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ABSTRACT

We state a wall-crossing formula for the virtual classes of ε-stable quasimaps to GIT quotients and prove it for
complete intersections in projective space, with no positivity restrictions on their first Chern class. As a consequence, the
wall-crossing formula relating the genus g descendant Gromov-Witten potential and the genus g ε-quasimap descendant
potential is established. For the quintic threefold, our results may be interpreted as giving a rigorous and geometric inter-
pretation of the holomorphic limit of the BCOV B-model partition function of the mirror family.
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1. Introduction

1.1. Overview. — Let W be a complex affine variety acted upon by a reductive
algebraic group G. Fix a character θ of G for which the induced G-action on the θ -
semistable locus Wss is free. For the quasiprojective target W//θG and a rational number
ε > 0, or for ε = 0+, the notion of ε-stable quasimaps to W//θG was introduced in [12],
inspired by [6, 25, 26]. They are in fact suitable maps from curves to the stack quo-
tient [W/G]. The Deligne-Mumford moduli stack Qε

g,k(W//θG, β) of ε-stable quasimaps
of type (g, k, β) is proper over C if W//θG is projective. Here g, k, and β are respec-
tively the genus of the domain curve, the number of markings, and the numerical class
β ∈ HomZ(Pic([W/G],Z)) of the quasimaps. If W has at worst lci singularities and Wss is
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smooth (as always assumed in this paper), the moduli stacks carry canonical virtual fun-
damental classes. There are evaluation maps evj to W//θG, as well as cotangent psi-classes
ψj at the j-th marking. Hence, we may define descendant ε-quasimap invariants

(1.1.1)
〈
γ1ψ

a1
1 , . . . , γkψ

ak

k

〉ε
g,k,β

=
∫

[Qε
g,k(W//θ G,β)]vir

k∏

j=1

ψ
aj

j ev∗
j γj

for γi ∈ A∗(W//θG)Q and ai ∈ Z≥0. Here and for the rest of the paper, the Chow coho-

mology A∗(Y)Q of a Deligne-Mumford stack Y is the algebra A∗(Y
id→ Y)Q of bivariant

classes, see [15, §17.3] and [29, §5].
There is a wall-and-chamber structure on the space Q>0 of stability parameters.

Assuming for simplicity (g, k) �= (0, 0), the walls are at ε = 1/n with n ∈ N and the moduli
spaces stay constant in each chamber ( 1

n+1 , 1
n
]. For ε ∈ (1,∞), they parametrize exactly

stable maps to W//θG. A conjectural wall-crossing formula for the invariants of semi-

positive targets was stated in the paper [9], and was proved for semi-positive (quasiprojec-
tive) toric quotients by localization techniques. In this paper we propose a geometric wall-
crossing formula at the level of virtual classes and without any positivity restrictions (which, as
we show, implies the above mentioned semi-positive numerical wall-crossing, see Corol-
lary 1.5). The main result of the paper is a proof of the virtual class wall-crossing formula
for complete intersections in projective spaces.

The wall-crossing formula has important applications to Mirror Symmetry for
Calabi-Yau threefolds at higher genus. This is explained in Section 1.5, the main point
being that, assuming the Mirror Conjecture, the genus g partition function of quasimap
theory for the ε = 0+ stability of a Calabi-Yau threefold is precisely equal to (the holomor-
phic limit of) the B-model partition function of the mirror Calabi-Yau family, introduced
in string theory by Bershadsky, Cecotti, Ooguri, and Vafa.

1.2. Geometric wall-crossing. — To state the wall-crossing formula, we recall some
facts from quasimap theory and fix some notation.

The monoid Eff(W,G, θ) of θ -effective numerical classes is the submonoid of the
additive group HomZ(Pic([W/G],Z) consisting of classes represented by θ quasimaps
(possibly with disconnected domain curves). The Novikov ring of the theory is

Q[[q]] :=
{ ∑

Eff(W,G,θ)

aβqβ

∣∣∣ aβ ∈ Q
}

,

the q-adic completion of the semigroup ring Q[Eff(W,G, θ)].
The GIT set-up gives (see [7, §3.1] for details) a natural morphism i : [W/G] →

[Cm+1/C∗] for some m ∈ Z+, inducing a closed immersion i : W//θG ↪→ Pm and also a
morphism (denoted by the same letter)

i : Qε
g,k(W//θG, β) → Qε

g,k

(
Pm, d(β)

)
,

where d(β) := i∗(β) ∈ Hom(Pic([Cm+1/C∗]),Z) ∼= Z.
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Fix a positive rational number ε0 such that 1/ε0 is an integer and let ε+ > ε0 ≥ ε−
be rational numbers in the two adjacent stability chambers separated by the wall ε0.
There is a morphism

c : Qε+
g,k

(
Pm, d(β)

) → Qε−
g,k

(
Pm, d(β)

)

which contracts rational tails of degree 1/ε0, see [28].
Let A denote a finite index set of cardinality 1, 2, 3, . . . Consider splittings β =

β0 +∑
a∈A βa into θ -effective numerical classes such that d(βa) = 1/ε0 for all a ∈ A. There

is a natural morphism

bA : Qε−
g,k+A

(
Pm, d(β0)

) → Qε−
g,k

(
Pm, d(β)

)

which trades the markings in A for base points of length 1/ε0 ([7, §3.2]).
Finally, recall from [12, §7] and [7, §5] that for every triple (W, G, θ), with associ-

ated quotient X = W//θG, there is a corresponding small I-function, denoted Ism(q, z). The
precise definition we will use in this paper is Definition 5.1.1 in [7], specialized at ε = 0+
and t = 0.

The small I-function lies in a certain completion A∗(X)Q[[q]]{{1/z, z}} of Laurent
series in 1/z. (Here z may be viewed as a formal variable of degree one, though it is more
natural to interpret z as the generator of the C∗-equivariant cohomology A∗

C∗(Spec(C)).)
It can be explicitly calculated for many targets. For abelian quotients, that is, for toric
varieties and for complete intersections in them, the small I-function is precisely the
cohomology-valued hypergeometric series introduced by Givental [18] (up to exponen-
tial factors). Closed formulas for Ism in many examples with nonabelian G (e.g., complete
intersections in flag varieties, but many others as well) can also be written down using the
so-called abelian/nonabelian correspondence, see [4, 5, 10, 11].

Consider the expansion

Ism(q, z) = O
(
1/z2

) + I1(q)

z
+ I0(q) + I−1(q)z + I−2(q)z

2 + · · ·
and set

[
zIsm(q, z) − z

]
+ := I1(q) + (

I0(q) − 1
)
z + I−1(q)z

2 + · · ·
In general [zIsm(q, z)−z]+ is a power series in (q, z), but each q-coefficient is a polynomial
in z. For each 0 �= β ∈ Eff(W,G, θ), let

μβ(z) ∈ A∗(X)Q[z]
denote the coefficient of qβ in [zIsm(q, z) − z]+. By easy dimension counting, μβ(z) is
homogeneous of degree 1 + β(K[W/G]). Here z has degree one, the Chow cohomology
classes are given their usual degrees, and K[W/G] = −det(TW) ∈ PicG(W) = Pic([W/G])
is the canonical line bundle of the quotient stack.

We are now ready to state the wall-crossing for virtual classes.
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Conjecture 1.1. — There is an equality

(1.2.1) i∗
[
Qε−

g,k(X, β)
]vir − c∗i∗

[
Qε+

g,k(X, β)
]vir

=
∑

|A|

∑

β=β0+∑
a∈A βa

1
|A|!bA∗(cA)∗i∗

(∏

a∈A

ev∗
a μβa

(z)|z=−ψa
∩ [

Qε+
g,k+A(X, β0)

]vir
)

in the Chow group A∗(Q
ε−
g,k(P

m, d(β)))Q.

More generally, let δ1, . . . , δk ∈ A∗(X)Q be arbitrary homogeneous cohomology classes. Then

(1.2.2) i∗

( k∏

j=1

ev∗
j δj ∩

[
Qε−

g,k(X, β)
]vir

)
− c∗i∗

( k∏

j=1

ev∗
j δj ∩

[
Qε+

g,k(X, β)
]vir

)

=
∑

|A|

∑

β=β0+∑
a∈A βa

1
|A|!bA∗(cA)∗i∗

( k∏

j=1

ev∗
j δj

∏

a∈A

ev∗
a μβa

(z)|z=−ψa

∩ [
Qε+

g,k+A(X, β0)
]vir

)

in A∗(Q
ε−
g,k(P

m, d(β)))Q.

In the above statement, cA : Qε+
g,k+A(Pm, d(β0)) → Qε−

g,k+A(Pm, d(β0)) is the contraction of
rational tails of degree d(βa) = 1/ε0.

Remark 1.2. — For X a semi-positive quasi-projective toric manifold, Conjecture 1.1
coincides with Theorem 4.2.1 in [9], and the result is valid for any GIT presentation of X,
see [9, §5.9.2]. In fact, the localization argument of [9] extends with little effort to prove
(1.2.2) for all toric manifolds (i.e., no positivity restriction), offering the first evidence for
the validity of Conjecture 1.1. We will treat this extension elsewhere.

1.3. Numerical consequences. — In this subsection we assume that (W,G, θ) is a
triple for which Conjecture 1.1 holds. We work with arbitrary stability parameters
ε ∈ Q>0 ∪ {0+} and will write ε = ∞ for all parameters in the Gromov-Witten chamber
(1,∞).

Consider a formal power series in one variable ψ ,

t(ψ) := t0 + t1ψ + t2ψ
2 + t3ψ

3 + · · · ,

with coefficients tj ∈ A∗(X)Q general Chow cohomology classes.
The genus g, ε-descendent potential of X is

Fε
g

(
q, t(ψ)

) :=
∑

(β,k)

qβ

k!
〈
t(ψ1), t(ψ2), . . . t(ψk)

〉ε
g,k,β

,
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the sum over all pairs (β, k) for which the corresponding moduli spaces exist. If we choose
a basis {γj} in A∗(X)Q and write ti = ∑

j tijγj , i = 0, 1, 2, . . . , then Fε
g (q, t(ψ)) is a for-

mal power series in the infinitely many variables tij , whose Taylor coefficients are the
ε-quasimap invariants (1.1.1). In particular, F∞

g is the generating series for all descendent
genus g Gromov-Witten invariants of X.

1.3.1. Wall-crossing from Gromov-Witten invariants to ε-quasimap invariants. — Let
Jε

sm(q, z) be the small J-function of X ([7, Definition 5.1.1], specialized at t = 0). With
this notation, Ism = J0+

sm . Let

[
zJε

sm − z
]
+ := Jε

1(q) + (
Jε

0(q) − 1
)
z + Jε

−1(q)z
2 + · · ·

This is explicit for all ε, since it is a q-truncation of the corresponding expression for the
small I-function:

[
zJε

sm(q, z) − z
]
+ = [

zIsm(q, z) − z
]
+ (mod aε),

with aε the ideal in the Novikov ring generated by {qβ | β(Lθ ) > 1
ε
}.

Corollary 1.3. — For any ε ≥ 0+, and any g ≥ 1,

Fε
g

(
q, t(ψ)

) = F∞
g

(
q, t(ψ) + [

zJε
sm(q) − z

]
+|z=−ψ

)
.

Further, in genus g = 0 the same relation holds after discarding from F∞
0 (q, t(ψ)) the terms correspond-

ing to pairs (β, k) for which Qε
0,k(X, β) is not defined.

Proof. — The ψ -classes at the markings 1, . . . , k pull-back under the maps bA, c,
cA, and i. Applying the virtual class wall-crossing (1.2.2) in Conjecture 1.1 successively for
the walls from 1 to ε (and using the projection formula) gives the equality of the Taylor
coefficients of the two sides in the claimed equality. �

Remark 1.4. — (i) The formula in Corollary 1.3 is equivalent to

Fε
g

(
q, t(ψ) − [

zJε
sm(q) − z

]
+|z=−ψ

) = F∞
g

(
q, t(ψ)

)
.

(ii) Assuming only the formula (1.2.1) from Conjecture 1.1 gives the weaker equality

Fε
g

(
q, t̄(ψ)

) = F∞
g

(
q, t̄(ψ) + [

zJε
sm(q) − z

]
+|z=−ψ

)
,

with t̄(ψ) the restriction of t(ψ) to the subring i∗A∗(Pm)Q ⊂ A∗(X)Q.
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1.3.2. Semi-positive targets. — Recall that a triple (W,G, θ) is called semi-positive
if

β(det TW) = β(−K[W/G]) ≥ 0

for every β ∈ Eff(W,G, θ). For such targets we have
[
zJε

sm(q) − z
]
+ = Jε

1(q) + (
Jε

0(q) − 1
)
z,

since deg(μβ(z)) ≤ 1 for all β . The wall-crossing formula of Corollary 1.3 becomes

(1.3.1) Fε
g

(
q, t(ψ)

) = F∞
g

(
q, t(ψ) + Jε

1(q) − (
Jε

0(q) − 1
)
ψ

)
.

In fact, equation (1.3.1) is equivalent to the wall-crossing formula conjectured in [9, Con-
jecture 1.2.1]:

Corollary 1.5. — For a semi-positive triple (W,G, θ) we have

(1.3.2)
(
Jε

0

)2g−2
(

δ1
g

(
χtop(X)

24
log Jε

0(q)

)
+ Fε

g

(
q, t(ψ)

)) = F∞
g

(
q,

t(ψ) + Jε
1(q)

Jε
0(q)

)
,

where χtop(X) denotes the topological Euler characteristic and δ1
g is the Kronecker delta. (In genus g = 0

we use the same convention as in Corollary 1.3.)

Proof. — Using the dilaton equation for Gromov-Witten invariants in the right-
hand side of (1.3.1) to remove the insertions (Jε

0(q) − 1)ψ produces exactly (1.3.2). The
additional term δ1

g (
χtop(X)

24 log Jε
0(q)) appears due to the failure of the dilaton equation for

M1,1(X, 0) = M1,1 × X. Namely, since the virtual class is
[
M1,1(X, 0)

]vir = (
1 ⊗ cdim X(TX) − ψ ⊗ cdim X−1(TX)

) ∩ [M1,1 × X],
we have

〈ψ〉∞
1,1,0 =

∫

M1,1×X
ψ ⊗ cdim X(TX) = 1

24
χtop(X),

while the dilaton equation would formally predict 〈ψ〉∞
1,1,0 = 0. �

1.4. Complete intersections in projective space. — The main result of the paper is a proof
of Conjecture 1.1 for projective complete intersections. In fact, we will prove the following
slightly strengthened version.

Let V be the affine space of dimension n + 1 with the standard diagonal G := C∗-
action and linearization θ = idC∗ . Let W be a complete intersection of r ≤ n homoge-
neous hypersurfaces in V. Then X := W//θG is the corresponding projective complete
intersection in P(V) (and W is the affine cone over X). Assume that the hypersurfaces are
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general, so that X is smooth. We take X ↪→ P(V) as our embedding i. In this case, the
induced

i : Qε
g,k(X, d) −→ Qε

g,k

(
P(V), d

)

are also embeddings. The maps that replace markings by base-points, as well as the con-
traction maps, respect these embeddings, i.e., given a wall ε = 1/da and ε+ > ε ≥ ε−
nearby, we have restrictions

bA : Qε+
g,k+A

(
X, dA

0

) −→ Qε+
g,k(X, d),

where dA
0 = d − |A|da, and

c : Qε+
g,k(X, d) −→ Qε−

g,k(X, d).

Theorem 1.6. — There is an equality

[
Qε−

g,k(X, d)
]vir − c∗

[
Qε+

g,k(X, d)
]vir

=
∑

|A|

1
|A|!(bA)∗(cA)∗

(∏

a∈A

ev∗
a μda

(z)|z=−ψa
∩ [

Qε+
g,k+A

(
X, dA

0

)]vir
)

in the Chow group A∗(Q
ε−
g,k(X, d))Q.

Since Theorem 1.6 implies the formula (1.2.2), the relations between ε-quasimap
invariants and Gromov-Witten invariants in Corollaries 1.3 and 1.5 hold for nonsingular
complete intersections X ⊂ Pn of codimension r ≤ n.

Let l1, l2, . . . , lr be the degrees of the hypersurfaces whose intersection is X. The
small I-function of X is given by the well-known formula (see [17])

I(q, z) = 1 +
∑

d≥1

qd

∏r

i=1

∏li d

j=1(liH + jz)
∏d

j=1(H + jz)n+1
,

where H denotes the restriction to X of the hyperplane class on Pn.
If

∑r

i=1 li ≥ n + 2, so that X is a variety of general type, we do not know of any
simplification of the wall-crossing formula in Corollary 1.3. Note that even in genus g = 0
our result is new.

If X is Fano or Calabi-Yau, more precise statements can be made.
The case

∑r

i=1 li ≤ n − 1 of complete intersections which are Fano of index at
least two is the simplest, since Jε

0(q) = 1 and Jε
1(q) = 0 for all ε ≥ 0+. We conclude the

following ε-independence result.

Corollary 1.7. — The quasimap invariants of a projective complete intersection with
∑

i li ≤
n − 1 are independent of ε.
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In the Fano of index one case,
∑r

i=1 li = n, we have Jε
0(q) = 1 and Jε

1(q) =
q(

∏r

i=1 li!)1 for all 0+ ≤ ε ≤ 1.

Corollary 1.8. — For a projective complete intersection with
∑

i li = n and for 0+ ≤ ε ≤ 1
we have

Fε
g

(
t(ψ)

) = F∞
g

(
t(ψ) + q

( r∏

i=1

li!
)

1
)

.

In particular, if (g, n) �= (0, 1), (0, 2), then the primary invariants are again ε-independent:

〈γ1, . . . γn〉ε
g,n,β = 〈γ1, . . . γn〉∞

g,n,β .

The second equality in Corollary 1.8 is a consequence of the string equation in Gromov-
Witten theory.

The most interesting is the Calabi-Yau case
∑r

i=1 li = n + 1, for which

Jε
0(q) =

∑

0≤d≤ 1
ε

qd

∏r

i=1(lid)!
d!n+1

,

Jε
1(q) = H

∑

1≤d≤ 1
ε

qd

∏r

i=1(lid)!
d!n+1

( r∑

i=1

li d∑

k=1

li

k
− (n + 1)

d∑

k=1

1
k

)
.

For every ε and every d , the virtual dimension of the moduli space Qε
g,k(X, d) is

equal to (dim X − 3)(1 − g) + k. We split the discussion according to the genus.

1.4.1. Genus zero. — The wall-crossing formula (1.3.2) at g = 0 for a Calabi-Yau
complete intersection is proved in [9, §3] using Dubrovin-type reconstruction arguments
and results from [7]. Here we just note that the new proof in this paper does not use the
torus action on Pn.

1.4.2. Genus one. — When g = 1, the virtual dimension is independent of the di-
mension of X. Consider the unpointed case k = 0, i.e. the specialization of (1.3.2) at g = 1,
and t(ψ) = 0. Separating the d = 0 contributions and applying the divisor equation in
the Gromov-Witten side gives

Corollary 1.9. — For a Calabi-Yau complete intersection X ⊂ Pn

1
24

χtop(X) log Jε
0 +

∑

d≥1

qd〈 〉ε
1,0,d(1.4.1)

= − 1
24

∫

X

Jε
1

Jε
0

cdim X−1(TX) +
∑

d≥1

qd exp
(∫

d[line]

Jε
1

Jε
0

)
〈 〉∞

1,0,d .
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When ε = 0+, the formula (1.4.1) answers a question raised first in [25, §10.2]. Note
that the unpointed genus one (0+)-invariants 〈 〉0+

1,0,d have been recently calculated by
Kim and Lho ([21]) in terms of the small I-function. Combining [21, Theorem 1.1]
with Corollary 1.9 gives new proofs for the main results on genus one Gromov-Witten
invariants of X from [30] and [27].

1.4.3. Higher genus. — If g ≥ 2 and dim X ≥ 4, the virtual classes (hence the invari-
ants) vanish by dimension considerations. We restrict to the case of unpointed invariants
of Calabi-Yau threefolds. The invariants for d = 0 are the same for all stability conditions
and are given by the formula

〈 〉ε
g,0,0 = (−1)g

2
χtop(X)

|B2g|
2g

|B2g−2|
2g − 2

1
(2g − 2)! ,

with B2g, B2g−2 the Bernoulli numbers, see [16], [14].

Corollary 1.10. — For a Calabi-Yau threefold complete intersection in Pn, g ≥ 2 and ε ≥ 0+,

Jε
0(q)

2g−2

(
(−1)g

2
χtop(X)

|B2g|
2g

|B2g−2|
2g − 2

1
(2g − 2)! +

∑

d≥1

qd〈 〉ε
g,0,d

)

= (−1)g

2
χtop(X)

|B2g|
2g

|B2g−2|
2g − 2

1
(2g − 2)! +

∑

d≥1

qd exp
(∫

d[line]

Jε
1

Jε
0

)
〈 〉∞

g,0,d .

1.5. Relation with Mirror Symmetry. — In this subsection we let X be the quintic hy-
persurface in P4 and consider the asymptotic stability condition ε = 0+. (The same anal-
ysis will apply to the (0+)-theory of any Calabi-Yau threefold for which Conjecture 1.1
holds.)

Fix a genus g ≥ 1. In their landmark paper [2], Bershadsky, Cecotti, Ooguri, and
Vafa studied the string theory B-model of a Calabi-Yau threefold and in particular they
proposed a method to calculate the genus g Gromov-Witten potential of the quintic (with
no insertions) via Mirror Symmetry. Namely, let FB

g (q) be the holomorphic limit of the
genus g partition function of the B-model associated to the mirror family of the quintic,
where q is the coordinate around the large complex structure point. Let the mirror map
be Q = q exp( 1

H
I1(q)

I0(q)
), where

I0(q) = 1 +
∑

d≥1

qd (5d)!
d!5 , I1(q) = H

∑

d≥1

qd (5d)!
(d!)5

( 5d∑

j=d+1

1
j

)
.

Then the genus g ≥ 2 Mirror Conjecture of [2] for the quintic threefold is the equality

(1.5.1) I0(q)
2g−2FB

g (q) =
∑

d≥0

Qd〈 〉∞
g,0,d .
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Hence Corollary 1.10 says precisely that the quasimap partition function F0+
g |t=0(q) is

equal to FB
g (q), with no mirror map involved. Similarly, Corollary 1.9 gives the same

equality in genus g = 1. In other words, our results in this paper can be viewed as giving
a mathematically rigorous and geometrically meaningful definition of the holomorphic
limit of the B-model partition function.

The B-model partition function of the mirror quintic has been studied extensively
in the Physics literature. It is expected to have modular properties and to satisfy a re-
cursion in g, determined up to a holomorphic function fg(q), the so-called “holomorphic
ambiguity”. The ambiguity has been fixed up to genus g = 51 in [20] and this is by far the
most efficient computational method for predicting (via the conjectural mirror formula
(1.5.1)) the higher genus Gromov-Witten invariants of the quintic. We speculate that the
holomorphic ambiguity fg(q) has an intrinsic meaning in quasimap theory. It would be
very interesting to determine if this is indeed the case.

1.6. Final remarks. — While the proof of Theorem 1.6 we give here is quite in-
volved, it turns out to be also robust. For example, it extends easily to the case of complete
intersections in products of projective spaces. It also applies to proving a wall-crossing
formula for the virtual classes of quasimap moduli spaces (with same stability parame-
ter ε = 0+ and target a complete intersection X ⊂ ∏

Pni ) when one usual marking is
changed to an infinitesimally weighted marking. To keep this paper from becoming ex-
cessively long, we defer the details of these developments to future writings.

1.7. Acknowledgments. — I.C.-F. was partially supported by the NSF grants
DMS-1305004 and DMS-1601771. B.K. is supported by the KIAS individual grant
MG016403. In addition, I.C.-F. thanks KIAS for financial support, excellent working
conditions, and an inspiring research environment during visits when a large part of this
project was completed. We deeply thanks the anonymous referee for valuable suggestions
to improve the readability of the paper.

2. Virtual classes for moduli of quasimaps

2.1. Overview. — In this section we give a concrete description of the virtual class
of a moduli space of quasimaps to a complete intersection in projective space. This is
accomplished by embedding the moduli space into a smooth stack and intersecting the
normal cone for this embedding with the zero section of an appropriate vector bundle.
This description will be crucially used in the proof of Theorem 1.6 given in Section 3. The
construction is uniform for all discrete parameters g, k, d and ε, but requires the existence
of the moduli space of stable curves, so it doesn’t apply directly to the unpointed elliptic
case (g, k) = (1, 0). An appropriate modification, sufficient for completing the proof of
Theorem 1.6 in this case as well, will be discussed in Section 3.7.
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2.2. Set-up and conventions. — From now on we let G = C∗. Let V be an n + 1-
dimensional G-representation (n ≥ 1), with weight vector (1, . . . , 1). Let Cr

�l be an r-

dimensional G-representation with positive weight vector �l := (l1, . . . , lr) (lj > 0,∀j). As-
sume we are given a G-equivariant map

ϕ = ⊕r
i=1ϕi : V → Cr

�l

such that the closed subscheme W := ϕ−1(0) is smooth away from 0 ∈ V and of di-
mension dim W = n + 1 − r > 0. We linearize the G action on V by the character θ of
weight 1. The GIT quotient X := W//θG is a nonsingular complete intersection of type
(l1, . . . , lr) in Pn = V//θG, with ϕi its homogeneous equations.

Recall that the inclusion i : X ⊂ P(V) induces an embedding

i : Qε
g,k(X, d) ↪→ Qε

g,k

(
P(V), d

)

for all ε ≥ 0+.
We also make the following conventions:

• Mg,k denotes the Deligne-Mumford stack of k-pointed stable curves of genus g,
while Mg,k denotes the Artin stack of prestable k-pointed curves of genus g.

• Bun
g,k

G denotes the moduli stack of principal G-bundles on k-pointed prestable
curves of genus g. It is a smooth Artin stack of pure dimension and decomposes
as

∐
d∈Z Bun

g,k

G,d , according to the degrees of the principal bundles. There are
natural forgetful morphisms

Qε
g,k

(
P(V), d

) −→Bun
g,k

G,d −→Mg,k.

• The universal families of curves on various moduli stacks are denoted by C,
usually with decorations recording the discrete data. For example,

Cε
g,k,d Cg,k Cε′

g,k,d ′

Qε
g,k(X, d) Mg,k Qε′

g,k(P(V ⊗ CN), d ′).

We will abuse notation and denote always by π the projection from the universal
curve to the base.

We will represent quasimaps to a projective space P(V) as tuples
(
(C, p1, . . . , pk), L, u

)
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with L a line bundle on C and u a section of L ⊗ V (as in [6]). Quasimaps to X ⊂ P(V)

will then be such tuples for which the components u1, . . . , udim V of u (once a basis of V is
chosen) satisfy the homogeneous equations of X. The base-points of the quasimap are the
points of C where all the ui ’s vanish and the length �(x) at a point x ∈ C is the common
order of vanishing. Given ε ∈ Q>0, recall that the definition of ε-stability requires the
following conditions be satisfied:

(1) the base-points are away from nodes and markings;
(2) ε�(x) ≤ 1 for all x ∈ C;
(3) the line bundle ωC(p1 + · · · + pk) ⊗ Lε is ample.

For ε = 0+ condition (2) is empty and is discarded, while condition (3) translates into
the absence of rational tails in C and the strict positivity of deg L on rational bridges
(rational components of C containing exactly two special points).

Finally, recall that the theory of virtual classes was first developed by Li and Tian
in [24], and by Behrend and Fantechi in [1]. In this paper we use the formalism of [1].

2.3. Twisting line bundles. — Fix (g, k) �= (1, 0).
For each ε ≥ 0+ we construct a line bundle Mε on the universal curve

C
ε
g,k,d −→ Qε

g,k

(
P(V), d

)

as follows.
When g = 0, we take the trivial line bundle Mε =O.
When g ≥ 1 and g + k ≥ 2, the moduli stack Mg,k exists and we have the diagram

Cε
g,k,d

f̃tε

π

Cg,k

π

Qε
g,k(X, d)

ftε

Mg,k

�i

with ftε, f̃tε the stabilization morphisms and �i the sections of π corresponding to the k

markings. The logarithmic relative dualising sheaf ωlog := ωπ(�1 + · · ·�k) on Cg,k is π -
ample and we choose a positive integer p such that ω

⊗p

log is π -relatively very ample. We also
choose a very ample line bundle on the (projective!) coarse moduli of Mg,k and denote by
H its pull-back to the stack Mg,k . Now set

Mε := f̃tε
∗(

π∗H ⊗ ω
⊗p

log

)
.
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Lemma 2.1. — The line bundles Mε satisfy the following properties:

(i) If ε > ε′, then Mε = c̃∗Mε′ , where c̃ is the induced contraction morphism on universal

curves in the diagram

Cε
g,k,d

c̃

Cε′
g,k,d

Qε
g,k(P(V), d)

c

Qε′
g,k(P(V), d)

(ii) For every geometric fiber C of Cε
g,k,d → Qε

g,k(P(V), d) we have

H1(C,L ⊗ Mε|C) = 0,

where L denotes the universal line bundle associated to the universal principal G-bundle on

the universal curve.

Proof. — Part (i) is obvious from the definition, since C and c̃ are compatible with
the forgetful stabilization maps. For part (ii), notice that degL is nonnegative on every
component of every geometric fiber C and by stability it is strictly positive on every ra-
tional component with at most two special points. On the other hand, by construction
Mε has vanishing H1 on the stabilization of C and is trivial on rational tails and rational
bridges. The required vanishing follows. �

Choose once and for all global sections {τ1, . . . , τN} giving a basis of �(Cg,k,

π∗H ⊗ ω
⊗p

log), and hence an embedding

h : Cg,k −→ P
(
CN

)
.

Let sε
j := f̃tε

∗
τj of Mε be the induced sections of Mε, determining the map hε := h ◦

f̃tε, with Mε = h∗
εOP(CN)(1). When the parameter ε is understood we will drop it from

the notation and write simply M and sj for the twisting line bundle and its sections.
Furthermore, we will use the same notations when considering the restriction of the set-
up in this subsection to the moduli spaces Qε

g,k(X, d) via the embedding i.
Note that the degree of M on the fibers of the universal curve is a constant positive

integer dM depending only on (g, k), but not on d , or on the dimension of P(V).

2.4. Perfect obstruction theory of Qε
g,k(X, d). — Fix (g, k) �= (1, 0) and ε ≥ 0+. Con-

sider the line bundle L ′ := L ⊗ M on the universal curve Cε
g,k,d over Qε

g,k(X, d). There
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is a commuting diagram with exact rows

(2.4.1) 0 L ⊗ V
⊕j sj

⊕i dϕi

⊕N
j=1L

′ ⊗ V

⊕i,j s
li−1
j dϕi

α0

P

f

0

0 ⊕r
i=1L

li

⊕i,j s
li
j ⊕i,j(L ′)li

α1
Q 0.

The top row is obtained by puling-back the tautological sequence

(2.4.2) 0 −→OP(CN)(−1) −→OP(CN) ⊗ CN −→ Q −→ 0

via hε : Cε
g,k,d −→ P(CN) and tensoring with L ′ ⊗V. The bottom row comes from (2.4.2)

similarly, by taking the direct sum of its pull-backs via gli ◦ hε, tensored with (L ′)li , where
gli : P(CN) −→ P(CN) is the degree li map [t1 : · · · : tN] �→ [tli

1 : · · · : t
li
N]. In particular, P

and Q are vector bundles.
The components dϕi of the vertical homomorphism on the left are given as follows.

Let � ⊂ Cε
g,k,d be an open substack. After choosing coordinates (x0, . . . xn) on V, we may

write ϕi as a homogeneous polynomial of degree li and a local section v of L ⊗ V on �

as v = (v0, . . . vn). Then we put

dϕi(v) = ∇ϕi(u|�) · v =
n∑

m=0

∂ϕi

∂xm

(u|�)vm,

where u = (u0, . . . , un) is the universal section of L ⊗ V on Cε
g,k . Similarly, for fixed i and

j and a local section v′ = (v′
0, . . . v′

n) of L ′ ⊗ V,

s
li−1
j dϕi

(
v′) =

n∑

m=0

∂ϕi

∂xm

(u ⊗ sj|�)v′
m =

n∑

m=0

s
li−1
j |� ∂ϕi

∂xm

(u|�)v′
m.

Viewing (2.4.1) as an exact sequence of two-term complexes, it follows that the
two-term vertical complex on the left in (2.4.1) is quasi-isomorphic to the shifted mapping
cone A• := Cone(α)[−1] of the homomorphism α = (α0, α1). Denote

R := ⊕i,j

(
L ′)li

.

Define a coherent sheaf E (in fact, a vector bundle) by the exact sequence

0 → E → P ⊕ R → Q → 0,(2.4.3)

where P ⊕ R → Q is given by (x, y) �→ f (x) − α1(y). Then A• is quasi-isomorphic to

⊕N
j=1L

′ ⊗ V → E .(2.4.4)
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On the other hand, if

ρ : Prin(L ) ×G W → C
ε
g,k,d

denotes the universal W-fiber bundle with Prin(L ) the principal G-bundle associated to
L and we view u as the universal section of ρ, then the pull-back u∗Tρ of the relative
tangent complex of ρ coincides with the two-term complex L ⊗ V → ⊕r

i=1L
li on the

left of (2.4.1). We conclude that u∗Tρ is quasi-isomorphic to (2.4.4) at amplitude [0, 1].
Part (ii) of Lemma 2.1 gives the vanishing R1π∗L ′ = 0. This in turn implies that

R1π∗P = R1π∗Q = 0. Since the derived push-forward of u∗Tρ has amplitude in [0, 1]
by [12, Theorem 4.5.2], the same is true for the derived push-forward of the shifted
mapping cone A•. Hence the map π∗(P ⊕R) → π∗Q is surjective and then R1π∗E = 0
from (2.4.3). It follows that

(2.4.5) Eε
d := π∗E

is a locally free sheaf on Qε
g,k(X, d) and we obtain a perfect complex

⊕N
j=1π∗L ′ ⊗ V → Eε

d,(2.4.6)

whose dual represents the canonical perfect obstruction theory
(
R•π∗u∗Tρ

)∨

for Qε
g,k(X, d) relative to Bun

g,k

G . We have proved the following result.

Proposition 2.2. — The virtual fundamental class of Qε
g,k(X, β) is

[
Qε

g,k(X, d)
]vir = 0!

Eε
d

([Cε]
)

where Cε ⊂ Eε
d denotes the Behrend-Fantechi obstruction cone, see [1], associated to the relative perfect

obstruction theory given by (2.4.6).

2.5. An embedding of Qε
g,k(X, d) into a smooth stack. — Set

d ′ := d + dM = d + deg(M |C).

Consider the moduli stack Qε
g,k(P(V ⊗ CN), d ′), with universal curve Cε

g,k,d ′ . By a slight
abuse, denote also by M the twisting line bundle on Cε

g,k,d ′ (defined by the construction
in Section 2.3, as the pull-back of π∗H ⊗ ω

⊗p

log on Cg,k by the stabilization morphism).

Definition 2.3. — Define Uε
d ′ ⊂ Qε

g,k(P(V ⊗ CN), d ′) as the open substack consisting of the

ε-stable quasimaps
(
(C, p1, . . . , pk), L′, u′)

to P(V ⊗ CN) such that H1(C, L′) = 0.
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Note that Uε
d ′ is the complement of the support of the coherent sheaf R1π∗L ′, so

it is indeed an open substack.

Lemma 2.4. — The stack Uε
d ′ is a separated DM-stack of finite type, smooth and of pure

dimension over Bun
g,k

G , and hence over Mg,k . In particular, fixing a locally-closed substack of Bun
g,k

G

parametrizing prestable curves with fixed topological type, together with line bundles of given degrees on

the components, produces a corresponding locally-closed substack of Uε
d ′ with the same codimension.

Proof. — The separatedness and finite type properties follow from the correspond-
ing ones for Qε

g,k(P(V ⊗ CN), d ′). By definition, the quasimaps in Uε
d ′ are unobstructed,

which gives the smoothness and the pure dimensionality. (In fact, Uε
d ′ is also irreducible,

since it is the smooth locus in the “main component” of Qε
g,k(P(V ⊗CN), d ′). Irreducibil-

ity of the “main component” follows from the connectedness of Mg,k(P(V ⊗ CN), d ′),
proven in [22].) �

Let π : Cε
g,k,d ′ → Uε

d ′ be the universal curve and let L ′ be the universal line bundle
of π -relative degree d ′ on Cε

g,k,d ′ . By the very definition of Uε
d ′ , the sheaf π∗L ′ is locally

free. Put

L := L ′ ⊗ M −1,

and consider the diagram of vector bundles on Cε
g,k,d ′

(2.5.1) 0 L ⊗ V
⊕j sj ⊕N

j=1L
′ ⊗ V

⊕j (⊕i dϕi)

Pε
d ′ 0

0 ⊕r
i=1L

li

⊕i,j s
li
j ⊕i,j(L ′)li Qε

d ′ 0.

As before, the exact rows are obtained from the tautological exact sequence (2.4.2) on
P(CN) via pull-backs, tensoring with appropriate line bundles, and taking direct sums.
The components of the map between the middle terms (for fixed i and j) are given by

dϕi

(
v′

j0, . . . v′
jn

) =
n∑

m=0

∂ϕi

∂xm

((
u′

j0, . . . u′
jn

)|�
)
v′

jm,

where

(2.5.2) u′ = (
u′

10, . . . , u′
1n, u′

20, . . . , u′
2n, . . . , u′

N0, . . . , u′
Nn

)

is the universal global section of ⊕N
j=1L

′⊗V on Cε
g,k,d ′ and (v′

10, . . . , v′
1n, . . . , v′

N0, . . . , v′
Nn)

is a local section of ⊕N
j=1L

′ ⊗ V over an open � ⊂ Cε
g,k,d ′ .
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Let us denote

A ε
d ′ := ⊕N

j=1L
′ ⊗ V, Rε

i,d ′ := ⊕N
j=1

(
L ′)li

, Rε
d ′ := ⊕r

i=1R
ε
i,d ′ .

The tautological section τ ε of π∗A ε
d ′ induces a natural section σ ε

P of the vector bundle

Pε
d ′ := π∗Pε

d ′

on Uε
d ′ . On the other hand, we also have the section σ ε

R of the vector bundle

Rε
d ′ := π∗Rε

d ′

whose (i, j)-component is given by ϕi(u
′
j0, . . . , u′

jn). Set

(2.5.3) σ ε := (
σ ε

P , σ ε
R

) ∈ H0
(
Uε

d ′, Pε
d ′ ⊕ Rε

d ′
)
.

Because the exactness of the rows of (2.5.1) is preserved for any base change, it follows
immediately that the zero locus of the section σ ε is identified with the stack Qε

g,k(X, d).
Thus, we have an explicit embedding of Qε

g,k(X, d) in the smooth stack Uε
d ′ , summarized

in the diagram

(2.5.4) Pε
d ′ ⊕ Rε

d ′

Qε
g,k(X, d) ∼= (σ ε)−1(0)

closed
Uε

d ′

smooth

σε

Bun
g,k

G .

Over Qε
g,k(X, d), the diagram (2.5.1) restricts to the diagram (2.4.1). Denoting by

I the ideal sheaf of the closed substack Qε
g,k(X, d) in Uε

d ′ and setting

(2.5.5) Fε
d ′ := Pε

d ′ ⊕ Rε
d ′ = π∗Pε

d ′ ⊕ π∗Rε
d ′,

we obtain the commuting diagram of coherent sheaves

(2.5.6) (Fε
d ′ |Qε

g,k(X,d))
∨

(σ ε)∨

(Eε
d)

∨ (π∗A ε
d ′ |Qε

g,k(X,d))
∨

=

I /I 2 �Uε
d′/Bun

g,k

G
|Qε

g,k(X,d) ,

where the existence of the surjection (Eε
d)

∨ � I /I 2 follows from a standard deforma-
tion theory calculation.
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The square in the diagram (2.5.6) is precisely the map of complexes from the
obstruction theory (2.4.6) to the two-term truncation of the relative cotangent complex
LQε

g,k(X,d)/Bun
g,k

G
. The indicated equality (π∗A ε

d ′ )∨ = �Uε
d′/Bun

g,k

G
follows from the definition

of Uε
d ′ and the identification of (R•π∗A ε

d ′ )∨ with the relative obstruction theory over
Bun

g,k

G for Qε
g,k(P(V ⊗ CN), d ′), see [6, §5.3]. Here L ′ denotes, by abusing notation, also

the universal line bundle on the universal curve on Qε
g,k(P(V ⊗ CN), d ′).

Lemma 2.5. — The relative normal cone CQε
g,k(X,d)/Uε

d′ for the embedding in (2.5.4) coincides

with the obstruction cone Cε ⊂ Eε
d .

Proof. — First, we have by definition

Cε = Cin ×[Eε
d/T

Uε
d′ /Bun

g,k
G

] Eε
d,

where Cin is the relative intrinsic normal cone of Qε
g,k(X, d) over Bun

g,k

G (see [1]) and
[Eε

d/TUε
d′/Bun

g,k

G
] denotes the stack quotient. Since Cin = [CQε

g,k(X,d)/Uε
d′ /TUε

d′/Bun
g,k

G
], the

Lemma follows. �

Proposition 2.2 and Lemma 2.5 imply the following concrete description of the
virtual classes of moduli spaces of ε-stable quasimaps to X.

Corollary 2.6.

[
Qε

g,k(X, d)
]vir = 0!

Eε
d

([CQε
g,k(X,d)/Uε

d′ ]
)
.

Remark 2.7. — Recall that in genus zero we take a trivial twisting line bundle M ,
so in this case Uε

d ′ = Qε
0,k(P(V), d) and the construction reduces to the known realization

of Qε
g,k(X, d) as the zero locus of a section of the bundle ⊕iπ∗(L )li on Qε

0,k(P(V), d).
This bundle has “correct” rank d

∑
i li + r, hence its refined top Chern class gives

[Qε
g,k(X, d)]vir. However, for g ≥ 1 the rank of the bundle Fε

d ′ = π∗Pε
d ′ ⊕ π∗Rε

d ′ is larger
than the virtual codimension of Qε

g,k(X, d) in Uε
d ′ , so the virtual class is not the refined top

Chern class.

3. Proof of Theorem 1.6

3.1. Overview. — Adapting an idea of Bertram from [3], we consider a one-
parameter degeneration of the diagram (2.5.4) which is obtained via a refinement of
MacPherson’s Graph Construction. The proof of Theorem 1.6 will then follow by ana-
lyzing the central fiber limit of the virtual cycle [Q+

g,k(X, d)]vir in this degeneration.
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3.2. Boundary strata. — Let ε0 be a wall, so that m := 1/ε0 is a positive integer. Let
ε+ > ε0 ≥ ε− be stability parameters separated only by the single wall ε0. Fix the numer-
ical data (g, k, d). We will denote by Q±

g,k(X, d), U±
d ′ etc. the moduli spaces corresponding

to the stability parameters ε±. The contraction morphisms with the abused notation

c : Q+
g,k(X, d) −→ Q−

g,k(X, d), c : U+
d ′ −→ U−

d ′

contract precisely the rational tails of degree m.
The evaluation maps at the markings will be denoted by ˆevj for Qε

g,k(P(V⊗CN), d ′)
and for its open substack Uε

d ′ , while we reserve the notation evj for the evaluation maps
on Qε

g,k(P(V), d) and on Qε
g,k(X, d).

For a finite index set A, with |A| = 1, 2, . . . , [ d

m
] we associate to each a ∈ A the

integer da = m and set

(3.2.1) d0 = dA
0 := d −

∑

a∈A

da = d − |A|m ≥ 0.

Denote

DA := U+
k+A,d ′

0
×P(V⊗CN)A

∏

a∈A

Q+
0,a

(
P
(
V ⊗ CN

)
, da

)
,

D̃A := U+
k+A,d ′

0
×P(V⊗CN)A

∏

a∈A

C
+
0,a,da

,

where C
+
0,a,da

→ Q+
0,a(P(V ⊗ CN), da) is the universal curve, the notations U±

k+A,d ′
0

are the
obvious ones, and the fiber products are made via ( ˆeva)a∈A on the left and

∏
a∈A ˆeva on

the right. The easiest way to describe the evaluation map ˆeva : C+
0,a,da

→ P(V ⊗ CN) is
by identifying C

+
0,a,da

with the moduli stack Q+
0,a|1(P(V ⊗ CN), da) which parametrizes ε+-

stable quasimaps of degree da from rational curves with one marking a of weight 1 and
one additional marking of weight 0+, see [8] for more on these moduli stacks.

We will need an alternative description of these boundary strata which takes into
account the twisting line bundles M .

Consider the diagram of universal curves

(3.2.2) C
+
g,k,d ′

π

c̃

h+

c∗C−
g,k,d ′ C

−
g,k,d ′

π

h−
P(CN)

U+
d ′

c

U−
d ′
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with cartesian square and the maps h± given by the sections s1, . . . sN ∈ �(C−
g,k,d ′,M−), so

that M± = (h±)∗(OP(CN)(1)). For each a ∈ A we obtain maps

(3.2.3) h±
a : U±

k+A,d ′
0
−→ P

(
CN

)

as the compositions

h−
a : U−

k+A,d ′
0

�a

C
−
g,k+A,d ′

0

b̃A

C
−
g,k,d ′

h−
P(CN),

h+
a : U+

k+A,d ′
0

cA

U−
k+A,d ′

0

h−
a

P(CN).

Here �a is the section corresponding to the marking a ∈ A, b̃A is the map that trades each
marking in A for a base-point of length da, and cA is the contraction of rational tails of
degree da. There is a natural identification

(3.2.4) DA
∼= U+

k+A,d ′
0
×(P(V⊗CN)×P(CN))A

∏

a∈A

(
Q+

0,a

(
P
(
V ⊗ CN

)
, da

) × P
(
CN

))
,

where the fiber product is now done using ((êva, h+
a ))a∈A on the left and

∏
a∈A( ˆeva ×

idP(CN)) on the right. Similarly,

D̃A
∼= U+

k+A,d ′
0
×(P(V⊗CN)×P(CN))A

∏

a∈A

(
C

+
0,a,da

× P
(
CN

))
.

We have the following commuting diagram of canonical morphisms:

(3.2.5) U+
d ′

c

U−
d ′

DA

prA

PrA

νA

U+
k+A,d ′

0

cA

U−
k+A,d ′

0

bA

∏
a∈A(Q+

0,a(P(V ⊗ CN), da) × P(CN)),

where bA denotes the morphism which trades the markings A for base points of length da.
The two projections prA and PrA are those coming from the fiber product description
(3.2.4) of DA. The map νA has degree |A|! and sends DA onto the boundary stratum of
U+

d ′ generically parametrizing (unobstructed) ε+-stable quasimaps to P(V ⊗ CN) whose
domain curves have exactly |A| unordered rational tails of degree da. In particular, for
A = {a} the map ν{a} is an embedding of D{a} as a boundary divisor.
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The contractions c, cA are isomorphisms over the (nonempty) loci of quasimaps
with irreducible domain curves. By Lemma 2.4, the complements of these loci have pos-
itive codimension and we conclude that c, cA are birational morphisms and hence degree
1 maps.

We finally introduce one more piece of notation. Let pa denote the Cartier divisor
on the universal curve C

±
g,k+{a},d ′

0
of the moduli spaces U±

k+{a},d ′
0

which is the image of the
section �a corresponding to the marking a. Similarly, we have the Cartier divisor ptail

a

on the universal curve C
+
0,a,da

× P(CN) of Q+
0,a(P(V ⊗ CN), da) × P(CN) defined by the

image of the section �tail,a corresponding to the marking a. As usual, O(pa), respectively
O(ptail

a ), will stand for the associated line bundles; and Opa
, respectively Optail

a
will stand for

the coherent sheaves �a∗�∗
aO, �tail,a∗�∗

tail,aO on the universal curves. Then �∗
aO(−pa),

respectively �∗
tail,aO(−ptail

a ), is identified with the line bundle with first Chern class ψa on
U±

k+A,d ′
0
, respectively ψ tail

a on Q+
0,a(P(V ⊗ CN), da) × P(CN). Abusing notation, we will

write O(ψa) and O(ψ tail
a ) for these line bundles, and O(−ψa), O(−ψ tail

a ) for their duals.

3.3. MacPherson’s Graph Construction. — For easy notation, for A = {a} in (3.2.5) we
write Da, Pra, ca, ba, etc instead of D{a}, Pr{a} c{a} b{a}, etc. Let π : C±

g,k,d ′ → U±
d ′ be the

universal curve and denote by c̃ the contraction morphism from C
+
g,k,d ′ to C

−
g,k,d ′ , which is

an isomorphism outside the divisor D̃a. Hence L ′
+ ∼= c̃∗L ′

−(−daD̃a). Here the coefficient
−da is obtained by the consideration of degL ′

+|Ca
= da, degOCa

(Ca) = −1 for the con-
tracted rational tail Ca on the fiber curve of π over a general closed point of Da. It follows
that for every l ≥ 1 there are homomorphisms

(
L ′

+
)l ∼= c̃∗(L ′

−
)l

(−ldaD̃a) → c̃∗(L ′
−
)l

of line bundles on C
+
g,k,d ′ .

In particular, taking l = 1 and using the top line of the diagram (2.5.1) gives a map
P+

d ′ −→ c̃∗(P−
d ′ ). Applying π∗ we obtain homomorphisms

�P :P+
d ′ −→ c∗P−

d ′, �R : R+
d ′ −→ c∗R−

d ′,

� = (�P,�R) : F+
d ′ −→ c∗F−

d ′

of vector bundles on U+
d ′ , which are isomorphisms outside Da. We have used here the

canonical isomorphisms π∗c̃∗R−
d ′ ∼= c∗π∗R−

d ′ and π∗c̃∗P−
d ′ ∼= c∗π∗P−

d ′ obtained by apply-
ing to (3.2.2) the base-change followed by the projection formula.

Consider the Grassmann bundle over U+
d ′

Gr := Gr
(
F+

d ′ ⊕ c∗F−
d ′
) := Grass

(
rd, F+

d ′ ⊕ c∗F−
d ′
)
,

with rd = rank(F+
d ′). Let η : Gr → U+

d ′ be the projection and denote by ζ the tautological
subbundle of rank rd in η∗(F+

d ′ ⊕ c∗F−
d ′).
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The map η × id has a section

v : U+
d ′ × A1 −→ Gr × A1, v(y, λ) = (

y, graph
(
λ(�)y

)
, λ

)
.

Define the closed substack

� := Im(v) ⊂ Gr × P1

as the stack-theoretic closure of the image of v. As U+
d ′ is nonsingular and irreducible, �

is also irreducible, of dimension equal to 1 + dim U+
d ′ .

In fact, if we consider the “component” Grassmann bundles

GrP := Gr
(
P+

d ′ ⊕ c∗P−
d ′
) := Grass

(
rP, P+

d ′ ⊕ c∗P−
d ′
)
,

GrR := Gr
(
R+

d ′ ⊕ c∗R−
d ′
) := Grass

(
rR, R+

d ′ ⊕ c∗R−
d ′
)
,

with projections ηP, ηR and tautological subbundles ζP, ζR, then there is a natural inclu-
sion

GrP ×U+
d′ GrR ⊂ Gr

such that ζ restricts to ζP �ζR and the inclusion of � in Gr×P1 factors through (GrP ×U+
d′

GrR) × P1.
For λ ∈ P1 = A1 ∪{λ = ∞} denote by �λ the fiber of the projection � → P1. When

λ ∈ A1, under the identifications vλ : U+
d ′

∼=−→ �λ, we have

v∗
λζ = Im

(
F+

d ′
(id,λ�)−→ F+

d ′ ⊕ c∗F−
d ′
)
.

In particular, at λ = 0 we have v∗
0ζ = F+

d ′ ⊕ {0}.
At λ = ∞ the fiber breaks into components encoding the degeneracy of the

map �, as in [15, Example 18.1.6]. First of all, there is a distinguished component �∞,dist

which has multiplicity one and projects birationally to U+
d ′ , while ζ |�∞,dist

= {0} ⊕ c∗F−
d ′ .

All other components of �∞ come with some multiplicities and project into Da under η.
Their description is our next task. The analysis is similar to the one in the proof of [3,
Lemma 4.4], where a related genus zero case is treated. In our situation there are com-
plications due to the twisting by M , but also slight simplifications, due to the fact that c

only contracts rational tails of fixed degree da, which therefore do not interfere with each
other.

3.3.1. Description of �∞. — For each ja ≥ 1 consider the P1-bundle over Da

Pja := P
(
pr∗

aO
(
jaψ

tail
a

) ⊕ Pr∗
aO(−jaψa)

)
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and their fiber product

PjA :=
∏

a∈A

Pja |DA

over DA.

Theorem 3.1. — Let jA be the multi-index (ja)a∈A with each ja in the range 1 ≤ ja ≤
max{da, dali | i = 1, . . . , r} and let mjA := ∏

a∈A ja. For each jA, there exists a map αjA : PjA → Gr,

described below, satisfying that

(3.3.1) [�∞] = [�∞,dist] +
∑

(A,jA)

mjA[�∞,jA] = [�∞,dist] +
∑

(A,jA)

mjA

|A|!(αjA)∗[PjA]

in the Chow group A∗(Gr)Q. Here �∞,jA is the image stack of αjA . Furthermore �∞,jA projects to DA

under the projection map η : Gr → U+
d ′ .

Defining αjA amounts to finding a subbundle ξ jA of π∗
Pν∗

A(F+
d ′ ⊕ c∗F−

d ′) with its
rank equal to the rank of F+

d ′ . Denote by πP : PjA → DA the projection map. Then
the vector bundle ξ jA will be constructed as an extension of �a∈AOPja

(−1) ⊗ π∗
PF

ja by
π∗

P(pr∗
AF+,jA+1

tail,da
⊕ Pr∗

Ac∗
AF−,jA−1

d ′
0

) for some vector bundles

Fja, F+,jA+1
tail,da

, F−,jA−1
d ′

0
on Da,

∏

a∈A

Q+
0,a

(
P
(
V ⊗ CN

)
, da

) × P
(
CN

)
, U−

k+A,d ′
0

respectively.

The bundles pr∗
a F+,ja

tail,da
(resp. Pr∗

a c∗
a F−,ja

d ′
0

) for ja will form a decreasing (resp. increasing) fil-
tration of the kernel sheaf of ν∗

a � (resp. of the sheaf ν∗
a c∗F−

d ′ ).

3.3.2. Description of the vector bundle F+,ja+1
tail,da

on Q+
0,a(P(V ⊗ CN), da) × P(CN). —

Consider first the case A = {a} of the boundary divisor Da. On the universal curve

π : C+
0,a,da

× P
(
CN

) → Q+
0,a

(
P
(
V ⊗ CN

)
, da

) × P
(
CN

)
,

put L+ := L ′
+ �OP(CN)(−1). We have the diagram

0 L+ ⊗ V
⊕j sj ⊕N

j=1L
′
+ ⊗ V

⊕j (⊕i dϕi)

P+
tail,da

0

0 ⊕r
i=1L

li+
⊕i,j s

li
j ⊕i,j(L ′

+)li Q+
tail,da

0,
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whose rows are obtained from the exact sequence

0 →OP(CN)(−1) → ⊕N
j=1OP(CN) → Q → 0

via pull-backs, tensoring with appropriate line bundles, and taking direct sums, as ex-
plained in Section 3. Now define the vector bundles

P+
tail,da

:= π∗P+
tail,da

, R+
tail,da

:= ⊕i,j

(
L ′

+
)li

,

R+
tail,da

:= π∗R+
tail,da

, F+
tail,da

:= P+
tail,da

⊕ R+
tail,da

.

For integers ja = 1, . . . , max{da, dali | i = 1, . . . , r}, we have the subbundles

P+,ja
tail,da

:= π∗
(
P+

tail,da

(−jap
tail
a

))
,(3.3.2)

R+,ja
tail,da

:= π∗
(
R+

tail,da

(−jap
tail
a

))
(3.3.3)

of vector bundles P+
tail,da

, R+
tail,da

respectively. They are vector bundles on Q+
0,a(P(V ⊗

CN), da) × P(CN). We also put

P+,0
tail,da

:= P+
tail,da

, R+,0
tail,da

:= R+
tail,da

, F+,0
tail,da

:= F+
tail,da

.

Note that P+,ja
tail,da

= 0 if ja > da, and that (L ′
+)li does not contribute to R+,ja

tail,da
if

ja > lida. Hence the quotients of the decreasing filtrations given by (3.3.2) and (3.3.3) are

0 → P+,ja+1
tail,da

→ P+,ja
tail,da

→ Pja
tail ⊗O

(
jaψ

tail
a

) → 0,

0 → R+,ja+1
tail,da

→ R+,ja
tail,da

→ Rja
tail ⊗O

(
jaψ

tail
a

) → 0,

where we put for each 0 ≤ ja ≤ max{da, lida | i = 1, . . . , r}

Pja
tail :=

{
(eva × idP(CN))

∗((OP(V⊗CN)(1) ⊗ V) � Q), if ja ≤ da

0, if ja > da

and

Rja
tail := ⊕r

i=1R
ja
i,tail,

Rja
i,tail :=

{
(eva × idP(CN))

∗(OP(V⊗CN)(li) � ⊕N
j=1OP(CN)), if ja ≤ lida

0, if ja > lida

.

Alternatively, when they are not set to zero,

Pja
tail = π∗

(
P+

tail,da
⊗Optail

a

)
, Rja

tail = π∗
(
R+

tail,da
⊗Optail

a

)
.

Taking the direct sums

F+,ja
tail,da

:= P+,ja
tail,da

⊕ R+,ja
tail,da

, Fja
tail := Pja

tail ⊕ Rja
tail
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gives a filtration of the vector bundle F+
tail,da

on Q+
0,a(P(V ⊗ CN), da) × P(CN), with quo-

tients Fja
tail ⊗O(jaψ

tail
a ). The pull-back ν∗

a F+
d ′ can be written as the extension

0 pr∗
a F+,1

tail,da
ν∗

a F+
d ′

res

Pr∗
a F+

d ′
0

0 .(3.3.4)

3.3.3. Description of the vector bundle F−,ja−1
d ′

0
on U−

k+{a},d ′
0
. — Let F±

bA,d ′
0

denote the vec-
tor bundles on U±

k+A,d ′
0

defined as in (2.5.5), but using the twisting line bundles M ± induced

from C
−
g,k,d ′ (and hence from Mg,k ) via pull-back by

b̃A : C−
g,k+A,d ′

0
−→ C

−
g,k,d ′ .

The homomorphism � factors when pulled-back to DA as

ν∗
AF+

d ′
res

Pr∗
AF+

bA,d ′
0

generic. isom
Pr∗

Ac∗
AF−

bA,d ′
0

Pr∗
Ac∗

Ab∗
AF−

d ′ = ν∗
Ac∗F−

d ′ .

Here the first map res is given by the restriction of sections to the non-contracted parts of
the universal curve. The middle arrow is the pull-back by PrA of the map � on U+

k+A,d ′
0

and is therefore an isomorphism generically on DA. The third map is induced from
the canonical injections on the universal curve L ′

−,d ′
0
→ L ′

−,d ′
0
(
∑

a dapa) = b̃∗
AL ′

−,d ′ and

(L ′
−,d ′

0
)li → (L ′

−,d ′
0
)li(

∑
a lidapa) = b̃∗

A(L ′
−,d ′)li .

Consider the codomain Pr∗
a c∗

a b∗
a F−

d ′ of �|Da
and the square diagram of universal

curves

C
−
g,k+{a},d ′

0

π

C
−
g,k,d ′

U−
k+{a},d ′

0 ba

U−
k,d ′ .

In the bundle b∗
a F−

d ′ on U−
k+{a},d ′

0
we have the increasing filtrations

P−,0
d ′

0
⊂ P−,1

d ′
0

⊂ · · · ⊂ P−,da

d ′
0

= b∗
a P−

d ′,

R−,0
d ′

0
⊂ R−,1

d ′
0

⊂ · · · ⊂ R−,maxi{dali}
d ′

0
= b∗

a R−
d ′

induced via the subbundles

P−,ja

d ′
0

:= π∗
(
P−

d ′
0
(japa)

) ∩ b∗
a P−

d ′, ja = 0, 1, . . . , da,
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R−,ja

d ′
0

:= π∗
(
R−

d ′
0
(japa)

) ∩ b∗
a R−

d ′, ja = 0, 1, . . . , maxi{lida}.

Here we use the natural injections P−
d ′

0
(japa) → P−

d ′
0
(dapa) ∼= b̃∗

aP
−
d ′ for ja ≤ da and

R−
i,d ′

0
(japa) → R−

i,d ′
0
(lidapa) ∼= b̃∗

aR
−
i,d ′ for ja ≤ lida. The quotients are

0 → P−,ja−1
d ′

0
→ P−,ja

d ′
0

→ P−,ja ⊗O(−jaψa) → 0,

0 → R−,ja−1
d ′

0
→ R−,ja

d ′
0

→ R−,ja ⊗O(−jaψa) → 0,

where we put for each 0 ≤ ja ≤ max{da, lida | i = 1, . . . , r}

P−,ja :=
{

π∗(P−
d ′

0
⊗Opa

), if ja ≤ da

0, if ja > da

,(3.3.5)

and

R−,ja := ⊕r
i=1R

−,ja
i ,(3.3.6)

R−,ja
i :=

{
π∗(⊕N

j=1(L
′
−)li ⊗Opa

), if ja ≤ lida

0, if ja > lida

.

Setting

F−,ja

d ′
0

:= P−,ja

d ′
0

⊕ R−,ja

d ′
0

gives an increasing filtration of the vector bundle b∗
a F−

d ′ on U−
k+{a},d ′

0
with quotients F−,ja ⊗

O(−jaψa) and F−,ja := P−,ja ⊕ R−,ja .

3.3.4. Description of αja : Pja → Gr. — For each ja ≥ 1 recall the P1-bundle over Da

Pja := P
(
pr∗

aO
(
jaψ

tail
a

) ⊕ Pr∗
aO(−jaψa)

)
,

with projection πP : Pja −→ Da. Consider the tautological sequence

0 −→OPja
(−1) −→ π∗

P

(
pr∗

aO
(
jaψ

tail
a

) ⊕ Pr∗
aO(−jaψa)

)

−→OPja
(1) −→ 0.
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Now define the extension ξ
ja
P as the vector bundle uniquely fitting in the commuting

diagram with exact columns

0 0

OPja
(−1) ⊗ π∗

PP
ja π∗

P((pr∗
aO(jaψ

tail
a ) ⊕ Pr∗

aO(−jaψa)) ⊗ Pja)

ξ
ja
P π∗

P(pr∗
a P+,ja

tail,da
⊕ Pr∗

a c∗
a P−,ja

d ′
0

)

π∗
P(pr∗

a P+,ja+1
tail,da

⊕ Pr∗
a c∗

a P−,ja−1
d ′

0
) = π∗

P(pr∗
a P+,ja+1

tail,da
⊕ Pr∗

a c∗
a P−,ja−1

d ′
0

)

0 0

where the horizontal arrows are injective as maps of vector bundles and

Pja := pr∗
aP

ja
tail

∼= Pr∗
a c∗

aP
−,ja .

Similarly, we define ξ
ja
R as an extension, via

0 0

OPja
(−1) ⊗ π∗

PR
ja π∗

P((pr∗
aO(jaψ

tail
a ) ⊕ Pr∗

aO(−jaψa)) ⊗ Rja)

ξ
ja
R π∗

P(pr∗
a R+,ja

tail,da
⊕ Pr∗

a c∗
a R−,ja

d ′
0

)

π∗
P(pr∗

a R+,ja+1
tail,da

⊕ Pr∗
a c∗

a R−,ja−1
d ′

0
) = π∗

P(pr∗
a R+,ja+1

tail,da
⊕ Pr∗

a c∗
a R−,ja−1

d ′
0

)

0 0
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where

Rja := pr∗
aR

ja
tail

∼= Pr∗
a c∗

aR
−,ja .

Since

ξ ja := ξ
ja
P ⊕ ξ

ja
R

is canonically a subbundle of π∗
Pν∗

a (F+
d ′ ⊕ c∗F−

d ′) whose rank is equal to the rank of F+
d ′ , it

gives rise to a morphism

αja : Pja −→ Gr
(
F+

d ′ ⊕ c∗F−
d ′
)

which is birational onto its image and such that ξ ja = α∗
ja
ζ (respecting the decompositions

into P and R components). We will show in Section 3.3.6 that the image is a component
of the limit fiber �∞ which we denote by �∞,ja and which has multiplicity ja in the fiber.

3.3.5. Description of αjA : PjA → Gr and the vector bundle Fja on Da. — For general
A the above analysis extends immediately, as the various rational tails may be treated
independently. Specifically, this means that we now consider a collection jA := {ja | a ∈ A}
of positive integers and define

P+,jA+1
tail,da

:= �a∈Aπ∗
(
P+

tail,da

(−(ja + 1)ptail
a

))
,

R+,jA+1
tail,da

:= �a∈Aπ∗
(
R+

tail,da

(−(ja + 1)ptail
a

))

on
∏

a∈A(Q+
0,a(P(V → CN), da) × P(CN)) and

P−,jA−1
d ′

0
:= π∗

(
P−

d ′
0

(∑

a∈A

(ja − 1)pa

))
∩ b∗

AP−
d ,

R−,jA−1
d ′

0
:= π∗

(
R−

d ′
0

(∑

a∈A

(ja − 1)pa

))
∩ b∗

AR−
d

on U−
k+A,d ′

0
. Further, we put

F+,jA+1
tail,da

:= P+,jA+1
tail,da

⊕ R+,jA+1
tail,da

, F−,jA−1
d ′

0
:= P−,jA−1

d ′
0

⊕ R−,jA−1
d ′

0
.

Setting

PjA :=
∏

a∈A

Pja |DA,
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where the product is fiber product over DA, we have the projection πP : PjA → DA and
extensions

0 → π∗
P

(
pr∗

AP+,jA+1
tail,da

⊕ Pr∗
Ac∗

AP−,jA−1
d ′

0

) → ξ
jA
P → �a∈A

(
OPja

(−1) ⊗ π∗
PP

ja
)

→ 0,

(3.3.7)

0 → π∗
P

(
pr∗

AR+,jA+1
tail,da

⊕ Pr∗
Ac∗

AR−,jA−1
d ′

0

) → ξ
jA
R → �a∈A

(
OPja

(−1) ⊗ π∗
PR

ja
)

→ 0,

(3.3.8)

0 → π∗
P

(
pr∗

AF+,jA+1
tail,da

⊕ Pr∗
Ac∗

AF−,jA−1
d ′

0

) → ξ jA → �a∈A

(
OPja

(−1) ⊗ π∗
PF

ja
)

→ 0,

(3.3.9)

with

ξ jA := ξ
jA
P ⊕ ξ

jA
R , Fja := Pja ⊕ Rja .(3.3.10)

As before, this gives a morphism αjA : PjA → Gr such that ξ jA = α∗
jA
ζ . We will show in

Section 3.3.6 that the image of αjA , denoted �∞,jA , is a component of the limit fiber, with
multiplicity mjA := ∏

a∈A ja.

3.3.6. Proof of Theorem 3.1. — The description of the components �∞,jA of �∞
supported over DA, with their multiplicities, as well as the fact that they exhaust the special
fiber, all follow from writing explicitly the map � in local coordinates in an analytic (or
étale) neighborhood of a general point p of the boundary stratum DA. An explicit proof
is as follows.

Choose an étale open neighborhood U of U+
d ′ such that p is a closed point in the

scheme U. Let Ôp be the completion of OU,p and let C be the fiber curve of π over p. The
curve C has exactly |A|-many nodal points q. Let Ctail,q be the rational tail component of
C which meets q and let Cmain be the remained component of C so that C = ∪qCtail,q ∪
Cmain. We may express the completion Ôq at the node as

Ôq
∼= Ôp[[xq, yq]]/(xqyq − tq)

with local defining equations xq ∈ Ôq, tq ∈ Ôp of the divisors D̃a, Da respectively.
Consider a commuting diagram of natural Ôp-module homomorphisms

(π∗(P+
d ′ ⊕ ⊕

i R
+
i,d ′ ))p ⊗ Ôp

φ1

�p⊗id =:�p̂

⊕q(P
+
d ′ ⊕ ⊕

i R
+
i,d ′ )q ⊗ Ôq

⊕q�q

(π∗(P+
d ′ (daD̃a) ⊕ ⊕

i R
+
i,d ′ (lidaD̃a)))p ⊗ Ôp

φ2

⊕q(P
+
d ′ (daD̃a) ⊕ ⊕

i R
+
i,d ′ (lidaD̃a))q ⊗ Ôq
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where P+
d ′ := L ′

+ ⊗ V ⊗ Q, R+
i,d ′ := ⊕N

j=1(L
′
+)li as in (2.5.1), the horizontal maps φi are

the restriction maps, and �q are the natural maps.
Since the horizontal restriction maps φi are injections, we will use ⊕q�q to express

�p̂ explicitly. For this, let us choose a Ôq-basis {eq

0,j}(N−1) dim V
j=1 of P+

d ′,q ⊗ Ôq and a Ôq-

basis {eq

i,j}r,N
i=1,j=1 of ⊕iR

+
i,q ⊗ Ôq. With respect to this basis, we have also a basis {eq

0,j ⊗
x−da

q }(N−1) dim V
j=1 of P+

d ′,q ⊗ Ôq(daD̃a) ∼= P+
d ′,q(daD̃a) ⊗ Ôq and a basis {eq

i,j ⊗ x−li da
q }r,N

i=1,j=1 of

⊕iR
+
i,q ⊗ Ôq(lidaD̃a) ∼= ⊕iR

+
i,q(lidaD̃a) ⊗ Ôq. With respect to these bases, the right vertical

map �q is the component-wise multiplication by xda
q , xl1d1

q , . . . , xlrdr
q .

Let k(p) be the residue field of Op and let ē
q

0,j , ē
q

i,j be the restrictions in

(P+
d ′ ⊕ ⊕

i R
+
i,d ′)q ⊗ Ôq ⊗ k(p) of e

q

0,j , e
q

i,j respectively. Choose also a k(p)-basis Bmain

of H0(Cmain, (P+
d ′ ⊕ ⊕

i R
+
i,d ′)|Cmain

(−∑
q q)) by taking the union of some bases of

H0(Cmain,P
+
d ′ |Cmain

(−∑
q q)), H0(Cmain,R

+
i,d ′ |Cmain

(−∑
q q)), ∀i. Consider the following

subset

(3.3.11) {⊕qsq}s∈Bmain
∪

⋃

q

{
ē
q

0,j, yqē
q

0,j, . . . , yda

q ē
q

0,j

}(N−1) dim V

j=1
∪

⋃

q

{
ē
q

i,j, yqē
q

i,j, . . . , ylida

q ē
q

i,j

}r,N

i=1,j=1

of ⊕q(P
+
d ′ ⊕ ⊕

i R
+
i,d ′)q ⊗ Ôq ⊗ k(p). Here sq denotes the stalk of s at q ∈ Cmain. Note that

(3.3.11) is a k(p)-basis of the subspace H0(C, (P+
d ′ ⊕⊕

i R
+
i,d ′)|C). Extend this k(p)-basis

(3.3.11) to a basis of (π∗(P+
d ′ ⊕ ⊕

i R
+
i,d ′))p ⊗ Ôp as a Ôp-module,

(3.3.12) {⊕qs̃q}s∈Bmain
∪

⋃

q

{
e
q

0,j, yqe
q

0,j, . . . , yda

q e
q

0,j

}(N−1) dim V

j=1
∪

⋃

q

{
e
q

i,j, yqe
q

i,j, . . . , ylida

q e
q

i,j

}r,N

i=1,j=1

where s̃ ∈ π∗(P+
d ′ ⊕ ⊕

i R
+
i,d ′) ⊗ Ôp is an extension of s.

Let l0 = 1 and let l(s) = l0 for s ∈ Bmain if s comes from P+
d ′ |Cmain

(−∑
q q),

l(s) = li if s comes from R+
i,d ′ |Cmain

(−∑
q q). Choose also a basis of (π∗(P+

d ′ (daD̃a) ⊕
⊕

i R
+
i,d ′(lidaD̃a)))p ⊗ Ôp which is expressed via φ2 as

{⊕qs̃q}s∈Bmain
(3.3.13)

∪⋃
q

{
xda

q

(
e
q

0,j ⊗ x−da
q

)
, xda−1

q

(
e
q

0,j ⊗ x−da
q

)
, . . . , e

q

0,j ⊗ x−da
q )

}(N−1) dim V

j=1

∪⋃
q

{
xlida

q

(
e
q

i,j ⊗ x−da
q

)
, xlida−1

q

(
e
q

i,j ⊗ x−li da
q

)
, . . . , e

q

i,j ⊗ x−li da
q )

}r,N

i=1,j=1
.

The map λ�p̂ sends

⊕q s̃q �→ ⊕qλs̃q, and yk
qe

q

i,j �→ λtk
q xlida−k

q

(
e
q

i,j ⊗ x−li da

q

)
,

i = 0, 1, . . . , r; k = 0, 1, . . . , lida; ∀j
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so that with respect to the Ôp-bases (3.3.12) and (3.3.13), λ�p̂ is a diagonal matrix with
entries λ’s, λtk

q , k = 0, 1, . . . , maxi=0,...,r{lida}.
Now according to the fate of λtk

q , k = 0, 1, . . ., as λ → ∞ and tq → 0 ∀q, the
cycle class [�∞] can be easily identified yielding the decomposition (3.3.1) for each A.
Namely, for the node q corresponding to a, if λtja

q goes to a nonzero number wa ∈ C for
some ja, then the limit of graph(λ�) in the region is the point Point(ja,wa)a∈A in Gr|p
corresponding to the direct sum of the following three subspaces (i), (ii), (iii)

(i) F+,jA+1
tail,da

|prA(p) = ⊕a∈A ⊕i,j 〈yja+1
q ē

q

i,j, . . . , ylida
q ē

q

i,j〉 ⊂ F+
d ′ |p;

(ii) F−,jA−1
d ′

0
|PrA◦cA(p) = H0(Cmain,P

−
d ′ |Cmain

(−∑
a daq))⊕

⊕i≥1H0(Cmain,R
−
i,d ′ |Cmain

(−∑
a lidaq))⊕

⊕a∈A ⊕i,j 〈xlida
q (ē

q

i,j ⊗ x−li da
q ), . . . , xlida−(ja−1)

q (ē
q

i,j ⊗ x−li da
q )〉

⊂ c∗F−
d ′ |p;

(iii) ⊕a∈A ⊕i,j yja
q ē

q

i,j ⊕wax
lida−ja
q (ē

q

i,j ⊗ x−li da
q ) ⊂ pr∗

AF+,jA
tail,da

|p ⊕ Pr∗
Ac∗

AF−,jA

d ′
0

|p.
It is clear that there is a natural correspondence between the irreducible compo-
nents of �∞ and Point(ja, 1)a∈A ∀jA. Denote by �∞,jA the component corresponding to
Point(ja, 1)a∈A. The intersection multiplicity of �∞ ∩{λ = ∞} at �∞,jA is mjA := ∏

a∈A ja ac-
cording to the equations tja

q = 0, ∀a ∈ A in the open affine coordinate ring of Gr around
Point(ja, 1)a∈A.

3.3.7. Remark. — Denoting by e the Euler class, [15, Example 18.1.6] gives

(3.3.14) e
(
F+

d ′
) ∩ [

U+
d ′
] − e

(
c∗F−

d ′
) ∩ [

U+
d ′
] =

∑

(A,jA)

mjA

|A|!(η|�∞,jA
)∗

(
e(ζ ) ∩ [�∞,jA]

)
.

For g = 0, when no twisting occurs, U±
d ′ reduces to Q±

0,k(P(V), d), while F±
d ′ =

π∗(⊕r
i=1L

li±). After applying c∗, the left-hand side of (3.3.14) becomes precisely

c∗i∗
[
Q+

0,k(X, d)
]vir − i∗

[
Q−

0,k(X, d)
]vir

.

On the other hand, it is not too difficult to show1 that the right-hand side can be written
in the form

∑

A

1
|A|!(bA)∗(cA)∗i∗

(∏

a∈A

ev∗
a μda

(z)|z=−ψa
∩ [

Q+
0,k+A

(
X, dA

0

)]vir
)

,

for some polynomial Chow cohomology class μda
(z) ∈ A∗(X)Q[z]. Combined with the

identification of μda
in Section 3.6 below, this proves for X the weaker equality (1.2.1) in

Conjecture 1.1 in genus zero.

1 The argument is a considerably simplified version of the proof of Theorem 3.8 in Section 3.5 below.
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3.4. A refinement of the graph construction. — The equality (3.3.14) may be viewed as a
degeneration formula for the top Chern class of the vector bundle F+

d ′ on U±
d ′ . As a main

step in our proof of Theorem 1.6, we establish in this subsection a refined degeneration
formula which relates the Gysin pull-backs 0!

Eε
d
([CQε

g,k(X,d)/Uε
d′ ]) of the normal cones from

Corollary 2.6.

3.4.1. Deformation of the embedding (2.5.4). — The map � fits in the following com-
muting diagram

F+
d ′

�

c∗F−
d ′ F−

d ′

U+
d ′ =

σ+

U+
d ′

c

c∗(σ−)

U−
d ′

σ−

with σ ± the canonical sections (2.5.3). Recall that the zero locus of σ ±, call it Y±, is
identified with Q±

g,k(X, d). Denote by Z = Zg,k,d the zero locus of c∗(σ −) = � ◦ σ +; in
other words, Z = c−1(Q−

g,k(X, d)). Observe that there is a closed embedding Y+ ↪→ Z.

Remark 3.2. — If we restrict c further to Y+ ⊂ Z, the resulting map coincides with
the contraction c : Y+ → Y− induced from the natural embedding X ⊂ P(V) and the
contraction c : Q+

g,k(P(V), d) → Q−
g,k(P(V), d). This follows from the fact that the twisting

line bundle M is trivial on the rational tails.

It turns out that it is better to consider the deformation of Z induced by the family
� → P1. To this end, consider the universal quotient bundle ϒ on Gr, so that

0 → ζ → η∗(F+
d ′ ⊕ c∗F−

d ′
) → ϒ → 0,

is exact. As before, we also consider the universal quotient bundles ϒP on GrP and ϒR

on GrR. We will use the same notations for the induced vector bundles on �.

The section η∗(σ +, c∗σ −) of η∗(F+
d ′ ⊕ c∗F−

d ′) induces a section

σ ∈ H0(�,ϒ)

of ϒ on �, via composition with the projection.
Let

�0 := σ −1(0) ⊂ � ⊂ Gr × P1,

be the zero locus of σ .
As before, let �0

λ denote the fiber of �0 over λ ∈ P1. For λ �= 1,∞, under the
isomorphism vλ : U+

d ′ × {λ} → �λ, the section σ corresponds to the section (1 − λ)c∗σ −

of F−
d ′ . Hence, for λ /∈ {1,∞}, we get that �0

λ is isomorphic to Z.
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The fiber over 1 ∈ A1 is the entire U+
d ′ , so from now on we will consider the families

� and �0 only over P1 \ {1} (but will keep the same notation).
The fiber over ∞ ∈ P1 decomposes in the Chow group as

[
�0

∞
] = [

�0
∞,dist

] +
∑

(A,jA)

mjA

[
�0

∞,jA

]
,

with �0
∞,dist := �∞,dist ×� �0 and �0

∞,jA
:= �∞,jA ×� �0.

Note that on �∞,dist = U+
d ′ the quotient bundle ϒ is equal to η∗F+

d ′ ⊕ {0} and σ =
(σ +, 0), hence �0

∞,dist is identified with Q+
g,k(X, d), embedded as in (2.5.4).

3.4.2. Deformation of the obstruction theory. — The normal cone C�0/ � is a subcone
of ϒ |�0 . We claim that, possibly after a birational modification of the fiber �∞, it actually
sits inside a subbundle ϒ0 of the “correct” rank.

Recall the twisting line bundle M on the universal curve C±
g,k,d ′ of U±

d ′ introduced in

the beginning of Section 2.5 and recall sj the sections f̃t
∗
±τj of M where f̃t± : C±

g,k,d ′ → Cg,k

is the stabilization map; see Section 2.3 for the definition of τj . Here Cg,k is the universal
curve over Mg,k .

On the universal curve C
+
g,k,d ′ over U+

d ′ , there is a vector bundle monomorphism

P+
d ′ ↪→ P+

d ′,big := L ′
+ ⊗ M ⊗ V ⊗ C(N

2)

induced from the homomorphism

⊕jL
′
+ ⊗ V → P+

d ′,big, (vj)
N
j=1 �→ ⊕j1>j2(sj1vj2 − sj2vj1).

Similarly there are vector bundle monomorphisms

P−
d ′ ↪→ P−

d ′,big := L ′
− ⊗ M ⊗ V ⊗ C(N

2);
Q±

d ′ ↪→ Q±
d ′,big := ⊕i

(
L ′

± ⊗ M
)li ⊗ C(N

2).

We replace the stack � by the closed substack �new of the product Grnew × P1

defined via the MacPherson graph construction, where Grnew is now the fibered product
over U+

d ′ of the various Grassmann bundles:

Grnew = Gr
(
π∗P+

d ′ ⊕ c∗π∗P−
d ′
) ×U+

d′ Gr
(
π∗R+

d ′ ⊕ c∗π∗R−
d ′
)

(3.4.1)

×U+
d′ Gr

(
⊕jπ∗L ′

+ ⊗ V
⊕

⊕j c
∗π∗L ′

− ⊗ V
)

×U+
d′ Gr

(
π∗Q+

d ′ ⊕ c∗π∗Q−
d ′
)

×U+
d′ Gr

(
π∗P+

d ′,big ⊕ c∗π∗P−
d ′,big

) ×U+
d′ Gr

(
π∗Q+

d ′,big ⊕ c∗π∗Q−
d ′,big

)
.

The projection onto the first two factors induces a birational morphism p12 : �new → �,
which is an isomorphism outside ∞ ∈ P1.
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Denote by ϒ⊕jL ′⊗V,ϒPbig
,ϒR,ϒQbig

, . . . the universal quotient bundles on �new ⊂
Grnew ×P1 obtained via pull-back from the third, the fifth, the second, the sixth, . . . factor
of Grnew respectively. Similarly, denote by ζ⊕jL ′⊗V, . . ., the universal subbundles on �new.
Recall that ϒP and ϒR come with the sections σ P and σ R, the components of the section
σ of

ϒ = ϒP ⊕ ϒR

(see Section 3.4.1). We set

�new,0 = σ −1(0).

As in the case when we had only the fibered product of the first two relative Grass-
mannians, for each jA there is a natural morphism

αnew
jA

: PjA −→ Grnew × {∞},
which has generic degree |A|! to the image and such that the relation (3.3.1) still holds
for the new special fiber (in other words, the birational modification p12 : �new → � does
not introduce additional components over ∞ ∈ P1). These morphisms are obtained by
constructing extensions analogous to (3.3.7) and (3.3.8) for the remaining four factors in
(3.4.1). We have αjA = p12 ◦ αnew

jA
. Our proof of Theorem 1.6 will eventually reduce to

intersection-theoretic computations performed after transfering everything to the PjA ’s.
Hence it is harmless to drop from now on the superscript “new” from the notations for
Gr, �, � etc.

We are now ready to construct the required vector bundle ϒ . Define two homo-
morphisms

dϕ±,big : P±
d ′,big → Q±

d ′,big, (vj1,j2) �→ ⊕i ⊕j1>j2 ∇ϕi

(
sj1u

′
j2

) · vj1,j2,

where ⊕ju
′
j is the universal sections of ⊕jπ∗L ′

± ⊗ V as in (2.5.2).
On �, there is a natural diagram

ϒ⊕jL ′⊗V ϒPbig

π∗dϕbig

ϒR ϒQbig

(3.4.2)

which is not necessarily commutative. Here π∗dϕbig is the homomorphism induced from
dϕ±,big via push-forward. The remaining three arrows are all constructed by the same
procedure. For example, the top horizontal homomorphism is obtained as follows. The
composition of natural maps

ζ⊕jL ′⊗V → η∗(π∗P+
d ′ ⊕ c∗π∗P−

d ′
) → η∗(π∗P+

d ′,big ⊕ c∗π∗P−
d ′,big

) → ϒPbig

vanishes on � \ �∞ and hence vanishes on the closure �.
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Let η̃ denote the composition of natural maps � → Gr × (P1 \ {1}) → U+
d ′ .

Lemma 3.3. — The following hold.

(1) The zero locus of the P-component σ P of σ is contained in the zero locus of η̃∗σ −
P (see

(2.5.3) for the definition of σ −
P ).

(2) (σ +
P )−1(0) = Q+

g,k(P(V), d) = (c∗σ −
P )−1(0)

(3) The diagram (3.4.2) becomes commutative when it is restricted to σ −1
P (0).

Proof. — (1) Consider the homomorphism of locally free sheaves
(
η∗P+

d ′ ⊕ η∗c∗P−
d ′
)
�OP1\{1} → η∗c∗P−

d ′ �
(
OP1(1)

)|P1\{1},
(
v+, v−) �→ λ0�

(
v+) − λ1v

−,

where λ0, λ1 denote homogeneous coordinates of P1. Since ζ |� is contained in the kernel
of the above homomorphism, there is a map ϒP → η∗c∗P−

d ′ � (OP1(1))|P1\{1}, under which
the section σ P goes to (λ0 − λ1)c

∗σ −
P . Therefore the zero locus of σ P is contained in the

zero locus of η̃∗σ −
P .

(2) The first equality is clear. The second equality is the claim

Q+
g,k

(
P(V), d

) = c−1
(
Q−

g,k

(
P(V), d

))
.

The claim is obvious since for a T-family of ε+-stable quasimaps to P(V ⊗ CN), it is
a T-family of ε+-stable quasimaps to P(V) if and only if the family restricted to every
geometric point of the test scheme T is a ε+-stable quasimaps to P(V).

(3) The diagram (3.4.2) is by definition induced, by the pullback η̃∗, from the dia-
gram of homomorphisms of locally free sheaves on U+

d ′

π∗ ⊕j L ′
+ ⊗ V ⊕ c∗π∗(⊕jL ′

− ⊗ V) π∗P+
big ⊕ c∗π∗P−

big

π∗dϕ+,big⊕c∗π∗dϕ−,big

π∗R+
d ′ ⊕ c∗π∗R−

d ′ π∗Q+
big ⊕ c∗π∗Q−

big.

(3.4.3)

The diagram (3.4.3) is commutative on the zero locus Q+
g,k(P(V), d) of the section σ +

P
since the difference of the clockwise path and the counterclockwise path in each ±-
component

⊕i

(∇ϕi

(
sj1u

′
j2

) · (sj1vj2 − sj2vj1) − (
s

li
j1
∇ϕi

(
u′

j2

) · vj2 − s
li
j2
∇ϕi

(
u′

j1

) · vj1

))

= ⊕i

(−∇ϕi

(
sj1u

′
j2

) · sj2vj1 + ∇ϕi

(
sj2u

′
j1

) · sj2vj1

)

vanishes for the universal section (u′
j)j of ⊕jL ′

± ⊗ V with the vanishing condition sj1u
′
j2

−
sj2u

′
j1

= 0. Hence it is enough to show that the zero locus of σ P contained in � ×U+
d′

(σ +
P )−1(0). This follows from (1) and (2) above. �
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In particular, the diagram (3.4.2) commutes when restricted to �0. Since the hor-
izontal maps factor through ϒP and ϒQ, it follows that on �0 we have the commuting
diagram

ϒ⊕jL ′⊗V|�0 ϒP |�0

fϒ

ϒR |�0

α1,ϒ

ϒQ|�0,

where fϒ = π∗dϕbig|ϒP |
�0 . The map of vector bundles

γ : (ϒ = ϒP ⊕ ϒR)|�0 → ϒQ|�0, γ (x, y) = fϒ(x) − α1,ϒ(y)

is surjective since it is so at each closed point of � (this needs to be checked at points on
the special fiber �∞, where it follows by pulling-back to the appropriate PjA and using the
description of the three universal quotient bundles as extensions, as in e.g. (3.5.11) below).
Define the required vector bundle on � to be

ϒ0 := ker γ.

Lemma 3.4. — The normal cone C�0/ � is a subcone of ϒ0.

Proof. — Let I�0 denote the defining ideal sheaf of the closed substack �0 of �.
We will check that the induced homomorphism (ϒQ)|∨

�0 → I�0/I 2
�0 is identically zero.

For this consider the commuting diagram

(ϒQbig
)∨ ϒ∨ I�0

η̃∗(π∗Q+
d ′,big ⊕ c∗π∗Q−

d ′,big)
∨ η̃∗(F+

d ′ ⊕ c∗F−
d ′)∨ O�,

where η̃ denotes the composition � → Gr × (P1 \ {1}) → U+
d ′ . By the above commuting

diagram and the surjection (ϒQbig
)|∨

�0 � (ϒQ)|∨
�0 , it is enough to show that the com-

position of the bottom arrows lands in I 2
�0 . On the other hand η̃∗Im(σ +∨

P ) ⊂ I�0 by
Lemma 3.3 (1). Here we view the dual σ +∨

P of σ +
P as the cosection σ +∨

P : (P+
d ′)∨ → OU+

d′ .
Hence by Lemma 3.3 (2) it is enough to check that the composition comp of (π∗Q±

d ′,big)
∨ →

(F±
d ′)∨ →OU±

d′ lands in (Imσ ±∨
P )2. This is easy to check as follows. Recalling the definition

of σ ±
R , σ ±

P in (2.5.3), note that, for δ ∈ (π∗Q±
d ′,big)

∨

comp(δ) = 〈
δ,⊕i ⊕j1>j2 ∇ϕi

(
sj1u

′
j2

) · (sj1u
′
j2

− sj2u
′
j1

) − (
ϕi

(
sj1u

′
j2

) − ϕi

(
sj2u

′
j1

))〉

∈ (
Imσ ±∨

P

)2
.
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Here the last line is due to the Taylor expansion of the last term ϕi(sj2u
′
j1
) in the first line:

ϕi

(
sj2u

′
j1

) = ϕi

(
sj1u

′
j2

) + ∇ϕi

(
sj1u

′
j2

) · (sj2u
′
j1

− sj1u
′
j2

)

modulo the square of the ideal Imσ ±∨
P generated by sj2u

′
j1

− sj1u
′
j2
. �

By construction, on the fiber �0
0 := �0 ×� �0 we have

ϒ0|�0
0
= c∗E−

d ,

while on the distinguished component �0
∞,dist := �0 ×� �∞,dist over λ = ∞,

ϒ0|�0∞,dist
= E+

d ,

with E±
d as defined in (2.4.5).

3.4.3. Refined degeneration formula. — Consider the diagram, whose squares are all
cartesian,

λ

λ

GrZ �0
λ

ιλ

C�0/ �|λ λ

λ

P1 \ {1} GrZ × (P1 \ {1}) �0
ι

C�0/ � P1 \ {1}

�0
0

ϒ0

where GrZ denotes the relative Grassmannian Gr restricted to Z, with projection η|Z :
GrZ → Z.

Lemma 3.5. — In A∗(Z)Q we have the equality

(η|Z)∗(ι0)∗0!
ϒ0|

�0
0

([C�0
0/ �0

]) − (η|Z)∗(ι∞)∗
(
0!

ϒ0|
�0∞,dist

([Cdist]
))

(3.4.4)

=
∑

(A,jA)

mjA(η|Z)∗(ι∞)∗
(
0!

ϒ0|
�0∞,jA

([CjA]
))

,

where Cdist is the normal cone C�0∞,dist/ �∞,dist
and CjA is the normal cone C�0∞,jA

/ �∞,jA
.

Proof. — By Theorem 6.2.(a) and Theorem 6.4 in [15] (as extended to DM-stacks
in [29]), we have

λ!ι∗0![C�0/ �] = (ιλ)∗λ!0![C�0/ �] = (ιλ)∗0!λ![C�0/ �].(3.4.5)
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When λ = 0,

0!λ![C�0/ �] = 0!
ϒ0|

�0
0

([C�0
0/ �0

]).

By Lemma 3.6 below, when λ = ∞,

0!λ![C�0/ �] = 0!
ϒ0|

�0∞,dist

([Cdist]
) +

∑

(A,jA)

mjA0!
ϒ0|

�0∞,jA

([CjA]
)
.

The first term in (3.4.5) is independent of λ. Hence

(ι0)∗0!
ϒ0|

�0
0

([C�0
0/ �0

]) = (ι∞)∗
(
0!

ϒ0|
�0∞,dist

([Cdist]
))

+
∑

(A,jA)

mjA(ι∞)∗
(
0!

ϒ0|
�0∞,jA

([CjA]
))

in A∗(GrZ)Q. Pushing forward to Z we get (3.4.4). �

To state Lemma 3.6 used in the above proof, we set up some notation first. Recall
from [23, p. 489] that for a local embedding X → Y of algebraic stacks of finite type
over the base field, one has the normal cone CX /Y to X in Y and also the deformation
of normal cone, denoted M◦

X (Y). This is a stack with a morphism to P1 such that the
general fiber is isomorphic to Y and the special fiber at t = 0 ∈ P1 is isomorphic to CX /Y .
If X is a closed substack in Y , the deformation can be obtained as in [15, Chapter 5], by
constructing

MX (Y) := BlX×{0}Y × P1

and setting

M◦
X (Y) := MX (Y) \ BlX×{0}Y × {0}.

Now form the commuting diagram, whose squares are all cartesian

C�0∞/ �∞
j

C�0/ �|λ=∞ C�0/ � t = 0

v0

M◦
�0∞

(�∞)
i

closed
M◦

�0(�)|λ=∞ M◦
�0(�) P1

λ = ∞ P1 \ {1}.
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Lemma 3.6. — The equalities

∞![C�0/ �] = j∗[C�0∞/ �∞] = [Cdist] +
∑

A,jA

mjA[CjA]

hold in A∗(C�0/ �|λ=∞)Q.

Proof. — The equality ∞![C�0/ �] = j∗[C�0∞/ �∞] is a consequence of the definition
of Gysin maps, their commutativity, and their compatibility with proper push-forward, as
follows:

∞![C�0/ �] = ∞!v!
0

[
M◦

�0(�)
] = v!

0∞![M◦
�0(�)

] = v!
0

[
M◦

�0(�)|∞
]

=v!
0

[
�∞ × (

P1 − {t = 0})] = v!
0i∗

[
M◦

�0∞
(�∞)

] = j∗v!
0

[
M◦

�0∞
(�∞)

]

= j∗[C�0∞/ �∞].
Here some explanation is in order. For the third equality in the above chain, note that
M◦

�0(�) is irreducible and dominant over P1 \ {1}. The closure is taken in M◦
�0(�)|∞.

The fifth equality follows by the very definition of proper push-forward.
The decomposition

j∗[C�0∞/ �∞] = [Cdist] +
∑

A,jA

mjA[CjA]

is a consequence of the decomposition [�∞] = [�∞,dist] + ∑
A,jA

mjA[�∞,jA] in A∗(�∞)Q

(Theorem 3.1), via the specialization to the normal cone homomorphism A∗(�∞)Q →
A∗(C�0∞/ �∞)Q. �

We finish this subsection by recording a basic intersection-theoretic Lemma which
will be used several times in the sequel.

Lemma 3.7. — Let f : Y ′ −→ Y be a proper morphism between finite type Deligne-Mumford

stacks of the same pure dimension. Let i :X ↪→ Y be a closed embedding and form the fiber square

X ′ Y ′

f

X
i

Y .

Let f̃ : CX ′/Y ′ −→ CX /Y be the induced map between normal cones. If f∗[Y ′] = m[Y] for a nonneg-

ative rational number m, then f̃∗[CX ′/Y ′ ] = m[CX /Y].
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Proof. — When Y , X , and Y ′ are schemes, this is [29, Lemma 3.15]. For the conve-
nience of the reader, we give a short argument. Consider the deformations to the normal
cone

MXY = BlX×{0}Y × P1, MX ′Y ′ = BlX ′×{0}Y ′ × P1.

The map φ : MX ′Y ′ −→ MXY induced by f is proper and φ∗[MX ′Y ′] = m[MXY]. Let
v0 : {0} ↪→ P1 be the inclusion. Denoting by 1 the trivial rank one vector bundle, we have

(3.4.6) m
[
P(CX /Y ⊕ 1)

] + m[BlXY] = mv!
0[MXY] = v!

0φ∗
[
MX ′Y ′]

= (φ|t=0)∗v!
0

[
MX ′Y ′],

where we have used the commutativity of Gysin maps with proper push-forward for the
last equality. Since

v!
0

[
MX ′Y ′] = [

P(CX ′/Y ′ ⊕ 1)
] + [

BlX ′Y ′]

and (φ|t=0)∗[BlX ′Y ′] = m[BlXY], we conclude from (3.4.6) that

(φ|t=0)∗
[
P(CX ′/Y ′ ⊕ 1)

] = m
[
P(CX /Y ⊕ 1)

]
.

The Lemma follows, since f̃ is the restriction to CX ′/Y ′ of φ|t=0. �

3.5. The correcting classes μN
da
(z). — Consider the Segre embedding

(3.5.1) Seg : P(V) × P
(
CN

) −→ P
(
V ⊗ CN

)
.

Recall the map h+
a : U+

k+A,d ′
0
−→ P(CN) given by the twisting line bundle M+ and its

sections s1, . . . , sN; see (3.2.3). Viewing Q+
g,k+A(X, d0) as a substack of U+

k+A,d ′
0

via the em-
bedding (2.5.4) for the bundle F+

d ′
0
, we have the restriction h+

a : Q+
g,k+A(X, d0) −→ P(CN);

see (3.2.1) for notation d0 = dA
0 . The two evaluation maps on Q+

g,k+A(X, d0) at markings
in A are related by

ˆeva|Q+
g,k+A(X,d0) = Seg ◦ (

eva, h+
a

);
see Section 3.2 for notations ˆeva and eva.

In this subsection we prove the following weaker version of the main theorem.

Theorem 3.8. — Let z be a formal variable. There exists a Chow cohomology class μN
da
(z) ∈

A∗(X × P(CN))Q[z], dependent on g and k only through the dependence on N, such that after push-

forward to A∗(Q−
g,k(X, d))Q by c|Z, the equality of Lemma 3.5 becomes

[
Q−

g,k(X, d)
]vir − c∗

[
Q+

g,k(X, d)
]vir

(3.5.2)

=
∑

A

1
|A|!(bA)∗(cA)∗

(∏

a∈A

(
eva, h+

a

)∗
μN

da
(z)|z=−ψa

∩ [
Q+

g,k+A

(
X, dA

0

)]vir
)

.
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Proof. — We analyze the push-forward to A∗(Q−
g,k(X, d))Q of each term in (3.4.4)

by c|Z which will be also denoted by c for easy notation. We have also induced maps

C�0
0/ �0

→ c∗CQ−
g,k(X,d)/U−

d′ → CQ−
g,k(X,d)/U−

d′ ,

whose composition will be denoted by cc.
The terms on the left-hand side are very easy. First, by the identifications (�0

0 ⊂
�0) = (Z ⊂ U+

d ′) and ϒ0|�0
0
= c∗E−

d we have

c∗(η|Z)∗(ι0)∗
(
0!

ϒ0|
�0

0

([C�0
0/ �0

])) = 0!
E−

d

(
cc∗[C�0

0/ �0
])

= 0!
E−

d

([CQ−
g,k(X,d)/U−

d′ ]
)

= [
Q−

g,k(X, d)
]vir

,

where we have used standard properties of the Gysin map for the first equality,
Lemma 3.7 for the second equality, and Corollary 2.6 for the third equality.

Second,

c∗(η|Z)∗(ι∞)∗0!
ϒ0|�dist

([Cdist]
) = c∗

([
Q+

g,k(X, d)
]vir)

,

again by the identifications (�0
∞,dist ⊂ �∞,dist) = (Q+

g,k(X, d) ⊂ U+
d ′) and ϒ0|�∞,dist

= E+
d ,

together with Corollary 2.6.
The analysis of the right-hand side of (3.4.4) is significantly more subtle, so we

divide it into several steps for clarity.
Step 1: Transferring the computation to PjA . The Segre embedding (3.5.1), together with

the inclusion i : X ↪→ P(V), induces the embedding

iSeg : X × P
(
CN

)
↪→ P

(
V ⊗ CN

) × P
(
CN

)
,(3.5.3)

(x, y) �→ (
Seg

(
i(x), y

)
, y

)
.

We identify X × P(CN) with its image under iSeg . Set

Q+
tail,a := ( ˆeva × idP(CN))

−1
(
X × P

(
CN

))
,

a closed substack in Q+
0,a(P(V ⊗ CN), da) × P(CN), and

Q+
tail,A :=

∏

a∈A

Q+
tail,a,

so that we have the cartesian square

Q+
tail,A

∏
a∈A(Q+

0,a(P(V ⊗ CN), da) × P(CN))

∏
a( ˆeva×idP(CN)

)

(X × P(CN))A

∏
a iSeg

(P(V ⊗ CN) × P(CN))A.
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Further, define the closed substack DX,A ⊂ DA by the cartesian square

(3.5.4) DX,A

PrA

prA

Q+
g,k+A(X, d0)

((eva,h
+
a ))a∈A

Q+
tail,A ∏

a( ˆeva×idP(CN)
)

(X × P(CN))A,

where by abusing notation PrA, prA denote PrA|DX,A , pr|DX,A respectively. Note that∏
a( ˆeva × idP(CN)) is a flat map (in fact, smooth) and therefore so is PrA.

Now fix the pair (A, jA) and define ZjA ⊂ PjA by the cartesian square

(3.5.5) ZjA

αjA

PjA

αjA

�0
∞,jA

�∞,jA .

ZjA is the zero locus of the section α∗
jA
σ ∈ H0(PjA, α∗

jA
ϒ). The restriction to ZjA of the

projection πP : PjA −→ DA factors through DX,A.
We assemble everything in the commuting diagram

(3.5.6) �0
∞,jA

(η|Z)◦ι∞
Z

c

Q−
g,k(X, d)

ZjA

πP

αjA

DX,A

prA

PrA

νA

Q+
g,k+A(X, d0)

((eva,h
+
a ))a∈A

cA

Q−
g,k+A(X, d0)

bA

Q+
tail,A ∏

( ˆeva×id)

(X × P(CN))A

with abusing notation again c = c|Z, cA = cA|Q+
g,k+A(X,d0) (this notation is justified by Remark

3.2 in Section 3.4.1) and νA = νA|DX,A etc.
Let

C̃jA := CZjA /PjA
.(3.5.7)

By Lemma 3.7 applied to (3.5.5) and the commutativity of the Gysin map with push-
forward,

0!
ϒ0|

�0∞,jA

([CjA]
) = 1

|A|!(αjA)∗0!
α∗

jA
(ϒ0|

�0∞,jA
)

([C̃jA]
)
,
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where CjA := C�0∞,jA
/ �∞,jA

as defined in Lemma 3.5. From the diagram (3.5.6),

1
|A|! c∗(η|Z)∗(ι∞)∗(αjA)∗

(
0!

α∗
jA

(ϒ0|
�0∞,jA

)

([C̃jA]
))

= 1
|A|!(bA)∗(cA)∗(PrA)∗(πP)∗

(
0!

α∗
jA

(ϒ0|
�0∞,jA

)

([C̃jA]
))

.

Letting ϒ0
jA

denote α∗
jA
ϒ0|�0∞,jA

, it remains to show that

(3.5.8)
∑

jA

mjA(PrA)∗(πP)∗
(
0!

ϒ0
jA

([C̃jA]
))

has the form
(∏

a∈A

(
eva, h+

a

)∗
μda

(z)|z=−ψa

)
∩ [

Q+
g,k+A

(
X, dA

0

)]vir
,

as claimed in Theorem 3.8.
Step 2: Description of ϒjA . We start by describing first

ϒjA := α∗
jA
ϒ |�∞,jA

(3.5.9)

on PjA . Define vector bundles G+,jA
d ′ and G−,jA

d ′
0

on DA via exact sequences

0 → pr∗
AF+,jA

tail,da
→ ν∗

AF+
d ′ → G+,jA

d ′ → 0,

0 → Pr∗
Ac∗

AF−,jA

d ′
0

→ ν∗
Ac∗F−

d ′ → G−,jA

d ′
0

→ 0.
(3.5.10)

By (3.3.9), we have an extension

0 → �a∈A

(
OPja

(1) ⊗ π∗
PF

ja
) → ϒjA → π∗

P

(
G+,jA

d ′ ⊕ G−,jA

d ′
0

) → 0.(3.5.11)

Further, if we let

G+,jA
tail,da

:= (
�a∈Apr∗

a F+,1
tail,da

)
/pr∗

AF+,jA
tail,da

,

then from (3.3.4) and (3.5.10) it follows that G+,jA
d ′ fits into an extension

0 → G+,jA
tail,da

→ G+,jA
d ′ → Pr∗

AF+
d ′

0
→ 0.(3.5.12)

Note that we may write alternatively

G−,jA

d ′
0

=Pr∗
Ac∗

A

(⊕a∈A:ja≤da
π∗

(
P−

d ′
0
⊗O(da−ja)pa

(dapa)
))⊕

Pr∗
Ac∗

A

(⊕a∈Aπ∗
(⊕i:ja≤li da

R−
i,d ′

0
⊗O(li da−ja)pa

(lidapa)
))

,
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and

G+,jA
tail,da

=
{

pr∗
A(�a∈Aπ∗((P+

da
⊕ ⊕iR

+
i,da

) ⊗O(ja−1)ptail
a

(−ptail
a ))), if ja ≤ da,

pr∗
A(�a∈Aπ∗(⊕i:ja≤li da

R+
i,da

⊗O(ja−1)ptail
a

(−ptail
a ))), if ja > da,

from which it follows that in the K-group of vector bundles on DA

G−,jA

d ′
0

∼ (
�a∈A ⊕da

m=ja+1

(
Pr∗

a c∗
aO(−mψa) ⊗ Pda−m

))⊕
(
�a∈A ⊕r

i=1 ⊕li da

m=ja+1

(
Pr∗

a c∗
aO(−mψa) ⊗ Rli da−m

i

))
,

and2

G+,jA
tail,da

∼ �a∈A

(⊕ja−1
m=1

(
pr∗

aO
(
mψ tail

a

) ⊗ Fm
))

where Pda−m := Pr∗
a c∗

aP
−,da−m, Rlida−m

i := Pr∗
a c∗

aR
−,li da−m

i (see (3.3.5), (3.3.6), (3.3.10) for the
definition of P−,da−m, R−,lida−m

i , Fm respectively).
To summarize, the outer terms of the exact sequences (3.5.11) and (3.5.12) give

four pieces that combine to make ϒjA .
We now move to the description of the subbundle ϒ0

jA
⊂ ϒjA|ZjA

(see (3.5.8) for the
notation ϒ0

jA
). For each 1 ≤ i ≤ r and 0 ≤ ja, introduce the bundles

Rja
i,small :=

{
pr∗

a( ˆeva × idP(CN))
∗(OP(V⊗CN)(li) �OP(CN)(−li)), if ja ≤ lida,

0, if ja > lida,

on Da. We use the same notation for the restrictions of Rja
i,small to the substacks DA and

DX,A of Da. Further, we set

Rja
small := ⊕r

i=1R
ja
i,small .

Note that, alternatively, we may write on DX,A

Rja
small = pr∗

A

(
π∗

(⊕i(L+,da
)li ⊗Optail

a

))

= Pr∗
A

(
π∗

(⊕i(L+,d0)
li ⊗Opa

))
,

for ja ≤ lida. Finally, put

Fja
small := Pja ⊕ Rja

small.

2 The notation Fm is a little ambiguous, since the dependence on the marking a is not apparent anymore. The same
will happen later, e.g., with the bundles F0 in (3.5.17) below. Hopefully this will not cause any confusion.
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The surjection ϒjA � π∗
PPr∗

AF+
d ′

0
on PjA (coming from (3.5.11) and (3.5.12)) induces

a surjection ϒ0
jA

� π∗
PPr∗

AE+
d0

on ZjA . Define the excess bundles ϒjA,ex and ϒ0
jA,ex as the corre-

sponding kernels:

0 −→ ϒjA,ex −→ ϒjA −→ π∗
PPr∗

AF+
d ′

0
−→ 0,

0 −→ ϒ0
jA,ex −→ ϒ0

jA
−→ π∗

PPr∗
AE+

d0
−→ 0.

(3.5.13)

To complete the description of ϒ0
jA

, we note that the excess bundle in turn fits into
an extension

0 → �a∈A

(
OPja

(1)|ZjA
⊗ π∗

PF
ja
small

) → ϒ0
jA,ex → π∗

P

(
G+,jA

tail,da,small ⊕ G−,jA
d0,small

)
(3.5.14)

→ 0,

with

G+,jA
tail,da,small ∼ ⊕a∈A

(⊕ja−1
m=1

(
pr∗

AO
(
mψ tail

a

) ⊗ Fm
small

))
,

G−,jA
d0,small ∼

(⊕a∈A ⊕da

m=ja+1

(
Pr∗

Ac∗
AO(−mψa) ⊗ Pda−m

))⊕
(⊕a∈A ⊕r

i=1 ⊕li da

m=ja+1

(
Pr∗

Ac∗
AO(−mψa) ⊗ Rlida−m

i,small

))

in the K-group of DA. For later use, we note that from the above K-group expressions it
follows that the Euler classes of these bundles have the form

e
(
G+,jA

tail,da,small

) = pr∗
A

∏

a∈A

( ˆeva × idP(CN))
∗f

+,ja
da

(z)|z=ψ tail
a

,(3.5.15)

e
(
G−,jA

d0,small

) = Pr∗
A

∏

a∈A

(
eva, h+

a

)∗
f

−,ja
da

(z)|z=−ψa
,(3.5.16)

where the Chow cohomology classes

f
+,ja

da
(z), f

−,ja
da

(z) ∈ A∗(X × P
(
CN

))
Q
[z] = (

A∗(X)Q ⊗ A∗(P
(
CN

))
Q

)[z]
are polynomials in z with coefficients which are universal expressions in Chern classes of
various tautological bundles OX(l) on X, and OP(CN)(m) and the tautological quotient
bundle Q on P(CN).

In the formula (3.5.16) we have used that the ψ -classes at markings in A on
Q−

g,k+A(X, d0) and Q+
g,k+A(X, d0) pull-back under cA, that is, c∗

Aψa = ψa.
Step 3: Deformation. The idea for computing (3.5.8) is to deform the bundle ϒ0

jA
,

together with its closed subcone C̃jA (see (3.5.7) for the notation C̃jA ), to the bundle ϒ0
jA,ex ⊕

π∗
PPr∗

AE+
d0

with the closed cone π∗
PPr∗

ACQ+
g,k+A(X,d0)/U+

k+A,(d0,d′
0)

(see (3.5.13) for the notation

ϒ0
jA,ex).
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To begin with, consider on DA the vector bundle homomorphisms

pr∗
A(⊕a∈AF+

tail,da
)

⊕artail
a ⊕a∈AF0,

Pr∗
AF+

d ′
0

⊕ara ⊕a∈AF0,

where rtail
a and ra are given by “restricting sections at the marking a”. The resulting sur-

jective gluing map

Pr∗
AF+

d ′
0
⊕ pr∗

A(⊕a∈AF+
tail,da

)
⊕a(ra−rtail

a )

⊕a∈AF0 0

has kernel ν∗
AF+

d ′ .
Via its embedding in π∗

P(ν∗
AF+

d ′ ⊕ Pr∗
Ac∗

AF−
d ′), we may view α∗

jA
(ζP⊕R|�∞,jA

) as a sub-
bundle

α∗
jA
(ζP⊕R |�∞,jA

) ⊂ π∗
P

(
Pr∗

AF+
d ′

0
⊕ pr∗

A

(⊕a∈AF+
tail,da

) ⊕ Pr∗
Ac∗

AF−
d ′
)
.

The quotient is an “unglued” version of ϒjA . Precisely, it splits as π∗
PPr∗

A(F+
d ′

0
) ⊕ ϒjA,ex,0̂,

and there are exact sequences

0 ϒjA,ex ϒjA,ex,0̂

⊕artail
a

π∗
P(⊕aF0) 0

and

0 ϒjA π∗
PPr∗AF+

d ′
0
⊕ ϒ

jA,ex,0̂

⊕a(ra−rtail
a )

π∗
P(⊕aF0) 0(3.5.17)

on PjA

πP−→ DA. Composing the section σ : OPjA
−→ ϒjA with the monomorphism in

(3.5.17) gives the section
(
π∗

PPr∗
Aσ +

d ′
0
, σ ex

) :OPjA
−→ π∗

PPr∗
AF+

d ′
0
⊕ ϒjA,ex,0̂.

The base of our deformation will be A1 with coordinate t. Denote ! : PjA ×A1 −→
PjA the projection. Define on PjA × A1 the vector bundle ker via the exact sequence

0 ker !∗(π∗
PPr∗AF+

d ′
0
⊕ ϒ

jA,ex,0̂)

⊕a(tra−rtail
a )

!∗π∗
P(⊕aF0) 0
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deforming (3.5.17). The section

σ̃ := (
!∗π∗

PPr∗
Aσ +

d ′
0
, t!∗σ ex

)

of !∗(π∗
PPr∗

AF+
d ′

0
⊕ ϒjA,ex,0̂) factors through ker, so we will view it from now on as a section

of ker. We have the identifications

(ker |t=1, σ̃ |t=1) = (ϒjA, σ )

and

(ker |t=0, σ̃ |t=0) = (
π∗

PPr∗
AF+

d ′
0
⊕ ϒjA,ex,

(
π∗

PPr∗
Aσ +

d ′
0
, 0

))
.

Let

Z̃ := σ̃ −1(0) ⊂ PjA × A1

be the zero locus and observe that we have in fact

Z̃ ⊂ PjA|DX,A × A1,

where PjA|DA is the fibered product

PjA|DX,A

πP

DX,A

PrA

Q+
g,k+A(X, d0)

PjA
πP

DA
PrA

U+
k+A,d ′

0
.

The fibers of the A1-family Z̃ at t = 1 and at t = 0 are

Z̃|t=1 = ZjA, Z̃|t=0 = PjA|DX,A .

Notice that the normal cones satisfy

[CZ̃/(PjA×A1)|t=0] = [C(PjA |DX,A )/PjA
] = π∗

PPr∗
A[CQ+

g,k+A(X,d0)/U+
k+A,d′

0

],(3.5.18)

and

[CZ̃/(PjA×A1)|t=1] = [C̃jA],(3.5.19)

as desired.
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The “correct” obstruction bundle ϒ0
jA

also deforms. Namely, if we repeat the con-
struction in this step, but with the bundles P± ⊕ R±, F±

d ′ replaced by Q±, Q±
d ′ := π∗Q±

d ′
respectively, we obtain an unglued version of ϒQ,jA := α∗

jA
ϒQ|�∞,jA

given as the extension

0 ϒQ,jA π∗
PPr∗AQ+

d ′
0
⊕ ϒQ,jA,ex,0̂

⊕a(ra−rtail
a )

π∗
P(⊕aF

0
Q) 0,

and a vector bundle kerQ on PjA × A1 defined via the deformation

0 kerQ !∗(π∗
PPr∗AQ+

d ′
0
⊕ ϒQ,jA,ex,0̂)

⊕a(tra−rtail
a )

!∗π∗
P(⊕aF

0
Q) 0.

Here F0
Q “at the marking a” is the cokernel of 0 → F0

small → F0; alternatively,

F0
Q = pr∗

A

(
π∗

(
Q+

d ′
a
⊗Optail

a

)) = Pr∗
A

(
π∗

(
Q+

d ′
0
⊗Opa

))
.

After restricting to Z̃, there is a surjection

!∗(π∗
PPr∗

AF+
d ′

0
⊕ ϒjA,ex,0̂

) −→ !∗(π∗
PPr∗

AQ+
d ′

0
⊕ ϒQ,jA,ex,0̂

) −→ 0,

(just as in Section 3.4.2), making the diagram

!∗(π∗
PPr∗

AF+
d ′

0
⊕ ϒjA,ex,0̂)

⊕a(tra−rtail
a )

!∗π∗
P(⊕aF0) 0

!∗(π∗
PPr∗

AQ+
d ′

0
⊕ ϒQ,jA,ex,0̂)

⊕a(tra−rtail
a )

!∗π∗
P(⊕aF0

Q) 0

0 0

commutative. We conclude that there is an induced map of vector bundles

ker −→ kerQ,

which is easily seen to be surjective at all closed points, and hence surjective. Now define
the correct obstruction bundle ϒ̃ on Z̃ as the kernel:

0 −→ ϒ̃ −→ ker −→ kerQ −→ 0.

At t = 1 we have

ϒ̃ |t=1 = ϒ0
jA
,(3.5.20)
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while at t = 0

ϒ̃ |t=0 = π∗
PPr∗

AE+
d0

⊕ ϒ0
jA,ex.(3.5.21)

Here ϒ0
jA,ex on PjA|DX,A is given by the same extension as in (3.5.14):

0 → �a∈A

(
OPja

(1) ⊗ π∗
PF

ja
small

) → ϒ0
jA,ex → π∗

P

(
G+,jA

tail,da,small ⊕ G−,jA
d0,small

) → 0.(3.5.22)

By a calculation similar to the one used to prove Lemma 3.4, one checks that the
normal cone CZ̃/(PjA×A1) is a subcone of ϒ̃ .

Let ι : Z̃ ↪→ PjA|DX,A × A1 denote the inclusion and consider the diagram

t

t

PjA|DX,A Z̃|t
ιt

CZ̃/(PjA×A1)|t t

t

A1 PjA|DX,A × A1 Z̃
ι

CZ̃/(PjA×A1) A1

Z̃
0

ϒ̃.

The proof of Lemma 3.5 shows the equality

(ι1)∗0!
ϒ̃ |t=1

([CZ̃/(PjA×A1)|t=1]
) = 0!

ϒ̃ |t=0

([CZ̃/(PjA×A1)|t=0]
)

in the Chow group of PjA|DX,A . By (3.5.18), (3.5.19), (3.5.20), (3.5.21), the Excess Intersec-
tion Formula ([15, Theorem 6.3]), the compatibility of Gysin maps with flat pull-back,
and Corollary 2.6, this can be rewritten as

(ι1)∗0!
ϒ0

jA

([C̃jA]
) = e

(
ϒ0

jA,ex

) ∩ π∗
PPr∗

A

[
Q+

g,k+A(X, d0)
]vir

,(3.5.23)

where e denotes the Euler class and π∗
P , Pr∗

A are the flat pull-backs.
Step 4: Final calculation. Recall the diagram from (3.5.6)

PjA|DX,A

πP

ZjA

πP

ι1

DX,A

prA

PrA

Q+
g,k+A(X, d0)

((eva,h
+
a ))a∈A

Q+
tail,A ∏

( ˆeva×id)

(X × P(CN))A
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and that we want to compute (3.5.8). From (3.5.23) this is the same as computing
∑

jA

mjA(PrA)∗(πP)∗
(
e
(
ϒ0

jA,ex

) ∩ π∗
PPr∗

A

[
Q+

g,k+A(X, d0)
]vir)

.(3.5.24)

By (3.5.22),

e
(
ϒ0

jA,ex

) = e
(
�a∈A

(
OPja

(1) ⊗ π∗
PF

ja
small

))
e
(
π∗

P

(
G+,jA

tail,da,small

))

× e
(
(πP)∗(G−,jA

d0,small

))
.

Set α := e(G+,jA
tail,da,small)e(G−,jA

d0,small) ∩ Pr∗
A[Q+

g,k+A(X, d0)]vir. Then (3.5.24) can be suc-
cessively rewritten as

∑

jA

mjA(PrA)∗
{
(πP)∗

(
e
(
�a∈A

(
OPja

(1) ⊗ π∗
PF

ja
small

)) ∩ π∗
Pα

)}

=
∑

jA

mjA(PrA)∗
∏

a∈A

(πP)∗

(rk (F
ja
small )∑

m=0

c1

(
OPja

(1)
)m

∩ π∗
P

(
crk (F

ja
small )−m

(
Fja

small

) ∩ α
))

=
∑

jA

mjA(PrA)∗
∏

a∈A

(rk (F
ja
small )∑

m=0

sm−1

(
pr∗

AO
(
jaψ

tail
a

)

⊕ Pr∗
AO(−jaψa)

)
crk (F

ja
small )−m

(
Fja

small

) ∩ α

)
,

where sm−1 denote the Segre classes.
The Chow cohomology class

rk (F
ja
small )∑

m=0

sm−1

(
pr∗

AO
(
jaψ

tail
a

) ⊕ Pr∗
AO(−jaψa)

)
crk (F

ja
small )−m

(
Fja

small

)

is a polynomial in Pr∗
Aψa, of the form

∑

b

pr∗
A

(
( ˆeva × id)∗δb(z)|z=ψ tail

a

)
Pr∗

Aψ b
a ,

where the δb’s are themselves polynomials with coefficients given by universal expres-
sions in Chern classes of various tautological bundles OX(l) on X, and OP(CN)(m)

and Q on P(CN). Further, by (3.5.15), (3.5.16), the Euler classes e(G+,jA
tail,da,small) and
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e(G−,jA
d0,small) appearing in α are given respectively by the universal expressions

∏
a pr∗

A( ˆeva ×
id)∗f

+,ja
da

(ψ tail
a ) and

∏
a Pr∗

A(eva, h+
a )∗f

−,ja
da

(−ψa).
Setting

γb := ( ˆeva × id)∗(δbf
+,ja

da

)(
ψ tail

a

) ∈ A∗(Q+
tail,a

)
Q

and recalling that mjA = ∏
a∈A ja, we conclude that (3.5.24) has the form

∏

a∈A

(maxi{li di}∑

ja=1

ja(PrA)∗

{∑

b

pr∗
A(γb)Pr∗

A

(
ψ b

a

(
eva, h+

a

)∗
f

−,ja
da

(−ψa)
)}

(3.5.25)

× ([
Q+

g,k+A(X, d0)
]vir)

)
.

Here (PrA)∗ : A∗(DX,A)Q −→ A∗(Q+
g,k+A(X, d0))Q denotes the Gysin map induced by

the bivariant class [PrA] corresponding to the canonical orientation of the flat proper
morphism PrA, see equation (G2) in [15, §17.4]. Applying [15, Example 17.4.1(b)] to the
cartesian square (3.5.4) and using the projection formula for bivariant classes, equation
(3.5.25) proves Theorem 3.8, with

μN
da
(z) :=

maxi{lidi}∑

ja=1

ja
∑

b

(−z)bf
−,ja

da
(z)(êva × id)∗(γb) ∈ A∗(X × P

(
CN

))
Q
[z].(3.5.26)

�

We stress again that our argument shows that the formula (3.5.26) for the correct-
ing class μN

d is universal in the following sense: it depends on g and k only through the
dependence on N of the polynomials f

+,ja
da

(z), f
−,ja

da
(z), δb(z) ∈ A∗(X × P(CN))Q[z]. This

will be used in the next subsection.

3.6. Identification of the correcting class. — In this subsection we finish the proof of
Theorem 1.6 (for (g, k) �= (1, 0)) by showing that the class (3.5.26) satisfies

μN
da
(z) = coefficient of qda in z

(
Jε−

sm (z) − Jε+
sm (z)

) ⊗ 1P(CN).(3.6.1)

Indeed, assuming (3.6.1), it follows first that the coefficient of qda in z(Jε−
sm (z) − Jε+

sm (z)) is
a polynomial in z (because the left-hand side is such) and then by the general asymptotic
properties of the small Jε-functions it coincides with the coefficient of qda in [zIsm(q, z) −
z]+. Second, (3.6.1) also shows that the class (eva, h+

a )∗μN
da
(z) is independent of N, so that

we may replace it by ev∗
a μda

(z) in the formula (3.5.2). Hence Theorem 3.8 together with
(3.6.1) imply Theorem 1.6.

To prove (3.6.1), we take d = da (so that d0 = 0) and consider the graph spaces
QG±

0,0,da
(X). These are the moduli stacks of ε±-stable quasimaps of degree da to X, whose
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domains are genus zero unpointed curves with a component which is a parametrized P1,
see [7, 12]. Similarly, we have the moduli stacks QG±

0,0,da
(P(V)) and QG±

0,0,da
(P(V ⊗

CN)), which are smooth. The ε−-stability condition implies that the domain curve must
be an irreducible parametrized P1, while ε+-stability allows in addition quasimaps with
domain consisting of one rational tail and the parametrized P1. These quasimaps have
degree da on the rational tail and are constant maps on the parametrized P1. In particular,
there are identifications

QG−
0,0,da

(
P(V)

) ∼= P
(
Symda

(
C2

) ⊗ V
)
,

QG−
0,0,da

(
P
(
V ⊗ CN

)) ∼= P
(
Symda

(
C2

) ⊗ V ⊗ CN
)
.

Recall that we have the embeddings

X × P
(
CN

)
↪→ P(V) × P

(
CN

)
↪→ P

(
V ⊗ CN

) × P
(
CN

)
,

whose composition is the map iSeg from (3.5.3). The induced embeddings of graph spaces
commute with the contraction maps:

(3.6.2) QG+
0,0,da

(X) × P(CN)

c×id

QG+
0,0,da

(P(V ⊗ CN)) × P(CN)

c×id

QG−
0,0,da

(X) × P(CN) QG−
0,0,da

(P(V ⊗ CN)) × P(CN).

The right contraction map c × id is an isomorphism outside the boundary divisor

Da
∼= (

Q+
0,{a}

(
P
(
V ⊗ CN

)
, da

) × P
(
CN

))

×P(V⊗CN)×P(CN)

(
QG+

0,{a},0
(
P
(
V ⊗ CN

)) × P
(
CN

))

∼= (
Q+

0,{a}
(
P
(
V ⊗ CN

)
, da

) × P
(
CN

))

×P(V⊗CN)×P(CN)

(
P
(
V ⊗ CN

) × P1 × P
(
CN

))
,

where QG+
0,{a},0(P(V ⊗ CN)) ∼= P(V ⊗ CN) × P1 is the moduli stack of ε+-stable

quasimaps of degree 0 to P(V ⊗ CN), whose domains are genus zero one-pointed curves
with a component which is a parametrized P1, see [7, 12]. Let L± denote the uni-
versal line bundles of degree da on the fibers of the universal curves over the various
QG± × P(CN). Let M denote the pull-back of OP(CN)(1) to QG± × P(CN), with the
basis {t1, . . . , tN} of global sections, and set L ′

± = L± ⊗ M . With these notations (which
are justified, since the line bundles are compatible with the above embeddings), the con-
struction of Section 2.4 produces the obstruction theory (2.4.6) of QG±

0,0,da
(X) × P(CN)

relative to the smooth, pure dimensional stack BunP1

G × P(CN). Here BunP1

G −→ ˜P1[0]
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is the relative Picard stack over the Fulton-MacPherson stack ˜P1[0] of unpointed ra-
tional curves with one parametrized component. The corresponding virtual class is
[QG±

0,0,da
(X)]vir × [P(CN)]. Note that for all universal curves, the map h to P(CN) is

just the projection.
Further, if we put

U± := QG±
0,0,da

(
P
(
V ⊗ CN

)) × P
(
CN

)
,

then the construction of Section 2.5 also applies to produce the vector bundles F± on
U±, with sections σ ± such that (σ ±)−1(0) ∼= QG+

0,0,da
(X) × P(CN). This embedding of

QG+
0,0,da

(X) × P(CN) in U± is precisely the one in (3.6.2). The diagram (2.5.6) holds as
well, hence we have the concrete description

[
QG±

0,0,da
(X)

]vir × [
P
(
CN

)] = 0!
E±(CQG±

0,0,da
(X)×P(CN)/U±)

as in Corollary 2.6.
From the degeneration analysis in Section 3.2 – Section 3.5, it follows that Theo-

rem 3.8 holds in the situation considered in this section, giving the equality

[
QG−

0,0,da
(X)

]vir × [
P
(
CN

)] − (c × id)∗
([

QG+
0,0,da

(X)
]vir × [

P
(
CN

)])
(3.6.3)

= (ba × id)∗(
(
eva, h+

a

)∗
μN

da
(−ψa) ∩ ([

QG+
0,{a},0(X)

]vir × [
P
(
CN

)])
,

with μN
da

the universal class in (3.5.26). Notice that the one-pointed, degree zero graph space
is identified with X × P1, with virtual class the usual fundamental class (for any stability
parameter ε), while the maps

eva : X × P1 × P
(
CN

) −→ X, h+
a : X × P1 × P

(
CN

) −→ P
(
CN

)

are respectively the first and third projections. The class ψa is the pull-back of c1(ωP1) via
the second projection.

Now recall that graph spaces carry a C∗-action (induced by the standard action on
the parametrized domain component) for which the maps c and ba are equivariant. It is
customary to denote by z the equivariant parameter for this action. In each graph space
there is a distinguished part of the C∗-fixed locus corresponding to quasimaps for which
the entire nontrivial data is concentrated over the point 0 in the parametrized domain
component. The restrictions of the maps c and ba to the fixed point locus respect the de-
composition into distinguished and non-distinguished parts. It follows that if we apply the
virtual localization formula of [19] to (3.6.3) (using the trivial action on the P(CN) factors)
and discard from both sides the localization residues at all non-distinguished fixed-point
loci, we still have an equality between the remaining distinguished residues.
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In our particular case, the distinguished fixed locus in QG−
0,0,da

(X)×P(CN) is iden-
tified with X × P(CN), the distinguished fixed locus in QG+

0,0,da
(X) × P(CN) is identified

with Q+
0,1(X, da) × P(CN), and the distinguished fixed locus in QG+

0,{a},0(X) × P(CN) =
X×P1 ×P(CN) is X×{0}×P(CN). Moreover, the restriction of c× id to the distinguished
fixed locus is ev1 × id, while ba × id, (eva, h+

a ) are the identity map on the distinguished
fixed locus. The equality of distinguished residues of (3.6.3) becomes

coefficient of qda in
(
Jε−

sm (z) − Jε+
sm (z)

) ⊗ 1P(CN) = μN
da
(z)

z
(3.6.4)

in A∗(X × P(CN))Q[z, z−1], proving (3.6.1). Indeed, the left-hand side is as stated by the
very definition of the small J-functions in (5.1.1) of [7], while for the right-hand side we
used that, in the right-hand side of (3.6.3), ψa|X×{0}×P(CN) = −z, and that the equivariant
normal bundle of {0} ⊂ P1 has first Chern class z, i.e., the denominator z in the right-
hand side of (3.6.4) so that 1

z
is the distinguished residue of [QG+

0,{a},0(X)]vir × [P(CN)].

3.7. The unpointed genus 1 case. — Since M1,0 is empty, we do not have the twisting
line bundles M satisfying Lemma 2.1 and which are all compatible. However, it turns
out that an appropriate modification of the set-up in Section 2 allows for an application
of the arguments in Section 3 to establish Theorem 1.6 in this case as well.

3.7.1. Set-up. — By an unpointed semistable genus 1 curve we mean an unpointed
prestable genus 1 curve with no rational tails. Let Mss

1,0 denote the moduli stack of
semistable genus 1 curves.

Fix positive integers d and e. Let MN denote the moduli stack of degree e unpointed
genus 1 stable maps to P(CN) with semistable domain curves. Since all line bundles of degree
e on semistable genus 1 curves are non-special, MN is a smooth (non-proper) Deligne-
Mumford stack. Denote by Css

1,0 −→ MN the universal curve and by

h : Css
1,0 −→ P

(
CN

)

the universal map.
Let d ′ = d + e and let Qε,unob

1,0 (P(V ⊗ CN), d ′) be the open substack of Qε
1,0(P(V ⊗

CN), d ′) consisting of ε-stable quasimaps (C, L′, u′) with vanishing H1(C, L′). Define
Uε,N

d ′ as the fiber product

Qε,unob
1,0

(
P
(
V ⊗ CN

)
, d ′) ×Mss

1,0
MN.

Here the morphism Qε,unob
1,0 (P(V ⊗ CN), d ′) → Mss

1,0 is the composite of the contraction
map Qε,unob

1,0 (P(V ⊗ CN), d ′) → Q0+
1,0(P(V ⊗ CN), d ′) and the forgetful map Q0+

1,0(P(V ⊗
CN), d ′) →Mss

1,0.
Since MN is smooth over Mss

1,0 and Qε,unob
1,0 (P(V ⊗ CN), d ′) is smooth over Bun

1,0
G ,

the stack Uε,N
d ′ is smooth over Bun

1,0
G .
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The universal curve Cε
1,0,d ′ over Uε,N

d ′ has a semistabilization morphism ssε :
Cε

1,0,d ′ → Css
1,0 (the contraction of rational tails of universal curves), fitting into the com-

muting diagram

Cε
1,0,d ′

π

ssε
Css

1,0
h

P(CN)

Uε,N
d ′

proj
MN.

We set hε = h ◦ ssε : Cε
1,0,d ′ → P(CN) and Mε = h∗

εOP(CN)(1). Further, the sections tj of
OP(CN)(1) associated to the homogeneous coordinates of P(CN) give the sections sj :=
h∗

ε tj ∈ H0(Cε
1,0,d ′,Mε), j = 1, . . . , N.

3.7.2. Obstruction theory for Qε
1,0(X, d)×Mss

1,0
MN relative to Bun

1,0
G . — Denote by L ′

ε

the universal line bundle on the universal curve Cε
1,0,d ′ of Uε,N

d ′ and put Lε := L ′
ε ⊗M −1

ε .
Consider the diagram of vector bundles and OCε

1,0,d′ -linear maps, corresponding to
(2.5.1),

0 Lε ⊗ V ⊕ h∗
εTP(CN)

(⊕j sj ,id)

⊕N
j=1L

′
ε ⊗ V ⊕ h∗

εTP(CN)

(⊕j (⊕i dϕi),0)

Pε
d ′ 0

0 ⊕r
i=1L

li
ε

⊕i,j s
li
j

⊕i,j(L ′
ε )li Qε

d ′ 0.

Let Qε
X := Qε

1,0(X, d). As before, there is a vector bundle

Pε
d ′ ⊕ Rε

d ′ := π∗Pε
d ′ ⊕ π∗

(⊕i,j

(
L ′

ε

)li
)

on Uε,N
d ′ , with a section σ ε whose zero locus is naturally isomorphic to the product stack

Qε
X ×Mss

1,0
MN.

On the universal curve Cε
X over Qε

X ×Mss
1,0

MN (associated to the universal curve of
Qε

X), we may complete the diagram above to a homomorphism of short exact sequences.
In particular, we obtain a natural homomorphism

Lε ⊗ V ⊕ h∗
εTP(CN) → ⊕r

i=1L
li

ε

and an exact sequence

0 → E ε
d → Pε

d ′ ⊕ (⊕i,j

(
L ′

ε

)li
) → Qε

d ′ → 0,

defining a vector bundle E ε
d on Cε

X, with π∗E ε
d also locally-free.
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Denote by Cσε the normal cone to Qε
X ×Mss

1,0
MN in Uε,N

d ′ . As before, Cσε is a
closed subcone of the vector bundle π∗E ε

d , with the embedding induced by a surjection
π∗E ε

d � I /I 2, where I is the ideal sheaf of the closed substack Qε
X ×Mss

1,0
MN.

Consider the following commuting diagram

Qε
X ×Mss

1,0
MN

closed
Uε,N

d ′ MN

smooth

Qε,unob
1,0 (P(V ⊗ CN), d ′)

smooth

Mss
1,0

Bun
1,0
G

and define a perfect obstruction theory E for Qε
X ×Mss

1,0
MN relative to Bun

1,0
G by

[
R•π∗

(
Lε ⊗ V ⊕ h∗

εTP(CN) → ⊕r
i=1L

li
ε

)]∨

qiso∼ [(
π∗E ε

d

)∨ → (⊕N
j=1π∗L ′

ε ⊗ V ⊕ π∗h∗
εTP(CN)

)∨] =: E

↓ ↓ ∼=
[
I /I 2 → �Uε,N

d′ /Bun
1,0
G

|Qε
X×Mss

1,0
MN

]
.

The associated virtual class is, by definition,
[
Qε

X ×Mss
1,0

MN

]vir := 0!
π∗Wε,d

[Cσε ].

3.7.3. Wall-crossing. — We will compare the virtual classes [Q±
X ×Mss

1,0
MN]vir under

the contraction map c : Q+
X ×Mss

1,0
MN → Q−

X ×Mss
1,0

MN, where the contraction map does
not do anything on the MN factor.

The comparison can be carried out as before. Similar to (3.2.2), there is a com-
muting diagram

C
+
1,0,d ′

π

c̃

ss+

h+

c∗C−
1,0,d ′ C

−
1,0,d ′

π

h−

ss−
Css

1,0
h

P(CN)

U+,N
d ′

c
U−,N

d ′
proj

MN.
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First use the homomorphism � : P+
d ′ ⊕ R+

d ′ → c∗P−
d ′ ⊕ c∗R−

d ′ induced from the con-
traction map to perform the MacPherson graph construction. Second, deform the ob-
struction normal cone of c−1(Q−

X ×Mss
1,0

MN) in U+,N
d ′ using the induced section of the

universal quotient bundle of Gr(P+
d ′ ⊕ R+

d ′ ⊕ c∗P−
d ′ ⊕ c∗R−

d ′).
Repeating word for word the arguments of Sections 3.3–3.6, we obtain the follow-

ing analogue of Theorem 3.8. Let z be a formal variable. Let the Chow cohomology class
μN

da
(z) ∈ A∗(X × P(CN))Q[z] be given by the universal formula (3.5.26). The equality

[
Q−

1,0(X, d) ×Mss
1,0

MN

]vir − c∗
[
Q+

1,0(X, d) ×Mss
1,0

MN

]vir =(3.7.1)

∑

A

1
|A|!(bA)∗(cA)∗

(∏

a∈A

(
eva, h+

a

)∗
μN

da
(z)|z=−ψa

∩[
Q+

1,A

(
X,dA

0

)×Mss
1,0

MN

]vir
)

holds in the Chow group A∗(Q−
1,0(X, d) ×Mss

1,0
MN)Q, where

• cA is the contraction map

Q+
1,A

(
X, dA

0

) ×Mss
1,0

MN → Q−
1,A

(
X, dA

0

) ×Mss
1,0

MN,

• bA is the morphism

Q−
1,A

(
X, dA

0

) ×Mss
1,0

MN → Q−
1,0(X, d) ×Mss

1,0
MN

which trades the markings A for base points of length da,
• the morphism h+

a : Q+
1,A(X, dA

0 )×Mss
1,0

MN → P(CN) is the composite of the con-
traction

Q+
1,A

(
X, dA

0

) ×Mss
1,0

MN → Q−
1,A

(
X, dA

0

) ×Mss
1,0

MN,

the marking section

�a : Q−
1,A

(
X, dA

0

) ×Mss
1,0

MN → C
−
A,X

of the universal curve over Q−
1,A(X, dA

0 ) ×Mss
1,0

MN (associated to the universal
curve of Q−

1,A(X, dA
0 )), the morphism

C
−
A,X → C

−
X

induced from bA, and finally h−|C−
X

: C−
X → P(CN).
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3.7.4. Relation between [Qε
X ×Mss

1,0
MN]vir and [Qε

X]vir. — By a result of Cooper, [13],
the stack Q0+

1,0(P(V), d) has projective coarse moduli and hence there is a morphism from
the universal curve of Q0+

1,0(P(V), d) to P(CN) for some N such that the morphism does
not contract any irreducible component of any fiber of the universal curve. Fix such a
morphism φ and let e be the degree of a fiber curve under φ. The degree e is inde-
pendent of the choice of fiber since Q0+

1,0(P(V), d) is connected. (In fact, Q0+
1,0(P(V), d)

is irreducible; this follows from the connectedness of M1,0(P(V), d) (see [22]), the sur-
jectivity of the contraction map M1,0(P(V), d) → Q0+

1,0(P(V), d), and the smoothness of
Q0+

1,0(P(V), d) (see [25]).) From now on we work with the stack MN corresponding to these partic-

ular choices of N and e.
By the universal property of MN, upon restricting φ to the universal curve over

Q0+
X , we obtain a morphism h1,0 : Q0+

X → MN fitting in the diagram with the cartesian
square

C
0+
1,0

φ

Css
1,0

h
P(CN)

Q0+
X

h1,0

Q0+
1,0(P(V), d) MN.

We also let

hε
1,0 : Qε

X → Q0+
X

h1,0−→ MN

denote the composition of h1,0 and the contraction Qε
X → Q0+

X .
One checks directly that there is a natural cartesian square

Qε
X

(id,hε
1,0)

hε
1,0

Qε
X ×Mss

1,0
MN

(hε
1,0,id)

MN
�

MN ×Mss
1,0

MN.

In the derived category of coherent sheaves on Qε
X there is a commuting diagram

(hε
1,0)

∗(L�[−1] ∼= (π∗h∗TP(CN))
∨) (id, hε

1,0)
∗E

LQε
X/Qε

X×Mss
1,0

MN[−1] (id, hε
1,0)

∗LQε
X×Mss

1,0
MN/Bun

1,0
G
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whose mapping cone is the obstruction theory for Qε
X relative to Bun

1,0
G , as in Section 2.4.

The functoriality result of [1, Proposition 5.10] implies the relation

�![Qε
X ×Mss

1,0
MN

]vir = [
Qε

X

]vir
.(3.7.2)

Now apply �! to (3.7.1). Using the compatibility of the Gysin homomorphism for
proper push-forward, the commutativity of Chern classes with Gysin homomorphism,
the relation (3.7.2), and the identification of μN

da
(z) from Section 3.6, we conclude the

proof of Theorem 1.6 in the remaining case (g, k) = (1, 0).
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