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ABSTRACT

The aim of this paper is twofold. First, we introduce a new method for evaluating the multiplicity of a given
discrete series representation in the space of level 1 automorphic forms of a split classical group G over Z, and provide
numerical applications in absolute rank < 8. Second, we prove a classification result for the level one cuspidal algebraic
automorphic representations of GL, over Q (n arbitrary) whose motivic weight is < 24.

In both cases, a key ingredient is a classical method based on the Weil explicit formula, which allows to disprove
the existence of certain level one algebraic cusp forms on GL,, and that we push further on in this paper. We use these
vanishing results to obtain an arguably “effortless” computation of the elliptic part of the geometric side of the trace
formula of G, for an appropriate test function.

Thoses results have consequences for the computation of the dimension of the spaces of (possibly vector-valued)
Siegel modular cuspforms for Sp,, (Z): we recover all the previously known cases without relying on any, and go further,
by a unified and “effortless” method.
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1. Introduction

1.1. Siegel modular forms for Sp,,(Z). — We denote by S,(I'y) and Sy(T’,) respec-
tively the space of cuspidal Siegel modular forms for the full Siegel modular group
I’y = Sp,,(Z), which are either scalar-valued of weight £ € Z, or more generally vector-
valued of weight £ = (£, ko, ..., k) in Z¢ with &) > ky > --- > k, (we refer to [vdGO8]
for a general introduction to Siegel modular forms). Recall that S.(I",) trivially vanishes
when ) £ is odd, and also for £, < g/2 (Freitag, Reznikoff, Weissauer).

The question of determining the dimension of S;(T',), very classical forg =1, hasa
long and rich history for g > 1. It has first been attacked for g = 2 using geometric meth-
ods, in which case concrete formulas were obtained by Igusa (1962) in the scalar-valued
case, and by Tsushima (1983) for the weights' £, > £, > 3. There is still no known formula
for ky = 2, although we have S;(I"y) = 0 for &y = 1 (Ibukiyama, Skoruppa): see [CvdG18]
for a discussion of these singular cases. An analogue of Igusa’s result for g = 3 was proved
by Tsuyumine in 1986, but only quite recently a conjectural formula was proposed by
Bergstrom, Faber and van der Geer, in the vector valued case k| > ky > k3 > 4, based
on counting genus three curves over finite fields (2011). Their formula, and more gener-
ally a formula® for dim S;(I",) for arbitrary g < 7 and £, > g was proved by the second
author in [Tail7], using a method that we will recall in Sect. 1.4. Actually, the general
formulas given in [Tail7] apply to any genus g and any weights with £, > ¢. However,
they involve certain rational numbers, that we shall refer to later as masses, that are rather
difficult to compute. Taibi provided /loc. ¢it. a number of algorithms to determine them
(more precisely, certain local orbital integrals, see Sect. 1.4) that allowed him to numer-
ically compute those masses for g < 7, using algorithms which were implemented and
optimized case-by-case. It is fair to say that reproducing these computations from the
generic algorithm explained in [Tail 7] would require a considerable effort.

Our first main result in this paper is a completely different and comparatively
much easier method to compute the aforementioned masses. This method allows us to
recover, in a uniform and rather “effortless” way, all the computations of masses done in
[Tatl7] for g <7, and even to go further:

Theorem 1. — There 1s an explicit and implemented_formula computing dim S;(TI',) for any
g =<8, and any k with k, > g.

See Theorems 6 and 7 for equivalent, better formulated, statements. Theorem 1 is
about Siegel modular forms of arbitrary weights £ such that £, > g, but with genus g < 8.
A second result concerns the Siegel modular forms of arbitrary genus, but of weights < 13

! More precisely, Tsushima could only prove that his formula works for &, > 5, and later Petersen (2013) and Taibi
(2016) independently showed that it holds as well for &y > 3 and (£, £») # (3, 3), as conjectured by Ibukiyama.

2 These are pretty huge formulas, which can’t be printed here already for g > 2, but see Theorem A loc. cit. for their
general shape.



LEVEL 1 ALGEBRAIC CUSP FORMS 263

(there are really finitely many relevant pairs (£, g) here). It is very much in the spirit of
the determination of dim S,(I',) by Chenevier-Lannes in [CL19] in the cases g <k < 12.

Theorem 2. — The dimension of Si(I'y) for 13> ky > --- > k, > g, and k non scalar, is
gwen by Table 5. The dimension of Si(I',) for any k < 13 and any g > 1 is given by Table 6.

The notations for these tables are explained in Sect. 5.3. Table 5 shows in partic-
ular that Sy (I',) has dimension <1 for £ non scalar and 13 >k > --- >k, > g, and is
nonzero for exactly 29 values of £. Table 6 includes the fact that S,(I",) vanishes whenever
k <13 and g > £, except in the three following situations:

dim S;9(I'19) =dim S;5(I"j6) = dim S;5(INyy) =1

(a nonzero element in the first and last spaces has been constructed in [BFW98] and
[Fre82]). We obtain for instance the following result.

Corollary 1. — S3(I"y) has dimension 1 for g =8, 12,16, 24, and 0 otherwise.

An inspection of standard L-functions, and general results of Bocherer, Kudla-
Rallis and Weissauer, show that these four spaces are spanned by certain Siegel theta
series build on Niemeier lattices (see Sect. 5.4). In a companion paper [C'T'19a] we come
back to these constructions and study them in a much more elementary way. Combined
with [CL19, Sect. 9.5], this provides an explicit construction of all the cuspidal Siegel modular
eigenforms of weight k < 13 and level T, for an arbitrary genus g. In Sect. 5.4, we also prove
that Euchler’s basis problem holds i weights k = 8 and 12 for arbitrary genus g, completing the
results of [CL19] for g < £.

Last but not least, let us mention that in the past, several other authors have com-
puted dim S;(T",) for a number of isolated and small pairs (g, £), sometimes with much ef-
fort, e.g. Igusa, Witt, Erokhin, Duke-Immamoglu,® Nebe-Venkov, and Poor-Yuen among
others. We would like to stress that none of the results of this paper depend on a previous computa-
tion of the dimension of a space of Siegel modular forms, not even of S;(SLy(Z)) ! see Sect. 1.4.
Moreover, as far as we know, the dimensions given by Theorems | and 2 seem to recover
all the previously known* dimensions of spaces of Siegel modular cuspforms for I',.

Our proof of Theorems 1 and 2 will use automorphic methods, building on a strat-
egy developed in the recent works [CR15, CL19, Tail7]: we will review this strategy in

% We warn the reader that the proofs of Duke and Immamoglu in [DI98] are not valid in the case g > £ since they
rely on the incorrect Corollary 3 p. 601 in [Miz91]: see [Miz19] for a recent erratum. Note also that a preliminary version
of [CL19] did include a proof of the vanishing of S;(T',) for £ < 12, ¢ > k and g # 24, but this statement was deleted in the
published version for the same reason. Our proofs here show that all these incriminated results for g > £ were nevertheless
correct, and actually do not rely anymore on the results in [Miz91].

* More precisely, the only cases not covered by these two theorems seem to be the vanishing of S;(I'y) for £, = 1,
and for the pairs £ = (k;, 2) with £, <50 [CvdG18, Thm. 1.3]. However, this vanishing for £ =1 can also be proved by
arguments in the spirit of the ones employed here, as explained by the first author in an appendix of [CvdG18], and we
can actually prove it as well for all £ = (%, 2) with & < 54: see Sect. 2.4.7.
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Sect. 1.4 and Sect. 5. An important ingredient is Arthur’s endoscopic classification of the dis-
crete automorphic spectrum of classical groups in terms of general linear groups [Art1 3],
including the so-called multiplicity formula. A special feature of this approach is that even if
we were only interested in dim S;(T',), we would be forced to compute first the dimension
of various spaces of automorphic forms for all the split classical groups over Z of smaller
dimension. By a split classical group over Z we will mean here either the group scheme Sp,,
over Z, or the special orthogonal group scheme SO, of the quadratic form Z:i 21 XiXnt1—i
(case n even # 2) or l(-i_ll) "2 i1 —i + xfn +1)/2 (case n odd) over Z". An important gain of
this approach, however, is that in the end we do not only compute dim S;(T',), but also
the dimension of its subspace of cuspforms of any possible endoscopic type, a quantity
which is arguably more interesting than the whole dimension itself: see Tables 5 and 6
for a sample of results.

1.2. Level one algebraic cusp forms on GL,,. — Let m > 1 be an integer and 7 a cus-
pidal automorphic representation of PGL,, over Q. We say that 7 has level 1 if 7, 1s
unramified for each prime p. We say that 7 is algebraic if the infinitesimal character of 7,
that we may view following Harish-Chandra and Langlands as a semi-simple conjugacy
class in M,,(G), has its eigenvalues in éZ, say wy > wy > - -+ > W, and with w; —w; € Z.
Those eigenvalues w; are called the weights of 7, and the important integer w () := 2w,
1s called the motivic weight of . The Jacquet-Shalika estimates imply w1, = —w; for all
7, and in particular, w(mr) > 0 (see Sect. 2.1).

The algebraic cuspidal 7 are especially interesting to number theorists, as for such
a 7 standard conjectures (by Clozel, Langlands) predict the existence of a compatible
system of pure and irreducible £-adic Galois representations p with same L-function as
|.|*", the Hodge-Tate weights of p being the w; + w,, and its Deligne weight being
w(m). The level 1 assumption in this work has to be thought as a simplifying, but still
interesting, one (see [CL19] for several motivations).

An important problem is thus the following. For an integer m > 1, we denote by
W,, the set of w = (w;) in %Z’” with wy > wy > -+ > w,, w; —w; € Z and w; = — W4
forall 1 <¢,7 <m.

Problem 1. — For w € W,,, determine the (finite) number N(w) of level 1 cuspidal algebraic
automorphic representations of PGL,, whose weights are the w;, and the number N*(w) of those
satisfying furthermore w" >~ 7w (self~duality).

Let us say that an element (w;) in W, is regular if for all 7 # j we have either w; # wj,
orm=0mod4,:=j—1=m/2 and w; = w; =0 (hence w, € Z). Despite appearances,
the question of determining the N*(w) for regular w is very close to that discussed in
Sect. 1.1. Indeed, as was observed and used in [CR15, CL.19, Tail7], the level 1 self-dual
7 of regular weights are the exact building blocks for Arthur’s endoscopic classification
of the discrete automorphic representations of split classical groups over Z which are
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unramified at all finite places and discrete series at the Archimedean place (with a very
concrete form of Arthur’s multiplicity formula, relying on [AMRI18]). As an illustration
of this slogan, the following fact was observed in [CR 15, Chap 9].

Rey fact 1. — Fixg> 1 and k= (ky, ..., k) € L8 withky > ky > --- > k, > g. Then the
dimension of Sy(T',) is an explicit function of the (finitely many) quantities N*(w) with w = (w;) €
W, regular, m < 2g + 1 and wy <k — 1.

See [CR15, Prop. 1.11] for explicit formulas for g < 3, [Tail7, Chap. 5] for g =4,
and [CL19, Thm. 5.2] for the general recipe. This general recipe will actually be recalled
in Sect. 5, in which we will also apply the recent results of [MR] to give an analoguous
statement for S;(I",) (scalar-valued case) in the case £ < g. This last case is quite more
sophisticated, in particular it also involves certain slightly irregular weights. We will come
back later on the relations between the Problem above and Theorems 1 and 2.

1.3. Classification and inexistence results. — Let us denote by I1,, the set of cuspidal
automorphic representations of PGL,,, with m > | arbitrary, which are algebraic and
of level 1. The second main result of this paper is a partial classification of elements
in IT,, having motivic weight <24. The first statement of this type, proved in [CL19,
Thm. F], asserts that there are exactly 11 elements 7 in II,, of motivic weight <22:
the trivial representation of PGL,, the 5 representations A;_; of PGLy generated by the
1-dimensional spaces S;(SLy(Z)) for £ = 12,16, 18, 20, 22 (whose weights are :I:k_Tl),
the Gelbart-Jacquet symmetric square of Ay, (with weights —11, 0, 11), and four other
4-dimensional self-dual 7 with respective weights

{£19/2, £7/2}, {£21/2,£5/2}, {£21/2,£9/2}
and {£21/2,£13/2}.
In this paper we significantly simplify the proof of [CL19, Thm. F]: see Sect. 2.4.6. More

importantly, these simplifications allow us to prove the following theorems for motivic
weights 23 and 24.

Theorem 3. — There are exactly 13 level 1 cuspidal algebraic automorphic representations of
PGL,, over Q, with m varying, with motivic weight 23, and having the weight 23 /2 with multiplic-
wy 1:

(1) 2 representations of PGLy generated by the eigenforms in Soy(SLo(Z)),
(1) 3 representations of PGLy of weights £23/2, £v/2 withv =17,9 or 13,
1 representations o 6 0f weights , TV/2, Tu/2 wil
i) 7 rep ] PGL ohts £23/2, v /2, £u/2 with
(v,w) =(13,5), (15,3), (15,7), (17,5), (17,9), (19, 3)
and (19, 11),
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(iv) 1 representation of PGLyo of weights £23/2, £21/2, £17/2, £11/2, £3/2.
They are all self-dual (symplectic) and uniquely determined by their weights.

The representations in (i) and (ii1) above were first discovered in [CR15], using a
conditional argument that was later made unconditional in [Tail9]. Their existence was
also confirmed by the different computation of the second author in [Tail7], who also
discovered the 10-dimensional form in (iv).

Despite our efforts, we have not been able to classify the representations 7 of mo-
tivic weight 23 such that the multiplicity of the weight 23/2 1s > 1. We could only prove
that there is an explicit list £ of 182 weights w = (w;) with w; = wy = 23 such that
(a) the weight of any such 7 belongs to L, (b) for any w in £ there is at most one 7
with this weight (necessarily self-dual symplectic), except for the single weight w = (v,;/2)
in Wiy N L with (v, ve, ..., v7) = (23, 23,21,17,183,7, 1), for which there might also
be two such 7 which are the dual of each other: see Proposition 4.1. Nevertheless, we
conjecture that all of those putative 183 representations do not exist, except perhaps one.
Indeed, we prove in Sect. 4.3 the following result, assuming a suitable form of (GRH).

Theorem 4. — Assume (GRH) and that there exists a level 1 cuspidal algebraic automorphic
representation 7w of PGL,, over Q having motivic weight 23 and having the weight 23 /2 with multi-
plicity > 1. Then we have m = 16, the weights of w are £1/2, £7/2, £11/2, £15/2, £19/2,
+21/2 as well as £23/2 with multiplicity 2, and 7t is the unique element of 1,4 having these 16
weights.

We now state our partial classification result in motivic weight 24.

Theorem 3. — There are exactly 3 level 1 algebraic cuspidal self-dual automorphic representa-
tions of PGL,, over Q, with m varying, with motivic weight 24 and regular weights. They have respective
sets of weights

{(£12, £8, 44,0}, {£12, £9, £5,£2} and {£12, £10, 47, +1}.

Again, those three forms were first discovered in [CR15, Cor. 1.10 & 1.12] and
confirmed in [Tail7]. Interestingly, as explained in [CR15], we expect that their Sato-
Tate groups are respectively the compact groups G, Spin(7) and SO(8). See [Chel9,
Thm. 6.12] for a proof that the first form, which is 7-dimensional, has Gy-valued £-adic
Galois representations.

Proofs. — Our proofs of Theorems 3 and 5 are in the same spirit of the one of
[CL19, Thm. F]. As already said, all the representations appearing in the theorem were
already known to exist by the works [CR15, Tarl9, Tail7] (and we will give another
proof of their existence in Sect. 3), so the main problem is to show that there are no oth-
ers. The basic idea that we will use for doing so is to consider an hypothetical 7, consider
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an associate L-function of 7, and show that this function cannot exist by applying to it
the so-called explicit formula for suitable test functions. This is a classical method by now,
inspired by the pioneering works of Stark, Odlyzko and Serre on discriminant bounds of
number fields. It was developed by Mestre in [Mes86] and applied /loc. cit. to the stan-
dard L-function of 7 (see also [Fer96]), then by Miller [Mil02] to the Rankin-Selberg
L-function of 7, and developed further more recently in [CL19, §9.3.4].

Two important novelties were discovered in [CL19] in order to obtain the afore-
mentioned classification result in motivic weight < 22. The first one, developed further
in [Chea], is a finiteness result which implies that there are only finitely many level 1
cuspidal algebraic automorphic representations 7 of PGL,,, with m varying, of motivic
weight < 23. This finiteness is also valid in motivic weight < 24 assuming a suitable form
of GRH. This result is effective and produces a finite but large list of possible weights
for those 7 (for instance, it leads to 12295 possible weights in motivic weight 23). The
hardest part is then to eliminate most of those remaining weights. The second novelty
found in [CL19] was the observation that we obtain efficient constraints by applying as
well the explicit formula to all the L-functions L(s, w X 7;), where the 7; are the known
representations. See [CL19, Scholia 9.3.26 & 9.3.32] for the two useful criteria obtained
there using this idea.

In this paper, we discovered a criterion that may be seen as a natural generalisation
of [CL19, Scholia 9.3.26], and that happened to be (in practice, and quite surprisingly)
much more efficient than the aforementioned ones. Moreover, contrary to [CL19, Scholia
9.3.32], we do not need to know any Satake parameter for the known elements of IT,,
(which allows us to use test functions with arbitrary supports). Our basic idea here is
to apply the explicit formula to the Rankin-Selberg L-function of all linear combinations
Lt @ - - - @ tr, where i3 unknown of given weights, the 7; with 7 > 1 are known (in the
sense that they exist and we know their weights), and the ¢ are arbitrary nonnegative real
numbers. More precisely, for any test function F we associate a certain symmetric bilinear
form C' on the free vector space RII,, over Il,,, which represents the computable part
of the explicit formula for the test function F. Assuming a certain positivity assumption
on F, the quadratic form x — CF(x, x) is then > 0 on the cone of RII,, generated by
IT,,: see Proposition 2.2. In order to reach a contradiction we have thus to show that at
least one quadratic form CF takes a negative value on the cone generated by 7, ..., 7,.
See Sect. 2.4 for the description of the minimisation algorithm that we have used for
this purpose, as well as the homepage [C'T19b] for related sources. One charm of this
method is that although it requires some computational work to find a concrete element
x of that cone and a test function F leading to a contradiction (and all is fair for that!),
once we have found it is quick and easy to rigorously check that we have CF(x, x) < 0: see
Sect. 2.4.3.
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1.4. The effortless computation of masses. — Fix G a rank n split classical group over Z
in the sense of Sect. 1.1. In other words, G belongs to one of the families

(5O24+1)u=1, (Spy,)u=1 and  (SOg,),=2

Assume that G(R) has discrete series representations, .e. that G is not isomorphic to
SOy, with n odd, and fix K a maximal compact subgroup of G(R). There is an analogue
of Key fact 1 with Sy (I',) replaced by the multiplicity of any discrete series representa-
tion of G(R) in the space A*(G) of K-finite square-integrable automorphic forms over
G(Z)\G(R). In this paper, as in [Tail7], we will use a variant of this key fact involving
rather certain Euler-Poincaré characteristics. Our first aim is to state this variant (Key
fact 2 below). For any dominant weight A of G(G), we denote by V; an irreducible rep-
resentation of G(C) with highest weight A and consider

EP(G:2) =) (—1)'dimH'(g, K; A*(G) ® V) € Z,

>0

where H*(g, K; —) denotes (g, K)-cohomology. Attached to G is a certain integer de-
noted ng, defined as the dimension of the standard representation of G, the Lang-
lands dual group of G: concretely, we have ng = 2n+ 1 for G = Sp,,, and ng = 2n
for G = SOy,;; or SOy,. The infinitesimal character of V;, namely “A 4 p”, defines
a unique regular element w() in W,, with m = ng. Concretely, using the standard’ no-
tation A = )., A;¢; for dominant weights of classical groups (as in [Tail7, §2]), w(i) is
explicitly given by the following formulas:

k,—{—n—l—l/?—z fOFlSiSﬂifG:SOQnJrl,
wA);= A +n+1—1 for 1 <i<nif G =Sp,,,
A +n—1 for 1 <i:<nif G=S0,, and =0 mod 2.

The promised second key fact, explained in Sects. 4.1 and 4.2 of [Tail7] is:

Key fact 2. — Fix G and A as above, and set w = w(A) = (w;). Assume we know Nt (v)
Jor all regular v = (v;) € W,, with m < ng and v\ < w,, then it is equivalent to know EP(G; L) or
Nt (w).

It follows from the formula above for w(A) that any regular w in W,,, with m > 1
arbitrary, is of the form w(A) for a unique split classical group G over Z and some dom-
mant weight A of G. As a consequence, Key fact 2 paves the way for a computation of
N+ (w) for all regular w, by induction on ng.

% The conditions on the A; are the following: A; € Z for each i, A; > --+ > A,, and either A, > 0 (cases G = Sp,, or
SOg,41) or [A,] < A,y (case G = SOy, with n > 2).
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Contrary to the case of Key fact 1, we will not reproduce here the precise claimed
relation between EP(G; 1) and the quantities N*(—) stated in Key fact 2, and simply
refer to [Tail7, §4]. As for Key fact 1, it crucially depends on Arthur’s endoscopic classi-
fication [Artl 3] and on the explicit description of Archimedean Arthur packets in the reg-
ular algebraic case given by [AJ87] and [AMR18] (they are the so-called Adams-Johnson
packets, see [Tail7, §4.2.2]). The full combinatorics, when written down explicitly and
case-by-case, are rather complicated but computable, and implemented since [Tail7].

The second ingredient is Arthur’s L2-Lefschetz trace formula developed in [Art89]
applied to the relevant test function. A detailed analysis of this formula has been made
in [Tail7] that we will follow below. We use this version of the trace formula as it is the
one with the simplest geometric terms. Its spectral side is exactly EP(G; 1), a quantity in
principle harder to interpret (the price to pay for a simple geometric side), but this can be
done precisely by Key fact 2 above.

We fix a Haar measure dg =[] dg, on G(A), with A the adéle ring of Q, such that
the Haar measure dg, on G(Q,) gives G(Z,) the volume 1. Fix a dominant weight A of G.
We apply Arthur’s formula [Art88] to a test function ¢ of the form ¢ ®) 1G(z,), where
lGz,) 1s the characteristic function of G(Z,), and where ¢ (gx0)dgx 1s the sum, over all
the discrete series § of G(R) with same infinitesimal character as V,, of a pseudocoeffi-
cient of §. According to [Art89] the resulting identity, which only depends on G and A,

1S

(1.4.1) EP(G; 1) = Toeom (G A).

The geometric side Tyeom (G A) is a finite sum of terms indexed by Levi subgroups of G
of the form

(1.4.2) GL! x GL) x G/

with G’ a split classical group over Z and a, » > 0. The main term, corresponding to G
itself and called the ellyptic term, 1s

(1.4.3) Ta(Gi2) =Y vol(G,(Q\G,(A)) - O, (1a) - tr(y | Vi),

14

where y runs over representatives of the (finitely many) G(Q)-conjugacy classes of finite
order elements in G(Q) whose G(Q,)-conjugacy class meets G(Z,) for each prime p
(see Sect. 3.1). For each such y, we have denoted by G, its centralizer in G (defined
over Q), choosed on G, (A) a signed Haar measure dh = H; dh, with dhy, an Euler-
Poincaré measure on G, (R) (in the sense of [Ser71]), and we have denoted by O, (1))
the product over all primes p of the classical orbital integrals

d
laa,) (gp)/g;,_ 1) &

1.4.4 .
(1.4.4) o

‘/(;(Q];)/ Gy (Qp)



270 GAETAN CHENEVIER AND OLIVIER TAIBI

Taibi developed in [Tail7] a number of algorithms to enumerate the y, compute their
local orbital integrals (with d, Gross’s canonical measure), and the associated global
volumes. Here we shall simply write

(1.4.5) Ta(GiA) =Y mu(c|V,),
ceC(G)

where C(G) denotes the set of G(Q)-conjugacy classes of finite order elements in G(Q)
(essentially, a characteristic polynomial: see Sect. 3.1) and m, is a certain number depend-
ing only on ¢ and called the mass of ¢ (note that tr(c¢|V;) is well-defined). By definition,
m, is a concrete sum of volumes times adelic orbital integrals; it essentially follows from
[Gro97, Theorem 9.9] and Siegel’s theorem on the rationality of the values of Artin L-
functions at non-negative integers [Sie69] that we have m, € Q,

The character of V, may be either evaluated using the (degenerate) Weyl char-
acter formula as in [CR15], or much more efficiently for small A using Koike-Terada’s
formulas [KT87] as was observed in [Cheb]. Last but not least, the term in the sum
defining Tyeom (G; A) corresponding to a proper Levi subgroup of the form (1.4.2) is ex-
pressed in terms of T (G’; 1), as well as T (SOs; A”) if b # 0, for suitable auxilliary
Ay A": see [Tail7, §3.3.4] for the concrete formulas, that will not be repeated here. As a
consequence, the key problem is to be able to compute the masses m, for ¢ € C(G).

T he strategy. — We are finally able to explain our strategy. Fix m > 1 an integer. We
may assume, by induction, that we have computed the masses m, for all split classical
groups H over Z such that H(R) has discrete series and nf < m, and all ¢ € C(H). By
Key fact 2 and the trace formula (1.4.1), note that we have an explicit and computable
formula for N* (w) for all regular w € W,, with m’ < m. Fix a split classical group G over
Z such that G(R) has discrete series and ng = m. Assume we have found a finite set A of
dominant weights of G(C) with the following two properties:

(P1) For all A € A we have N*(w(1)) = 0.
(P2) The A x C(G) matrix (tr(c| V;)) . has rank |C(G)|.

Then from (PI) and the Key fact 2 we know EP(G; 1) for all A € A. It follows
that for all A € A we know Tyom(G; A) as well, by the trace formula (1.4.1), hence also
T (G; A) since the non-elliptic geometric terms are also known by induction. By (1.4.5)
and (P2), we deduce the masses m, for all ¢ € C(G) by solving a linear system. As a con-
sequence, for an arbitrary dominant weight A of G we may then compute Tyeom(G; A),
hence EP(G; 1) by (1.4.1), and N*(w(2)) by Key fact 2.

Amusingly, we end up proving the existence of self-dual cusp forms for PGL,,
mostly by showing that many others do not exist ! (namely the ones with weights of the
form w(A) with A in A))
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A simple example. — Let us illustrate this method in the (admittedly too) simple case
m=2 and G = SOs. In this case C(G) has 5 classes, of respective order 1, 2, 3, 4 and 6:
say ¢; has order 2. The dominant weights of G are of the form £e, for an integer £ > 0, and
will be simply denoted by £. For £ > 0, we have w(k) = (k+ 1/2, =k —1/2), N(w(k)) =
dim Sg;19(SLo(Z)), the analysis of the spectral side gives

EP(G: k) = —N(w(k) + 8.0,

with §;; the Kronecker symbol, and the geometric side is
1
Tgeom(G; k) = Tell(G; k) + 5

Assume we know that there is no cuspidal modular form for SLy(Z) of usual weight
2,4,6,8, 10. This may for instance be shown by applying the explicit formula to the
Hecke L-function of a putative eigenform of such a weight, as observed in [Mes86, Rem.
III.1]. This also follows very easily from the methods of Sect. 1.3. Using dim V, = 2k + 1
and the identity tr(¢;|Vy) = sin(¥=7%) /sin®* for i > 1 we obtain with A = {0, 1,2, 3, 4}
the linear system

[ U B B m, 1/2
3 -1 0 1 2 m,, —1/2
5 01 -1 =1 1 |.|m,]|=]=-102
7 -1 1 -1 —=1] |m, —1/2
9 1 0 1 —=2| |m, —1/2

! _ 1
120 m(:Q — 3

m,, = % and m, = m,, = 0. As a consequence, we recover the classical formula for

dim Sy, (SLy(Z)).

Luckily, the matrix on the left-hand side is invertible: we find m,, =

Remark 1.1. — In certain classes ¢ in C(G), there is no element y whose G(Q)-
conjugacy class meets G(Z,) for each p and such that G, (R) has discrete series: this
forces m, = 0 by (1.4.3). This actually explains m,, = m,, = 0 above.

This remark will lead us in Sect. 3.2, and following [Tail7, Remark 3.2.8], to
replace C(G) by a smaller set C;(G), and to rather apply our strategy with C(G) replaced
by C;(G) in (P2). See also Sect. 3.1 for other more elementary reductions, using the center
of G or an outer automorphism of SOs,.

The crucial last ingredient for this method to work is to be able to find sufficiently
many w € W, such that N*(w) = 0. We will use of course for this the method explained
in Sect. 1.3 (the explicit formula for Rankin-Selberg L-functions). Rather miraculously,
it provides enough vanishing results up to rather a high rank: see Sect. 3.3 for a proof of
the following final theorem, obtained by applying only this “effortless” strategy:
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Theorem 6 (“Effortless” computation). — Assume G = SO, withn < 17, or G = Sp,,, with
2n < 14. Then the masses m,, for all ¢ € C(G), are given in [CT19b].

As already said, these results are in accordance with all the orbital integral compu-
tations done in [Tail 7]. This method is both conceptually simpler and faster: for compar-
ison, computing all the orbital integrals for Sp,, takes several weeks, whereas finding A
and solving the linear system to determine all the m,, for ¢ € C(Sp,,), only takes minutes
on the same computer. The cases SO,, with m = 15, 16, 17 are new. Last but not least,
if we combine the methods of this paper with those of [Tail7], we obtain the following
new result in the symplectic case (see Sect. 3.3).

Theorem 7. — The masses m,, for all ¢ € C(Sp,g), are given in [CT19b)].

Following Key fact 2, these two theorems allow to compute EP(G; A) for all those
G and an arbitrary weight A, as well as the quantity N*(w) for any w € W,, for m < 16:
see loc. cit. for tables.

1.5. Lunuts of the method and possible generalizations. — At present, it seems very diffi-
cult to us to improve any of the classification Theorems 3, 4 and 5, or to extend signif-
icantly the number of vanishing results needed for the effortless computation of masses
in Sect. 3.3, without a really new idea. Our numerical experiments suggest that those
results are at the limit of what can be extracted from the explicit formula, or at least from
Proposition 2.2, but whether there is a deeper reason for that remains a mystery to us.
As an example, we still do not know, even conjecturally, if there should be finitely many
cuspidal level 1 algebraic w of PGL,, with n > | arbitrary, whose motivic weight is 25:
see Example 6.7 in [Chea].

These limitations have consequences for the applications to the dimensions of
spaces of Siegel cuspforms: Theorems 1, 2 and 6 seem to be the optimal results that
can be obtained using our method. In particular, as already explained in Sect. 1.4, our
computation of the masses of Sp,; in Theorem 7 is already not “effortless” anymore.
Also, it seems unlikely to us that the computation of dim S;(I",) could be extended to a
weight £ much higher than 13: already in the case £ = 16 and arbitrary g, this question
is closely related (via Siegel theta series) to that of determining the size of the set X3o
of isometry classes of even unimodular lattices of rank 32, a classical problem usually
considered as out of reach using any known computational method. In particular, we
have 1 + Zgzl dim S;6(T",) > [X30], and the huge lower bound [ X3, | > 109 due to King
[Kin03] (compare with Table 6).

There are nevertheless several possible generalizations of the results of this paper
that would deserve to be studied, the most obvious ones being to work over arbitrary base
number fields, to include non trivial conductors, other groups, or to compute traces of
Hecke operators of small degree rather than dimensions. Along these lines, we mention
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the forthcoming Ph.D. dissertation of Lachaussée [Lac] for some variants of the results of
Sect. 1.3 for cuspidal algebraic representations of GL, over Q whose conductor is a small
prime number.

2. Weil’s explicit formula for Rankin-Selberg L-functions: a refined
positivity criterion

2.1. Algebrarc Harish-Chandra modules and automorphic representations. — Let 7w be a
cuspidal automorphic representation of PGL, over Q. As recalled in Sect. 1.2, we say
that 7 has level 1 if 77, is unramified for every prime p. We also explained /oc. cit. what it
means for 7 to be algebraic. It will be useful to have an alternative point of view on this
last condition in terms of the Langlands correspondence (see e.g. [CL19, §8.2.12]). Recall that
Mg
(with n > 1 varying).

We denote by Wg the Weil group of R: we have Wg = C* [ [ jC*, where j* is
the element —1 of C* and with jz7~' =Z for all z € C*. The Langlands correspondence

denotes the set of level 1 algebraic cuspidal automorphic representations of PGL,

for GL,(R) 1s a natural bijection V = L(V) between the set of isomorphism classes of
irreducible admissible Harish-Chandra modules for GL,(R), and the set of isomorphism
classes of n-dimensional (complex, continuous and semi-simple) representations of Wg
[Kna94]. We say that the Harish-Chandra module V is algebraic if every element in the
center R* of W acts as a homothety with factor £1 in L(V). In particular, L(V) factors
through the (compact) quotient of Wg by R.(, which is an extension of Z/2 by the
unit circle. We denote by 1 the trivial representation of Wy, by &¢/r its unique order 2
character, and for w € Z we set I, = Ind‘grf n" where 1n(z2) = z/|z|. Up to isomorphism,
the irreducible representations of Wy trivial on R.( are

1, e¢jr, and I, forw >0.

We also have Iy >~ 1 @ e¢/r, and I, > I,y if and only if w = £w".

If w is a cuspidal automorphic representation of PGL, over Q, Clozel’s purity
lemma (or the Archimedean Jacquet-Shalika estimates) shows that the Harish-Chandra
module 7, is algebraic in the sense above if, and only if, 7 1s algebraic in the sense of
Sect. 1.2 [CL19, Prop. 8.2.13]. Moreover, for all v € Z the multiplicity of the weight v/2
of 7 is the same as the multiplicity of the character ' in the restriction of L(7) to
C*. In other words, all the weights O (resp. £v/2 with v > 0) of 7, are explained by
occurrences of 1 or g¢/r (resp. of I)) in L(r). It will be convenient to introduce:

e the Grothendieck ring K, of complex, continuous, finite dimensional, repre-
sentations of Wx which are trivial on its central subgroup R.,

e for w an integer, the sugroup K" of K., generated by the I, with 0 <v <w
and v = w mod 2, and also by | and &¢/g in the case w is even.
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An element U of K will be called ¢ffective if it 1s the class of a representation of Wg.
The weights of such a U are the w/2 in %Z such that n* occurs in Ugx, counted with the
multiplicity of n* in Uj¢x (a nonnegative integer as U is effective).

It follows from this discussion that for 7 in IT,,, we have L(7y) € K3 for some
integer w > 0, and that the smallest such integer w coincides with the motivic weight
w(7) of  introduced in Sect. 1.2. Moreover, the weights of 7 are that of L(7r).

For later use, we now recall Langlands’ definition for the e-factors and I'-factors of
algebraic Harish-Chandra modules. The I'-factor of an element U in K, is a meromor-
phic function s+ I'(s, U) on the whole complex plane, characterized by the additivity
property I'(s, U@ U’) =T'(s, U)I"(5, U’) and the following axioms [Tat79]:

I(s, 1)=7T_%F<%> and F(S,Iw):2(2n)—"—%r<s+%>

forallw € Z,

in which s > T'(s) is the classical gamma function. Similarly,” the e-factor of U € K,
1s the element &(U) of {£1, ¢} characterized by the additivity property e(U @ U’) =
£(U)e(U’) and the identities £(1) = 1 and &(I,,) = i**! for every integer w > 0.

2.2. Regular and self-dual elements of T1,,. — Let 7 be a level 1 algebraic cuspidal
automorphic representation of PGL, over Q. We will say that 7 is regular if the represen-
tation L(7) of Wg 1s multiplicity free. It is thus equivalent to say that for each weight w
of 7, either w has multiplicity 1 or we have w = 0 and L() contains both 1 and e¢/r
with multiplicity 1. This latter case can only occur of course if both the motivic weight of
7 and 7 are even. Moreover, we observe that:

e if all the nonzero weights of 7 have multiplicity 1, and if the weight 0 has mul-
tiplicity 2, then 7 is regular if, and only if, we have n = 0 mod 4.

e 1 is regular if, and only if] the vector (w;) € %Z”, where wy; > wy > --- > w, are
the weights of 7, is regular in the sense of Sect. 1.2.

e if 77 is regular and n = 2¢ + 1 is odd, then L(7,) contains &, R

Indeed, as 7t has trivial central character, we must have det L(7+,) = 1, and we conclude
by the formula det I, = 8&711{ forv e Z.

Assume now that m 1s self-dual, that 1s, isomorphic to its contragredient (or dual)
V. Then 7 is either symplectic or orthogonal in the sense of Arthur [Art13, Thm. 1.4.1].
Moreover, if 7 is symplectic (resp. orthogonal) then L(mw) preserves a nondegenerate
alternating (resp. symmetric) pairing [Art13, Thm. 1.4.2]. In particular, if 7 € TI,, is self-
dual, and if some weight of 77 has multiplicity 1 (e.g. if 7 is regular), then 7 is symplectic
if and only if w(rr) is odd [CL19, Prop. 8.3.3].

5 What we denote by &(U) here is what Tate denotes & (U, ¥, d) in [Tat79, (3.4)], with choice of additive character
¥ (x) = ¢, and with dx the standard Lebesgue measure on R.
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2.3. The explicit formula for L-functions of pairs of elements in I1,,. — Let w and 7’
be level 1 cuspidal automorphic representations of PGL, and PGL,, respectively. For p
prime we denote by c,(7r) the semi-simple conjugacy class in SL,(C) associated with the
unramified representation 7,, following Langlands, under the Satake isomorphism. The
Rankin-Selberg L-function of 7 and 7" is the Euler product

L(s, T X n/) = Hdet(l —p (M) ® cp(n/))_l.
Y4

By fundamental works of Jacquet, Piatetski-Shapiro, and Shalika [JS81, JPSS83], this
Euler product is absolutely convergent for Re s > 1, and the completed L-function

(2.3.1) A(s, T X 71/) = F(s, L(my) ® L(nc’,o)) L(s, T X n/),
has a meromorphic continuation to G and a functional equation of the form
(2.3.2) Als,m x7')=e(m x ') A(l —s, " x (n’)v)

where €(r x ') is a certain nonzero complex number (it does not depend on s as 7 has
level 1). We set €(r) = €(m x 1).

Assuming 7 and 7’ are algebraic, the only case of interest here, the I'(s, —) factor
in (2.3.1) is given by the recipe recalled in Sect. 2.1, and we simply have

(2.3.3) e(m x 7') =¢(L(ms) ® L(7L,)).

Note that the ring structure of K, is determined by the relations I, - I,y = Iyyqur| 4+ Tjw—w|
and EC/R ° Iw = Iw

By Moeglin and Waldspurger [MW89, App.]|, A(s, m x 7r') is entire unless we have
7’ >~ 7", in which case the only poles are simple and at s =0, 1. Moreover, A(s, T X 7’)
is bounded in vertical strips away from its poles by Gelbart and Shahidi [GS01]. All those
analytic properties are key to establishing the Weil explicit formula (for which we refer to
Poitou [Po177b, §1]) in this context. The general formalism of Mestre [Mes86, §1] applies
verbatim: we refer to [CL19, Chap. 9, Sect. 3] for the details and only recall here what
we need to prove our criterion.

We denote by RI1,,, the R-vector space with basis IT,,. We fix a test function ¥, that
is an even function R — R satisfying the axioms (i), (i1) and (i) of [Mes86, §1.2] with the
constant ¢ loc. cit. equal to O (see also [Poi177b, §1]). The reader will not lose anything here
by assuming simply that F is compactly supported and of class C*. We denote by T the
Fourier transform of F, with the convention /15(5 ) = fR F(x)e %% dx. Following [CL19,
Chap. 9, Sect. 3], we first define five symmetric bilinear forms on R IT,,, that we denote
by BJE, BL,, Z", e* and 8. The first three of them depend on the choice of F. They are

uniquely determined by their values on any (7, 1) € T, X IT,:

alg

(a) B}T(n, a)y=%" ZM F(klogp)%f tr (¢, (m)*) tr (c/,(rr’)k), the sum being over all primes
p and integers £ > 1.
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(b) BEO (r, ") =Jr(L(ms) ® L(1r))), where Ji : K — Ris the linear map defined by

(2.3.4) Jr(U) = — f r (l + 2wt U)’f(t) de.
R F 2

We will also denote abusively by BE  the real-valued symmetric bilinear form on K,
defined by Bgo (U, V) =Jp(U - V). With these abusive notations we have Bgo (m, ") =
Bl (L(7roo), L(7}))-

(c) Z¥(r, ') is the limit of Zp (ord,—, A(s, " x 7)) fﬁf(%), the sum being over the
zeros p of A(s, 7" x ") with 0 < |[Jp| < T and 0 <N p < 1, when the real number T

goes to +00.
(d)é(r,m")y=1if 7 ~n’', and § (7, ') = 0 otherwise (Kronecker symbol).

(€) et(m, ') =1 if w and 7’ are self-dual with e€(r x 7’) = —1, and e*(r,7') =0
otherwise.

The main result is that for any test function F we have the equality of bilinear forms

T
(2.3.5) By +BL + 57" = F(f)g (the “explicit formula”)

b4
on the space RII,,: see [Mes36, §1.2] and [CL19, Prop. 9.3.9]. We finally define a last
bilinear form on RI1,, by the formula

l

_ I ~
(2.3.6) ch = F( )5 —Bf, — EF(O)#.

4
In our applications, it will represent the “computable” part of the explicit formula. Note
that for any test function F, both F(0) and F(¢/4m) are real numbers, and if F is non-
negative then they are both non-negative.

Definition 2.1. — Let ¥ be a test function. We will say that ¥ satisfies (POS) of we have
F(x) >0 forall x e R, and RF(§) > 0 for all § € G with |Imé&| < é

Proposition 2.2, — Let ¥ be a test function satisfying (POS). Then for any integer r > 1, any
7y, ..., 0, Iy, and any nonnegatie real numbers t,, . . ., t,, we have

(2.3.7) ol (Z L ) tim) > (.

Proof. — By density of the rationals in R, we may assume that the ¢ are rational
numbers, and even that they are integers by homogeneity of the quadratic form x
CF(x, x). But in this case, the statement is [CL.19, Cor. 9.3.12]. As the proof'is very simple,
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we give a direct argument. By (2.3.5) we have CF' = ij + %(ZF —F(0)eb). By definition
(a) and the assumption F > 0, the symmetric bilinear form B]E 1s positive semi-definite
on RIT,,. It is thus enough to show that %(ZF — ’IE(O)eL) has nonnegative coefficients
in the natural basis IT,, of RI,,, ie that we have ¥, ') > f(()) et(m, ) for 2/111
7,7’ € I, But this follows from the definition of Z* (s, '), the assumption on % F,
and the fact that if we have e*(;r,7’) = | then A(s, ¥ x ') has a zero at s = 1/2 by
the functional equation (2.3.2). OJ

2.4. Applications. — In what follows we will apply Proposition 2.2 to disprove the

existence of representations 7 in Il,, such that 7 is a given algebraic representation,

alg
using the knowledge that there are representations in IT,, with known Archimedean

components.

2.4.1. The basic inequalities. — Before doing so, we first recall the following basic
but important consequence of the explicit formula, that we derive here as a very special
case of Proposition 2.2 (see also [CL19, Cor. 9.3.12 & 9.3.14]).

Corollary 2.3. — Let ¥ be a test function satisfying (POS) and fix U in K. If there is an
element v in T, with L(oo) = U then we have the mequality

(2.4.1) BEO(U, U) < ?(i/‘tn).
More generally, if there are distinct elements 7y, . . ., 7, 1n e with L((77;) o) = U for allj, then we
have
. 1 ~
(2.4.2) BﬁO(U, U) < —F(@/4m).
m

Progf: — Consider the elenlgnt X = ZZ"ZI m; of RIT,,. We ha\,/g CF(x,x) > 0 by
Proposition 2.2. We clearly have’ F(0)e* (x, x) > 0, by the inequality F(0) > 0. We con-
clude by the equalities 6 (x, x) = m and Bgo (x, x) = m? Bgo (U, 0). ]

Establishing inequality (2.4.1) is the original application of the explicit formula for
Rankin-Selberg L-function to prove the nonexistence of certain 7 in IT,,, with given 7.
It was used by® Miller in [Mil02] to show that for n < 12 there is no 7 in IT,, \ {1} such
that L) 1s etther I + I3 + -+ + Ip,qy or eg g + b + 14 + -+ + Ly,. As explained in
[CL19, Sect. 9.3] and [Chea], the simple inequality (2.4.1) is very constraining in motivic

7 We actually have e*(x, x) = 0. Indeed, if 7r, 7’ are in I, with L(ms) = L), then et(m, ") =0. To see this,
we may assume 7 and 7" are self-dual, either both symplectic or both orthogonal (they have the same motivic weight by
assumption), and the assertion follows then from the general property €(w x 7’) =1 proved in [Art13, Thm. 1.5.3 (b)].
Alternatively, we can easily check (U - U) =1 for U = L(1).

8 In the context of Artin L-functions, the advantages of considering Rankin-Selberg L-functions had already been
noticed by Serre, see [Poi77a] p. 150.
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weight < 23: for a suitable choice of F the bilinear form BY is positive definite on K”
for w < 23, and there is an explicit finite list £ of elements of K, such that whenever U
is in K3¥ — £ with w < 23, there is no 7 in Iy, with L(7«) = U. It has however some
limitations: as we shall see, the list £ is quite large, and far from optimal. For instance, it
does not seem possible to exclude in this way the possibility9 L(ms) > I;5. Nevertheless,
Inequality (2.4.1) will be extremely helpful to us in Sect. 3.3 and Sect. 4. Inequality (2.4.2)
was first observed by Taibi. In the case Bgo (U, U) > 0, it may be seen as an effective form
of Harish-Chandra’s finiteness theorem. We will often use it to show that there is at most
one 7 in IT,, with given L(7) = Uj; note that such a 7 has to be self-dual if it exists, as
we have L((mY) ) = L(71s) ¥ = L(7s).

2.4.2. A general method. — For m in Tl set sd(w) = 1 if 7 1is self-dual, and
sd(r) = 0 otherwise. In this section, we will develop a method trying to answer n the
negative the following question.

Question 2.4. — Fix an wteger r > 1, and for each 1 <1 < r elements U; in Ko and
8; i {0, 1}. Does there exist distinct representations 7y, ..., 7, n Iy, with L((7;) o) = U; and
sd(m;) =6, foreach 1 <1 <7?

To do so, assume we are given an integer r > 1 and for each 1 <7 <7, elements U;
in Ky, §; in {0, 1}, and an integer m; > 1. In other words, we fix a quadruple

(2.4.3) Q=0U4,m

with E = (Ui)lfz'gr in K;O, é = (61‘)152'57 in {0, 1}7 and m = (ml-)lfl-gr in Z’>1 View R’ as
an Fuclidean space for the standard scalar product (x;) - (»;) = Zixm. Lete, ..., e be
the canonical (orthonormal) basis of R’. To the choice of Q and of a test function F, we
associate the symmetric bilinear form B¢ on R’ defined by the formula

. l ~ . ~ 1 —&(U;-U))
(2.4.4) ,39(6% Cf;') = ;F(l/‘}ﬂ) € ¢ —Jr(U; - U/’) —F(0) 51'5]'—-

We will discuss the practical numerical evaluation of B (i.e. of Jy, F(0) and f(#)) in
Sect. 2.4.3. Set 87! ={(t) eR'| Y_'_, & =l and Vi, £, > 0}.

Problem 2. — Fix a test function ¥ and a quadruple Q = (r, U, §, m) as in (2.4.3). Determine
whether the map x — ﬂg(x, x) lakes a negative value on 877"

The relationship between Question 2.4 and this problem (which does not involve
automorphic representations) is the following. Suppose m; = 1 for each 1 < ¢ < (the

? An intuitive reason for that is that there actually exists a 77" in Tl with very close weights, namely 7’ = A,
with L(rr} ) >~ I;;. See the discussion in [CL19, Sect. 9.3.19] for many other examples (and how to deal with this case
differently), which allow to develop some intuition.
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general m; will play a role only later). Assume there are distinct 7y, ..., 7, in I1,, with
L((1;)s) = U; and sd(ir;) = §; for each 1 < ¢ <r. Denote V = @2:1 Rz; C RIT,, viewed
as an Euclidean space with orthonormal basis (7, ..., ). As the m; are distinct we
actually have x - x = §(x, x) for all x € V. We also have

1 —e(U;-U)
5 .

In other words, the linear map ¢ : R” — V defined by ¢ = 7; is an isometry satisfying
Chu(x),t(y) = ,BbQ (x,9) for all x, y € R". If we are able to find an element ¢ = () € S:l
with ,85(;, ?) < 0, then the element ¢(f) = )__, #7; contradicts Proposition 2.2: we have
answered Question 2.4 in the negative.

(2.4.5) Bzo(ffzw ;) = BZO(UZ', U) =Jr(U; - U)), €L(7Ti, ;) = 6; 6;

From now on we thus focus on Problem 2. We fix an arbitrary quadruple Q =
(r, U, 8, m) asin (2.4.3) and a test function F. To simplify the notations we also set E =R’
and D = S:_‘l. Let us introduce, for each non-empty I C {1, ..., 7}:

e the subspace E; := @iel Re¢; of E, the intersection Dy = D N E; and its interior
Dy:={Y, e €D|Viel, ;> 0}. We have D= |, D;.

e the minimal eigenvalue A; of the Gram matrix (,35 (¢, ¢))ijer of the restriction
of ,35 to E; x Ej, and the corresponding eigenspace Ey ;.

We also denote by /,LFQ the minimum of x ﬁg (x, x) on D.

Proposition 2.5. — Fix a test function ¥ and a quadruple Q = (r, U, §, m) as in (2.4.3). Let
T be the set of non-empty 1 C {1, ..., 1} such that Ey;, intersects Dy. Then 1L is non-empty and we
have ,LLFQ = minge7 Ag.

Proof. — The minimum ,uFQ of x — ,BFQ(x, x) on the compact D = | |7 Dy is
reached in IO)J for some J. By Lemma 2.6 below applied to the Euclidean space E;j and to
the restriction b of /35 to Ej x Ky, any local minimum of x > ,Bg(x, X) on ]o)J 1s an eigen-
vector for A; and we have Mbé = A;. We have J € Z, and the other inequality ;ﬁé < Ap for
any I € 7 is obvious. O

Lemma 2.6. — Let E. be an Euclidean space with scalar product x - y, S its unit sphere, b a
symmetric bilinear form on E and u the (symmetric) endomorphism of ¥ satisfying b(x, y) = x - u(y) for
all x, y in E. Assume that the map S — R, x = b(x, x) has a local minimum at the element v i S.
Then v s an eigenvector of u whose eigenvalue b(v, v) ts the minimal eigenvalue of u.

Proof: — Set ¢(x) = b(x, x). We have ¢(+2) = ¢(v) + 2b(w, v) + O(w?) when w

[v4w|
goes to 0 in v+, As v is a local minimum of ¢, this shows b(w, v) = w - u(v) = 0 for all w

in v*. So v is an eigenvector of «. Denote by A be the corresponding eigenvalue. Assume
u has an eigenvalue A’ < A, and choose v" in S with u(v") = Av". We have b(v,v") =0
and ¢((1 —e)?v+ev) =1+ €*(V — 1) < Aforall 0 <€ < 1, a contradiction. O
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Example 2.7. — Assume r = 2 and set (,85((22-, ¢))1<ij<o = (Z f) We have Ay =a
and Ay = ¢. We may assume « and ¢ are > 0, otherwise Problem 2 is solved. For I =
{1, 2}, the eigenvalue A; is < 0 if and only if the determinant ac — 4” is < 0. In this case,
we have b # 0 and the eigenspace Ej;, is a line: we easily check that this line meets Dy if
and only if 4 < 0. Proposition 2.5 implies that assuming ac < 4* and b < 0, or equivalently
b+ y/ac < 0, we have ,uFQ < 0.

Lemma 2.8. — Fix a test function ¥ and a quadruple Q = (r, U, 8, m) as in (2.4.3). Assume
ME < 0, F(i/4m) > 0, as well as (U, 8;, m;) = (U, &;, mj) for some indices ¢ # j. Then any
element t in D with ,85 (t,H)= ,uFQ satisfies t; = 1.

Proof: — Set ¢(x) = ,85(96, x). Consider the set B = Uo§x<1 AD; then BUD is convex
and we have ¢(x) > [Llé for x € B. Fix t € D with ﬁg(;, )= ME- An inspection of Formula
(2.4.4) shows that for any real numbers s;, 5; we have

2 —_
(2.4.6) q(siei + 556 + Z t/e/> = —;sist(i/ﬁln) + (function of s; + s;).
I#1 ¢
The set
(2.4.7) {(sl-, 5520, si+5=b+4 S+ +Y 4 < 1}
I#i

is a compact interval in R? with end points (4, 4) and (4, ). By assumption we have
F(i/4m) > 0, and so the minimum of (2.4.6) on (2.4.7) is reached for 5; = 5, = (4, + ;) /2.
If we assume #; # ¢ then s;¢; + s5;¢; + > i e belongs to B, a contradiction. O

This lemma leads to the following considerations. Start with a quadruple Q =
(r, U, 8, m) with the property m; =1 for: =1, ..., r. Assume we have a partition

{1,...,r}:]_[Pl
=1

with the property that for each 1 </ <7/, and each ¢,j € P;, we have (U, §;) = (U}, §)).
Consider the new quadruple Q' = (v, U’, §', m') where for each 1 </ <7 we define U;
(resp. 8;) as the element U, (resp. 8;) with ¢ € P; (this does not depend on the choice of
such an ¢), and set m; = |P;|. We have a natural inclusion

o R — R

sending ¢ to \/Lm_l > icp, & for each 1 </ <. This embedding is an isometry for the stan-
dard Euclidean structures on both sides, and it follows from Formula (2.4.4) that we have
Bo(0 (%), p() = B (x,p) for all x,y € R’ and all test functions F. Lemma 2.8 shows
then (the inequality ,lLFQ < ,uFQ, being obvious):
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Corollary 2.9. — Let Q and Q' be as above, and fix a test function ¥ with ’F\(z /4m) > 0. We
have ,LLFQ < 0 tf and only if /LFQ, < 0, and if these inequalities hold we have /LFQ = /LFQ

Remark 2.10. — Assume we have two quadruples of the form Q = (r, U, §, m) and
Q' =(r,U,¥&,m) with 8! > §; for each 1 <¢ <r. Choose a test function F with f(O) > 0.
Then we have ﬂg, (x,) < ﬂg(x, ) for all x, y m R by Formula (2.4.4). This shows
o < g. In particular, ug, < 0 implies pg, < 0.

2.4.3. A digression on numerical evaluation. — Before discussing the natural algorithm
that follows from Propositions 2.5 and Corollary 2.9, let us discuss the numerical evalua-
tion of the bilinear form C¥. Given a test function F, we will have to be able to compute
with enough and certified precision the quantities

(2.4.8) F(0), FG/4mr) and Jp(U) forU=1landU=1, (w € Z).

It amounts to computing certain indefinite integrals. Numerical integration routines of
computer packages such as PART allow to compute approximations of such integrals,
with increasing and in principle arbitrarily large accuracy. Although these routines have
been very useful in our preliminary computations, and experimentally return highly ac-
curate values when properly used, it would be delicate to rigorously bound the differences
between these computed values and the exact ones. This is why we proceed differently.

In this paper, we only use Odlyzko’s function F = I, with parameter £ > 0. This is
the function defined by F,(x) = g(x/£)/cosh(x/2), where g : R — R is twice the convo-
lution square of the function x > cos(mwx)1,<1/9: see [Poi77b, Sect. 3] and [CL19, Sect.
9.3.17]. These functions satisfy (POS), E(i/4‘ﬂ) = %E, and Proposition 9.3.18 of [CL19]
provides alternative closed formulas for all the other quantities in (2.4.8) (see Proposition
4.4 for similar expressions). Each is a sum of a linear combination of a few special values of
the classical digamma function ¢ =TI""/T" and of its derivative ¥'(2) = > _, 1/(n+ 22,
and of a simple rapidly converging series with given tail estimates [CL19, (3) p.127].
Using these formulas and estimates, we implemented functions in Python using Sage
[ST14] to compute certified intervals containing the real numbers (2.4.8) for F = F,.
See [C'T'19b] for the source code. For interval arithmetic, Sage relies on the Arb library
http://arblib.org/. Our computations only use the four operations, the exponential and
logarithm functions, the constant 77, the function ¥ (acb_digamma in this library), and
its derivative (a special case of acb_polygamma).

Remark 2.11. — Fix an integer 0 < w < 23. For suitable £ > 0, the restriction of
B!t to K= is positive definite (see e.g. Lemma 9.3.37 and Proposition 9.3.40 in [CL19],
as well as [Chea]). By Corollary 2.3, it is important to be able to enumerate, for ¢ > 0,
all the (finitely many) effective elements U in K=¥ satisfying BY (U, U) < ¢. We use for
this the Fincke-Pohst algorithm enumerating the short vectors in a lattice. Using interval
arithmetic as explained above we can obtain rational lower bounds for the coefficients of
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the Gram matrix of B!, and since we are only interested in effective elements of K”
we can work with this rational Gram matrix instead. Unfortunately PART’s gfminim
does not (yet?) include an exact variant of the Fincke and Pohst algorithm for Gram ma-
trices with integral entries. For this reason we reimplemented the first (simple) algorithm
of Fincke-Pohst [FP85] using only exact computations, adding the condition of effectivity
in the recursion to avoid unnecessary computations. Of course in practice this algorithm
always leads to the same conclusions as PART’s gfminim algorithm, if the latter is prop-
erly used. See [CT19b] for our source code.

2.4.4. The algorithm. — The following algorithm tries to solve Problem 2 using the
method discussed in Sect. 2.4.2.

Input: A quadruple Q = (r, U, §, m) as in 2.4.3.

Output: (if the algorithm terminates) A triple (¢, I, ¢) with £ > 0, a non empty I C

{1,...,r},and t € R" with B5 (¢, 1) < 0.

Step 1. Choose a real number £ > 0 and compute an approximation (G;;)<; <,

of the Gram matrix (,Bg (¢, ¢))1<ij<r- We do this using the formulas (2.4.4)
of Sect. 2.4.2 and the expressions of [CL19] for the quantities (2.4.8) with
F =F, discussed in Sect. 2.4.3.

Step 2. Choose a nonempty subset I of {1, ..., 7} and compute an approximation

A1 of the minimal eigenvalue of the Gram matrix (G;); jer, as well as an ap-
proximate corresponding eigenvector (#);c1. For doing so, we apply PARI’s
afjacobi function to (G;;); jer (an implementation of Jacobi’s method).

Step 3. It we have Ay <0 and ; > 0 for all ¢ € I, return £, I and ¢ = (#),e1 and go

to Step 4. Otherwise, go back to Step 2 and change the subset 1. If all the
I have been tried, go back to Step 1 and change the parameter £.

Step 4. Check rigorously, using interval arithmetic as discussed in Sect. 2.4.3, that

we have indeed ,33 (¢, 1) < 0. Ifit fails go back to the second part of Step 3.

Let us comment this algorithm and discuss the unexplained choices involved:

The choice of £ in Step 1 is based on some preliminary experiments, and it
seems quite hard to guess a priori a range for the best ones. In our applications,
we will choose £ in [%, 15]N107%Z.

The loop consisting of Steps 2 and 3, for a given £, can be very long if 7 is
large, as there are 2" — 1 possibilities for I. In practice, we order the subsets I
by increasing cardinality, and often restrict to I of small cardinality. In practice
again, the eigenspace Ej ;, 1s just a line.

In practice, whenever we reached Step 4, the rigorous check with interval arith-
metic of the inequality ,83 (¢, 1) < 0 never failed. Thus single check is enough to prove
that x — ,35‘ (x, x) takes a negative value on S’;l. This 1s the most important remark
regarding this algorithm. In particular, we do not have to justify any of the com-
putations done in Steps 1, 2 and 3 before: all is fair in order to find a candidate
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(£, 1, 7). Of course, the experimental fact that the last check in Step 4 never fails
just reflects that the computations made with PART are highly accurate.

In the end, a charm of this algorithm is that even if the loop of Steps 1, 2 and 3
can be very long, once we get the candidate (€, I, £) we just have to store it, and then the
inequality ,33 (t, 1) < 0 can be rechecked instantly.

2.4.5. Fmnal algorithm. — For our applications in Sect. 2.4.6, Sect. 4 and Sect. 3.3,
it will be convenient to apply Algorithm 2.4.4 in the following slightly more restrictive
context.

Set up. — We fix U in K, 6 in {0, 1}, and an integer m > 1. We fix as well a known
set S of elements of I1,,, and our aim is to show that there does not exist distinct elements
iy enny T 0 Iy, NS with L((77)) o) = U and sd(7r;) > 6 for each 1 <7 < m. By “known”
we mean that we assume given L(zw,,) and ' sd(w) for all @ € S. We denote by S the
set of triples (U, §', m’) in K x {0, 1} X Z-, such that there are exactly m’ elements @
in S with (L(wy), sd(w)) = (U, §).

Algorithm. — Set r = 1 4 |S|. Assuming |S| > 1 it is convenient to choose a bijection
(2.4.9) S > {2,...,7}
and write S = {(U;, §;, m;) | 2 <1 <r}. Set also (Uy, 8;,m;) = (U, §, m). This defines a
quadruple Q = (r, U, §, m). We now apply Algorithm 2.4.4 to Q. In Step 2 we obviously

may, and do, restrict to subsets I containing 1, z.e. of the form I = {1}[[S with S’ C S,
via the identification (2.4.9).

Output. — When this algorithm terminates, it produces (¢,1,#) such that

,Bg(;,g) <0.Yorj=2,...,m, set x; = \/Lm_j > @, the sum being over the @ € S with
(), (@) = (U}, §;). Assume there are distinct elements m, ..., 7w, in I, 'S

with L((;)e) = U and sd(mr;) > § for each 1 < i < m. Then foy the element x =
tlﬁ(m + -4+, + Z;:Q tix; of RIl,, we have CFe(x, x) < ,85 (t, 1) <0 (see Re-
mark 2.10 for the first inequality), contradicting Proposition 2.2.

Remark 2.12. — In the case S = #J, this method just amounts to applying Corollary
2.3. In the case |S| = 1, it amounts to applying Scholium 9.3.26 of [CL19], by the dis-
cussion of Example 2.7. The case of arbitrary |S| can thus be viewed as a generalisation
of these criteria loc. cit. See [C'T19b] for our source code in PART of the algorithm above.

10 Let us mention that, at present, the authors are not aware of the existence of any non self-dual element in T,, so
in practice will always actually have sd(z) =1 for & in 8.
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2.4.6. An ilustration. — Algorithm 2.4.5 can be used to give another proof of the
Chenevier-Lannes classification theorem [CL19, Thm. 9.3.3] mentioned in Sect. 1.3 of
the introduction, which is both very fast (a few seconds of computations) and systematic.
Although this alternative proof shares many steps with the one /loc. cit., it bypasses the ge-
ometric criterion involving Satake parameters explained in Sect. 9.3.29 therein (and does
not rely at all on any computation of Satake parameters of known elements in IT,,). Such
an improvement, although not decisive here, will be crucial in the proof of Theorem 3,
because at present we only know rather few Satake parameters for the known elements
of IT,, of dimension > 3 (see however [BFvdG17] and [Mégl8]).

For the convenience of the reader, and in order to illustrate our new method, let us
now explain the aforementioned proof of [CL19, Thm. 9.3.3] in the most complicated
case of motivic weight 22. So we want to prove that there is a unique 7 in IT,, of motivic
weight 22, namely 7 = Sym®A |, (for which we have L(1,) = Iy, + ¢ R). We refer to
the working sheet in [C'T'19b] for the numerical verifications used below.

Step 1. — We first observe that B is positive definite on the lattice K=** for £ =
4.38 (Lemma [CL19, 9.3.37]). Using the PART gfminim command, or better Remark
2.11, we may and do list all the effective elements U in K=** satisfying

B (U, U) < F,(i/4m)

for £ = 4.38. We retain furthermore only those satisfying detU = | and containing Iy.
The resulting list I/ has 158 elements. If 7 in IT,;, has motivic weight 22, then L(7y) is
in U by Corollary 2.3. We will study each of these 158 possibilities for L(7,) mostly case
by case.

Step 2. — Denote by N(U) be the number of elements 7 in IT,, with L() =
We want to bound N(U) for each U in i/ by applying Inequahty (2.4.2) of Corollary 2. 3
For this we check that for all U in U we have BF‘ (U,0) > F ¢(1/4m), unless U belongs
to the subset U’ = {1y + 19, oo + L0, Ino + Ig}, in which case we only have BY (U, U) >
ng (i/4m) (here £ is still 4.38). This shows N(U) <1 for Uin U ~\U’', and N(U) <2 for
U nl'.

Step 3. — Fix U in U'. We want to show N(U) < 1. Assume N(U) = 2, ze
that there exist distinct 7y, 79 in Iy, with L((7))s) = L((712)o) = U. We apply
Algorithm 2.4.5 to U, § =0 (see Remark 2.10), m = 2 and to the known set S =
{1, A, As, Ay, Aqg, Ay, SmeA”}. For U =1y + I} and £ = 3.5 it returns for in-

stance an element close to

1

/2
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We verify (using interval arithmetic, see Sect. 2.4.3) that we have G (x, x) >~ —0.173
up to 107%: this contradicts Proposition 2.2. The algorithm produces a similar element
x in the case U = Iy + 1o, with (0.924, 0.383) replaced by (0.900, 0.436), and we
have then CF(x, x) >~ —0.198 up to 107>, Nevertheless, it does not seem to produce
any contradiction in the remaining case U = Iy 4 Ig, even if we let £ vary. To deal
with this last U we add to S the known element Ay, ¢ of I1,,, whose Archimedean L-
parameter is Iy; + Iy (which is “close” to U). The algorithm returns for £ = 3.5 the ele-
ment x ;= 0.942%(7‘[1 +719) +0.335A9; ¢ and we verify that we have G (x, x) >~ —0.147
up to 107, which is indeed < 0.

Step 4. — We have proved so far N(U) <1 for all U € Y. In particular, any 7 in
[T, with L(rr) € U is self-dual. Fix U in /. We now apply Algorithm 2.4.5 to U, § =1,
m =1 and to the same set S as above (with |S| < 7). Using the nine ¢ in [3, 5] N iZ, it
yields a contradiction in each case! Actually, if we restrict to subsets S" C S with |S'| =1
in Step 2 of the algorithm (in other words, if we only apply the Scholium of [CL19]
mentioned in Remark 2.12) we already get a contradiction for all but the 7 elements U
mentioned in Table 1. These remaining cases were exactly the ones dealt with using the
geometric criterion involving Satake parameters explained in [CL19, §9.3.29]. In these
7 cases, our algorithm produces contradictions for subsets S’ of size 2, such as the ones
gathered in Table 1. This concludes the proof. [l

2.4.7. Another illustration: a strengthening of a vanishing result in [CodG18]. — As another
example, let us show that for all odd 1 < w < 53, there is no cuspidal selfdual algebraic
level 1 automorphic representation 7w of PGL, with L(w) =1,, + 1,,. We apply for this
Algorithm 2.4.5 to U=21,, § =m =1 and to the set S of dimS,,;(SLy(Z)) cuspidal
automorphic representations generated by level 1 cuspidal eigenforms for SLy(Z). Note
that we have |S| =0 for w =13 and w < 11, and |S| = 1 otherwise. We obtain a contra-
diction in each case using S’ =S and £ = 5. This shows S, 9)(I'y) = 0 for all £; < 54 by
[CvdG18, Lemma A.2].

TaBLE 1. — Some elements x with L((77})s) = U and C'¢ (x, x) < 0 for £ =4

U x C" (x, x) up to 1073
I+ 16+ 1 0.625 7, +0.611 A9+ 0.485 Sym? A, —0.427
Iy + 1 0.640 r; +0.582 A5 +0.502 Ay —0.511
Ipo + 1o +1 0.709 7, +0.432 Ay, +0.558 Ay —0.204
Iy + Iy + 11 + €g/r 0.636 7, +0.393 A9+ 0.664 Sym? A, —0.037
Iy + Lis + Lo + €g/r 0.701 71, 4+ 0.531 A9+ 0.476 Sym? A, —0.246
In +14 0.630 7, 4+ 0.608 A}; + 0.483 Sym? A, —0.204

Lo + 1o + 11y + 14 0.696 7, +0.297 1 + 0.654 Ay, —0.047
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3. Effortless computation of masses in the trace formula

Let G be a split classical group over Z such that G(R) admits discrete series. In
other words, G belongs to one of the three families

(SOQn—H)nzl’ (SPQn)nzl and (So4iz)nzl

In this section, we explain how to implement the strategy explained in Sect. 1.4 in order to
determine the masses m, for ¢ € C(G). In Sect. 3.1, we first make elementary observations
that will allow us to replace C(G) by a concrete set P(G)/ ~ of equivalence classes of
polynomials, and to rewrite the elliptic terms accordingly. In Sect. 3.2, we define an
explicit subset of C(G) containing all conjugacy classes ¢ such that m, # 0. Using spinor
norms considerations we will show that this subset is significantly smaller than C(G) in
the case of special orthogonal groups. In the last Sect. 3.3, we finally prove Theorems 6
and 7, by discussing how to produce sets A of dominant weights satisfying a variant of
conditions (P1) and (P2) alluded to in Sect. 1.4.

3.1. Conjugacy classes and characteristic polynomuals: elementary observations. — Let G be
one of SOy,11, Sp,, or SO4,. We shall denote by ng the dimension of the standard (or
tautological) representation of G, so ng is respectively 2n + 1, 2n or 4n. (Do not confuse
ng with the integer ng introduced in Sect. 1.4).

The indexing set for the sum defining the elliptic part T (G; 1) of the geometric
side in Arthur’s L.>-Lefschetz trace formula [Art89] recalled in (1.4.3), is the set of conju-
gacy classes of semi-simple elements y € G(Q) which are R-elliptic (i.e. y belongs to an
anisotropic maximal torus of Gg, in particular the eigenvalues of y have absolute value
1) and such that the conjugacy class of y in G(A;) meets the compact support of the
smooth function we put in the trace formula, in our case the characteristic function of
G(Z). In particular, the characteristic polynomial P,, of such a y, a monic polynomial of
degree ng in QJX], belongs to Z[X] and has all its complex roots of absolute value 1.
Using a celebrated theorem of Kronecker, these conditions imply that the roots of P,
are roots of unity, hence that the semi-simple element y has finite order. This explains
the discussion of Formula (1.4.3) in Sect. 1.4, and the indexing set C(G) of finite order
elements of G(Q) taken up to conjugacy by G(Q) in the sum (1.4.5).

Definition 3.1. — Let P(G) be the set of polynomials P in QIX] having degree ng, which
are products of cyclotomic polynomials and in which X 41 has even multiplicity (or equivalently, with
P(0) = (=1)").

If ¢ is a class in C(G), then all the elements y € ¢ have the same P,, and we will
denote by P, this polynomial. It is an element of P(G) by the above discussion. We have
thus defined a map

(3.1.1) char : C(G) »> P(G), ¢+ P.
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It is well-known that if two semi-simple conjugacy classes ¢, ¢; in the classical group
G(Q) have the same characteristic polynomial P, then they are equal, except in the case
G =S0y,, P(=1)P(1) # 0 and ¢, and ¢, are conjugate under O4n(§)/SO4n(@ ~7Z/27Z.
In particular, for P € P(G) the fiber' char™'(P) has at most 1 element if G # SO, or
P(=1)P(1) =0, and O or 2 elements otherwise. The following elementary lemma (see
[Tarl7, Remark 3.2.11]) shows that this latter case does not create complications:

Lemma 3.2. — For G = SOy, and ¢, ¢ € C(G) with P, = P,, we have m, = m,.
Thus we may write

Ta(G; 1) = ) mptr(P;2)
)

PeP(G
with
m, if there is ¢ € C(G) with char(¢) =P
mp =
' 0  if P does not belong to char(C(G))
and
tr(c| V. if G # SOy, or P(1)P(—1) =0
(P 1) = (c|Vi) # SO, (DP(=1)
tr(c| Vy) +tr(d' | Vy) otherwise

with char™'(P) = {¢} in the first case and char™'(P) = {¢, ¢} in the second case. This also
implies Ty (SOy,; 0(A)) = Ten(SOy,; A) where 6 is the non-trivial outer automorphism
of SOy, induced by Oy4,(Z)/SOy4,(Z) = Z/2Z. This invariance is fortunate also because
Koike and Terada’s simple (and most importantly very effective for small weights) for-
mulas [K'T87] for traces in algebraic representations apply to irreducible representations
of symplectic and orthogonal (rather than special orthogonal) groups. Equivalently, their
formula gives tr(P; 1) in terms of P, but not tr(¢| V,) in the second case above if 0 (1) # A.

There is another obvious invariance property of masses. For G = SOy, or Sp,,, the
element —1 of G(Z) is in the center of G, and ¢ > —¢ preserves C(G). Formula (1.4.4)
thus shows:

Lemma 3.3. — For G = SOy, or Spy,, and ¢ € C(G), we have m_, = m,.

For G and ¢ as above, we have P_ (X) = (=1)%e?P (=X), tr(P_;; A) = A(—=Dtr(P; 1),
as well as mp. = mp__ by the lemma. A consequence is that T;(G; A) = 0 if the restriction

! Beware that the map char is not surjective in general. For instance, Corollary 3.6 shows that for any prime
p=1mod 4, there is no order p element in SO,_;(Q), as ®,(1)®,(—1) = p is not a square.
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TaBLE 2. — Size of P(G) modulo the equivalence relation ~, for G =Sp,, and 1 <g<8

G Sp, Sp, Spg Spy Spo Spiy Spy, Spig
|P(G)/ ~| 3 12 32 92 219 530 1157 2521

of A to the center Z(G) of G is non-trivial.'? Define the following equivalence relation on
P(G): Py ~ Py if Py =Py or Py(X) = (—1)"¢P,(—X). Assuming A7) = 1 we may thus
finally write

(3.1.2) Ta(GiA) = > epmptr(P; )
PeP(G)/~

where ep € {1, 2} denotes the size of the equivalence class of P.

To sum up, for the purpose of implementing our strategy introduced in Sect. 1.4 we
can replace the indexing set C(G) by P(G)/ ~, which is computable, and we may as well
restrict to dominant weights A such that A|z) = 1, and even to a set of representatives for
the orbits under {1, 6} in the even orthogonal case. See Table 2 for the size of P(Sp, )/~
for1 <g<8.

3.2. Conjugacy classes and characteristic polynomials i the orthogonal case: spinor norms. —
As announced in Remark 1.1, it turns out that in the orthogonal cases we can further re-
duce the set parameterizing conjugacy classes. Let Co(G) C C(G) be the subset of equiv-
alence classes containing a finite order element in G(Q) whose G(Ay)-conjugacy class
meets G(Z). In particular Cy(G) contains the set of ¢ € C(G) such that m, # 0. A priori
it may happen that Cy(G) is smaller than C(G). Using the analysis in [Tail7, §3.2.2]
and Jacobson’s hermitian analogue of the Hasse-Minkowski theorem [Jac40], one can
argue that Cy(Sp,,) = C(Sp,,) for any n > 1. Since this fact is rather unfortunate for our
strategy, we leave the details to the interested reader.

We now focus on special orthogonal groups. Proposition 3.7 below gives an explicit
subset P1(G) of P(G) such that its preimage C,(G) C C(G) under the map char (3.1.1)
contains Cy(G). In contrast with the symplectic case we will see that C,(G) € C(G) in
general, owing to the fact that special orthogonal groups are not simply connected.

Remark 3.4. — The second author had already observed that there was such a
restriction on classes ¢ satisfying m, # 0 in [Tarl 7, Remark 3.2.8], unfortunately without
giving details or proofs ...He was also unaware of related previous work of Gross and
McMullen: [GMO02, Theorem 6.1] is similar to Proposition 3.7. Unfortunately we could
not deduce Proposition 3.7 from the results of [GMO02], so we give a slightly different
proof below, relying on the Zassenhaus formula for spinor norms.

12 From the perspective of the strategy discussed in Sect. 1.4, this vanishing is in agreement with the vanishing of
N+ (w(A)) for all dominant weights A of Sp,, or SOy, such that A(—1) = —1, which is a consequence of the property
€(m) = e(L(m)) =1 for orthogonal 7 in I,,: see [Artl13, Thm. 1.5.3] and [CR15, Prop. 1.8].
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Let R be a commutative ring, V a projective R-module of finite constant rank
n and ¢ : V — R a quadratic form. We say that ¢ is non-degenerate if the associated R-
bilinear form B,(x,») = ¢(x + ) — ¢(x) — ¢(») is a perfect pairing on V. We say that
q 1s regular if either ¢ 13 non-degenerate, or n 1s odd and Zariski-locally on R the half-
discriminant of ¢ is invertible: see [Knu91, Ch. IV §3] (who rather uses the terminology
semi-regular in this case). When V is a free R-module and ¢ is non-degenerate, we denote
by disc(g) € R*/R*? the class of the determinant of a Gram matrix of 8,, where R**
denotes the subgroups of squares in R*.

First we recall a few definitions from [Conl4, Appendix C] or [Knu9l, Ch.
IV]. Assume n > 3 and ¢ regular. Associated to (V, ¢) are (reductive) group schemes
Spin(V, ¢) C GSpin(V, ¢) and SO(V, ¢) over R. The group GSpin(V, ¢) is the group
of even degree invertible elements in the Clifford algebra C(V, ¢) which stabilize the
submodule V C C(V, ¢) under conjugation. This conjugation action gives a morphism
7 : GSpin(V, ¢) — SO(V, ¢), with kernel the central GL,; (invertible scalars in the Clif-
ford algebra). See e.g. Propositions C.2.8 and C.4.6 of [Conl4] for these properties and
the fact that 7 factors through the special orthogonal group. The Clifford norm morphism
v : GSpin(V, ¢) = GL, is defined in (C.4.2) and (C.4.4) loc. cit. The restriction of v to the
central GL,; is £ +> 2. The group Spin(V, ¢) can be defined as the kernel of the Clifford
norm: see the proof of Lemma C.4.1 loc. cit. for the case n even and the proof of Propo-
sition C.4.10 loc. cit. and the paragraph following it for the case n odd. We have [Knu91,
(6.2.3) p.231] an exact sequence of sheaves in groups on the Zariski site of R

(3.2.1) 1 - GL; — GSpin(V, ¢) = SOV, ¢) — 1,
and thus an exact sequence of sheaves in groups on the fppf site of R
1 — w9 — Spin(V, ¢) = SOV, ¢) — 1.

The (not so) long exact sequence in cohomology associated to the second short exact se-
quence above gives the spinor norm sn : SO(V, ¢) — H}ppf(R, o). If Pic(R) = 1, which
will always be the case in this paper, the fppfexact sequence | = 9 - GL; = GL; — 1
gives the isomorphism H}ppf(R, o) =~ R*/R*? and we will implicitly consider the spinor
norm in this last group. The spinor norm of y € SO(V, ¢)(R) is then represented by v(y)
where y € GSpin(V, ¢)(R) 1s any lift of y; such a lift exists by (3.2.1) and Pic(R) = 1. The
spinor norm is additive: if (V, ¢) = (Vi, ¢1) L (Vo, ¢2), v, € SOV, ¢)(R) for 1 =1, 2,
and if we set y = y; X y» € SO(V, ¢)(R), then we have sny =sny; X snys.

Theorem 3.5 (assenhaus). — Let k be a field of characteristic different from 2. Let V be a finite-
dimensional vector space over k, endowed with a non-degenerate quadratic form q. Let y € SO(V, ¢) (k)
and write the characteristic polynomial of y as (X — 1)*(X + D?*Q(X) with Q(1)Q(—1) # 0.
Then the spinor norm sny of y is represented by disc(q| ker (y + 1)*)Q(—1) in k* /2.
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Recall that our convention for disc(g) was given after Remark 3.4.

Proof: — This i1s just a reformulation of the main theorem of [Zas62]. Here is a
short argument for the convenience of the reader. Using the orthogonal decomposition
V =ker(y — 1) Lker(y + 1)** L ker Q(y), and the additivity of spinor norms, we may
assume ¢ = 0, so dimV = 0 mod 2, and either Q =1 or 6 = 0. In the case Q =1, we
have sn y = sn(—idy) as unipotent elements are squares, and we conclude by the classical
formula sn(—idy) = 29™Vdisc(g) (that could be proved using an orthogonal basis of V).
The arguments so far have used that the characteristic of £ is # 2, but the following ones
will not.

Assume b =0, write Q(X) = [[_L, X — H)(X — L‘;l) in k[X], and choose y €
GSpin(V, ¢) (k) alift of y. Write y = du = ud its Jordan decomposition in GSpin(V, ¢) k),
with d semi-simple and « unipotent. There is a decomposition V®; k=P, L --- L P,,
where each P; is a d-stable hyperbolic plane on which the two eigenvalues of d are £-'.
Using the natural isomorphism between C(V, ¢) ®; & and the graded tensor product of
the Clifford algebras of the P; (see e.g. [Knu91, IV. Prop. 1.3.1]) we easily sees that there is
apair (s, A) in & x k" suchthat: s2 =1 ..., the Clifford norm of ¢ (or equivalently, of )
is A2, and the trace of d (or equivalently, of ) in the spin representation of GSpin(V, ¢) (k)
is AsJ]_,(1 + £ ). The spinor norm of y is thus represented by A? € k<. Note that
although the spin representation may not be defined over £, its trace is. Indeed, this
representation is defined as the tautological morphism GSpin(V, ¢)(k) C C(V, ¢)* and
C(V, ¢) is a central simple algebra over £, whose reduced trace is £-valued. Since we have
1+ ¢ " %0 for each i as Q(—1) # 0, the spinor norm of y is represented by s> [T, 1+
=TT, 6+ 2 =TT (L (L4 7)) = (=D Q(-1). 0

We deduce the following discriminant formula, which can also be proved directly
(see [GMO2, Proposition A.3]).

Corollary 3.6. — Under the same assumptions, assume moreover that a = b = 0. Then

disc(q) € kX /k*? is represented by Q(1)Q(—1).

Progf: — The assumption ¢ = 0 implies dimV = 0 mod 2, hence —idy €
SO(V, ¢)(k). The discriminant of ¢ is thus the spinor norm of —Idy, or equivalently
of y (—y) since sn(y)* = 1. We conclude by applying the theorem to ¥ and —y. 0

Proposition 3.7. — Let V be a free Z-module of rank n endowed with a regular quadratic form
7, G=SO0(V, q), and P(X) = (X — )X+ 1)**Q(X) a monic polynomial of degree n in Q[X]
with Q(1)Q(—1) % 0. Assume that for every prime p there exists v, € G(Z,) having characteristic
polynomial P. If b =0 then the integer |Q(—1)| us square, and if a = O then the integer |Q(1)| s a
square.

Note that the existence of y, for all primes p implies that Q) has integer coefficients.
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TasLE 3. — Sizes of P(G) and P, (G) modulo the equivalence relation ~, for G =S0O,, and 1 <m <17, m# 2 mod 4

G SO; SO, SO; SO, SOz SO, SO, SO, SO SO SO SOy
PG/ ~| 5 12 19 59 92 165 419 530 1001 2257 2521 4877
PG/ ~| 3 6 12 34 40 99 244 211 598 1339 992 2948

Progf. — Fix a prime p. Since y, € G(Z,) and PicZ, = 1 the element y, can be
lifted to an element of GSpin(V, ¢)(Z,) by (3.2.1), so the spinor norm of y, lies in the
image of Z, in Q/Q . Together with Theorem 3.5, this implies that

disc(q| ker(y, + 1)2/7) x Q(—1) € Q;/Q;,z

lies as well in the image of Z*. Assuming b = 0, it follows that the integer Q(—1) has an
even valuation at each prime p, so [Q(—1)| is a square. Assume now a = 0. In particular, n
is even and we have disc(g) € Z*. By Corollary 3.6 applied to the orthogonal of ker(y, +
D*in V® Q,, we have disc(g) x disc(q| ker(y, + D#)=Q(—1)Q(1) in Q;/Q;’Q, or

equivalently:

disc(q) x disc(q] ker(y, + D) x Q(=1) =Q(1) mod Q*

But we have seen that the left-hand side is in the image of Z). So the integer Q(1) has
an even valuation at each prime p, and |Q(1)] is a square. UJ

Definition 3.8. — For G = SOq,41 0r SOy, let Py(G) be the subset of P(G) consisting
of all polynomials of the form (X — 1) (X + 1)**Q(X), where Q(X) is a product of cyclotomic
polynomuals @, with m > 3, which satisfy

o b > 0 if the positive integer Q(—1) is not a square, and
o a> 0 if the positive integer Q(1) s not a square.

For G = Sp,, denote P\ (G) = P(G) (Definition 3.1).
The positive integers ®,,(£1) for m > 3 may be computed inductively in terms of

the prime decomposition of m: see [GMO02, Theorem 7.1]. In terms of the notation mp
defined in Sect. 3.1, Proposition 3.7 asserts:

Corollary 3.9. — If P € P(G) satisfies mp # 0, then we have P € P, (G).

This constraint is very useful, particularly in the even case, as Table 3 shows. In
practice, we will see that it is almost sharp: see Remark 3.10. Observe that P, (G) is stable
under the equivalence relation ~ introduced in the end of Sect. 3.1.
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3.3. Non-exustence of level one regular algebraic automorphic cuspidal representations. — In
this paragraph, we prove Theorems 6 and 7 of the introduction. To implement the strat-
egy explained in Sect. 1.4, taking into account the reduced Formula (3.1.2) and Corollary
3.9, it remains to actually produce, for as many “small rank” groups G as possible in the
families (SO9,41),>1, (Spy,)n=1 and (SOy,),>1, sets A of dominant weights for G satisfying
the following properties:

(P1°) Yor all A € A we have A7) =1 and Nt (w(hr)) =0.
(P2’) For P ="P(G)/ ~, the A x P matrix (ep tr(P; A))sca pep has rank |P].

Of course (P2’) implies |A| > |P]| so our aim is roughly to produce as many dominant
weights satisfying (P1°) as possible. See also Footnote 12 for an important remark regard-
ing the condition on Az, in (P1’).

Notations. — For w > 0 an integer we denote by Ag(w) the (finite) set of all dom-
inant weights A of G such that: 2w(X); < w, Az =1, as well as A,, > 0 in the case
G = SOy, For a dominant weight A of G, there is a unique effective element U(A) € K,
with det U(A) = | and such that the multi-set of weights of U(A) (as defined in Sect. 2.1)
coincides with w(A) (viewed of course as the multi-set {w(X);| 1 <7 < ng}). The repre-
sentation U(A) is multiplicity free, and for any 7 € Il,, having weights w(A) we have
L) =UR).

In order to produce A we will first use the inequality (2.4.1) in Corollary 2.3.
We choose w big enough, and for every A € Ag(w), and for all parameters £ € iZ N
[1/2,20], we compute ﬁ(z’/47r) — B (U(A), U(X)). Whenever we find a negative value
(certified using interval arithmetic as explained in Sect. 2.4.3), we know that N*(w()) =
0 by Corollary 2.3 and thus we add A to A. In other words, we choose

Al ::{AeAc(w) ‘ 3t € Z001/2,201, Fytif4m) < B (UG, UW)}’

for the set A. For our purpose this simple method is already very effective. Table 4 displays
all groups for which it works, z.e. for which, using the given w, the set AS™ satisfies the
rank condition (P2").

See [CT19b] for the Sage program which checks that each set A in the table
satisfies (P1°) (using Corollary 2.3 and interval arithmetic) and inductively computes, for
each group G appearing in the table:

(1) all masses (mp)pep, (),
(2) Ta(G; 1), EP(G; &) and N*(w (1)) for all dominant weights A in any desired
range (only limited by computer memory).

Note that we obtain in particular, independently of the computation of masses in
[CR15] and [Tail7], the existence of 27 self-dual elements of I1,, having regular weights
and motivic weight < 24. In Sect. 4 we will prove that there is no other such element in
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TasLE 4. — Integers w such that the set AYS™ satisfies the rank
condition (P2’) with respect to G

G PG/~ [AL" w
SO, 3 3 5
Sp, 3 4 14
SO, 12 44 23
SO, 6 30 26
Sp, 12 28 28
SO, 34 183 27
Spe 32 97 28
SO, 99 498 27
SO, 40 335 28
Spy 92 255 28
SOy, 244 923 27
Spuo 219 446 28
SOy, 598 1294 27
SO, 211 1061 28
Py 530 597 28
SOy; 1339 1924 35

IT,,. The only case which was obtained in [Tail 7] and that we cannot recover using this
much simpler method is Sp,,. The case of SO,5 is new. For G = Sp,,, considering all
dominant weights A in A;(90), we only find a set Ag;' of cardinality 974, whereas we
have |P;(Sp,,)/ ~ | = 1157. Higher motivic weights do not seem to provide any new
non-existence results. Similarly this method does not allow us to conclude either in the
case of SOy;.

To go further we use the algorithm explained in Sect. 2.4.5 to find larger sets A
satisfying (P1°). More precisely, for a large enough w and each dominant weight A €
Ac(w) we applied this algorithm with U =U(L), § = 1, m = | and taking for S the set"”
of 27 known elements of I,,, having motivic weight < 24 found above. As before we try
various £ € iZ N[1/2,20]. Using this refined method we obtain the following three new
cases:

e For G =Sp,, we have |P(G)/ ~ | = 1157 and we found a subset A C A;(36)
of cardinality 1274 satistying (P1°) and (P2’).

e The case G = SOy is easier: we have [P;(G)/ ~ | =992 and we found a subset
A C Ai(28) of cardinality 1810 satisfying (P1°) and (P2’).

o For G = SO;; we have |P;(G)| = 2948 and we found a subset A C Ag(63) of
cardinality 3477 satisfying (P1°) and (P2’). (Restricting to Ag(61) is not enough,
as it yields a set of dominant weights of cardinality 3461 which does not satisfy
(P2).

13 We actually have |S| = 26, explained by the equality dim Sy3(SLy(Z)) = 2.
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Again our program checking rigorously that these sets satisfy (P1°) and the inductive
computation of masses and of the numbers N*(w(1)) can be found at [CT19b]. This
concludes the proof of Theorem 6.

Remark 3.10. — Let G be as in Theorem 6. An inspection of the masses found
above shows mp 7% 0 for all P € P(G), except for 6 polynomials P in the case G =
SO,3, and 6 others in the case G = SO;. This shows that the spinor norms constraints
established in Sect. 3.2 are almost sharp.

This second method only gives us these three additional cases for which we can
compute all masses by solving a linear system. For example the set P, (Sp,,)/ ~ has 2521
elements, but we are not even close to producing A’s with enough elements: we were
only able to produce a subset A C Asg,  (116) having 1427 elements satisfying (P1°). To
overcome this scarcity of dominant weights satistying (P1°), we computed a lot of masses
for Sp 4, namely for all P in a certain subset P(Sp ¢)easy of P(Sp,4), using the method of
[Tail7], i.e. by computing orbital integrals directly, and then we computed the remaining
ones by solving a linear system.

To describe the set P(Sp,)easy explicitly, for P € P(Sp,) and p a prime write

SR

m  keS(p,m)

where the first product is over all integers m coprime to p, S(p, m) C Z~, and d(p, m, k) >
1. Then P € P(Sp,4)easy if and only if for any prime number p and any m coprime to p
we have [S(p, m)| <2 and

0 € S(p, m) if p > 2 and |S(p, m)| = 2,
0€S(p,m)or 1 €Sp,m) ifp=2and|S(p, m)|=2.

For such a polynomial P the computation using the method explained loc. cit. of the or-
bital integrals (1.4.4) occurring in the mass mp is purely a combinatorial matter and does
not require any bilinear algebra. To be more precise, in general computing an orbital
integral using the method /loc. ¢it. involves enumerating totally isotropic subspaces stable
under a given unipotent automorphism y in (possibly degenerate) symplectic or hermi-
tian spaces (V, (-, -)) over a finite field, enumerating isomorphisms between such triples
(V, (-,+), ), and/or computing the complete invariants attached by Wall [Wal63] to iso-
morphism classes of such triples with (-, -) non-degenerate; we restrict to cases where no
such computation is necessary. Although these easier cases have the obvious benefit of
being much easier to implement, the second advantage here is that these orbital integrals
are computed (by a computer) in a matter of seconds. In contrast, there are relevant or-
bital integrals for Sp , for which the implementation of [Tail7] does not terminate in
reasonable time.
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Denoting P(Sp5) = P(Sp;6)easy L P(Sp;g)naras we have |P(Sp,g)nara/ ~ | = 766.
We found a subset of dominant weights A C Ag(36) for G = Sp,, of cardinality 1086
satisfying (P1°) and the analogue of (P2°) for P(Sp,¢)hara- This concludes the proof of
Theorem 7.

4. Classification results in motivic weights 23 and 24

This section is in the natural continuation of Sect. 2, of which we shall use freely
the notations. We have decided to postpone it here because, in a few places, we will use
below existence or inexistence results of certain self-dual regular elements of T1,,, results
which have been proved in Sect. 3.

4.1. Motivic weight 23. — We now prove Theorem 3 along with the following sup-
plementary result.

Proposition 4.1. — Let U be an effective element of KZ** containing 1ys with multiplicity > 2.
Let T be the subset of elements 7t in T, with L(7ws) = U.

(1) IfI'T| = 2 then we have U =1, + 1; + 115 + 117 + Loy + 213 and T = {m, 7'} for
some non-self-dual 7 .
(2) If T ={m} then U belongs to an explicit set of 181 elements and 1 s of symplectic type.

The set of 181 possible U mentioned above can be found in [CT19b]. They all
satisfy 14 <dim U < 42.

Progf: — [Proof of Theorem 3 and Proposition 4.1] For £ = 9.74 the restriction of
the symmetric bilinear form F/‘\@(i/ 47)"'BL to KZ* is positive definite. As explained in
Remark 2.11, using interval arithmetic we obtain rational lower bounds (we take them in
107°Z) for the coefficients of its Gram matrix in the basis I, . . ., Ir3. Applying the Fincke-
Pohst algorithm, we obtain the set U of all 265 effective elements U in K(fo% containing
I3 and satisfying BL: (U, U) < E(l. /4m)/2. By Corollary 2.3, U, contains all the elements
U such that there exist two distinct elements 7y, 79 in I1
L((71)s0) = L((72)os) = U.

For each U in Uy, we systematically applied Algorithm 2.4.5 to U, 6 =0, m =2
and to the set S of 27 known elements of I, having motivic weight < 24, and various £.
For all but one U, namely the one of assertion (1), it led to a contradiction with Inequality
(2.3.7). Let us be more precise about the choices of £ and of the subset S’ C S that we can
make a posterior: in order to reach these contradictions more quickly (see also the source
code [CT19b] for a working sheet). We first replace for the rest of the proof the 8 above by
its subset whose elements have motivic weight < 23. We now have |S| =24 and |S| = 23.
If we apply Algorithm 2.4.5 with all £ in [3, 12] N Z and all subsets S’ C S with 1 < |S| <

alg of motivic weight 23 and with
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2, we obtain in a few seconds (on a personal computer) a contradiction for all but 12
elements of Us. Using then all £ in [7,9.5] N éZ and all S’ C S with 3 < |S'| < 4 for those
12 elements, the algorithm finds again in a few seconds a contradiction in all but 6 cases.
Two of these six are eliminated in about a minute using £ = 11 and all the 33649 subsets
S with [S'| = 5. The remaining 4 elements have the form U = U’ 4 Iy, + 2Iy3 with U’ in
the following list: I +1; + 1,54+ 1,7, I, + I + 1o+ 1) + 115+ 17+ Lig, I + 1 + 1 + 115 + 1o,
L+L+15+1;. In the case U' = L+, +1; + 15+ 1,9 we use £ = 8.75 and all the
100947 subsets S" with |S'| = 6. To give an example, the algorithm produces in about 2
minutes a linear combination close to

1
x= 0.860—2(m + 1m5) +0.0834 1 4 0.150 Ay, +0.108 A5

%

40.335 Ajgs +0.172 Ags 7 + 0.280 Ay 157

with C¥7 (x, x) = —0.0023 up to 107*. In the case U' =1, + I3 + Lo+ I}, + 115+ 117 + Ly,
we use similarly £ = 11.75 and |S'| = 6. The case U =15 4+ I; 4+ 1,5 + 1,7 is quite harder
to discard. After many tries, we found a contradiction using £ = 10.25 and a certain 11
element subset S" of S: see the source code in [C'T19b] for the details. So far, we have
thus proved the following:

(@) For any U # I, +1; +I;5 4+ I;; + Iy + 2 Iy; there is at most one element 7 of
[T, with motivic weight 23 and L(7,,) = U. In particular any such 7 is self-dual.

Despite our efforts, we could not find a contradiction in the case of tl}g last element
U= I] + I7 + 113 + 117 + IQ] + 2 123. We have however Bgé(U, U) > F((l/‘l’f[)/g for
¢ =9.74. By Corollary 2.3, this shows:

(b) For U =1, +1I; + I;3 + I;; + Iy; + 2 Iy, there are at most 2 elements 7 of I,
of motivic weight 23 and with L(m,) = U.

Note that we have proved assertion (/) except for the non self-duality assertion.
To go further, we determine the set of effective elements U in K5* containing Iy; and
satisfying B¢ (U, U) < F.G /4m) for £ = 9.74. For this we proceed as in the first paragraph
of the proof and obtain an explicit set U, with 12230 elements. By Corollary 2.3, U,
contains all the elements U such that there exists 7 in Il,, of motivic weight 23 with
L(ms) = U. For each U in U, we applied Algorithm 2.4.5 to U, § = | (we restrict to self-
dual elements), m = 1, and to the set S of all 27 known elements of I1,,, having motivic
weight < 24, for various choices of £ and subsets S" C S. We obtained contradictions with
Inequality (2.3.7) for all but 187 elements of {y. We refer to [CT19b] for an explicit list
of 12293 — 187 = 12106 triples (¢, S, ¢) leading to a contradiction in each case (checked
using interval arithmetic). It would be tedious to explain here in details which ¢ and
S" we did choose to find these triples: this is unnecessary anyway as all the necessary
information for our proof is contained in the aforementioned list! We nevertheless refer

to [CT19b] for the log file of our computations (which took several months).
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Among the 187 aforementioned “resistant” elements of Uy, six of them are mul-
tiplicity free: Is + Ijy + L7 + Iy + Ios, I; + Iis + Loy + Iog, Is + Ig + L5 + oy + Ios,
Il + Iq + 117 + 121 + 123, I5 + 113 + 117 + 121 + Igg and I5 + 113 + 119 + 123. ThCSC SiX
regular weights have dimension < 10, and we know from the results of Sect. 3 that there
is no self-dual w with these Archimedean components. An inspection of the list V of
remaining 181 elements reveals that for any U in V:

(1) U contains Iy; with multiplicity > 2,
(i) U contains I, for some w € {1, 3, 5},
(1) for any w € {1, 3, 5, 7, 9}, the multiplicity of I, in U is at most one.

Assertion (1) concludes the proof of Theorem 3. Assertion (b) above and the fact that
I +1; + Iis + I;; + Ip; + 21Iy5 is not in V imply assertion (1) of Proposition 4.1. By (i1)
and (iil) above, for any U in V there is some I,, which occurs in U with multiplicity 1.
In particular, such a U has no Wgr-equivariant nondegenerate symmetric pairing. This
shows that any self-dual = with L(7y) = U is of symplectic type by [Artl3, Theorem
1.4.2], and proves assertion (2) of Proposition 4.1. U

Remark4.2. — For a given (U, 6, m), it seems hard to us to guess a priori what will be
the best choices of £ and S (or §') to plug into Algorithm 2.4.5 for the purpose of reaching
a contradiction with Inequality (2.3.7). Athough the authors have developed their own
intuition and artisanal methods to find good £ and S, they are mostly based on numerical
experiments. In the same vein, in the cases where we did not find any contradiction, it
seems difficult to prove that there cannot be any, as it is always possible to let £ vary and
increase the size of §. However, based on the large number of experiments we made, we
find it likely that it is not possible to discard any of the elements of the remaining list V
by changing £ or S.

4.2. Motwic weight 24. — The following lemma is the first step in the proof of
Theorem 5.

Lemma 4.3. — Letn > 13. Let 7w be a self-dual level 1 cuspidal algebraic regular automorphic
representation of PGL, over Q of motivic weight 24. Then 1L(7ws) belongs to the following list:

I+ 16+ Ig + Ly + Iog + Ioo + Loy for n =13,
1+ 1T + Lo + Lig + Ipg + Lo + Loy for n =13,
I + 1, + Lo + Ly + Lig + Igg + Log + Ioy for n =16,
I +Ig + Lo + Ly + Lig + Igg + Log + Ioy for n=16.

In particular we have n < 16.

Proof. — Let  be as in the lemma and set U = L(7). This is a multiplicity free
effective element of K5** containing Ipy and with det U = 1. There are only finitely many
such elements, with dim U < 25 1n all cases. Moreover, 7 is orthogonal as w () 1s even
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(see the last paragraph of Sect. 2.2). By [Artl3, Theorem 1.5.3] loc. cit. we have thus
€(m) =+1. Since €(r) = ¢(U) this gives an extra constraint on U.

A straightforward computer-aided enumeration gives us the list of the 1260 ef-
fective multiplicity free elements U in K=* containing Iy, and satisfying diim U > 12,
detU =1 and ¢(U) = 1. We applied Algorithm 2.4.5 to each such U, § =1, m=1, to
the set S of 15 elements of I, having motivic weight < 23 and dimension < 4. Ex-
cept in the four cases given in the statement, we obtained a contradiction with Inequality
(2.3.7). It 1s actually enough to choose £ in [3, 7] N %Z and to restrict to the subsets S’ C S
with |S'| < 7. We refer to [C'T19b] for an explicit list of 1256 triples (€, S, ¢) leading to a
contradiction in each case (checked using interval arithmetic). U

Proof of Theorem 5. — Using Theorem 6 we may compute, for any effective multi-
plicity free element U € K5** containing Iy, and with dim U < 16, the number of self-
dual 7 in IT,, with L(7r) = U (this uses SO, for » < 16 and Sp,, for 2n < 8). Remark-
ably, we find only three such 7, namely the ones in the statement of Theorem 5. We
conclude by Lemma 4.3. 0J

4.3. Classification results conditional to (GRH). — By (GRH) we shall mean here: for
all w, w" € I, the zeros s € G of A(s, m x ') satisfy Rs = 5 Assummg (GRH) Propo-
sition 2.2 holds more generally for any test function F satlsfymg F(x) > 0 and F(S )>0
for all x and & in R (a condition weaker than (POS)). This condition is trivially satisfied
by the function Gy (x) = g(x/€), where g is the function recalled in Sect. 2.4.3 and £ is
a positive real number (these are the classical functions of Odlyzko “under (GRH)”). In
order to apply Algorithms 2.4.4 and 2.4.5 with G, instead of F,, we need the following
variant of [CL19, Prop. 9.3.18]. We set ¢ (2) = 3¢ (551) — 3% (3) and r(2) = 27 e

Proposition 4.4. — Let £ > 0 be a real number. For any integer w > 0 we have

Jwﬂ@:kgwr—%wo+fg)+ gw(w+?)

L (54 ) + 50,0
e* e N ) )

with b= 1+w and 5,(b, £) = €3> o T(L(b 4 n)). Moreover, we also have

n=0

(a % 1 1T
Ja.( —SG/R)— ¢< ) ;«WJ)( E)

T

+£%¢( o) 00

N———"
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with s9(£) = £ Zzio(_ D'r((n+ 1/2)), as well as (};(O) =8¢/m? and

1 + cosh(£/2)

G (i/4m) = 4wt :
) = ey

Proof. — We follow the proof of [CL19, Prop. 9.3.18] and omit the straightfor-
ward details. For real numbers 4, £ > 0, set S(b, £) = fooo(g(x/ﬁ) 13:;_ — %) dx. A com-
putation almost identical to p. 276 loc. cit. shows that we have S(b,£) = =Ry (b +
)+ L3y (b +F) — 1Ry (b + F) 4 51(b, £). On the other hand, by [CL19, Prop.
9.3.8] we have J, (I,) =log2m + S ¢) for any integer w > 0 and Jg, (1 — eg/r) =
%(S(i, 20) — S(%, 2¢)). This shows the first two formulas. Set Z(a) = fooo g(x)e **dx for o
in C. By p. 275 loc. cit. we have h(a) = x5~ + 2% 1 We conclude by the relations

@2+n0)2"

G (0) = 2¢ h(0) and Gy (i/47) = L(h(L/2) + h(—L/2)). 0

Upper bounds for the tails of the series s; and sy are given in [CL19, (3) p. 277].

Proof of Theorem 4. — In this proof, whenever we apply Algorithms 2.4.4 and
2.4.5 we do it using Gy instead of Fy. Applying Algorithm 2.4.5 to the element U of
Proposition 4.1 (1), 6 = m = 2 and the set S of 27 known elements of I, with mo-
tivic weight < 24, we obtain a contradiction with Inequality (2.3.7) with £ =5 and
S"={Ag37, Aos 135, Aos 157} (three elements in the list of Thm. 3). It thus only remains
to show that for any of the 181 elements of the list VV of Proposition 4.1 (2), there is no
selfdual 7 in IT,, with L(7s) = U. For each U in V, we applied Algorithm 2.4.5 to U,
8 =m =1 and the set S above, using various £. We found a contradiction in all but one
cases. More precisely, we may reach all these contradictions but one using £ € [4, 7] N %Z,
S" of size <7, and S’ not containing any of the 3 elements of I, with motivic weight 24
(see [C'T'19b] for a working sheet). The two remaining elements of V' are then

A=L+L+Li + 15+ Lo+ 1o + 21y
and BZL +Iq +Il5 +Ilq +2123
For U = B we eventually found a contradiction using £ = 6.36 and a certain subset " C S

with 13 elements! (see loc. cit.) The remaining case U = A is the one of the statement of
Theorem 4. O

5. Siegel modular cusp forms for Sp, (Z)

In this section, we explain how to use our classification Theorems 3 & 5 to prove
Theorem 2. Along the way, we will also reformulate much more precisely the Rey fact 1
stated in the introduction.
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3.1. Brief review of Arthur’s results for Sp,,. — Fix g > 1 be an integer. We denote
by i (Spy,) the set of isomorphism classes of discrete automorphic representations 7
Spog (Zy)

of Sp,, with 7, # 0 for all primes p. Recall that the Langlands dual group of Sp,,
“1s” SOQg+1 (C); it has a tautological (often called standard) representation St of dimension
2¢+ 1. Let  be in I (Spy,). For each prime p, the Satake parameter c(mr,) of 7, will
be viewed following Langlands as a semi-simple conjugacy class in SOy, (C). Similarly,
the infinitesimal character c(7) of w5 will be viewed as a semi-simple conjugacy class
in the Lie algebra of SOy, (C) (and most of the time, as the collection of its 2g + 1
eigenvalues).

Let \IJ(SpQ ) denote the set of level 1 global Arthur parameters for Sp,,. An element
of \IJ(SpQ ) 1s by definition a finite collection ¥ of distinct triples (m;, n;, d;), for 7 in I,
with n;, d > 1 a collection of integers satisfying 2g + 1 = Zld n;d;, and with m; a level
1 self-dual cuspidal automorphic representation of PGL, over Q which is orthogonal
if d; 1s odd, symplectic otherwise. It suggestive to view ¥ as the isobaric automorphic
representation of GLy,, over Q defined as

(5.1.1) v=B B T

1€l 0<r;<d;—1

We often simply write for short '*
Y = &mild].
el

To any ¢ in W(Sp,,), viewed as i (5.1.1) as an irreducible admussible represen-
tation of GLy,;1(A), we may attach a collection of Satake parameters v, (semi-simple
conjugacy classes in GLy,1(C)), as well as an infinitesimal character ¥, (a semi-simple
conjugacy class in My, (C)). We shall say that ¥ is algebraic when the 2g + 1 eigenvalues
of Yoo are in Z. In this case, the only one that we shall need to study here, all the 7; are
algebraic (see Sect. 2.1).

Assume ¥ € W(Sp,,) is algebraic. Using the local Langlands correspondence for
the GL, (R), we may attach to ¥ a morphism Yg : Wr X SLy(C) —> SOy (C),
uniquely defined up to SOy, (C)-conjugacy, with the property

Sto YR ™~ EB L((7) o) K Sym*~'C2.

(Recall the notation L.(—) from Sect. 2.1) By Sect. 2.1, note that Yy is trivial on R x 1,
and in particular, Yr(Wg) 1s bounded (it is thus an Archimedean Arthur parameter). If r is
a representation of Wg, and ¢ > 1 is an integer, it will be convenient to write 7[d] for the
representation 7 X Sym’~'G? of Wy x SLy(C).

4 For typographical reasons we also replace the symbol ;[4;] with [¢;] if we have 7r; = 1, and by 7; if we have d; =1
and TT; ;é 1.
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Arthur’s first main result [Artl3, Thm. 1.5.2] attaches to any 7 in I (Sp, g) a
unique ¥ () in \I’(Spgg) such that we have (), = St o c(ir,) for every place v of Q
(see also [Tail7, Lemma 4.1.1]). Arthur’s second main result is a converse statement, the
so-called multiplicity formula, on which we shall focus from now on and until the end of this
section.

Fix Y = ®;cm;[d;] in lIJ(SpQg). We assume that ¥ is algebraic for our purposes.
There are both a local and a global ingredient in the multiplicity formula.

We start with the global one. Write I = Iy | [ Loaq With i € Iy if;, and only if; n:d;
is even. Define C,, as the abelian group generated by the symbols s; for ¢ € I.\e,, and by
the symbols s; for all 2,5 € Iqq, with relations 1 = 52-2 = 53 and s;s; = s (note s; = 1). This
is an elementary abelian 2-group of order 2/'""!. Arthur defines a global character €, of
this group in [Artl3, p. 48], that we now recall. For each 7 € I consider the sign

(5.1.2) e(i) =] Jem x m)MnD.

J#
The term €(7r; X 7;) here is the Rankin-Selberg root number already encountered in
Sect. 2.3, a (purely Archimedean) sign that we already explained how to compute loc. cit.
It is necessarily +1 by [Artl3, Theorem 1.5.3] if 77; and 7; are both orthogonal or both
symplectic. As the adjoint representation of SOy, (C) is isomorphic to A?St, Arthur’s
definition reads (see e.g. [CL19, Sect. 8.3.5] for more details):

(5.1.3) €y()=€() Viclym and e,(s5) =€@e() Vi) € Loy

We now describe the local ingredient. Fix K a maximal compact subgroup of
SpQg(R) and denote by g the complexification of the Lie algebra of SpQg(R). Arthur
associates to Yr a finite multi-set IT(yr), also called an Arthur packet, of unitary irre-
ducible admissible (g, K)-modules. One important property he shows is that we have
Too € (Y (m)g) forallm € Hdisc(SpQg). Moreover, IT(yg) is equipped with a map

M(Yr) > Hom(Cyg, {£1}), U xu,

where Cy, denotes the centralizer of the image of ¥g in SOy, (C).

Remark 5.1. — The map U = xy depends on the choice of an equivalence class
of Whittaker datum for Sp, (R). From now on we fix a global Whitaker datum Wh
for Sp,, such that Wh, is unramified with respect to Sp,,(Z,), for each prime p, in the
sense of Casselman and Shalika. Up to conjugating Wh if necessary by the outer action
of GSpy,(Z), 1ts Archimedian component Whe can belong to any of the two classes of
Whittaker data for Sp, g(R).

We can now state Arthur’s multiplicity formula. Fix an algebraic i in W(Sp,,).
There is a natural group embedding ¢ : C,, < Cy, (“local-global” map). Choose U in
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[T(Yr) and assume for simplicity that it has multiplicity one in this multiset (this as-
sumption will be satisfied in the cases that we will consider below). Then there is a 7 in
i (Spy g) with ¥ () = ¢ and o =~ U if, and only if, we have

(5.1.4) €y (s) = xu(t(s)) Vi€laem and €,(sp) = xu(t(sp) Vi,j € Loaa-

Moreover, if these equalities are satisfied then the multiplicity of 77 in the automorphic
discrete spectrum of Sp,, is equal to 1. There is a slightly more complicated statement
when we do not assume U has multiplicity one in IT(yg). This multiplicity one property
will always be the case in our applications (see Sect. 5.2). It is believed but not known
that it holds in general, although Moeglin and Renard have a number of results in this
direction.

Remark 5.2. — It is important to remark that (5.1.4) trivially holds when we have
Y = w[d] for some cuspidal @ of PGl 9,14, because the group C,; is trivial.
P Qg+1)/ group Ly

5.2. Lowest-weight modules: results of Arancibia-Moeglin-Renard and of Moeglin-Renard. —
For k= (ki, ky, ..., k) € Z* with ky > ky > --- > k, > 0 we denote by p; the holomorphic,
unitary, lowest weight (g, K)-module of (lowest) weight £.'> The precise meaning here for
“lowest” or “holomorphic” is a convention that we may fix as in [MR, §3] to fix ideas,
nevertheless this choice will play no role in the sequel as we shall see. We are interested in
py for the following classical reason. Let us denote by M (I",) the vector-space of vector-
valued Siegel modular forms of weight £ for I',, and by L}(T',) its subspace of square-
integrable forms. We have )

SiTy) C LA(T,) C My(T).

Assume F 1s a Hecke eigenform in L,%(Fg). Then F generates an element 7 (F) in
Hdisc(SpQg) with 7 (F)s 2 p;. Better, dim Lz (T'y) (resp. dim Sx(I,)) is exactly the num-
ber of 7 in HdiSC(SPQg) with 7, 2 p; counted with their global discrete (resp. cuspidal)
multiplicity.

An important property to have in mind is that the 2g + 1 eigenvalues of the in-
finitesimal character of p; are 0 and the 2¢ elements &=(k — 1) for:=1, ..., g. Note that
these 2g + 1 integers are distinct if, and only if, we have £, > g. This is also exactly the
condition under which p; is a (holomorphic) discrete series. If I is a Hecke eigenform
in L,%(Fg) as above, the shape of the infinitesimal character of p, implies that ¥ (7 (F)) is
alwa_ys algebraic. Moreover, p; is an element of the Arthur packet IT(y (7 (F))r).

Conversely, let us fix until the end of Sect. 5.2 a global Arthur parameter

Y = @iamild]

!> These modules have been classified by Enright, Howe and Wallach: they exist if, and only if, we have ke >g—
(u+v/2), with u= |{i, k; = k}| and v = |{i, k; = k, + 1}|, and they are unique up to isomorphism if they exist.
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n \IJ(SpQg) such that the eigenvalues of ¥, are 0 and the £(k — ), with:=1,...,¢g
(in particular, ¥ is algebraic). In order to apply the Arthur multiplicity formula, we want
to know under which condition on ¥ the module p; belongs to IT(yr), whether it has
multiplicity one in this multi-set, and if so, we want to know x,,. We shall consider only
the two following special, but important, cases. .

5.2.1. Vector-valued case, with k, > g. — This situation is studied at length in [CR15,
Chap. 9] and [CL19, Sect. 8.4.7]. In this case, p; 1s a discrete series, the eigenvalues of ¥,
are distinct, and we have S;(I',) = Lz(Fg) by a general result of Wallach. We have 1,44 =
{i0} (a singleton) and 7; is regular for all 7 in I, so we have n;d, = 0 mod 4 for : # i by
Sect. 2.2. The parameter g is necessarily an Adams-Johnson parameter (see e.g. [CR15,
§3.8, App. A], [CLI19, Sect. 8.4.15], [Tail7, §4.2.2]), and the main result of [AMR18]
shows that IT(yr) coincides with the packet that Adams and Johnson associate to Y¥r
in [AJ87] (any element of this packet having multiplicity one). Arancibia, Moeglin and
Renard also prove the expected form of the map U = xy. As was observed in [CR15,
§9] (see also [CL19, Sect 8.5.1]), this packet contains p; if and only if we have 4;;, =1,
and in this case the corresponding character x,, is given by the formula, for all 7 in I..,:

(=) ifd, =0 mod 2,

(=D  otherwise,

(5.2.1) X (105)) =

where e; is the number of 0dd integers 1 <; < g such that £ — is a weight of ;. Note
that the quantity e; mod 2 does not change if we replace odd with even in the definition of
e;, as we have n;, = 0 mod 4 for d; odd. This property expresses the fact that the character
above does not depend on the choice of the Whittaker datum Wh,, in Remark 5.1. All in
all, we have explained fully, and much more precisely, the Key fact 1 of the introduction.

5.2.2. Scalar-valued case, arbitrary genus. — In this case we have k£ = (L, k,..., k)
in Z¢ with £ > 0, and we rather write p;(g) for p;. If we have £ > ¢ we are in
the case of Sect. 5.2.1, so from now on we assume g > k. The case £ = 0 is trivial
so from now on we also assume £ > 1. The 2¢g + 1 eigenvalues of the infinitesimal
character of p; are now 0 and the 2g elements £(k —¢) for : =1, ..., g: the eigen-
value O has thus the multiplicity 3, and for ¢ > £ > 1 the eigenvalues 1, +2,...,
£+ min(k — 1, g — k) have multiplicity 2.

We will use as a key ingredient the recent local results of Moeglin and Renard
[MR],'® that we will specialize in what follows to this level 1 situation. The first main
result of [MR] 1s that p;(g) belongs to IT(yr) if, and only if; we are in one of the two
cases called (I) and (H) below. In both cases they show that p;(g) has multiplicity 1 in
IT(yr) and they determine (). We use the letter I for the case reminiscent of Ikeda lifts,

16 Note that those authors call n, m, ,(m)* what we call g, k, p,(g) respectively.
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and the letter H for those related to the Howe (or theta) correspondence. The formula
for x,, given in [MR, Prop. 18.3] depends on the class of Why, which is represented
there by a certain sign 8 loc. cit. and that we represent the same way here (it may be either
one of 1: see Remark 5.1). We will express below only the restriction of x,,«) to Cy,
which is the information we need in order to apply the global multiplicity formula (5.1.4).
In all cases we will see in particular that this restriction does not depend on Wh, i.e. on
38, hence neither on the choices discussed in the beginning of Sect. 5.2 that we made (or
rather didn’t) to define p;: changing of choice amounts to replace § with —§ by [MR].

Preliminary general notations and remarks. — Recall we have already defined a partition
I =L cn | [ Toaq according to the parity of n;d; for 7 in I. We now define I C I as the subset
of elements ¢ in I such that 0 is a weight of 7;. We clearly have I,qq C Iy, I,qq # @ and
ITy| < 3. Set

dmax = mMaXey, di-
It will be convenient to introduce the following definition:

Definition 3.3. — Let k and n be integers > 1, and let v be a cuspidal algebraic automorphic
representation of PGL,. We denote by () the multiplicity of the weight O of 7w. We will say that
7 satisfies (Ry) of: (1) its weights are < k — 1, (11) its nonzero weights have multiplicity 1, and (ii1)
r() < 3 and each of 1 and ec/r have multiplicity at most 2 1 L(7).

We shall see below that all the 7; for ¢ € I do satisty (R), and that at most one of
them is not regular. Our last remark is a simple identity of signs that we have found useful
when deciphering the formulas of [MR, Prop. 18.3]. Denote by | x| € Z the floor of the
real number x; fore = x1,a€ Z., and b € Z, we have

b+a

(5.2.2) (—1)lea2l = H(—l)i_le and (= ])lD'er2) — 1_[ (—1) .
=1

1=b+1

Indeed, the first one is the product of « alternating signs starting with €; it only depends
on @ mod 4. The second follows from the first by replacing € with e(—1)’.

Case (I). — This corresponds to case (1) of [MR, Théoreme 7.1]. By this theorem,
we have Iy = {y} (a singleton), the weight 0 of 7;, has multiplicity 1, d;,
k—1> g—k, and the g integers w, + digl — 1, where ¢1s in I, w; is a positive weight of 7;,
and with 0 <7, <d; — 1, fill the length g segment [k — g, £ — 1] (hence are distinct). The
representation i, is regular for each 7, with weights < £ — 1, hence satisfies 7;d; = 0 mod 4

for 7 # 1y by Sect. 2.2.

In this case we must have Iy = I,4q so Gy is generated by the 5; with ¢ # 7. Fix

= drnax = 1)

such an 7, necessarily in I.,. For any sign s = 1 we define e,(77;) as the number of
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integers 1 <j <k — 1 with (—1) = s such that £ —j is a weight of 7;. The first assertion
of Proposition 18.3 of [MR] (we are in case (1) of §18 loc. cit.), together with Formula
(5.2.2), show that x,,,(¢(s;) is given by the formula:

n.d.
-1 if d; =0 mod 2
5.2.3 ) =1¢ : :
( ) ka(é)( (s )) { (=1 otherwise.
Indeed, consider the sequence of g alternating signs § = ($;_1, 54—, . . . , §;—) Start-

ing with 5,_; = §, i.e. set 5,_; = §(—1)""". Formulas (5.2.2) show that, for any i in I, and
any positive weight w of 7;, the sign €(Iy,[d;]) of Proposition [MR, Prop. 18.3] is given
by the formula

(5.2.4) euldl)=  [] s

d-1_. 41
w— L <j<w+

When d; is even, this sign is (—1)%/%. When d; is odd, and thus w € Z, it coincides with §,,.
The formula s,, = §(—1)*"*~! shows that we have s,, = —1 if and only if w = £ — j with
(—1Y =§. Formula (5.2.3) follows, as for 7 in I, the sign x oo (t(57)) is by definition the
product, over all the positive weights w of 7;, of € (Io,,[d/]).

Note that when d; is odd we have es(;) + e_s(m;) = n,/2 =0 mod 2, as 7; 1s
regular and does not have the zero weight, so e, (7;) = e_;(77;) mod 2. As a consequence,
Formula (5.2.3) does not depend on §.

Case (H). — This corresponds to case (i) in [MR, Théoréme 7.1]. According to
Theorem 7.2 loc. cit. there are two subcases:

(H1) There 1s ¢ in Iy with d;; = dypax = 2(g — k) + 1, and L((77;,) ) contains Sé/R.
(H2) There 1s ¢ in Iy with d;, = dyax = 2(g — k) + 3, and L((77;,) ) contains &‘f;/}l{.

Note that 7, is not unique in general, so we fix any ¢ satisfying (H1) or (H2). We set £/ = £
in case (H1) and £/ =k — 1 in case (H2). An inspection of Yg shows that in case (H2) we
must have g — k41 <k — 1, that is g < 2k (hence £’ > 1). In both cases we may write

YR = 8/(Cz//R[Q(g - k/) + 1] SY.

We have dim ¢’ = 2k, dety’ = 8é sr and the eigenvalues of ¥, contributing to ¥ are
the £ifor:=0,..., £ — 1 in case (H1), and the same ones except =(g — £+ 1) in case
(H2). It follows that ¥ is an Adams-Johnson parameter for the compact group SO(2£'),
and in particular, 1s multiplicity-free. This implies:

— m; satisfies (Ry) for all ¢ (see Definition 5.3), and is regular for ¢ # .

In particular, for ¢ # 75, we have n;,d; = 0 mod 4 if n; 1s even, and L((77;)») contains
sg};{l)/ ?if n, is odd (see Sect. 2.2). Moreover, either 7;, 1s regular or we are in the case (H1)

(see Remark 5.4) and in one of the two following situations:
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—n;, =2 mod 4, 0 is a double weight of 7r;,, and L((77;,)s) contains sé R twice,

—n;, 1s odd, 0 is a triple weight of 7, d;, = 1, g =k, and L((7;,)) contains Sé R
twice and Sé_/ll{ once.

Remark 5.4. — Assume we are in the case (H2). Then the weight O of m;, has
multiplicity 1, since the eigenvalue g — £+ 1 occurs with multiplicity 1 in the infinitesimal
character of p;(g). In particular we have ¢ € I,qq and m;, is regular. Moreover, we also
have £ > 1. Indeed, /' = 1 implies ¢ =2 as k < g < 2K, dimm;, = | hence 7;, = 1 as 7,
has level one, which contradicts (H2).

We now describe the restriction of the character x,, () to Gy For any 7 in I and any
sign s = £1 we define an integer e, (7r;) as follows. If we are in case (H1), then e,(ir;) is the
number of integers 1 <j < k— 1 with (—1) = s such that £ —j is a weight of 7, (as in case
(I)). If we are in case (H2), we first consider the decreasing sequence (w;, Wy, ..., Wy_;) =
(k— l,/f—2,...,g—//;1,..., 1) where g — £+ 1 is omitted (this makes sense as 1 <
g—k+1<k—1andk > 1 by Remark 5.4), and rather define e,(7;) as the number of
integers 1 <j < ¥ — 1 with (—1Y = s such that wj is a weight of ;. In all cases we have
by property (R;):

(5.2.5) r(m;) + 2e(w;) + 2e_ (;) = n;.
— Assume first we have ¢ € 1., and ¢ # 1. For i ¢ 1) we have:

(—D)%  ifd=0mod 2,
(=1 otherwise.

(5.2.6) M@@@D={

Indeed, this follows from [MR, Proposition 18.3] by a similar argument as in Case (I). The
only difference is to replace in this argument the alternating sequence of signs s defined
in Case (I) by the length £ alternating sequence § = (s;_1, 5;—9, ..., 5) starting with &
but with the index g — k~+ 1 omitted in case (H2); in other words, we still set §,_; = §(—1)""!in
Case (H1), and in Case (H2) we set 5;_; = 8(—1)""' fork—i > g—k+1 and 5,_; = §(—1)’
fork—i<g—k+1 (so §,_441 is undefined in case (H2)). With this definition for g, the
sign € (Iy, [d;]) of [MR, Prop. 18.3] is still given for w > 0 by Formula (5.2.4). The same
reasoning as in case (I) shows then Formula (5.2.6), as well as its independence on §.

Assume now ¢ € I, so that 0 1s a double weight of 7; as i € I.¢,. This forces d; =1,
because otherwise 7;[d;] would contribute the eigenvalue 1 with multiplicity at least 2 to
the Adams-Johnson parameter 1, a contradiction. We find

(5.2.7) ka(g)(L(Si)) = (_l)ca(m)a(_l)k’—l.

Indeed, we are in the situation (2) of §18 /loc. cit. and in the notations there we have a =1
and €€, = (=BT = s(—1)F 1 = g [MR, Remarque 18.4]. By definition, we
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have X, (t(s;)) = ([ ], €(Taw))€1€9 in the notations of [MR, Prop. 18.3], the product in
parenthesis being over the positive weights w of 77;, hence equal to (—1)® as explained
above. This proves Formula (5.2.7). The congruence n; = 0 mod 4, the equality r(7r;) = 2,
and Formula (5.2.5) show that (5.2.7) does not depend on the sign 4.

— Assume ¢ = ¢y 1s In len, so we are in case (H1) by Remark 5.4. The sign
X0 (L(s3y)) 1s the product of (—1)®@) and of the sign €y¢e3 in Case (2) of [MR, Propo-
sition 18.3] (with @ = g — £ + 1). Recall that we have 7;, = 0 mod 4 if and only if 7;,
is regular by Sect. 2.2. By loc. cit. we have thus €63 = § (—1)*"! if n;, = 0 mod 4, and
€9€3 = | otherwise, and we obtain:

(_ l)ea(m‘(,)g(_l)k—l lfﬂl =0 mod 4_’
(5'2'8) Xor(e) ([’(sio)) = { (_ l)e(g(n,-()) 0

otherwise.

Again, these two formulas do not depend on § by Formula (5.2.5) and r(7;)) = 2.

— We are left to consider the case |I,4q| > 1. We must have |1 4q| = 3 and I,gq = L.
We want to give the value of x,, ) (t(s;)) for 7 #j in I,qq. We have min;e, d; = 1, since
otherwise the eigenvalue 1 would have multiplicity at least 3 in the infinitesimal character
of pr(g). We may thus write Iy = {1, 21, i} with d;, =1 and set d;, = 2a — 1. The sign
X (L(5irir)) is the product of (— 1)) (= 1)) and of the sign €€, = (— I)L‘s(_l)y% a/2]
in Case (2) of [MR, Proposition 18.3] (see also Remark 18.4 (ii) loc. cit.). We obtain:

5.2.9) Koo (1 (51)) = (= Dm0 s+ D2y

Observe that we have 8(—1)"~* = 5,_,. Indeed, this holds trivially in case (H1), and in

case (H2) we have a — 1 < g — k4 1 since the eigenvalues {0, 1, 2, ..., a — 1} contribute
to ' (as d;, = 2a — 1), 50 §,_, = 8(— 1)~ = §(—1)¥~* again. By Formula (5.2.2), this
shows the alternative expression

(5.2.10) cley = (—)BEV T g g

We finally check that (5.2.9) does not depend on §. As 7;, is regular of odd dimension, and
L((7;,)00) contains slé/R, we have n;, = 2K + 1 mod 4 by Sect. 2.2. As d;, =2(g — k') + 1,

this implies the congruence 7;,d;, = 2¢+ 1 mod 4, and using 2¢+ 1 = Y., nd; and n;d; =
0 mod 4 for i ¢ Iy, we obtain

(5.2.11) n;, + n;,(2a — 1) =0 mod 4,

which may also be written ? + %2_1 = amod 2. The relation es(;) + e_s(m;) =

% mod 2 for i € g4, deduced from (5.2.5), and the trivial identity (—1)l=/% =
(=D—=1)? for ¢ = &1, show that the right-hand side of Formula (5.2.9) does not
depend on §.
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We still assume Ioqq = {i, 21, 12} as above. It only remains to give () (¢(si;)). It
will depend on the following property on {m;,, 7;, }:

®P;..) L((7;) o) ® L((73,)0) contains 1 @ ec/r.

Similarly to (5.2.8), we have x,, ) (¢(s;;,)) = (— 1)) (— 1)) e, €4 with €63 as in [MR,
Proposition 18.3]. We are in case (2) loc. cit. if (H1) holds, and in case (3) otherwise. We
obtain €y€; =8 (— 1)1 if (P, ;,) holds, and €,6;5 = (—1)** otherwise, hence:

(— 1) +esm g 1)k if (P;, ;,) holds,

(—1)yesCmltestmy) (—1)E=F otherwise.

(5.2.12) Koo (1Gsign)) =

These values do not depend on 8 by (5.2.5): the integer n;, + n;, is = 0 mod 4 if (P, ;)
holds, and = 2 mod 4 otherwise.

Remark 5.5.

(1) The cases (I) and (H) are disjoint for k£ # g, and for £ = g case (I) is a special
case of (HI), and the two formulas (5.2.3) and (5.2.6) for x,,(, are identical.

(2) The parameter ¥ does not always determine £: when g is even, parameters of
type (H1) in weight £ = g/2 coincide with parameters of type (H2) in weight
k=g/2+ 1.

5.3. Proof of Theorem 2. —Fix ¢ > 1, k= (ki, ..., k) € Z* and assume either that
k is scalar or £, > g. Arthur’s multiplicity formula, as well as the multiplicity one results
of [AMRI18] and [MR], show that two Hecke eigenforms in S;(I',) with same Hecke
eigenvalues, or equivalently with the same standard parameter, are proportional. It fol-
lows that dim S;(I",) is the number of possible standard parameters of Hecke eigenforms
in S;(T",). In what follows we enumerate these parameters in the case £ < 13. We thus
fix a Hecke eigenform in S;(I",) and denote by ¢ € W(Sp,,) its standard parameter. As
in Sect. 5.1 we write )

Y = @amild].

Notation. — Assume v; > vy > -+ > v, are positive odd (resp. even) integers and
that there is a unique self-dual regular 7 in 178 with weights £, :I:%, e :I:%, then
we shall denote by Ay, v (resp. Oy ,, ) this unique element 7. Similarly, when
V| > vy > -++ > v, are even positive integers and there is a unique self-dual 7 in T1%¢
with weights 0 and :I:%l, :I:%, e :I:%, then we shall denote by Op | this element.
The A’s are symplectic and the O’s are orthogonal. These notations are compatible with
the ones introduced in Sect. 1.3, and we have for instance Og, = SmeA“. We shall also
denote by 1 the trivial representation of PGL,, and by A}, and A3, the two cuspidal

representations of PGL,y generated by the two normalized eigenforms in Sg4(SLo(Z)).
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— We will denote by Ly, the subset of IT%8 whose elements are either of motivic
weight < 22, or of motivic weight 23 with the weight 23 having multiplicity 1, or regular
self-dual of motivic weight 24. By the classification theorems ([CL19, Thm. F], Theorems
3 and 5), there are 11 + 13 4+ 3 = 27 elements in Lo, all regular self-dual, and according
to the notations above we have

_ 2
Loy = {1 Ay, Avsy Az, Avg, Avg 7, Doty Agis, Ao g, Agy iz, Sym Ay,
1 2
Aps, Agyy Aoz 7, Aoz o, Nas iz, Aos iz s, Doz 153, Nosis7, Aoz irs,

o e

A25’),19,39 A23,17,9’ A23,19,11» A23,21,17,11,3’ 024,16,8’ 024,18,10,4’
e

024—,20,14,2}'

5.3.1. Casek= (ki ko, ... k) withk) <13 and k, > g.— We have 1 <g=<12. We
apply Sect. 5.2.1. In this case, each 7, is regular of motivic weight < 2(; — 1) < 24, there
is a unique 7 € I with n;, odd, and we have d;, = 1. In particular, all the 7; are in L4 and
7;, is either 1, Sym® Ay or O, |, 5. It is a boring but trivial exercise to enumerate all the
¥ in W(Sp,, ) with these properties and such that the eigenvalues of ¥, are distinct and
<12. We ﬁnd exactly 199 such parameters. The possible ¥ are then exactly the ones in
this list satisfying the Arthur multiplicity formula (5.1.4), using Formulas (5.2.1), (5.1.3)
and (5.1.2). We find that only 59 of these 199 do satisty this formula, and obtain Table 5,
as well as the part of Table 6 concerning the case £ > g. All those computations can be
done easily with the help of a computer: see [CT19b] for a PARI code doing it. They
can also be made by hand as follows.

We only treat the case 7, = Sym”A |, the two other ones being similar. Note that
for ¢ # 7 such that m; is symplectic, we have w(ir;) < 19, and either m;[d;] = A9 7[2] or
;= Ayld] with w +d — 1 < 20. Assume first that 7; is symplectic for all ¢ # 72,. We
have € (A9 7 X SmeA“) = 1, so if we have 7;[d;]] = A}q7[2] then Arthur’s multiplicity
formula €y, (s;) = x,,(¢(s;)) simply reads 1 = 1. If we have 7;[d;] = A, [], it rather asserts
—(=1)@D2 = (=1)¥% ie. w=d + 1 mod 4 (note €(A,, X SmeAU) = —¢e(A,) for
w < 22). This justifies the existence of the 18 ¥ in Tables 5 and 6 containing Sym?A .
Assume now there is ¢ 7 7y, necessarily unique, such that m; is orthogonal. We will
show that this case cannot happen. We have either m; = O34, 14 04 or i = O 90 1495
and 4; = 1. If I = {4, 11} we have €, = 1 and we compute x,, (¢t(s;)) = —1, so there
1s 1 # 1,4 In L. For weight reasons we must have m;[d;] = A,[2], with w € {17, 11}
if 7, = Oy, 20,14,2° and w = 15 otherwise. This implies x,, (¢(s;)) = —1. Note that
G(Aw x m;) 1s —1 if 7r; has an odd number of weights > w/ 2_, and is 1 otherwise. This
shows €, (s;) = —€(A,)e(A, x ;) =1 for w =17, 11 and 7; = O, o 14, @ contra-
diction. We finally exclude the last possible case 7; = O%, 14 |, and w = 15 as we have

I={w, ., x5, (t(s;)) = —1 and €, (s;)) = € (A, x 7;)) = 1.

5.3.2. Scalar-valued case with k < 13 and g > k. — We apply Sect. 5.2.2. We are
either in case (I), (H1) or (H2).
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Case (I). — Assume first we are in case (I), in particular we have Iy = I,qa = {2},
di, = 1 and the 7; are regular for all 7 in I. For each ¢ in I, we have % <12, and
in particular 7; has motivic weight < 24: it belongs to the list Lo4. By inspection, 7, has
thus to be 1, Sym?A,; or 03,.16.6- As the weight 0 has multiplicity 3 in ¥, and 4;, =1
we have I # {ip}. There is then a unique j in I \ {i} such that, if ¢; denotes the smallest
positive weight of 7;, we have ¢; — ? < 0; we must have a; — ? =k —g. We have both
% > q; and % < 12 — w(z;)/2, which implies ¢; + w(7;)/2 < 12. By an inspection of
Lo, this forces ; = Ay and d; = 12. But this implies that the positive weights of the 7,
with 7 in I \ {j} are > 12. Only the trivial representation has this property in Lo;. This

shows m;, = | and that the unique possibility for v is
v =An[12] @ [1].

We recognize the standard parameter of the genus 12 lkeda lift of A}, [lkeOl], a well-
known element of S,9(I"19), hence ¥ does exist. Alternatively, Arthur’s multiplicity for-
mula (5.1.4) is satisfied as we have € (s5) = €(A1) =1 = x,,,09(t(5)) by (5.2.3), so ¥
is indeed the standard parameter of an eigenform in L?,(I"19). The shape of ¥ and the
Zharkovskaya relation'” imply that this eigenform has to be cuspidal.

Case (H1). — Assume we are in case (H1). We will show again ¢ = A [12] & [1].
Write ¢ = 7;,[2(¢ — k) + 11 @ D, 7ildi] as in the definition of (H1).

Lemma 5.6. — The representation 7v; is in Loy for all 1 € 1, and we have 7w,y = 1.

Progf: — As a general fact, all the 7; satisfy condition (R;) of Definition 5.3. In
particular they have motivic weight < 2(k — 1) < 24 and their nonzero weights have
multiplicity 1. Moreover 7; is regular for ¢ # 7. It follows that all the 7; are in Loy, except
perhaps m;, in the case w(mw;) = 24. But for each 7 and each positive weight A of 7; we
have A + dl%l <k—1<12. Thus w(m,) =24 implies k=13 and dj, =1 =2(¢ — k) + 1,
so g = k= 13: this is absurd as there is no nonzero Siegel modular form for I', with odd
weight and genus. So 7;, is in Loy with motivic weight < 24, and the unique possibilities
are thus 7, = 1 or m;, = Sym®A,, since 0 is a weight of ;. Assume we have 7;,
Sym®Aj;. Then L((7;)) contains e/ so £ is odd by (H1), g is even, and we have
di, = 3 mod 4. The inequality 11 + % <k—1=<12 implies then £ =13, d;, = 3 and
g = 14. We have proved

Y= SmeAH[g] ey’

with ' = @4, m,[d;], and ¥/ has the eigenvalues £9, &8, ..., =1 and 0 twice. But the
7r; with 7 # 4y are in Loy with motivic weight < 18, hence in {1, A};, A7}, and we have

17 This asserts that if I is an eigenform in M(T" o), and if @,F in M;(I',_,) is non zero, with ®, the Siegel operator,
then &,F is an eigenform and the standard L-function of F and ®,F satisfy L(s, St, F) = L(s, St, ®,F)¢ (s — (g — £)¢ (s +
(g—h).



LEVEL 1 ALGEBRAIC CUSP FORMS 311

d; < 3 for ¢ in I ,4q. The only possibility is thus ' = A, [8] D [3]1 D [1]. We have L., = {¢}
with ﬂi[di] = All[g]y 61/,(51') = E(AU X SmeA“) = —1 but Xp13(14)(t(5i)) =1 by Formula
(5.2.6): the multiplicity formula is not satisfied. UJ

Note that 7r;; = 1 implies £ = 0 mod 2 by (H1), hence £ < 12. Write again

y=[2¢-h+1]ay

where V' = @,4,7,[d;] is a certain 2k-dimensional parameter with weights £(k — 1),
+(k—2), ..., £l and O twice, and £ — 1 < 11. Each 7; with ¢ # 4, is then regular of
motivic weight < 22. The list of all possible 1" with these properties is easy to determine:
see Proposition 9.2.2 of [CL19]. For £ = 2,4, 6 we find ¢’ = [2k — 1] @ [1]. For £ =8 we
have [15] @ [1] and A;[4] D [7] D [1]. For £ = 10 we have

[191@ [1], Anl8l@ [B1@[1], As[4]l®[11] @ [1],
Apl2]@ 1] @[], Apl2l® Anl4l@[7]1 @ [1].

For k=12, we have 24 possibilities for ', namely the ones in [CL.19, Thm. E].
Lemma 5.7. — We have k = 0 mod 4.

Proof: — Assume that £ = 2 mod 4, then by inspection |I,q| = 3 and we denote
Loaa = {i0, 01, 39} so that m; [d; ] = [1] and 7,[d;,] = [2a — 1]. For any i € I, we have
n;d;/2 = 0 mod 2 and so a = £ mod 2, i.e. a 1s even. Thus Arthur’s multiplicity formula
(5.1.4) implies

Xovo (1(515)) = (= D7* = €(i))e (o),

the first equality being (5.2.9). For ' = [1] @ [2k — 1] those epsilon factors are 1 and
we have ¢ = £ = 2 mod 4 so this formula does not hold. This rules out £ =2 and £ =

6. The four other parameters for £ = 10 are ruled out the same way using €(A,) =
(_1)(w+1)/2‘ ]

We will now prove that, apart from the case ¥ = A [12] @ [1], none of the re-
maining ¥ come from a cuspidal modular form. We will need first to recall some results
on orthogonal automorphic forms and theta series. For each integer n = 0 mod 8 we fix
arbitrarily an even unimodular lattice of rank 7 and denote respectively by €2, and S€2, its
orthogonal and special orthogonal group schemes over Z. We refer to [CL19, Sects. 4.4
& 6.4.7] for the basics of the theory of level 1 automorphic forms for €2, and S€2, (beware
that these group schemes are rather denoted by O, and SO, loc. ¢it.). By results of Arthur
[Art]13] and Taibi [Tail9], any discrete automorphic representation of S€2, or €2, has a
standard parameter ¥ in W(SK2,), the latter being defined exactly as in the case of Sp,,
(see Sect. 5.1) but with the condition ), nd; = n instead of ) . nd; = 2g + 1.

€l
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For n= 0 mod 8, we denote by X, the set of isomorphism classes of even unimod-
ular lattices of rank n. The vector-space G[X,] is in a natural way the dual of a space
of level 1 automorphic forms for €2,. Any Hecke eigenform G in G[X,] generates a dis-
crete automorphic representation g of €2, (with trivial Archimedean component and
(nG);}"(ZP ) # 0 for each prime p), which has a standard parameter ¥ in W(S€2,). More-
over, Siegel theta series provide a linear map

(5.3.1) v, 1 GIX,] — Mo (I,)

for all g > 0 (see e.g. [CL19, §5.1], in particular for the conventions for g = 0), with
® o}, =1, (here ® denotes the Siegel operator). For G in C[X,], the degree of G 1is
the smallest integer gy > 0 with ¥, (G) # 0; the form 9,,(G) is then cuspidal and we have
¥,(G) # 0 for g > g. If G in G[X,] is an eigenform with degree gy, and for g > g, then the
Eichler commutation relations show that 9,(G) is an eigenform in M,,»(I',), and there is
a simple relation due to Rallis [Ral82, §6] between the Satake parameters of G and that of
F=1%,(G) (see [CL19, Sect 7.1]). Concretely, if F is square integrable (e.g. cuspidal), this
relation is the equality ¥ = ¥y @ [n — 2g) — 1] for n > 2gy + 1, Yrp = Yo @ [200 + 1 — n]
for n < 2g; + 1. Last but not least, we have the following result, a consequence of [Ral84,
Thm. I.1.1] and [MW94, Lemme I.4.11] that we learnt from [MR, §16.2].

Lemma 5.8. — Let G be an eigenform in G[X,] of degree gy. If we have g > gy and g >
n—1— g, then ¥ = 0,(G) is square integrable and \ry =y @ [2g — n+ 1].

(Note that we have 2g+ 1 > g+ gy + 1 > n, hence the last assertion.) We finally go
back to our analysis of case (H1), setting n = 2. The spaces CG[Xs], C[X6] and C[Xo4]
have respective dimension 1, 2, 24, and the standard parameters of their eigenforms turn
out to be exactly the 1, 2 and 24 parameters ¥’ discussed above for £ = 4,8 and 12,
by [CL19, Cor. 7.2.7 & Thm. E]. This reference determines as well the degree of each
eigenform (see [CL19, Thm. 9.2.6], note that most of these degrees had already been
found before by Nebe and Venkov): this is the smallest integer g, such that [2k — 1 —
2g0] is a summand of ¥ (hence gy < k), unless we have ¥' = A [12] and gy = 12. For
¥' # A[12] we have thus g > gy as well as g > 2k — 1 — gy by the necessary condition
dmax = 2(g¢ — k) + 1 of (H1). By Lemma 5.8, the automorphic representation 7y is thus
the (necessarily unique) discrete automorphic representation of Sp,, with parameter ¥ =
[2(g — k) + 1] ® ¥/, and it is not cuspidal since we have g > gy. In the remaining case we
have ¥ =[2(¢ — k) + 11D A1[12], £ =12 and gy = 12, and again 7y is discrete but not
cuspidal if we have g > 12. We conclude since for g = 12 we recover the form found in
case (I).

Case (H2). — We are going to show that there are exactly two Siegel eigenforms in
this remaining case, both for £ = 13, of respective genus 16 and 24, and parameters

ApBle 9@ [71®[l] and [25]@® An[12].
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Lemma 3.9. — We have t;, = 1, k odd and g even.

Proof. — As we are in case (H2) we must have w(m;) +d;, — 1 <2(k—-1) <24
and d;, = 2(g — k) + 3 > 3, and so w(rr;,) < 22. Assume 7;, is non trivial. We have 7;, =
Sym2 Ay by the Chenevier-Lannes theorem, so w(mw;) =22, d;, = 3 and £ = 13 is odd.

This contradicts the last condition of (H2). So 7;, is trivial, £ is odd by the last condition
in (H2), hence g is even as we are in full level I,. O

Write ¢ = [2(g — k) + 31 ® ¢/, with ¢’ = EB#Z-U 7;[d;]. The eigenvalues of ¥
corresponding to ¥ are the 2k — 2 integers £ with 0 <j < £ — 1, with the even number
J =g—k+ 1 omitted (we shall call those 2k — 2 eigenvalues the “weights” of " for short).
Each 7; is regular algebraic of motivic weight < 24, hence in the list Lo4. We are now
led to do a simple enumeration exercise: for every odd £ € {1, ..., 13}, enumerate all
possible ¥', with 7r; in Ly for each ¢, and with weights 0, ..., (£ — 1) where the even
integer (g — £+ 1) is excluded and satisfies k — 1 > g —k+ 1 > 1.

Lemma 5.10. — Assume 1 € 1y and 7w; # 1, then we have w; = SmeAn, d=1,k=13
and g = 24, as well as 1y = Ioqqa = {w, 1, )} withj # v, 1, m; =1 and d; > 5.

Proof. — First we observe that we have ¢ # ¢ by the previous lemma and 7 € I,qq
since L4 contains no even-dimensional representation which has 0 as weight. Thus Iy =
Ioaq and this set has 3 elements 7y, ¢ and J.

Assume first 77; = OF, ¢ 5. The only 7 in Loy with w(r) ¢ {24,23,17, 15}, and
having a weight 5 <A <7, are A} and Ay ;3. It follows that among the three consecutive
integers 5, 6, 7, either 7 or 5 is not a weight of 1/, hence must be g — £+ 1: a contradiction
asg —k+11seven.

An inspection of Ly shows then 7; = SmeA”, k—1>11and d < 3. As k 1s
odd we have £ = 13. Assuming d; = 3, m;[d;] contributes to the weights £12, 11, £10
and %1, 0 of Y. Thus 7;[d;] = [1], and for r # %, 7, the representation 7, is symplectic
with motivic weight < 17. This shows 2 <g— k4 1 < 9. But there is an odd number of
integers 2 <n <9 with n# g — k4 1: a contradiction. We have proved 4; = 1.

As 12 1s an eigenvalue of V¥, we have either g — £+ 1 = 12 or there exists some
r € I with w(wr,) = 24 and not having the weight 11. The only remaining possibilities
in this latter case are 7, = OY, 4 5,4 Or T, = O, 4 45- There is s € I such that 7,[d]
contributes the weight 3 to ¥’ (recall that g — £+ 1 is even), and considering the two
smallest positive weights of 77, we see that 7, has a weight 2 < A < 6. Since 7, has motivic
weight < 20 the only possibilities for 7, are A}, (with ¢, > 4) and A g 7. In each case we
see that  [d,] contributes a positive weight which already appears in 7,, a contradiction.
We have proved g — k+ 1 =12, 1.e. g = 24.

The weights of ¥’ are thus 11, £10,£9,...,£1 and 0 twice. Those possible
Y’ are easily determined (see [CL19, Prop. 9.2.2] or [CL19, Thm. E]): there are 10
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possibilities, all of them containing some [d] with d > 5, except
Y =Sym*A @ A [10] @ [1].

We exclude this case using Arthur’s multiplicity formula. We have I,qq = {%, ¢,j} with
;= m;, = 1. We have €y (s;;) = 1, but by Formula (5.2.12) we have x,, ) (t(s;;)) = —1:
a contradiction. O

We are now able to conclude the proof. Assume first that A;[12] is a summand
of ¥'. We must have

Y =[25]1® A[12],

which trivially satisfies Arthur’s multiplicity formula by (5.2.6). In this case there is thus
an eigenform F e Lfg(F%) with parameter ¥; this F 13 necessarily cuspidal as we have
M, (I';) = Si(I',) for £ odd. As we will explain in Sect. 5.4, this F is actually the form
constructed by Freitag in the last section of [Fre82].

So we may assume that Aj[12] is not a summand of ¥'. Consider the double
weight 0 of ¥'. An inspection of Ly; shows then that there are two elements 7;, # in
Ioaa — {70}, say with 1 = d; < dj,. Better, Lemma 5.10 implies that we have ;, =1, d;, > 3,
and either 7;, = | or 7;, = Sym®A ;. We apply Arthur’s multiplicity formula at the ele-
ment s5;,;,. We have x,,) (t(s;;,)) = —1 by Formula (5.2.12). This implies €y (s;,;,) = —1,
which is equivalent to

1_16(7[1) =—1

leLL

where L is the set of elements / in L., such that 7, is symplectic and with d;, < d; < d;,.
We have d, > 4 for [ € L, as d, is even and d;, > 3, which imposes w(r;) < 21. Among the
9 symplectic representations with such motivic weight, only A;; and Ay, have a negative
epsilon factor. As a consequence, at least one summand of ¥ is among

(5'3'2) A17[4]’ A17[8]’ A21[4]

Observe that this implies d;, < 8 and that such a summand always contributes the weights
9 and 10 to ¥, so that we have £ > 11.

Assume first 77;, = Sym?A;, hence g = 24, k= 13 and d;, > 5 by Lemma 5.10.
Then A4;[8] is a summand of ¥, but the weight 11 occurs in both A;[8] and SmeA“,
a contradiction. We have proved m; = m;, = 1. The congruence (5.2.11) implies then
di, = —1 mod 4, which leaves only the two cases d;, = 3 or d;, = 7 by the inequality
d;, < 8. In the case d;, = 7 the only possibility is thus that ¥ contains A;[8] @ [7] D [1],
hence is equal to the latter for weights reasons, and

v=ApBl® 9@ [7]®[1]
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Arthur’s multiplicity formula is satisfied for this ¥ by Formulas (5.2.6), (5.2.9) and (5.2.12).
There is thus an eigenform in L},(I"js) with parameter v, necessarily cuspidal as its
weight is odd.

We are left to study the case @;, = 3. In this case we focus on the weight 3 of ¥'.
It cannot come from a summand in the list (5.3.2). It must thus come from a summand
uld,] of " which does not contribute to any weight in {0, 1,9, 10}, in particular m,,
does not have any weight in {21/2, 10, 19/2,9, 17/2,3/2, 1, 0}. If 7, has motivic weight
< 23, an inspection of Ly shows 7, [d,] = A}1[6], which leads to

VU =Ay[4] An6]@ [5]1@[3] @ [1].

If ,, has motivic weight 23, then we have d,, = 2, A;[4] is a summand of ¥', so 15/2
and 13/2 are not weights of 7,,, and the only possibility is 77, = Ays 7 and

V= A007[2]10 Ap[41® Anl2]1 @ [3] @ [3]1© [1].

In both cases, ¥ does not satisfy the multiplicity formula at the element s, with 7,[d,] =
Ay [dy]: we have x,, o (t(sp)) = (—1)%? = —1 by (5.2.6) and €y (s,) = 1. This concludes
the proof of Theorem 2.

5.4. Complements: theta series constructions. — Recall that for any integer n =0 mod 8
we denote by £, the set of even unimodular lattices in the standard Euclidean space R”,
and by X, = O(R")\ L, the finite set of isometry classes of such lattices.

Our first complement concerns the question of the surjectivity of the linear map
¥, : C[Xoi] = M(T',) of Formula (5.3.1), also called the Eichler basis problem, for k =0
mod 4. This surjectivity was proved in [CL19, §1.3] in the case g < £ < 12.

Corollary 5.11. — Assume k =4, 8 or 12. Then 0, : C[Xo ] — Mp(T',) s surjective for
all g. In particular, the Siegel operator @, : M (I'y) — M(I',_1) is surjective as well for all g > 1.

Progf. — We have the relations ®, 0 ¢}, = ¥,_, and Ker ®, = Si(I’,). The corollary
follows thus from the case g < £, and from the vanishing S;(I',) = 0 for ¢ > £ and £ < 12,
implied by Theorem 2. U

In other words, the Eichler basis problem holds for all g for those three values of £.
We stress that this is 7ot a general phenomenon: as was observed in [KSMO04, §3]'® the
map Wy is not surjective for £ = 16.

Remark 5.12. — For £ =4, 8, 12, the surjectivity of ®, and the determination of
dim S.(T’,) for all g by Table 6 allow to determine dim M(T’,) for all g. In particular, we

18 We are grateful to Riccardo Salvati Manni for pointing out the reference [KSMO04]. This reference was also
unknown to the authors of [CL19], who independently observed with similar arguments that ¢4 is not surjective for
k=16:see [CL19, Cor. 7.3.5].



316 GAETAN CHENEVIER AND OLIVIER TAIBI

have dim M(T",) = [Xy| for k=4 and g > |, for £ =8 and g > 4, and for £ = 12 and
g=>12.

Our second complement concerns the concrete construction via theta series of the
four weight 13 Siegel modular eigenforms F, of respective genus g = 8, 12, 16 and 24
given by Table 6. Consider again the standard Euclidean space R"” with » = 0 mod 8. For
any finite-dimensional continuous representation U of the compact orthogonal group
O(R") over the complex number, we denote by My(£2,) the complex vector space of
O(R")-equivariant functions £, — Uj this is a space of automorphic forms for the or-
thogonal group scheme €2, introduced after Lemma 5.7 (see also [CL19, Sect. 4.4.4]).
For any integers g, v > 1, we denote by H, ,, the representation of O(R") on the space
of harmonic polynomials of degree v on M, ,(C) in the sense of [B689, §XI]. The con-
struction of Siegel theta series with harmonic coefficients gives rise to a linear map (see
[B689, §XI] and [CL19, Sect. 5.4.1])

(5.4.1) Fugn  Mi,,, () — 14, (Ty),

mapping any £2,-eigenform to a Siegel eigenform (Eichler’s commutation relations) or to
zero. The following proposition is suggested by Rallis’s theory [Ral82] and the fact that
the standard parameters of the four weight 13 Siegel eigenforms F, are respectively

Aoy 13[4] @ [1], Ao 7[6]1 D [1], Apy[8]1 D [9]1 D [7]1 @ [1] and A, [12] D [25].

Proposition 5.13.

(1) For each g, the form ¥, 15 in the image of 0 4 94.
(i) The form ¥y s in the image of ¥ g 16.

Proof: — Bocherer! gives in [B689, Thm. 5] a necessary and sufficient condition
for these properties to hold in terms of the order of vanishing of the standard L-function
L(s, Fy, St) of ¥y at s =n/2 — g, with n = 24 in case (i) and n = 16 in case (ii). A case-by-
case analysis reveals that this criterion holds true in all five cases. We refer to [CT19b] for
the details of this simple, but rather tedious, verification. The only non-trivial necessary
ingredient is the non-vanishing at 1/2 of the Godement-Jacquet L-function of A9 ; and
Ay 13, that was proved in [CL19, Prop. 9.3.39]. U

In the companion paper [CT19a], we study the maps 9 ;94 in a much more ele-
mentary way. Note that a harmonic polynomial of weight 1 on M, ,(C) is just the datum
of a g-multilinear alternating form on G". For any element f in My, ,,,(€294), and any
Niemeier lattice A in Loy, the g-multilinear alternating form f(A) is invariant under the
orthogonal group O(A) of A. This actually forces f to vanish outside the O(R**)-orbit

!9 ITmportant contributions to this problem have been made by Siegel, Weissauer, Kudla-Rallis (Siegel- Weil formula),
and also by Freitag, Garrett, Piatetski-Shapiro, Rallis and Waldspurger.
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of the Leech lattice by [C'T'19a, Prop. 4.1]. A curious consequence of Proposition 5.13
is thus that for g = 8, 12, 16, 24, there is a nonzero, O(Leech)-invariant, g-multilinear
alternating form on the Leech lattice! A computation using the O(Leech)-page of the
ATLAS fortunately confirms this property, and reveals furthermore that there is a unique
such form up to multiplication by a scalar, and none for the other values of g > 1. (The
existence of such a form for g = 24 is well-known, and follows from the fact that the
Leech lattice is orzentable, which means that any element in O(Leech) has determinant 1).
In other words, My, , ,, (€224) has dimension 1 for ¢ = 8, 12, 16, 24 (and 0 otherwise). The
main result of [C'T'19a] is a direct proof of the non-vanishing of the map 1 , 94 for these
four values of g. The non-vanishing of ) 94 94, hence of S;3(I'94), and had already been
observed in the past by Freitag, in the last section of [Fre82]. The Mathieu group My,
and certain oriented rank g sublattices of the Leech lattice play an important role in our
argument for g < 24. We also prove differently loc. cit. that the standard parameter of the
line of Siegel eigenforms in the image of ) ;94 is the one given in Table 13. All of this
fully confirms Corollary 1 and Proposition 5.13 (i), and show the following

Corollary 5.14. — The linear map ¥ 4 94 1n (5.4.1) is an isomorphism _for all g > 1.

Case (ii) of Proposition 5.13 also implies the nonvanishing of My, , ;(£216). Let us
simply mention that we actually have dim My, , ,;(€216) = 2 using a computation similar
to that of [CL19, Cor. 9.5.13]. The space My, , ;(£216) is actually generated by two €2;-
eigenforms, with respective standard parameters Ay 13[4] and A,7[8].

3.5. Remarks on the case g > 2k. — Let k and g be non-negative integers satisfying
g > 2k. In this case we have L;(T',) = My(T',) by [Wei83, Satz 3]. We may thus apply
Arthur’s endoscopic classification to study M(T',).

Proposition 3.15. — We have dim M(T',) = dim M(I'yz) whenever g > 2k, and this

dimension vanishes unless k is divisible by 4.

Proof. — For any eigenform in L;(T',) with standard parameter ¥, we are in case
(H1) as g — £ > £, and with 7r;, = 1. Indeed, we must have n;, = 1, otherwise m;,[d;,] would
contribute an eigenvalue greater than g — £ to the infinitesimal character of p;(g), and
n, = 1 forces m;, = 1 as m;, has level 1. In particular £ is even, 7, is in I,4q, and we have
Y =9 ®[2(g— k) + 1] where ¥’ is such that ¥ is an Adams-Johnson parameter for
the compact group SO(2k).

By the Arthur multiplicity formula, the characters €, and y,,(, coincide on C.
Consider the element s € C,, defined as follows:

HieL:\'r,n Si 1f IOdd = {ZO } ’

Siviy l_[l-elm si i loqq = {10, 11, 1o}

S =
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Formulas (5.2.6) and (5.2.9) imply X, (s) = (—1)"2. Indeed, one simpler way to argue
is to use the interpretation of the signs loc. cit., given by Formula (5.2.4) together with For-
mula (5.2.10) in the case Ioqq = {, 21, 12}, to deduce the equality x,,)(s) = Hle Sp_; =
(—1)*2. On the other hand, we have € (s) = []. i € (77, )Min(@:2¢=D+D We claim that for
¢ € I and any integer ¢ > 2k we have the equality

(5.5.1) € (r,)Min: 2=+ _ 1

Indeed, we may assume 7; symplectic (otherwise € (7r;) = 1), in which case we have n; > 2
and n;d; < 2k and thus d; < k < 2(¢’ — k) + 1, and we conclude as d; is even. This shows
in particular €, (s) = 1, and together with x,,,(s) = (—1)*/?, proves that £ is divisible by
4 if M (") is nonzero.

To prove the asserted equality of dimensions, it is enough to show that the fact
that the multiplicity formula holds for ¥ implies that for any genus g’ > 2£ it also holds
for the parameter ¥, := ' @ [2(¢’ — k) + 1], still in weight £ and case (H1). We may
index the summands of ¥, with the same set I as for ¥, with the same 7; for i € I, the
same 1y, and the same d; for ¢ % 7,. There is an obvious bijection between C,, and C,/,g/
matching all 5; and s;. Via this bijection the characters €, and €y, coincide, as for all

i # iy we have € (r,)Mn@2e=D+D = ¢ (g )Min(@:2=H+D — | by (5.5.1). We conclude as the
characters x,,() and x,,) trivially coincide as well. UJ

Of course this proposition is coherent with the known properties of Siegel modular
forms for g > 2:

Im?, ifk>0and4i=0mod 4,
(5.5.2) SiT) =0 and M(T,) =
0 otherwise.

by [Res75], [Fre75] (first equality), [Fre77] (second equality, see also [How81]).

Corollary 5.16. — Assume g > 2k.

(1) The Siegel operator @,y : My(T'y11) — My(T',) is byjective.
(2) Ifk=0mod 4, the hnear map ¥, : G[Xor] — My(T',) 15 an isomorphism.

Progf. — The first equality in (5.5.2) means that @, is injective. By the equality of
dimensions of Proposition 5.15, this implies that ®, is bijective. (In the case g > 2£, the
surjectivity of @, also follows from the second equality in (5.5.2), as M;(T’,) is generated
by theta series). This proves the first assertion.

For the second, it is obvious that ¥, is injective for ¢ = 2, hence for all g > 2k
as well by the relation ®,,, o ¥,,; = ¥,. The surjectivity of 9, follows from the second
equality of (5.5.2) for g¢ > 2k. The surjectivity of ¥y, , and the surjectivity of @y, proved
in (1), imply the remaining surjectivity of ¥y. O

This corollary seems to be new for g = 2%£.
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TaBLE 5. — Standard parameters ¥ of the non scalar-valued cuspidal Siegel

modular eigenforms of weight £ = (£, ..

., k) and genus g with £ < 13 and

ki >k >->k>g>1

14 g k

SmeAll S AL[2] 3 (12,8, 8)

Sym’ Ay @ Aj5[2] 3 (12, 10, 10)

O%% 16,8 3 (13,10,7)

Ags[2]1 @ [1] 4 (11,11,7,7)

Ay (21 @ (1] 4 (12,12,6,6)

Ag1o[2] @ [1] 4 (12,12,8,8)

Aqp13[2] B [1] 4 (12,12, 10, 10)
054,18.10,4@[1] 4 (13,11, 8,6)

O5, 90.14.0 © [1] 4 (13,12, 10, 5)

Nos7[2] @ [1] 4 (18,18,7,7)

Sym* A1 @ Ajs[2] @ Ap[2] 5 (12,10, 10, 10, 10)

Sym’ Ay @ Ay 7[2] 5 (12,12, 12,8, 8)

Sym? Ay @ A[2] @ Ay [2] 5 (12,12,12,10, 10)

03, 16 ® Ao[2] 5 (13,12,12,12,9)

Ay 2] Ay [4] D [1] 6 (12,12, 10, 10, 10, 10)

N9 5[2] B A;[2]1 D [1] 6 (12,12,12,12,8,8)
Ago[2]1® Ay 2] @ [1] 6 (12,12,12,12, 10, 10)
05490140 ® A [21 @ [1] 6 (13,12,12,12,12,7)
Agsa210 Ap[2] @ [1] 6 (13,13,12,12,9,9)
Sym®Ay; @ Ay [6] 7 (12,10, 10, 10, 10, 10, 10)
Sym? Ay @ A 7[2]1® A [2] 7 (12,12, 12,10, 10, 10, 10)
Sym* A @ Ao ;[2] @ Aj5[2] 7 (12,12, 12,12, 12, 10, 10)
O3 168 D Ao 5[2] 7 (13,13,13,12,9,9,9)

Ay s[2]1® Anl4l @ [1] 8 (12,12, 10,10, 10, 10, 10, 10)
Ay 7[4] @ [1] 8 (12,12,12,12,10, 10, 10, 10)
Aor5[2]1 @ Ajs[4] @ [1] 8 (12,12,12,12,12,12, 10, 10)
Ags7[2] @ As[4] @ [1] 8 (18,13,12,12,12,12, 11, 11)
Ag s[4 @ [1] 8 (13,13,13,13,9,9,9,9)

Ay o[4] @ [1] 8 (13,13,13,13,11, 11,11, 11)
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TaBLE 6. — Standard parameters ¥ of the scalar-valued cuspidal Siegel
modular eigenforms of weight £ < 13 and arbitrary genus g > 1

14 g k
Sym2A11 1 12
Ay[2]1 @ [1] 2 10
Ay [2] ® [1] 2 12
Sym’ Ay, @ Ajg[2] 3 12
A4l [1] 4 8
Ajs[4]1 @ [1] 4 10
Apl4] @ [1] 4 12
Ay [2]® App[2] @ (1] 4 12
Sym?Ap, @ Ay;[4] 5 12
Sym* Ay @ A[2] © A5[2] 5 12
A2l Anl4l @ (1] 6 10
Ay 6] @ [1] 6 12
Ay [2] ® As[4] @ [1] 6 12
Aoy 13[2]1 D Ay [2] D [1] 6 12
Sym2A|1 @ A5[6] 7 12
Sym’Ay; & A [4] @ A[2] 7 12
Sym’ Ay & A[2] ® A5[2] D A1[2] 7 12
A8l (1] 8 10
As[8] @ [1] 8 12
Ap[4]® A [4] @ [1] 8 12
Agi[2]® Ay (2] @ An[4] @ [1] 8 12
Ag1o[2] @ A5[4] @ [1] 8 12
Agy13[4] @ [1] 8 13
SYm2A11®A19[2]®A11[6] 9 12
Sym?Ap @ A 7[21 0 A5[2]1 © A[2] 9 12
Ay 2] AL [B]D[1] 10 12
Ag5[2] B Ap[2] @ An[4] @ (1] 10 12
Sym?*A;; @ A;1[10] 11 12
An[12] @ (1] 12 12
Ao 7[6] B [1] 12 13
ApBle a7l e (1] 16 13
[25] @ A [12] 24 13
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