PGLn. We denote by r(π) the multiplicity of the weight 0 of π . We will say that

π satisfies (Rk) if: (i) its weights are ≤ k − 1, (ii) its nonzero weights have multiplicity 1, and (iii)
r(π) ≤ 3 and each of 1 and εC/R have multiplicity at most 2 in L(π∞).

We shall see below that all the πi for i ∈ I do satisfy (Rk ), and that at most one of
them is not regular. Our last remark is a simple identity of signs that we have found useful
when deciphering the formulas of [MR, Prop. 18.3]. Denote by  x! ∈ Z the floor of the
real number x; for ε =±1, a ∈ Z≥1 and b ∈ Z, we have

(5.2.2) (−1) εa/2! =
a∏

i=1

(−1)i−1ε and (−1) (−1)bεa/2! =
b+a∏

i=b+1

(−1)i−1ε.

Indeed, the first one is the product of a alternating signs starting with ε; it only depends
on a mod 4. The second follows from the first by replacing ε with ε(−1)b.

Case (I). — This corresponds to case (i) of [MR, Théorème 7.1]. By this theorem,
we have I0 = {i0} (a singleton), the weight 0 of πi0 has multiplicity 1, di0 = dmax = 1,
k − 1 > g − k, and the g integers wi + di−1

2 − ri , where i is in I, wi is a positive weight of πi,
and with 0 ≤ ri ≤ di − 1, fill the length g segment [k − g, k − 1] (hence are distinct). The
representation πi is regular for each i, with weights ≤ k−1, hence satisfies nidi ≡ 0 mod 4
for i �= i0 by Sect. 2.2.

In this case we must have I0 = Iodd so Cψ is generated by the si with i �= i0. Fix
such an i, necessarily in Ieven. For any sign s = ±1 we define es(πi) as the number of
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integers 1 ≤ j ≤ k − 1 with (−1)j = s such that k − j is a weight of πi. The first assertion
of Proposition 18.3 of [MR] (we are in case (1) of §18 loc. cit.), together with Formula
(5.2.2), show that χρk(g)(ι(si)) is given by the formula:

(5.2.3) χρk(g)

(
ι(si)

) =
{

(−1)
ni di

4 if di ≡ 0 mod 2,

(−1)eδ(πi) otherwise.

Indeed, consider the sequence of g alternating signs s= (sk−1, sk−2, . . . , sk−g) start-
ing with sk−1 = δ, i.e. set sk−i = δ(−1)i−1. Formulas (5.2.2) show that, for any i in Ieven and
any positive weight w of πi, the sign ε(I2w[di]) of Proposition [MR, Prop. 18.3] is given
by the formula

(5.2.4) ε
(
I2w[di]

) =
∏

w− di−1
2 ≤j≤w+ di−1

2

sj

When di is even, this sign is (−1)di/2. When di is odd, and thus w ∈ Z, it coincides with sw.
The formula sw = δ(−1)k−w−1 shows that we have sw =−1 if and only if w = k − j with
(−1)j = δ. Formula (5.2.3) follows, as for i in Ieven the sign χρk(g)(ι(si)) is by definition the
product, over all the positive weights w of πi, of ε(I2w[di]).

Note that when di is odd we have eδ(πi) + e−δ(πi) = ni/2 ≡ 0 mod 2, as πi is
regular and does not have the zero weight, so e1(πi) ≡ e−1(πi) mod 2. As a consequence,
Formula (5.2.3) does not depend on δ.

Case (H). — This corresponds to case (ii) in [MR, Théorème 7.1]. According to
Theorem 7.2 loc. cit. there are two subcases:

(H1) There is i0 in I0 with di0 = dmax = 2(g − k) + 1, and L((πi0)∞) contains εk
C/R.

(H2) There is i0 in I0 with di0 = dmax = 2(g − k) + 3, and L((πi0)∞) contains εk−1
C/R.

Note that i0 is not unique in general, so we fix any i0 satisfying (H1) or (H2). We set k′ = k

in case (H1) and k′ = k − 1 in case (H2). An inspection of ψR shows that in case (H2) we
must have g − k + 1 ≤ k − 1, that is g ≤ 2k′ (hence k′ ≥ 1). In both cases we may write

ψR 	 εk′
C/R

[
2
(
g − k′) + 1

] ⊕ ψ ′.

We have dimψ ′ = 2k′, detψ ′ = εk′
C/R and the eigenvalues of ψ∞ contributing to ψ ′ are

the ±i for i = 0, . . . , k − 1 in case (H1), and the same ones except ±(g − k + 1) in case
(H2). It follows that ψ ′ is an Adams-Johnson parameter for the compact group SO(2k′),
and in particular, is multiplicity-free. This implies:

– πi satisfies (Rk ) for all i (see Definition 5.3), and is regular for i �= i0.

In particular, for i �= i0, we have nidi ≡ 0 mod 4 if ni is even, and L((πi)∞) contains
ε

(ni−1)/2
C/R if ni is odd (see Sect. 2.2). Moreover, either πi0 is regular or we are in the case (H1)

(see Remark 5.4) and in one of the two following situations:
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– ni0 ≡ 2 mod 4, 0 is a double weight of πi0 , and L((πi0)∞) contains εk
C/R twice,

– ni0 is odd, 0 is a triple weight of πi0 , di0 = 1, g = k, and L((πi0)∞) contains εk
C/R

twice and εk−1
C/R once.

Remark 5.4. — Assume we are in the case (H2). Then the weight 0 of πi0 has
multiplicity 1, since the eigenvalue g − k +1 occurs with multiplicity 1 in the infinitesimal
character of ρk(g). In particular we have i0 ∈ Iodd and πi0 is regular. Moreover, we also
have k′ > 1. Indeed, k′ = 1 implies g = 2 as k ≤ g ≤ 2k′, dimπi0 = 1 hence πi0 = 1 as πi0

has level one, which contradicts (H2).

We now describe the restriction of the character χρk(g) to Cψ . For any i in I and any
sign s =±1 we define an integer es(πi) as follows. If we are in case (H1), then es(πi) is the
number of integers 1 ≤ j ≤ k −1 with (−1)j = s such that k − j is a weight of πi (as in case
(I)). If we are in case (H2), we first consider the decreasing sequence (w1,w2, . . . ,wk′−1) =
(k − 1, k − 2, . . . , ̂g − k + 1, . . . ,1) where g − k + 1 is omitted (this makes sense as 1 ≤
g − k + 1 ≤ k − 1 and k′ > 1 by Remark 5.4), and rather define es(πi) as the number of
integers 1 ≤ j ≤ k′ − 1 with (−1)j = s such that wj is a weight of πi . In all cases we have
by property (Rk ):

(5.2.5) r(πi) + 2e1(πi)+ 2e−1(πi) = ni.

– Assume first we have i ∈ Ieven and i �= i0. For i /∈ I0 we have:

(5.2.6) χρk(g)

(
ι(si)

) =
{

(−1)
ni di

4 if di ≡ 0 mod 2,

(−1)eδ(πi) otherwise.

Indeed, this follows from [MR, Proposition 18.3] by a similar argument as in Case (I). The
only difference is to replace in this argument the alternating sequence of signs s defined
in Case (I) by the length k′ alternating sequence s = (sk−1, sk−2, . . . , s0) starting with δ

but with the index g − k +1 omitted in case (H2); in other words, we still set sk−i = δ(−1)i−1 in
Case (H1), and in Case (H2) we set sk−i = δ(−1)i−1 for k− i > g−k+1 and sk−i = δ(−1)i

for k − i < g − k + 1 (so sg−k+1 is undefined in case (H2)). With this definition for s, the
sign ε(I2w[di]) of [MR, Prop. 18.3] is still given for w > 0 by Formula (5.2.4). The same
reasoning as in case (I) shows then Formula (5.2.6), as well as its independence on δ.

Assume now i ∈ I0, so that 0 is a double weight of πi as i ∈ Ieven. This forces di = 1,
because otherwise πi[di] would contribute the eigenvalue 1 with multiplicity at least 2 to
the Adams-Johnson parameter ψ ′, a contradiction. We find

(5.2.7) χρk(g)

(
ι(si)

) = (−1)eδ(πi)δ(−1)k′−1.

Indeed, we are in the situation (2) of §18 loc. cit. and in the notations there we have a = 1
and ε1ε2 = (−1) δ(−1)k′−1/2! = δ(−1)k′−1 = s0 [MR, Remarque 18.4]. By definition, we
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have χρk(g)(ι(si)) = (
∏

w ε(I2w))ε1ε2 in the notations of [MR, Prop. 18.3], the product in
parenthesis being over the positive weights w of πi , hence equal to (−1)eδ(πi) as explained
above. This proves Formula (5.2.7). The congruence ni ≡ 0 mod 4, the equality r(πi) = 2,
and Formula (5.2.5) show that (5.2.7) does not depend on the sign δ.

– Assume i = i0 is in Ieven, so we are in case (H1) by Remark 5.4. The sign
χρk(g)(ι(si0)) is the product of (−1)eδ(πi) and of the sign ε2ε3 in Case (2) of [MR, Propo-
sition 18.3] (with a = g − k + 1). Recall that we have ni0 ≡ 0 mod 4 if and only if πi0

is regular by Sect. 2.2. By loc. cit. we have thus ε2ε3 = δ (−1)k−1 if ni0 ≡ 0 mod 4, and
ε2ε3 = 1 otherwise, and we obtain:

(5.2.8) χρk(g)

(
ι(si0)

) =
{

(−1)eδ(πi0 )δ(−1)k−1 if ni0 ≡ 0 mod 4,

(−1)eδ(πi0 ) otherwise.

Again, these two formulas do not depend on δ by Formula (5.2.5) and r(πi0) = 2.

– We are left to consider the case |Iodd| > 1. We must have |Iodd| = 3 and Iodd = I0.
We want to give the value of χρk(g)(ι(sij)) for i �= j in Iodd. We have mini∈I0 di = 1, since
otherwise the eigenvalue 1 would have multiplicity at least 3 in the infinitesimal character
of ρk(g). We may thus write I0 = {i0, i1, i2} with di1 = 1 and set di2 = 2a − 1. The sign
χρk(g)(ι(si1i2)) is the product of (−1)eδ(πi1 )(−1)eδ(πi2 ) and of the sign ε1ε2 = (−1) δ (−1)k′−a a/2!

in Case (2) of [MR, Proposition 18.3] (see also Remark 18.4 (ii) loc. cit.). We obtain:

(5.2.9) χρk(g)

(
ι(si1i2)

) = (−1)eδ(πi1 )+eδ(πi2 )+ δ (−1)k′−a a/2!.

Observe that we have δ(−1)k′−a = sa−1. Indeed, this holds trivially in case (H1), and in
case (H2) we have a − 1 < g − k + 1 since the eigenvalues {0,1,2, . . . , a − 1} contribute
to ψ ′ (as di2 = 2a − 1), so sa−1 = δ(−1)k−a+1 = δ(−1)k′−a again. By Formula (5.2.2), this
shows the alternative expression

(5.2.10) ε1ε2 = (−1) δ (−1)k′−a a/2! = sa−1 · · · s1s0.

We finally check that (5.2.9) does not depend on δ. As πi0 is regular of odd dimension, and
L((πi0)∞) contains εk′

C/R, we have ni0 ≡ 2k′ + 1 mod 4 by Sect. 2.2. As di0 = 2(g − k′)+ 1,
this implies the congruence ni0di0 ≡ 2g +1 mod 4, and using 2g +1 = ∑

i∈I nidi and nidi ≡
0 mod 4 for i /∈ I0, we obtain

(5.2.11) ni1 + ni2(2a − 1) ≡ 0 mod 4,

which may also be written ni1−1
2 + ni2−1

2 ≡ a mod 2. The relation eδ(πi) + e−δ(πi) ≡
ni−1

2 mod 2 for i ∈ Iodd, deduced from (5.2.5), and the trivial identity (−1) −ea/2! =
(−1)a(−1) ea/2! for e = ±1, show that the right-hand side of Formula (5.2.9) does not
depend on δ.
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We still assume Iodd = {i0, i1, i2} as above. It only remains to give χρk(g)(ι(si0i2)). It
will depend on the following property on {πi0,πi2}:

(Pi0,i2
) L

(
(πi0)∞

) ⊕ L
(
(πi2)∞

)
contains 1 ⊕ εC/R.

Similarly to (5.2.8), we have χρk(g)(ι(si0i2)) = (−1)eδ(πi0 )(−1)eδ(πi2 )ε2ε3 with ε2ε3 as in [MR,
Proposition 18.3]. We are in case (2) loc. cit. if (H1) holds, and in case (3) otherwise. We
obtain ε2ε3 = δ (−1)k−1 if (Pi0,i2

) holds, and ε2ε3 = (−1)k−k′ otherwise, hence:

(5.2.12) χρk(g)

(
ι(si0i2)

) =
{

(−1)eδ(πi0 )+eδ(πi2 )δ(−1)k−1 if (Pi0,i2
) holds,

(−1)eδ(πi0 )+eδ(πi2 )(−1)k−k′ otherwise.

These values do not depend on δ by (5.2.5): the integer ni0 + ni2 is ≡ 0 mod 4 if (Pi0,i2
)

holds, and ≡ 2 mod 4 otherwise.

Remark 5.5.

(1) The cases (I) and (H) are disjoint for k �= g, and for k = g case (I) is a special
case of (H1), and the two formulas (5.2.3) and (5.2.6) for χρk(g) are identical.

(2) The parameter ψ does not always determine k: when g is even, parameters of
type (H1) in weight k = g/2 coincide with parameters of type (H2) in weight
k = g/2 + 1.

5.3. Proof of Theorem 2. — Fix g ≥ 1, k = (k1, . . . , kg) ∈ Zg and assume either that
k is scalar or kg > g. Arthur’s multiplicity formula, as well as the multiplicity one results
of [AMR18] and [MR], show that two Hecke eigenforms in Sk(�g) with same Hecke
eigenvalues, or equivalently with the same standard parameter, are proportional. It fol-
lows that dim Sk(�g) is the number of possible standard parameters of Hecke eigenforms
in Sk(�g). In what follows we enumerate these parameters in the case k1 ≤ 13. We thus
fix a Hecke eigenform in Sk(�g) and denote by ψ ∈ �(Sp2g) its standard parameter. As
in Sect. 5.1 we write

ψ =⊕i∈Iπi[di].

Notation. — Assume v1 > v2 > · · · > vr are positive odd (resp. even) integers and
that there is a unique self-dual regular π in �alg with weights ± v1

2 ,± v2
2 , . . . ,± vr

2 , then
we shall denote by �v1,v2,...,vr

(resp. Oe
v1,v2,...,vr

) this unique element π . Similarly, when
v1 > v2 > · · · > vr are even positive integers and there is a unique self-dual π in �alg

with weights 0 and ± v1
2 ,± v2

2 , . . . ,± vr

2 , then we shall denote by Oo
v1,v2,...,vr

this element.
The �’s are symplectic and the O’s are orthogonal. These notations are compatible with
the ones introduced in Sect. 1.3, and we have for instance Oo

22 = Sym2�11. We shall also
denote by 1 the trivial representation of PGL1, and by �1

23 and �2
23 the two cuspidal

representations of PGL2 generated by the two normalized eigenforms in S24(SL2(Z)).
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– We will denote by L24 the subset of �alg whose elements are either of motivic
weight ≤ 22, or of motivic weight 23 with the weight 23 having multiplicity 1, or regular
self-dual of motivic weight 24. By the classification theorems ([CL19, Thm. F], Theorems
3 and 5), there are 11+ 13+ 3 = 27 elements in L24, all regular self-dual, and according
to the notations above we have

L24 =
{
1,�11,�15,�17,�19,�19,7,�21,�21,5,�21,9,�21,13,Sym2�11,

�1
23,�

2
23,�23,7,�23,9,�23,13,�23,13,5,�23,15,3,�23,15,7,�23,17,5,

�23,19,3,�23,17,9,�23,19,11,�23,21,17,11,3,Oo
24,16,8,Oe

24,18,10,4,

Oe
24,20,14,2

}
.

5.3.1. Case k = (k1, k2, . . . , kg) with k1 ≤ 13 and kg > g. — We have 1 ≤ g ≤ 12. We
apply Sect. 5.2.1. In this case, each πi is regular of motivic weight ≤ 2(k1 −1) ≤ 24, there
is a unique i0 ∈ I with ni0 odd, and we have di0 = 1. In particular, all the πi are in L24 and
πi0 is either 1, Sym2�11 or Oo

24,16,8. It is a boring but trivial exercise to enumerate all the
ψ in �(Sp2g) with these properties and such that the eigenvalues of ψ∞ are distinct and
≤ 12. We find exactly 199 such parameters. The possible ψ are then exactly the ones in
this list satisfying the Arthur multiplicity formula (5.1.4), using Formulas (5.2.1), (5.1.3)
and (5.1.2). We find that only 59 of these 199 do satisfy this formula, and obtain Table 5,
as well as the part of Table 6 concerning the case k > g. All those computations can be
done easily with the help of a computer: see [CT19b] for a PARI code doing it. They
can also be made by hand as follows.

We only treat the case πi0 = Sym2�11, the two other ones being similar. Note that
for i �= i0 such that πi is symplectic, we have w(πi) ≤ 19, and either πi[di] = �19,7[2] or
πi = �w[d] with w + d − 1 ≤ 20. Assume first that πi is symplectic for all i �= i0. We
have ε(�19,7 × Sym2�11) = 1, so if we have πi[di] = �19,7[2] then Arthur’s multiplicity
formula εψ(si) = χρk

(ι(si)) simply reads 1 = 1. If we have πi[di] = �w[d], it rather asserts
−(−1)(w+1)/2 = (−1)d/2, i.e. w ≡ d + 1 mod 4 (note ε(�w × Sym2�11) = −ε(�w) for
w < 22). This justifies the existence of the 18 ψ in Tables 5 and 6 containing Sym2�11.
Assume now there is i1 �= i0, necessarily unique, such that πi1 is orthogonal. We will
show that this case cannot happen. We have either πi1 = Oe

24,18,10,4 or πi1 = Oe
24,20,14,2,

and di1 = 1. If I = {i0, i1} we have εψ = 1 and we compute χρk
(ι(si1)) = −1, so there

is i �= i0, i1 in I. For weight reasons we must have πi[di] = �w[2], with w ∈ {17,11}
if πi1 = Oe

24,20,14,2, and w = 15 otherwise. This implies χρk
(ι(si)) = −1. Note that

ε(�w × πi1) is −1 if πi1 has an odd number of weights > w/2, and is 1 otherwise. This
shows εψ(si) = −ε(�w)ε(�w × πi1) = 1 for w = 17,11 and πi1 = Oe

24,20,14,2, a contra-
diction. We finally exclude the last possible case πi1 = Oe

24,18,10,4 and w = 15 as we have
I = {i0, i1, i}, χρk

(ι(si1)) =−1 and εψ(si1) = ε(�w × πi1) = 1.

5.3.2. Scalar-valued case with k ≤ 13 and g ≥ k. — We apply Sect. 5.2.2. We are
either in case (I), (H1) or (H2).
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Case (I). — Assume first we are in case (I), in particular we have I0 = Iodd = {i0},
di0 = 1 and the πi are regular for all i in I. For each i in I, we have w(πi)+di−1

2 ≤ 12, and
in particular πi has motivic weight ≤ 24: it belongs to the list L24. By inspection, πi0 has
thus to be 1, Sym2�11 or Oo

24,16,8. As the weight 0 has multiplicity 3 in ψ∞ and di0 = 1
we have I �= {i0}. There is then a unique j in I � {i0} such that, if ai denotes the smallest
positive weight of πi , we have aj − dj−1

2 ≤ 0; we must have aj − dj−1
2 = k − g. We have both

dj−1
2 ≥ aj and dj−1

2 ≤ 12 − w(πj)/2, which implies aj + w(πj)/2 ≤ 12. By an inspection of
L24, this forces πj = �11 and dj = 12. But this implies that the positive weights of the πi

with i in I � {j} are ≥ 12. Only the trivial representation has this property in L24. This
shows πi0 = 1 and that the unique possibility for ψ is

ψ = �11[12] ⊕ [1].
We recognize the standard parameter of the genus 12 Ikeda lift of �11 [Ike01], a well-
known element of S12(�12), hence ψ does exist. Alternatively, Arthur’s multiplicity for-
mula (5.1.4) is satisfied as we have εψ(sj) = ε(�11) = 1 = χρ12(12)(ι(sj)) by (5.2.3), so ψ

is indeed the standard parameter of an eigenform in L2
12(�12). The shape of ψ and the

Zharkovskaya relation17 imply that this eigenform has to be cuspidal.

Case (H1). — Assume we are in case (H1). We will show again ψ = �11[12] ⊕ [1].
Write ψ = πi0[2(g − k)+ 1] ⊕ ⊕

i �=i0
πi[di] as in the definition of (H1).

Lemma 5.6. — The representation πi is in L24 for all i ∈ I, and we have πi0 = 1.

Proof. — As a general fact, all the πi satisfy condition (Rk) of Definition 5.3. In
particular they have motivic weight ≤ 2(k − 1) ≤ 24 and their nonzero weights have
multiplicity 1. Moreover πi is regular for i �= i0. It follows that all the πi are in L24, except
perhaps πi0 in the case w(πi0) = 24. But for each i and each positive weight λ of πi we
have λ+ di−1

2 ≤ k − 1 ≤ 12. Thus w(πi0) = 24 implies k = 13 and di0 = 1 = 2(g − k)+ 1,
so g = k = 13: this is absurd as there is no nonzero Siegel modular form for �g with odd
weight and genus. So πi0 is in L24 with motivic weight < 24, and the unique possibilities
are thus πi0 = 1 or πi0 = Sym2�11 since 0 is a weight of πi0 . Assume we have πi0 =
Sym2�11. Then L((πi0)∞) contains εC/R so k is odd by (H1), g is even, and we have
di0 ≡ 3 mod 4. The inequality 11 + di0−1

2 ≤ k − 1 ≤ 12 implies then k = 13, di0 = 3 and
g = 14. We have proved

ψ = Sym2�11[3] ⊕ ψ ′

with ψ ′ = ⊕i �=i0πi[di], and ψ ′
∞ has the eigenvalues ±9,±8, . . . ,±1 and 0 twice. But the

πi with i �= i0 are in L24 with motivic weight ≤ 18, hence in {1,�11,�17}, and we have

17 This asserts that if F is an eigenform in Mk(�g), and if �gF in Mk(�g−1) is non zero, with �g the Siegel operator,
then �gF is an eigenform and the standard L-function of F and �gF satisfy L(s,St,F) = L(s,St,�gF)ζ(s − (g − k))ζ(s +
(g − k)).
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di ≤ 3 for i in Iodd. The only possibility is thus ψ ′ = �11[8]⊕ [3]⊕ [1]. We have Ieven = {i}
with πi[di] = �11[8], εψ(si) = ε(�11 ×Sym2�11) =−1 but χρ13(14)(ι(si)) = 1 by Formula
(5.2.6): the multiplicity formula is not satisfied. �

Note that πi0 = 1 implies k ≡ 0 mod 2 by (H1), hence k ≤ 12. Write again

ψ = [
2(g − k)+ 1

] ⊕ ψ ′

where ψ ′ = ⊕i �=i0πi[di] is a certain 2k-dimensional parameter with weights ±(k − 1),
±(k − 2), . . . , ±1 and 0 twice, and k − 1 ≤ 11. Each πi with i �= i0 is then regular of
motivic weight ≤ 22. The list of all possible ψ ′ with these properties is easy to determine:
see Proposition 9.2.2 of [CL19]. For k = 2,4,6 we find ψ ′ = [2k − 1]⊕ [1]. For k = 8 we
have [15] ⊕ [1] and �11[4] ⊕ [7] ⊕ [1]. For k = 10 we have

[19] ⊕ [1], �11[8] ⊕ [3] ⊕ [1], �15[4] ⊕ [11] ⊕ [1],
�17[2] ⊕ [15] ⊕ [1], �17[2] ⊕ �11[4] ⊕ [7] ⊕ [1].

For k = 12, we have 24 possibilities for ψ ′, namely the ones in [CL19, Thm. E].

Lemma 5.7. — We have k ≡ 0 mod 4.

Proof. — Assume that k ≡ 2 mod 4, then by inspection |Iodd| = 3 and we denote
Iodd = {i0, i1, i2} so that πi1[di1] = [1] and πi2[di2] = [2a − 1]. For any i ∈ Ieven we have
nidi/2 ≡ 0 mod 2 and so a ≡ k mod 2, i.e. a is even. Thus Arthur’s multiplicity formula
(5.1.4) implies

χρk(g)

(
ι(si1i2)

) = (−1)a/2 = ε(i1)ε(i2),

the first equality being (5.2.9). For ψ ′ = [1] ⊕ [2k − 1] those epsilon factors are 1 and
we have a = k ≡ 2 mod 4 so this formula does not hold. This rules out k = 2 and k =
6. The four other parameters for k = 10 are ruled out the same way using ε(�w) =
(−1)(w+1)/2. �

We will now prove that, apart from the case ψ = �11[12] ⊕ [1], none of the re-
maining ψ come from a cuspidal modular form. We will need first to recall some results
on orthogonal automorphic forms and theta series. For each integer n ≡ 0 mod 8 we fix
arbitrarily an even unimodular lattice of rank n and denote respectively by �n and S�n its
orthogonal and special orthogonal group schemes over Z. We refer to [CL19, Sects. 4.4
& 6.4.7] for the basics of the theory of level 1 automorphic forms for �n and S�n (beware
that these group schemes are rather denoted by On and SOn loc. cit.). By results of Arthur
[Art13] and Taïbi [Taï19], any discrete automorphic representation of S�n or �n has a
standard parameter ψ in �(S�n), the latter being defined exactly as in the case of Sp2g

(see Sect. 5.1) but with the condition
∑

i∈I nidi = n instead of
∑

i∈I nidi = 2g + 1.
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For n ≡ 0 mod 8, we denote by Xn the set of isomorphism classes of even unimod-
ular lattices of rank n. The vector-space C[Xn] is in a natural way the dual of a space
of level 1 automorphic forms for �n. Any Hecke eigenform G in C[Xn] generates a dis-
crete automorphic representation πG of �n (with trivial Archimedean component and
(πG)

�n(Zp)

p �= 0 for each prime p), which has a standard parameter ψG in �(S�n). More-
over, Siegel theta series provide a linear map

(5.3.1) ϑg : C[Xn] −→ Mn/2(�g)

for all g ≥ 0 (see e.g. [CL19, §5.1], in particular for the conventions for g = 0), with
� ◦ ϑg = ϑg−1 (here � denotes the Siegel operator). For G in C[Xn], the degree of G is
the smallest integer g0 ≥ 0 with ϑg0(G) �= 0; the form ϑg0(G) is then cuspidal and we have
ϑg(G) �= 0 for g ≥ g0. If G in C[Xn] is an eigenform with degree g0, and for g ≥ g0, then the
Eichler commutation relations show that ϑg(G) is an eigenform in Mn/2(�g), and there is
a simple relation due to Rallis [Ral82, §6] between the Satake parameters of G and that of
F = ϑg(G) (see [CL19, Sect 7.1]). Concretely, if F is square integrable (e.g. cuspidal), this
relation is the equality ψG = ψF ⊕ [n − 2g0 − 1] for n > 2g0 + 1, ψF = ψG ⊕ [2g0 + 1 − n]
for n < 2g0 + 1. Last but not least, we have the following result, a consequence of [Ral84,
Thm. I.1.1] and [MW94, Lemme I.4.11] that we learnt from [MR, §16.2].

Lemma 5.8. — Let G be an eigenform in C[Xn] of degree g0. If we have g > g0 and g >

n − 1 − g0, then F = ϑg(G) is square integrable and ψF = ψG ⊕ [2g − n + 1].
(Note that we have 2g + 1 > g + g0 + 1 > n, hence the last assertion.) We finally go

back to our analysis of case (H1), setting n = 2k. The spaces C[X8], C[X16] and C[X24]
have respective dimension 1,2,24, and the standard parameters of their eigenforms turn
out to be exactly the 1, 2 and 24 parameters ψ ′ discussed above for k = 4,8 and 12,
by [CL19, Cor. 7.2.7 & Thm. E]. This reference determines as well the degree of each
eigenform (see [CL19, Thm. 9.2.6], note that most of these degrees had already been
found before by Nebe and Venkov): this is the smallest integer g0 such that [2k − 1 −
2g0] is a summand of ψ ′ (hence g0 < k), unless we have ψ ′ = �11[12] and g0 = 12. For
ψ ′ �= �11[12] we have thus g > g0 as well as g > 2k − 1 − g0 by the necessary condition
dmax = 2(g − k) + 1 of (H1). By Lemma 5.8, the automorphic representation πF is thus
the (necessarily unique) discrete automorphic representation of Sp2g with parameter ψ =
[2(g − k)+ 1] ⊕ψ ′, and it is not cuspidal since we have g > g0. In the remaining case we
have ψ = [2(g − k) + 1] ⊕ �11[12], k = 12 and g0 = 12, and again πF is discrete but not
cuspidal if we have g > 12. We conclude since for g = 12 we recover the form found in
case (I).

Case (H2). — We are going to show that there are exactly two Siegel eigenforms in
this remaining case, both for k = 13, of respective genus 16 and 24, and parameters

�17[8] ⊕ [9] ⊕ [7] ⊕ [1] and [25] ⊕ �11[12].
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Lemma 5.9. — We have πi0 = 1, k odd and g even.

Proof. — As we are in case (H2) we must have w(πi0) + di0 − 1 ≤ 2(k − 1) ≤ 24
and di0 = 2(g − k) + 3 ≥ 3, and so w(πi0) ≤ 22. Assume πi0 is non trivial. We have πi0 =
Sym2 �11 by the Chenevier-Lannes theorem, so w(πi0) = 22, di0 = 3 and k = 13 is odd.
This contradicts the last condition of (H2). So πi0 is trivial, k is odd by the last condition
in (H2), hence g is even as we are in full level �g . �

Write ψ = [2(g − k) + 3] ⊕ ψ ′, with ψ ′ = ⊕
i �=i0

πi[di]. The eigenvalues of ψ∞
corresponding to ψ ′ are the 2k − 2 integers ±i with 0 ≤ j ≤ k − 1, with the even number
j = g − k +1 omitted (we shall call those 2k −2 eigenvalues the “weights” of ψ ′ for short).
Each πi is regular algebraic of motivic weight ≤ 24, hence in the list L24. We are now
led to do a simple enumeration exercise: for every odd k ∈ {1, . . . ,13}, enumerate all
possible ψ ′, with πi in L24 for each i, and with weights ±0, . . . ,±(k − 1) where the even
integer ±(g − k + 1) is excluded and satisfies k − 1 ≥ g − k + 1 > 1.

Lemma 5.10. — Assume i ∈ I0 and πi �= 1, then we have πi = Sym2�11, di = 1, k = 13
and g = 24, as well as I0 = Iodd = {i0, i, j} with j �= i0, i, πj = 1 and dj ≥ 5.

Proof. — First we observe that we have i �= i0 by the previous lemma and i ∈ Iodd

since L24 contains no even-dimensional representation which has 0 as weight. Thus I0 =
Iodd and this set has 3 elements i0, i and j.

Assume first πi = Oo
24,16,8. The only π in L24 with w(π) /∈ {24,23,17,15}, and

having a weight 5 ≤ λ ≤ 7, are �11 and �21,13. It follows that among the three consecutive
integers 5,6,7, either 7 or 5 is not a weight of ψ ′, hence must be g−k+1: a contradiction
as g − k + 1 is even.

An inspection of L24 shows then πi = Sym2�11, k − 1 ≥ 11 and di ≤ 3. As k is
odd we have k = 13. Assuming di = 3, πi[di] contributes to the weights ±12, ±11, ±10
and ±1, 0 of ψ ′. Thus πj[dj] = [1], and for r �= i0, i, j the representation πr is symplectic
with motivic weight ≤ 17. This shows 2 ≤ g − k + 1 < 9. But there is an odd number of
integers 2 ≤ n ≤ 9 with n �= g − k + 1: a contradiction. We have proved di = 1.

As 12 is an eigenvalue of ψ∞, we have either g − k + 1 = 12 or there exists some
r ∈ I with w(πr) = 24 and not having the weight 11. The only remaining possibilities
in this latter case are πr = Oe

24,18,10,4 or πr = Oe
24,20,14,2. There is s ∈ I such that πs[ds]

contributes the weight 3 to ψ ′ (recall that g − k + 1 is even), and considering the two
smallest positive weights of πr we see that πs has a weight 2 ≤ λ ≤ 6. Since πs has motivic
weight ≤ 20 the only possibilities for πs are �11 (with dl ≥ 4) and �19,7. In each case we
see that πs[ds] contributes a positive weight which already appears in πr , a contradiction.
We have proved g − k + 1 = 12, i.e. g = 24.

The weights of ψ ′ are thus ±11,±10,±9, . . . ,±1 and 0 twice. Those possible
ψ ′ are easily determined (see [CL19, Prop. 9.2.2] or [CL19, Thm. E]): there are 10
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possibilities, all of them containing some [d] with d ≥ 5, except

ψ ′ = Sym2�11 ⊕ �11[10] ⊕ [1].
We exclude this case using Arthur’s multiplicity formula. We have Iodd = {i0, i, j} with
πj = πi0 = 1. We have εψ(si0 j) = 1, but by Formula (5.2.12) we have χρk(g)(ι(si0 j)) = −1:
a contradiction. �

We are now able to conclude the proof. Assume first that �11[12] is a summand
of ψ ′. We must have

ψ = [25] ⊕ �11[12],
which trivially satisfies Arthur’s multiplicity formula by (5.2.6). In this case there is thus
an eigenform F ∈ L2

13(�24) with parameter ψ ; this F is necessarily cuspidal as we have
Mk(�g) = Sk(�g) for k odd. As we will explain in Sect. 5.4, this F is actually the form
constructed by Freitag in the last section of [Fre82].

So we may assume that �11[12] is not a summand of ψ ′. Consider the double
weight 0 of ψ ′. An inspection of L24 shows then that there are two elements i1, i2 in
Iodd −{i0}, say with 1 = di1 ≤ di2 . Better, Lemma 5.10 implies that we have πi2 = 1, di2 ≥ 3,
and either πi1 = 1 or πi1 = Sym2�11. We apply Arthur’s multiplicity formula at the ele-
ment si0i2 . We have χρk(g)(ι(si0i2)) = −1 by Formula (5.2.12). This implies εψ(si0i2) = −1,
which is equivalent to

∏

l∈L

ε(πl) =−1

where L is the set of elements l in Ieven such that πl is symplectic and with di2 < dl < di0 .
We have dl ≥ 4 for l ∈ L, as dl is even and di2 ≥ 3, which imposes w(πl) ≤ 21. Among the
9 symplectic representations with such motivic weight, only �17 and �21 have a negative
epsilon factor. As a consequence, at least one summand of ψ ′ is among

(5.3.2) �17[4], �17[8], �21[4].
Observe that this implies di2 < 8 and that such a summand always contributes the weights
9 and 10 to ψ ′, so that we have k ≥ 11.

Assume first πi1 = Sym2�11, hence g = 24, k = 13 and di2 ≥ 5 by Lemma 5.10.
Then �17[8] is a summand of ψ ′, but the weight 11 occurs in both �17[8] and Sym2�11,
a contradiction. We have proved πi1 = πi2 = 1. The congruence (5.2.11) implies then
di2 ≡ −1 mod 4, which leaves only the two cases di2 = 3 or di2 = 7 by the inequality
di2 < 8. In the case di2 = 7 the only possibility is thus that ψ ′ contains �17[8] ⊕ [7] ⊕ [1],
hence is equal to the latter for weights reasons, and

ψ = �17[8] ⊕ [9] ⊕ [7] ⊕ [1].
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Arthur’s multiplicity formula is satisfied for this ψ by Formulas (5.2.6), (5.2.9) and (5.2.12).
There is thus an eigenform in L2

13(�16) with parameter ψ , necessarily cuspidal as its
weight is odd.

We are left to study the case di2 = 3. In this case we focus on the weight 3 of ψ ′.
It cannot come from a summand in the list (5.3.2). It must thus come from a summand
πm[dm] of ψ ′ which does not contribute to any weight in {0,1,9,10}, in particular πm

does not have any weight in {21/2,10,19/2,9,17/2,3/2,1,0}. If πm has motivic weight
< 23, an inspection of L24 shows πm[dm] = �11[6], which leads to

ψ = �21[4] ⊕ �11[6] ⊕ [5] ⊕ [3] ⊕ [1].
If πm has motivic weight 23, then we have dm = 2, �17[4] is a summand of ψ ′, so 15/2
and 13/2 are not weights of πm, and the only possibility is πm = �23,7 and

ψ = �23,7[2] ⊕ �17[4] ⊕ �11[2] ⊕ [5] ⊕ [3] ⊕ [1].
In both cases, ψ does not satisfy the multiplicity formula at the element sh with πh[dh] =
�11[dh]: we have χρk(g)(ι(sh)) = (−1)dh/2 = −1 by (5.2.6) and εψ(sh) = 1. This concludes
the proof of Theorem 2.

5.4. Complements: theta series constructions. — Recall that for any integer n ≡ 0 mod 8
we denote by Ln the set of even unimodular lattices in the standard Euclidean space Rn,
and by Xn = O(Rn)\Ln the finite set of isometry classes of such lattices.

Our first complement concerns the question of the surjectivity of the linear map
ϑg : C[X2k] → Mk(�g) of Formula (5.3.1), also called the Eichler basis problem, for k ≡ 0
mod 4. This surjectivity was proved in [CL19, §1.3] in the case g ≤ k ≤ 12.

Corollary 5.11. — Assume k = 4,8 or 12. Then ϑg : C[X2k] → Mk(�g) is surjective for

all g. In particular, the Siegel operator �g : Mk(�g) → Mk(�g−1) is surjective as well for all g ≥ 1.

Proof. — We have the relations �g ◦ϑg = ϑg−1 and Ker�g = Sk(�g). The corollary
follows thus from the case g ≤ k, and from the vanishing Sk(�g) = 0 for g > k and k ≤ 12,
implied by Theorem 2. �

In other words, the Eichler basis problem holds for all g for those three values of k.
We stress that this is not a general phenomenon: as was observed in [KSM04, §3]18 the
map ϑ20 is not surjective for k = 16.

Remark 5.12. — For k = 4,8,12, the surjectivity of �g and the determination of
dim Sk(�g) for all g by Table 6 allow to determine dim Mk(�g) for all g. In particular, we

18 We are grateful to Riccardo Salvati Manni for pointing out the reference [KSM04]. This reference was also
unknown to the authors of [CL19], who independently observed with similar arguments that ϑ14 is not surjective for
k = 16: see [CL19, Cor. 7.3.5].
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have dim Mk(�g) = |X2k| for k = 4 and g ≥ 1, for k = 8 and g ≥ 4, and for k = 12 and
g ≥ 12.

Our second complement concerns the concrete construction via theta series of the
four weight 13 Siegel modular eigenforms Fg of respective genus g = 8,12,16 and 24
given by Table 6. Consider again the standard Euclidean space Rn with n ≡ 0 mod 8. For
any finite-dimensional continuous representation U of the compact orthogonal group
O(Rn) over the complex number, we denote by MU(�n) the complex vector space of
O(Rn)-equivariant functions Ln → U; this is a space of automorphic forms for the or-
thogonal group scheme �n introduced after Lemma 5.7 (see also [CL19, Sect. 4.4.4]).
For any integers g, ν ≥ 1, we denote by Hν,g,n the representation of O(Rn) on the space
of harmonic polynomials of degree ν on Mn,g(C) in the sense of [Bö89, §XI]. The con-
struction of Siegel theta series with harmonic coefficients gives rise to a linear map (see
[Bö89, §XI] and [CL19, Sect. 5.4.1])

(5.4.1) ϑν,g,n : MHν,g,n
(�n) −→ S n

2+ν(�g),

mapping any �n-eigenform to a Siegel eigenform (Eichler’s commutation relations) or to
zero. The following proposition is suggested by Rallis’s theory [Ral82] and the fact that
the standard parameters of the four weight 13 Siegel eigenforms Fg are respectively
�21,13[4] ⊕ [1], �19,7[6] ⊕ [1], �17[8] ⊕ [9] ⊕ [7] ⊕ [1] and �11[12] ⊕ [25].

Proposition 5.13.

(i) For each g, the form Fg is in the image of ϑ1,g,24.

(ii) The form F8 is in the image of ϑ5,8,16.

Proof. — Böcherer19 gives in [Bö89, Thm. 5] a necessary and sufficient condition
for these properties to hold in terms of the order of vanishing of the standard L-function
L(s,Fg,St) of Fg at s = n/2 − g, with n = 24 in case (i) and n = 16 in case (ii). A case-by-
case analysis reveals that this criterion holds true in all five cases. We refer to [CT19b] for
the details of this simple, but rather tedious, verification. The only non-trivial necessary
ingredient is the non-vanishing at 1/2 of the Godement-Jacquet L-function of �19,7 and
�21,13, that was proved in [CL19, Prop. 9.3.39]. �

In the companion paper [CT19a], we study the maps ϑ1,g,24 in a much more ele-
mentary way. Note that a harmonic polynomial of weight 1 on Mn,g(C) is just the datum
of a g-multilinear alternating form on Cn. For any element f in MH1,g,24(�24), and any
Niemeier lattice � in L24, the g-multilinear alternating form f (�) is invariant under the
orthogonal group O(�) of �. This actually forces f to vanish outside the O(R24)-orbit

19 Important contributions to this problem have been made by Siegel, Weissauer, Kudla-Rallis (Siegel-Weil formula),
and also by Freitag, Garrett, Piatetski-Shapiro, Rallis and Waldspurger.
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of the Leech lattice by [CT19a, Prop. 4.1]. A curious consequence of Proposition 5.13
is thus that for g = 8,12,16,24, there is a nonzero, O(Leech)-invariant, g-multilinear
alternating form on the Leech lattice! A computation using the O(Leech)-page of the
ATLAS fortunately confirms this property, and reveals furthermore that there is a unique
such form up to multiplication by a scalar, and none for the other values of g ≥ 1. (The
existence of such a form for g = 24 is well-known, and follows from the fact that the
Leech lattice is orientable, which means that any element in O(Leech) has determinant 1).
In other words, MH1,g,24(�24) has dimension 1 for g = 8,12,16,24 (and 0 otherwise). The
main result of [CT19a] is a direct proof of the non-vanishing of the map ϑ1,g,24 for these
four values of g. The non-vanishing of ϑ1,24,24, hence of S13(�24), and had already been
observed in the past by Freitag, in the last section of [Fre82]. The Mathieu group M24

and certain oriented rank g sublattices of the Leech lattice play an important role in our
argument for g < 24. We also prove differently loc. cit. that the standard parameter of the
line of Siegel eigenforms in the image of ϑ1,g,24 is the one given in Table 13. All of this
fully confirms Corollary 1 and Proposition 5.13 (i), and show the following.

Corollary 5.14. — The linear map ϑ1,g,24 in (5.4.1) is an isomorphism for all g ≥ 1.

Case (ii) of Proposition 5.13 also implies the nonvanishing of MH5,8,16(�16). Let us
simply mention that we actually have dim MH5,8,16(�16) = 2 using a computation similar
to that of [CL19, Cor. 9.5.13]. The space MH5,8,16(�16) is actually generated by two �16-
eigenforms, with respective standard parameters �21,13[4] and �17[8].

5.5. Remarks on the case g ≥ 2k. — Let k and g be non-negative integers satisfying
g ≥ 2k. In this case we have L2

k (�g) = Mk(�g) by [Wei83, Satz 3]. We may thus apply
Arthur’s endoscopic classification to study Mk(�g).

Proposition 5.15. — We have dim Mk(�g) = dim Mk(�2k) whenever g ≥ 2k, and this

dimension vanishes unless k is divisible by 4.

Proof. — For any eigenform in L2
k (�g) with standard parameter ψ , we are in case

(H1) as g − k ≥ k, and with πi0 = 1. Indeed, we must have ni0 = 1, otherwise πi0[di0] would
contribute an eigenvalue greater than g − k to the infinitesimal character of ρk(g), and
ni0 = 1 forces πi0 = 1 as πi0 has level 1. In particular k is even, i0 is in Iodd, and we have
ψ = ψ ′ ⊕ [2(g − k) + 1] where ψ ′ is such that ψ ′

R is an Adams-Johnson parameter for
the compact group SO(2k).

By the Arthur multiplicity formula, the characters εψ and χρk(g) coincide on Cψ .
Consider the element s ∈ Cψ defined as follows:

s =
{∏

i∈Ieven
si if Iodd = {i0},

si1i2

∏
i∈Ieven

si if Iodd = {i0, i1, i2}.
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Formulas (5.2.6) and (5.2.9) imply χρk(g)(s) = (−1)k/2. Indeed, one simpler way to argue
is to use the interpretation of the signs loc. cit., given by Formula (5.2.4) together with For-
mula (5.2.10) in the case Iodd = {i0, i1, i2}, to deduce the equality χρk(g)(s) =

∏k

i=1 sk−i =
(−1)k/2. On the other hand, we have εψ(s) = ∏

i �=i0
ε(πi)

Min(di,2(g−k)+1). We claim that for
i ∈ I and any integer g′ ≥ 2k we have the equality

(5.5.1) ε(πi)
Min(di,2(g′−k)+1) = 1.

Indeed, we may assume πi symplectic (otherwise ε(πi) = 1), in which case we have ni ≥ 2
and nidi ≤ 2k and thus di ≤ k < 2(g′ − k) + 1, and we conclude as di is even. This shows
in particular εψ(s) = 1, and together with χρk(g)(s) = (−1)k/2, proves that k is divisible by
4 if Mk(�g) is nonzero.

To prove the asserted equality of dimensions, it is enough to show that the fact
that the multiplicity formula holds for ψ implies that for any genus g′ ≥ 2k it also holds
for the parameter ψg′ := ψ ′ ⊕ [2(g′ − k) + 1], still in weight k and case (H1). We may
index the summands of ψg′ with the same set I as for ψ , with the same πi for i ∈ I, the
same i0, and the same di for i �= i0. There is an obvious bijection between Cψ and Cψg′
matching all si and sij . Via this bijection the characters εψ and εψg′ coincide, as for all
i �= i0 we have ε(πi)

Min(di,2(g−k)+1) = ε(πi)
Min(di,2(g′−k)+1) = 1 by (5.5.1). We conclude as the

characters χρk(g) and χρk(g
′) trivially coincide as well. �

Of course this proposition is coherent with the known properties of Siegel modular
forms for g > 2k:

(5.5.2) Sk(�g) = 0 and Mk(�g) =
{

Imϑg if k ≥ 0 and k ≡ 0 mod 4,

0 otherwise.

by [Res75], [Fre75] (first equality), [Fre77] (second equality, see also [How81]).

Corollary 5.16. — Assume g ≥ 2k.

(1) The Siegel operator �g+1 : Mk(�g+1) → Mk(�g) is bijective.

(2) If k ≡ 0 mod 4, the linear map ϑg : C[X2k]→ Mk(�g) is an isomorphism.

Proof. — The first equality in (5.5.2) means that �g+1 is injective. By the equality of
dimensions of Proposition 5.15, this implies that �g+1 is bijective. (In the case g > 2k, the
surjectivity of �g+1 also follows from the second equality in (5.5.2), as Mk(�g) is generated
by theta series). This proves the first assertion.

For the second, it is obvious that ϑg is injective for g = 2k, hence for all g ≥ 2k

as well by the relation �g+1 ◦ ϑg+1 = ϑg . The surjectivity of ϑg follows from the second
equality of (5.5.2) for g > 2k. The surjectivity of ϑ2k+1, and the surjectivity of �2k+1 proved
in (1), imply the remaining surjectivity of ϑ2k . �

This corollary seems to be new for g = 2k.
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6. Tables

TABLE 5. — Standard parameters ψ of the non scalar-valued cuspidal Siegel
modular eigenforms of weight k = (k1, . . . , kg) and genus g with k1 ≤ 13 and

k1 ≥ k2 ≥ · · · ≥ kg > g ≥ 1

ψ g k

Sym2�11 ⊕�11[2] 3 (12,8,8)

Sym2�11 ⊕�15[2] 3 (12,10,10)

Oo
24,16,8 3 (13,10,7)

�19,7[2] ⊕ [1] 4 (11,11,7,7)

�21,5[2] ⊕ [1] 4 (12,12,6,6)

�21,9[2] ⊕ [1] 4 (12,12,8,8)

�21,13[2] ⊕ [1] 4 (12,12,10,10)

Oe
24,18,10,4 ⊕ [1] 4 (13,11,8,6)

Oe
24,20,14,2 ⊕ [1] 4 (13,12,10,5)

�23,7[2] ⊕ [1] 4 (13,13,7,7)

Sym2�11 ⊕�15[2] ⊕ �11[2] 5 (12,10,10,10,10)

Sym2�11 ⊕�19,7[2] 5 (12,12,12,8,8)

Sym2�11 ⊕�19[2] ⊕ �11[2] 5 (12,12,12,10,10)

Oo
24,16,8 ⊕ �19[2] 5 (13,12,12,12,9)

�21[2] ⊕ �11[4] ⊕ [1] 6 (12,12,10,10,10,10)

�21,5[2] ⊕ �17[2] ⊕ [1] 6 (12,12,12,12,8,8)

�21,9[2] ⊕ �17[2] ⊕ [1] 6 (12,12,12,12,10,10)

Oe
24,20,14,2 ⊕�17[2] ⊕ [1] 6 (13,12,12,12,12,7)

�23,7[2] ⊕ �17[2] ⊕ [1] 6 (13,13,12,12,9,9)

Sym2�11 ⊕�11[6] 7 (12,10,10,10,10,10,10)

Sym2�11 ⊕�19,7[2] ⊕ �11[2] 7 (12,12,12,10,10,10,10)

Sym2�11 ⊕�19,7[2] ⊕ �15[2] 7 (12,12,12,12,12,10,10)

Oo
24,16,8 ⊕ �21,5[2] 7 (13,13,13,12,9,9,9)

�21,5[2] ⊕ �11[4] ⊕ [1] 8 (12,12,10,10,10,10,10,10)

�19,7[4] ⊕ [1] 8 (12,12,12,12,10,10,10,10)

�21,5[2] ⊕ �15[4] ⊕ [1] 8 (12,12,12,12,12,12,10,10)

�23,7[2] ⊕ �15[4] ⊕ [1] 8 (13,13,12,12,12,12,11,11)

�21,5[4] ⊕ [1] 8 (13,13,13,13,9,9,9,9)

�21,9[4] ⊕ [1] 8 (13,13,13,13,11,11,11,11)
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TABLE 6. — Standard parameters ψ of the scalar-valued cuspidal Siegel
modular eigenforms of weight k ≤ 13 and arbitrary genus g ≥ 1

ψ g k

Sym2�11 1 12

�17[2] ⊕ [1] 2 10

�21[2] ⊕ [1] 2 12

Sym2�11 ⊕ �19[2] 3 12

�11[4] ⊕ [1] 4 8

�15[4] ⊕ [1] 4 10

�19[4] ⊕ [1] 4 12

�21[2] ⊕ �17[2] ⊕ [1] 4 12

Sym2�11 ⊕ �17[4] 5 12

Sym2�11 ⊕ �19[2] ⊕ �15[2] 5 12

�17[2] ⊕ �11[4] ⊕ [1] 6 10

�17[6] ⊕ [1] 6 12

�21[2] ⊕ �15[4] ⊕ [1] 6 12

�21,13[2] ⊕ �17[2] ⊕ [1] 6 12

Sym2�11 ⊕ �15[6] 7 12

Sym2�11 ⊕ �17[4] ⊕ �11[2] 7 12

Sym2�11 ⊕ �19[2] ⊕ �15[2] ⊕ �11[2] 7 12

�11[8] ⊕ [1] 8 10

�15[8] ⊕ [1] 8 12

�19[4] ⊕ �11[4] ⊕ [1] 8 12

�21[2] ⊕ �17[2] ⊕ �11[4] ⊕ [1] 8 12

�21,9[2] ⊕ �15[4] ⊕ [1] 8 12

�21,13[4] ⊕ [1] 8 13

Sym2�11 ⊕ �19[2] ⊕ �11[6] 9 12

Sym2�11 ⊕ �19,7[2] ⊕ �15[2] ⊕ �11[2] 9 12

�21[2] ⊕ �11[8] ⊕ [1] 10 12

�21,5[2] ⊕ �17[2] ⊕ �11[4] ⊕ [1] 10 12

Sym2�11 ⊕ �11[10] 11 12

�11[12] ⊕ [1] 12 12

�19,7[6] ⊕ [1] 12 13

�17[8] ⊕ [9] ⊕ [7] ⊕ [1] 16 13

[25] ⊕ �11[12] 24 13
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