Article
Quasimap wall-crossings and mirror symmetry
Publications Mathématiques de l'IHÉS, Volume 131 (2020), pp. 201-260

We state a wall-crossing formula for the virtual classes of ε-stable quasimaps to GIT quotients and prove it for complete intersections in projective space, with no positivity restrictions on their first Chern class. As a consequence, the wall-crossing formula relating the genus g descendant Gromov-Witten potential and the genus gε-quasimap descendant potential is established. For the quintic threefold, our results may be interpreted as giving a rigorous and geometric interpretation of the holomorphic limit of the BCOV B-model partition function of the mirror family.

Received:
Accepted:
Online First:
Published online:
DOI: 10.1007/s10240-020-00114-0
@article{PMIHES_2020__131__201_0,
     author = {Ionu\c{t} Ciocan-Fontanine and Bumsig Kim},
     title = {Quasimap wall-crossings and mirror symmetry},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {201--260},
     year = {2020},
     publisher = {Springer Berlin Heidelberg},
     address = {Berlin/Heidelberg},
     volume = {131},
     doi = {10.1007/s10240-020-00114-0},
     zbl = {1475.14109},
     language = {en},
     url = {https://pmihes.centre-mersenne.org/articles/10.1007/s10240-020-00114-0/}
}
TY  - JOUR
AU  - Ionuţ Ciocan-Fontanine
AU  - Bumsig Kim
TI  - Quasimap wall-crossings and mirror symmetry
JO  - Publications Mathématiques de l'IHÉS
PY  - 2020
SP  - 201
EP  - 260
VL  - 131
PB  - Springer Berlin Heidelberg
PP  - Berlin/Heidelberg
UR  - https://pmihes.centre-mersenne.org/articles/10.1007/s10240-020-00114-0/
DO  - 10.1007/s10240-020-00114-0
LA  - en
ID  - PMIHES_2020__131__201_0
ER  - 
%0 Journal Article
%A Ionuţ Ciocan-Fontanine
%A Bumsig Kim
%T Quasimap wall-crossings and mirror symmetry
%J Publications Mathématiques de l'IHÉS
%D 2020
%P 201-260
%V 131
%I Springer Berlin Heidelberg
%C Berlin/Heidelberg
%U https://pmihes.centre-mersenne.org/articles/10.1007/s10240-020-00114-0/
%R 10.1007/s10240-020-00114-0
%G en
%F PMIHES_2020__131__201_0
Ionuţ Ciocan-Fontanine; Bumsig Kim. Quasimap wall-crossings and mirror symmetry. Publications Mathématiques de l'IHÉS, Volume 131 (2020), pp. 201-260. doi: 10.1007/s10240-020-00114-0

[1.] K. Behrend; B. Fantechi The intrinsic normal cone, Invent. Math., Volume 128 (1997), pp. 45-88 | MR | DOI | Zbl

[2.] M. Bershadsky; S. Cecotti; H. Ooguri; C. Vafa Holomorphic anomalies in topological field theories, Nucl. Phys. B, Volume 405 (1993), pp. 279-304 | MR | DOI | Zbl

[3.] A. Bertram Another way to enumerate rational curves with torus actions, Invent. Math., Volume 142 (2000), pp. 487-512 | MR | DOI | Zbl

[4.] A. Bertram; I. Ciocan-Fontanine; B. Kim Two proofs of a conjecture of Hori and Vafa, Duke Math. J., Volume 126 (2005), pp. 101-136 | MR | DOI | Zbl

[5.] A. Bertram; I. Ciocan-Fontanine; B. Kim Gromov-Witten invariants for nonabelian and abelian quotients, J. Algebraic Geom., Volume 17 (2008), pp. 275-294 | MR | Zbl | DOI

[6.] I. Ciocan-Fontanine; B. Kim Moduli stacks of stable toric quasimaps, Adv. Math., Volume 225 (2010), pp. 3022-3051 | MR | Zbl | DOI

[7.] I. Ciocan-Fontanine; B. Kim Wall-crossing in genus zero quasimap theory and mirror maps, Algebraic Geom., Volume 1 (2014), pp. 400-448 | MR | DOI | Zbl

[8.] I. Ciocan-Fontanine; B. Kim Big I-functions, Development of Moduli Theory, Volume 69 (2016), pp. 323-347 (volume in honor of S. Mukai’s 60th birthday) | Zbl

[9.] I. Ciocan-Fontanine; B. Kim Higher genus quasimap wall-crossing for semi-positive targets, J. Eur. Math. Soc., Volume 19 (2017), pp. 2051-2102 | MR | DOI | Zbl

[10.] I. Ciocan-Fontanine; B. Kim; C. Sabbah The abelian/nonabelian correspondence and Frobenius manifolds, Invent. Math., Volume 171 (2008), pp. 301-343 | MR | DOI | Zbl

[11.] I. Ciocan-Fontanine; M. Konvalinka; I. Pak Quantum cohomology of 𝐻𝑖𝑙𝑏 n (𝐂 2 ) and the weighted hook walk on Young diagrams, J. Algebra, Volume 349 (2012), pp. 268-283 | MR | Zbl | DOI

[12.] I. Ciocan-Fontanine; B. Kim; D. Maulik Stable quasimaps to GIT quotients, J. Geom. Phys., Volume 75 (2014), pp. 17-47 | MR | Zbl | DOI

[13.] Y. Cooper The geometry of stable quotients in genus one, Math. Ann., Volume 361 (2015), pp. 943-979 | MR | Zbl | DOI

[14.] C. Faber; R. Pandharipande Hodge integrals and Gromov-Witten theory, Invent. Math., Volume 139 (2000), pp. 173-199 | MR | DOI | Zbl

[15.] W. Fulton Intersection theory, Springer, Berlin, 1984 | Zbl | DOI

[16.] E. Getzler; R. Pandharipande Virasoro constraints and the Chern classes of the Hodge bundle, Nucl. Phys. B, Volume 530 (1998), pp. 701-714 | MR | Zbl | DOI

[17.] A. Givental Equivariant Gromov-Witten invariants, Int. Math. Res. Not., Volume 13 (1996), pp. 613-663 | MR | Zbl | DOI

[18.] A. Givental A mirror theorem for toric complete intersections, Topological Field Theory, Primitive Forms and Related Topics, Volume 160 (1998), pp. 141-175 | Zbl | DOI

[19.] T. Graber; R. Pandharipande Localization of virtual classes, Invent. Math., Volume 135 (1999), pp. 487-518 | MR | Zbl | DOI

[20.] M-x. Huang; A. Klemm; S. Quackenbush Topological string theory on compact Calabi-Yau: modularity and boundary conditions (A. Kapustin; M. Kreuzer; K.-G. Schelsinger, eds.), Homological Mirror Symmetry – New Developments and Perspectives, 757, 2009, pp. 45-102 | Zbl

[21.] B. Kim; H. Lho Mirror theorem for elliptic quasimap invariants, Geom. Topol., Volume 22 (2018), pp. 1459-1481 | MR | DOI | Zbl

[22.] B. Kim; R. Pandharipande The Connectedness of the moduli space of maps to homogeneous spaces (K. Fukaya; Y.-G. Oh; K. Ono; G. Tian, eds.), Symplectic Geometry and Mirror Symmetry: Proceedings of the 4th KIAS Annual International Conference, 2001, pp. 187-201 | DOI | Zbl

[23.] A. Kresch Canonical rational equivalence of intersections of divisors, Invent. Math., Volume 136 (1999), pp. 483-496 | MR | Zbl | DOI

[24.] J. Li; G. Tian Virtual moduli cycles and Gromov-Witten invariants of algebraic varieties, J. Am. Math. Soc., Volume 11 (1998), pp. 119-174 | MR | Zbl | DOI

[25.] A. Marian; D. Oprea; R. Pandharipande The moduli space of stable quotients, Geom. Topol., Volume 15 (2011), pp. 1651-1706 | MR | Zbl | DOI

[26.] A. Mustaţă; A. Mustaţă Intermediate moduli spaces of stable maps, Invent. Math., Volume 167 (2007), pp. 47-90 | MR | DOI | Zbl

[27.] A. Popa The genus one Gromov-Witten invariants of Calabi-Yau complete intersections, Trans. Am. Math. Soc., Volume 365 (2013), pp. 1149-1181 | MR | DOI | Zbl

[28.] Y. Toda Moduli spaces of stable quotients and wall-crossing phenomena, Compos. Math., Volume 147 (2011), pp. 1479-1518 | MR | Zbl | DOI

[29.] A. Vistoli Intersection theory on algebraic stacks and on their moduli spaces, Invent. Math., Volume 97 (1989), pp. 613-670 | MR | DOI | Zbl

[30.] A. Zinger The reduced genus 1 Gromov-Witten invariants of Calabi-Yau hypersurfaces, J. Am. Math. Soc., Volume 22 (2009), pp. 691-737 | MR | DOI | Zbl

Cited by Sources: