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ABSTRACT

We state a wall-crossing formula for the virtual classes of e-stable quasimaps to GI'T quotients and prove it for
complete intersections in projective space, with no positivity restrictions on their first Chern class. As a consequence, the
wall-crossing formula relating the genus g descendant Gromov-Witten potential and the genus g €-quasimap descendant
potential is established. For the quintic threefold, our results may be interpreted as giving a rigorous and geometric inter-
pretation of the holomorphic limit of the BCOV B-model partition function of the mirror family.
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1. Introduction

1.1. Overview. — Let W be a complex affine variety acted upon by a reductive
algebraic group G. Fix a character 6 of G for which the induced G-action on the 6-
semistable locus W* is free. For the quasiprojective target W//yG and a rational number
¢ > 0, or for £ = 04, the notion of e-stable quasimaps to W/, G was introduced in [12],
inspired by [6, 25, 26]. They are in fact suitable maps from curves to the stack quo-
tient [W/G]. The Deligne-Mumford moduli stack % (W /s G, B) of e-stable quasimaps
of type (g, k, B) is proper over C if W//,G is projective. Here g, £, and B are respec-
tively the genus of the domain curve, the number of markings, and the numerical class
B € Homz(Pic([W/G], Z)) of the quasimaps. If W has at worst Ici singularities and W* is
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smooth (as always assumed in this paper), the moduli stacks carry canonical virtual fun-
damental classes. There are evaluation maps ev; to W //y G, as well as cotangent psi-classes
Y; at the j-th marking. Hence, we may define descendant -quasimap invariants

k

/ AT e,
Q% (W/oG T )

&

(1.1.1) (vt W)=

for y; € A*(W//sG)g and a; € Z-,. Here and for the rest of the paper, the Chow coho-

mology A*(Y)q of a Deligne-Mumford stack Y is the algebra A*(Y Bt Y)q of bivariant
classes, see [15, §17.3] and [29, §5].

There is a wall-and-chamber structure on the space Q. of stability parameters.
Assuming for simplicity (g, £) 7 (0, 0), the walls are at ¢ = 1 /n with n € N and the moduli
spaces stay constant in each chamber (HLI, 1]. For € € (1, 00), they parametrize exactly
stable maps to W//,G. A conjectural wall-crossing formula for the invariants of sem:-
positive targets was stated in the paper [9], and was proved for semi-positive (quasiprojec-
tive) toric quotients by localization techniques. In this paper we propose a geometric wall-
crossing formula at the level of virtual classes and without any positivity restrictions (which, as
we show, implies the above mentioned semi-positive numerical wall-crossing, see Corol-
lary 1.5). The main result of the paper is a proof of the virtual class wall-crossing formula
for complete intersections in projective spaces.

The wall-crossing formula has important applications to Mirror Symmetry for
Calabi-Yau threefolds at higher genus. This is explained in Section 1.5, the main point
being that, assuming the Mirror Conjecture, the genus g partition function of quasimap
theory for the & = 0+ stability of a Calabi-Yau threefold is precisely equal to (the holomor-
phic limit of) the B-model partition function of the mirror Calabi-Yau family, introduced
in string theory by Bershadsky, Cecotti, Ooguri, and Vafa.

1.2. Geometric wall-crossing. — To state the wall-crossing formula, we recall some
facts from quasimap theory and fix some notation.

The monoid Eff(W, G, 8) of 8-effective numerical classes is the submonoid of the
additive group Homgz(Pic([W/G], Z) consisting of classes represented by 8 quasimaps
(possibly with disconnected domain curves). The Novikov ring of the theory is

Ql[q]]:={ 3 aﬂqﬁ\aﬁeQ},

Eff(W,G,0)

the ¢g-adic completion of the semigroup ring QIEff(W, G, 0)].

The GIT set-up gives (see [7, §3.1] for details) a natural morphism ¢ : [W/G] —
[C™!/C*] for some m € Z, inducing a closed immersion 7 : W /G < P" and also a
morphism (denoted by the same letter)

i Q (WG, B) — QL (P, d(B)),
where d(B) :=i.(B) € Hom(Pic([C"' /C*]), Z) = Z.
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Fix a positive rational number &, such that 1 /g is an integer and let £y > &5 > ¢_
be rational numbers in the two adjacent stability chambers separated by the wall &.
There is a morphism

c: QP d(B)) — Q5L (P, d(B))

which contracts rational tails of degree 1/¢, see [28].
Let A denote a finite index set of cardinality 1,2, 3,... Consider splittings 8 =
Bo+ D _,ca B into O-effective numerical classes such that d(8,) = 1/¢, for all « € A. There

is a natural morphism

b Qraa (B d(By) — Qg (P", d(B)

which trades the markings in A for base points of length 1/¢, ([7, §3.2]).

Finally, recall from [12, §7] and [7, §5] that for every triple (W, G, 6), with associ-
ated quotient X = W //y G, there 1s a corresponding small I-function, denoted I,,,(¢, z). The
precise definition we will use in this paper is Definition 5.1.1 in [7], specialized at € = 0+
and t=0.

The small I-function lies in a certain completion A*(X)gq[[¢]1{{1/z, z}} of Laurent
series in 1/z. (Here z may be viewed as a formal variable of degree one, though it is more
natural to interpret z as the generator of the G*-equivariant cohomology Ag. (Spec(C)).)
It can be explicitly calculated for many targets. For abelian quotients, that is, for toric
varieties and for complete intersections in them, the small I-function is precisely the
cohomology-valued hypergeometric series introduced by Givental [18] (up to exponen-
tial factors). Closed formulas for I;,, in many examples with nonabelian G (e.g., complete
intersections in flag varieties, but many others as well) can also be written down using the
so-called abelian/nonabelian correspondence, see [4, 5, 10, 11].

Consider the expansion

Li(9)

L.(g,2) =0O(1/2°) + — +1o(9) + L@z +1o(2" + -

and set

[la(g, 2) — 2], =L@ + (lo(g) = 1)z + L1 (92" + -

In general [2],,(¢, 2) — 2]+ 1s a power series in (¢, z), but each ¢-coefficient is a polynomial
in z. For each 0 # B8 € Eff(W, G, 9), let

ng(2) € A*(X)glz]

denote the coefficient of ¢? in [z],,(¢, 2) — z];. By easy dimension counting, us(z) is
homogeneous of degree 1 + B(Kw/g)). Here z has degree one, the Chow cohomology
classes are given their usual degrees, and Kpy,g) = —det(Ty) € Pic®(W) = Pic([W/G])
is the canonical line bundle of the quotient stack.

We are now ready to state the wall-crossing for virtual classes.
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Conjecture 1.1. — There is an equality

(1.2.1) W[OS A" — i [Q X AT
1 & vir
Y % i Tl @ley n [ p] )

[A] ﬂ=ﬂo+Za€Aﬁa| | acA

i the Chow group A, (%a_k P",d(B)))qg.
More generally, let &, ..., 8, € A*(X)q be arbitrary homogeneous cohomology classes. Then

vir

k ) k .
(1.2.2) i (]_[ s, N Q5 (X, ﬂ)]"“) — 6, (]_[ e 8 N [QL(X, ﬁ)]m>
j=1 J=1
k

Y % et ([Tars [Taim s

Al B=Bo+_ e Ba =1 acA
CENEY
in AL(Q75(P", d(B))g.

In the above statement, ¢, : Qf*k AP d(Bo) = Q, A (P", d(By)) is the contraction of
rational tails of degree d(B,) = 1/¢.

Remark 1.2. — Yor X a semi-positive quasi-projective toric manifold, Conjecture 1.1
coincides with Theorem 4.2.1 in [9], and the result is valid for any GIT presentation of X,
see [9, §5.9.2]. In fact, the localization argument of [9] extends with little effort to prove
(1.2.2) for all toric manifolds (i.e., no positivity restriction), offering the first evidence for
the validity of Conjecture 1.1. We will treat this extension elsewhere.

1.3. Numerical consequences. — In this subsection we assume that (W, G,0) is a
triple for which Conjecture 1.1 holds. We work with arbitrary stability parameters
e € Q.o U{0+} and will write € = 00 for all parameters in the Gromov-Witten chamber
(1, 00).

Consider a formal power series in one variable ¥,

t() =+ 4y + 6y +6Y° + -,

with coefficients £ € A*(X)g general Chow cohomology classes.
The genus g, €-descendent potential of X is

B

F (0. 60)) = ) e e k)]
Bk
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the sum over all pairs (B, &) for which the corresponding moduli spaces exist. If we choose
a basis {y;} in A*(X)g and write 4 = Zj tiv;, 1=0,1,2,..., then F;(q, t(Y)) is a for-
mal power series in the infinitely many variables ¢;, whose Taylor coefficients are the
g-quasimap invariants (1.1.1). In particular, F¢° is the generating series for all descendent
genus ¢ Gromov-Witten invariants of X.

1.3.1. Wall-crossing from Gromov-Wilten invariants to &-quasimap invarnants. — Let

¢ (¢, 2) be the small J-function of X ([7, Definition 5.1.1], specialized at t = 0). With
this notation, I, = JF. Let

(<5, — 2], =Ji@+ (i@ — D)z +] (@ + -

This 1s explicit for all &, since it is a ¢-truncation of the corresponding expression for the
small I-function:

[J5.(0,2) — 2], =[2lu(g,2) — 2],  (mod ay),
with a, the ideal in the Novikov ring generated by {¢? | B(Ly) > é}
Corollary 1.3. — For any € > O+, and any g > 1,
F (g, 60) = F2* (g, €) + [45, () — 2], ey

Further, in genus g = 0 the same relation holds after discarding from ¥ (q, t(v)) the terms correspond-
ing to pavs (B, k) for which Qp (X, B) is not defined.

Progf: — The y-classes at the markings 1, ..., £ pull-back under the maps b4, ¢,
¢a, and 7. Applying the virtual class wall-crossing (1.2.2) in Conjecture 1.1 successively for
the walls from 1 to ¢ (and using the projection formula) gives the equality of the Taylor
coeflicients of the two sides in the claimed equality. UJ

Remark 1.4. — (7) The formula in Corollary 1.3 is equivalent to
Fi (g, 6(¥) — [2J5,(9) — 2], l=y) = F° (g, 6(¥)).
(1) Assuming only the formula (1.2.1) from Conjecture 1.1 gives the weaker equality
F(q.80)) =F°(0. 8 + [J5,(0) — 2] 1=y

with £(1/) the restriction of t(1/) to the subring 7*A*(P")g C A*(X)q.
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1.3.2. Semi-positive targets. — Recall that a triple (W, G, 8) is called semi-positive
if
B(detTw) = B(—Kw/e) >0
for every B € EfffW, G, 0). For such targets we have
(5@ = 2], =Ji@ + (i@ - 1)z
since deg(up(z)) <1 for all B. The wall-crossing formula of Corollary 1.3 becomes
(1.3.1) F (. 6¥) = F¥ (g, t) +J5 () — (Jo(g) — 1)¥).

In fact, equation (1.3.1) is equivalent to the wall-crossing formula conjectured in [9, Con-
jecture 1.2.1]:

Corollary 1.5. — For a semi-positive triple (W, G, 0) we have
£\ 28—2 1 Xtop(X) £ ) e ) _ oo( t(W) +J§(9))
1.3.2 (5:) (a ( b i@ ) + F k) ) =B (0 S ),

where Xop (X) denotes the topological Euler characteristic and § 01 us the Kronecker delta. (In genus g =0
we use the same convention as in Corollary 1.5.)

Progf: — Using the dilaton equation for Gromov-Witten invariants in the right-
hand side of (1.3.1) to remove the msertions (J;(¢) — 1)y produces exactly (1.3.2). The

Xlnp(x)
o - 24
M, (X, 0) =M, ; x X. Namely, since the virtual class is

additional term 8;( logJ;(¢)) appears due to the failure of the dilaton equation for

[Ml,l(Xa O)]Vir = (1 ® caimx(Tx) =¥ ® Cdimxfl(TX)) N[M;; x X,

we have
1
W= [ V@ eanx(T = 3x 0,
M1 xX
while the dilaton equation would formally predict (¢)?%, ; = 0. 0J

1.4. Complete intersections in projective space. — The main result of the paper is a proof
of Conjecture 1.1 for projective complete intersections. In fact, we will prove the following
slightly strengthened version.

Let V be the affine space of dimension 7+ 1 with the standard diagonal G := CG*-
action and linearization 6 = id¢-. Let W be a complete intersection of » < n homoge-
neous hypersurfaces in V. Then X := W//,G is the corresponding projective complete
intersection in P(V) (and W is the affine cone over X). Assume that the hypersurfaces are
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general, so that X is smooth. We take X < P(V) as our embedding . In this case, the
induced

1:Q (X, d) — %k(P(V), d)

are also embeddings. The maps that replace markings by base-points, as well as the con-
traction maps, respect these embeddings, i.e., given a wall ¢ =1/d, and ¢, > ¢ > ¢_
nearby, we have restrictions

bt Qha (X dy) — QLK. d),
where d} = d — |A|d,, and
c: %}(X, d) — ijk(X, d).

Theorem 1.6. — There is an equality
[Qe% D] = e[ QK )]
1 e vir
::j{j];§ﬁ<bA>*oA>*<]'Iev:uﬁxz>u:_warw[ e (X )] )

N aeA

vir

in the Chow group A, (%}(X, d))g.

Since Theorem 1.6 implies the formula (1.2.2), the relations between e-quasimap
invariants and Gromov-Witten invariants in Corollaries 1.3 and 1.5 hold for nonsingular
complete mtersections X C P" of codimension » < n.

Let [, b, ..., [, be the degrees of the hypersurfaces whose intersection is X. The
small I-function of X is given by the well-known formula (see [17])

[T T2 (GH +52)
lga=1+) ¢ ———"
d>1 l_[j'zl (H +jz)"+
where H denotes the restriction to X of the hyperplane class on P”.

If Y\, &> n+ 2, so that X is a variety of general type, we do not know of any
simplification of the wall-crossing formula in Corollary 1.3. Note that even in genus g = 0

our result is new.

If X 1s Fano or Calabi-Yau, more precise statements can be made.

The case ) ., <n— 1 of complete intersections which are Fano of index at
least two is the simplest, since J;(¢) = 1 and J{(¢) = 0 for all € > 0+. We conclude the
following e-independence result.

Corollary 1.7. — The quasimap invariants of a projective complete intersection with ). l; <
n — 1 are independent of €.
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In the Fano of index one case, Z:-zl l; = n, we have Ji(¢) =1 and Ji(¢) =
¢(I1_, D1 forall 0+ <e < 1.

Corollary 1.8. — For a projective complete intersection with ). l; = n and for 04+ <& <1
we have

¥ (t(lﬁ)) =¥y (t(l//) + q(l_[ lﬂ) l>.
i=1
In particular, of (g, n) # (0, 1), (0, 2), then the primary wmvariants are again &-independent:

(ylv"')/)gnﬁ (yl""y’»;ﬁlsﬁ'

The second equality in Corollary 1.8 is a consequence of the string equation in Gromov-
Witten theory.
The most interesting is the Calabi-Yau case ) ., =n+ 1, for which

. 1 (Gd)!
Bigp= Y et

0<d<
oo 2 MR s
1<d< =

For every € and every d, the virtual dimension of the moduli space Q5 (X, d) 1s
equal to (dim X — 3)(1 — g) 4+ £. We split the discussion according to the genus.

1.4.1. Genus zero. — The wall-crossing formula (1.3.2) at g = 0 for a Calabi-Yau
complete intersection is proved in [9, §3] using Dubrovin-type reconstruction arguments
and results from [7]. Here we just note that the new proof in this paper does not use the
torus action on P

1.4.2. Genus one. — When g = 1, the virtual dimension is independent of the di-
mension of X. Consider the unpointed case £ = 0, 1.e. the specialization of (1.3.2) atg =1,
and t(y) = 0. Separating the d = 0 contributions and applying the divisor equation in
the Gromov-Witten side gives

Corollary 1.9. — For a Galabi-Yau complete intersection X C P"

!
(1.4.1) ﬂxwp(X) logJs+ D ¢ 050

d>1

- ﬁoﬁdlmx I(TX)+Zq eXP(//me §0><>10d

d>1
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When ¢ = 0+, the formula (1.4.1) answers a question raised first in [25, §10.2]. Note
that the unpointed genus one (0+)-invariants ( )1 0.« have been recently calculated by
Kim and Lho ([21]) in terms of the small I-function. Combining [21, Theorem 1.1]
with Corollary 1.9 gives new proofs for the main results on genus one Gromov-Witten
invariants of X from [30] and [27].

1.4.3. Higher genus. — If g > 2 and dim X > 4, the virtual classes (hence the invari-
ants) vanish by dimension considerations. We restrict to the case of unpointed invariants
of Calabi-Yau threefolds. The invariants for d = 0 are the same for all stability conditions
and are given by the formula

. (—1)é By [Byg—o| 1
OF 0 = " Xiop(X) ,
2¢ 2¢—2(2g—2)!

with By,, By,_s the Bernoulli numbers, see [16], [14].

Corollary 1.10. — For a Calabi-Tau threefold complete intersection in P", g > 2 and € > 0+,

(=1 |Bog| [Bog—o| 1
2¢—¢ g g d;\e
Jo(@) ( g er() 2 2g—2(2g—2)!+zq<>g’°’”’>

d>1

(1 Byl [Bysl 1 ( / JS)
= op (X '
2 X p( ) 2g 2g -2 (Qg —2)! * Z e [lmc*]u]‘8 >€ o

1.5. Relation with Mirror Symmetry. — In this subsection we let X be the quintic hy-
persurface in P* and consider the asymptotic stability condition & = 0+. (The same anal-
ysis will apply to the (04)-theory of any Calabi-Yau threefold for which Conjecture 1.1
holds.)

Fix a genus g > 1. In their landmark paper [2], Bershadsky, Cecotti, Ooguri, and
Vafa studied the string theory B-model of a Calabi-Yau threefold and in particular they
proposed a method to calculate the genus g Gromov-Witten potential of the quintic (with
no insertions) via Mirror Symmetry. Namely, let 7, 5(¢) be the holomorphic limit of the
genus g partition function of the B-model assoaated to the marror famuly of the quintic,
where ¢ is the coordinate around the large complex structure point. Let the mirror map

be Q = qexp(ﬁ%), where

B o (5 )

d>1 d>1 d+1‘]

Then the genus g > 2 Mirror Conjecture of [2] for the quintic threefold is the equality

(1.5.1) L(@* 2 F(g) = Z Q)50

d=0



210 IONUT CIOCAN-FONTANINE, BUMSIG KIM

Hence Corollary 1.10 says precisely that the quasimap partition function F§+|t:0 (¢) 1s
equal to FP(g), with no mirror map involved. Similarly, Corollary 1.9 gives the same
equality in genus g = 1. In other words, our results in this paper can be viewed as giving
a mathematically rigorous and geometrically meaningful definition of the holomorphic
limit of the B-model partition function.

The B-model partition function of the mirror quintic has been studied extensively
in the Physics literature. It is expected to have modular properties and to satisfy a re-
cursion in g, determined up to a holomorphic function f,(¢), the so-called “holomorphic
ambiguity”. The ambiguity has been fixed up to genus g = 51 in [20] and this is by far the
most efficient computational method for predicting (via the conjectural mirror formula
(1.5.1)) the higher genus Gromov-Witten invariants of the quintic. We speculate that the
holomorphic ambiguity f,(¢) has an intrinsic meaning in quasimap theory. It would be
very interesting to determine if this is indeed the case.

1.6. Final remarks. — While the proof of Theorem 1.6 we give here is quite in-
volved, it turns out to be also robust. For example, it extends easily to the case of complete
intersections in products of projective spaces. It also applies to proving a wall-crossing
formula for the virtual classes of quasimap moduli spaces (with same stability parame-
ter ¢ = 0+ and target a complete intersection X C [[P") when one usual marking is
changed to an infinitesimally weighted marking. To keep this paper from becoming ex-
cessively long, we defer the details of these developments to future writings.

1.7. Acknowledgments. — 1.C.-F. was partially supported by the NSF grants
DMS-1305004 and DMS-1601771. B.K. is supported by the KIAS individual grant
MGO016403. In addition, I.C.-F. thanks KIAS for financial support, excellent working
conditions, and an inspiring research environment during visits when a large part of this
project was completed. We deeply thanks the anonymous referee for valuable suggestions
to improve the readability of the paper.

2. Virtual classes for moduli of quasimaps

2.1. Overview. — In this section we give a concrete description of the virtual class
of a moduli space of quasimaps to a complete intersection in projective space. This is
accomplished by embedding the moduli space into a smooth stack and intersecting the
normal cone for this embedding with the zero section of an appropriate vector bundle.
This description will be crucially used in the proof of Theorem 1.6 given in Section 3. The
construction is uniform for all discrete parameters g, £, d and ¢, but requires the existence
of the moduli space of stable curves, so it doesn’t apply directly to the unpointed elliptic
case (g, k) = (1, 0). An appropriate modification, sufficient for completing the proof of
Theorem 1.6 in this case as well, will be discussed in Section 3.7.
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2.2, Set-up and conventions. — From now on we let G = CG*. Let V be an n + 1-
dimensional G-representation (n > 1), with weight vector (1,...,1). Let G; be an r-
dimensional G-representation with positive weight vector I:=(,....1) (l > 0,¥)). As-
sume we are given a G-equivariant map

¢ =_¢:V—C

such that the closed subscheme W := ¢~'(0) is smooth away from 0 € V and of di-
mension dimW =n+ 1 —r > 0. We linearize the G action on V by the character 6 of
weight 1. The GIT quotient X := W//,G is a nonsingular complete intersection of type
(..., L) mP"=V//,G, with @, its homogeneous equations.

Recall that the inclusion ¢ : X C P(V) induces an embedding

i Q) (X, d) = Q,(P(V). d)

for all € > 0+.
We also make the following conventions:

e M, denotes the Deligne-Mumford stack of k-pointed stable curves of genus g,
while 901, ; denotes the Artin stack of prestable £-pointed curves of genus g.

. %unﬁk denotes the moduli stack of principal G-bundles on £-pointed prestable
curves of genus g. It is a smooth Artin stack of pure dimension and decomposes
as | [,z %ungfd, according to the degrees of the principal bundles. There are
natural forgetful morphisms

Q(P(V), d) — By, —> M, .

e The universal families of curves on various moduli stacks are denoted by €,
usually with decorations recording the discrete data. For example,

€§,k,d Q:g,k Q:gk,d’
Q¢ (X, d) M, Qs (P(V®CN),d).

We will abuse notation and denote always by 7 the projection from the universal
curve to the base.

We will represent quasimaps to a projective space P(V) as tuples

((C,[J], ...,pk), L, u)
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with L a line bundle on C and « a section of L® V (as in [6]). Quasimaps to X C P(V)
will then be such tuples for which the components uy, ..., tgny of « (once a basis of V is
chosen) satisfy the homogeneous equations of X. The base-points of the quasimap are the
points of C where all the #;’s vanish and the length £(x) at a point x € C is the common
order of vanishing. Given € € Q., recall that the definition of &-stability requires the
following conditions be satisfied:

(1) the base-points are away from nodes and markings;
(2) el(x) <1 forallx € C;
(3) the line bundle w¢(p; + - - - + pr) @ L is ample.

For ¢ = 04 condition (2) is empty and is discarded, while condition (3) translates into
the absence of rational tails in C and the strict positivity of degLL on rational bridges
(rational components of C containing exactly two special points).

Finally, recall that the theory of virtual classes was first developed by Li and Tian
in [24], and by Behrend and Fantechi in [1]. In this paper we use the formalism of [1].

2.3. Twisting line bundles. — Fix (g, k) # (1, 0).

For each ¢ > 04 we construct a line bundle .Z, on the universal curve

Cord — Q;k(P(V)’ d)

as follows.
When g = 0, we take the trivial line bundle % =0.
When g > 1 and g + £ > 2, the moduli stack M, ; exists and we have the diagram

Q:g,k,d Q:g,k

S

Q (X, d) —= M,

with f, ﬁ‘; the stabilization morphisms and %; the sections of 7 corresponding to the &
markings. The logarithmic relative dualising sheaf Wy, := @, (X} +--- X;) on €, is 7-
ample and we choose a positive integer p such that a)fg is 77 -relatively very ample. We also
choose a very ample line bundle on the (projective!) coarse moduli of ng  and denote by
H its pull-back to the stack M, ;.. Now set

M, ::ft?(n*%@a)@p).

log
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Lemma 2.1. — The line bundles M, satisfy the following properties:

() If e > ¢, then M, = T* My, where T is the induced contraction morphism on universal
curves in the diagram

¢ ’
€ €
Q:g,k,d Q:g,/f,d

| |

Q,(B(V), d) —~ Q,(P(V), d)
(11) For every geometric fiber G of & ; , — Qp (P(V), d) we have

Hl(cy g ® %‘E‘k}) = Oa

where L denotes the universal line bundle associated to the universal principal G-bundle on
the universal curve.

Proof. — Part (2) is obvious from the definition, since C and ¢ are compatible with
the forgetful stabilization maps. For part (i), notice that deg.Z is nonnegative on every
component of every geometric fiber C and by stability it is strictly positive on every ra-
tional component with at most two special points. On the other hand, by construction
M has vanishing H' on the stabilization of C and is trivial on rational tails and rational
bridges. The required vanishing follows. U

Choose once and for all global sections {ti,..., Ty} giving a basis of I'(€,,
' ® wﬁz), and hence an embedding

h: €, — P(CY).

Let s := ﬁ:*‘q of A be the induced sections of .#,, determining the map /4. := /o

~

Sle, with A, = I Opc~)(1). When the parameter ¢ is understood we will drop it from
the notation and write simply .# and s for the twisting line bundle and its sections.
Furthermore, we will use the same notations when considering the restriction of the set-
up in this subsection to the moduli spaces Qg (X, d) via the embedding :.

Note that the degree of .# on the fibers of the universal curve is a constant positive
integer d , depending only on (g, £), but not on 4, or on the dimension of P(V).

2.4. Perfect obstruction theory (y‘Qg’k(X, d). — Fix (g, k) # (1,0) and ¢ > 04-. Con-
sider the line bundle .¥" := . ® .# on the universal curve &, 1.a over Q (X, ). There
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is a commuting diagram with exact rows

s o
(2.4.1) 0> L0V — Y, 20V > P 0
®idy; l \L @ig‘fj{iild(ﬂi \L/
i
®ijs;
O —_— @;192”[1' e @i,j(g/)h Q O

o)
The top row is obtained by puling-back the tautological sequence
(2.4.2) 0—> OP(CN)(—I) —> OP(CN) X CN —> Q—) 0

viaf 1 & ) —> P(CY) and tensoring with .Z’ ® V. The bottom row comes from (2.4.2)
similarly, by taking the direct sum of its pull-backs via g; o A, tensored with (.Z")", where
g, - P(CY) —> P(CN) is the degree /; map [#; : -+ : tx] > [tf Do tll(I]. In particular, &
and £ are vector bundles.

The components dg; of the vertical homomorphism on the left are given as follows.
Let A C &, , be an open substack. After choosing coordinates (xq, . ..x,) on V, we may
write ¢; as a homogeneous polynomial of degree /; and a local section v of 2 ®@ V on A
as v = (v, ...v,). Then we put

n

d¢;
dpi(v) = Vei(ula) - v = ; 5, (Wa)v
where u = (u, ..., u,) is the universal section of .Z ® V on C; 4 Similarly, for fixed ¢ and

J and alocal section v' = (v}, ... V) of Z' @V,

n n

o d i , i— 0 i /
() =3 S @ sl = 38 s (ul ),

0x,, 0X,,

Viewing (2.4.1) as an exact sequence of two-term complexes, it follows that the
two-term vertical complex on the left in (2.4.1) is quasi-isomorphic to the shifted mapping
cone A* := Cone(a)[—1] of the homomorphism o = (&g, ;). Denote

% =,(ZL)".
Define a coherent sheaf & (in fact, a vector bundle) by the exact sequence
(2.4.3) 0>E—>LPOX—> 2 — 0,
where & @ # — 2 is given by (x, ») > f(x) — a1(»). Then A® is quasi-isomorphic to

(2.4.4) OLL' QV—&.
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On the other hand, if
o0 Prin( L) xg W — &

denotes the universal W-fiber bundle with Prin(-Z) the principal G-bundle associated to
Z and we view u as the universal section of p, then the pull-back ¥*T, of the relative
tangent complex of p coincides with the two-term complex . ® V — @'_,.%" on the
left of (2.4.1). We conclude that »*T, is quasi-isomorphic to (2.4.4) at amplitude [0, 1].

Part (if) of Lemma 2.1 gives the vanishing R'7,.#” = 0. This in turn implies that
R'7,Z =R'7,2 = 0. Since the derived push-forward of #*T, has amplitude in [0, 1]
by [12, Theorem 4.5.2], the same is true for the derived push-forward of the shifted
mapping cone A*. Hence the map 7,(& @ %) — w2 is surjective and then R'7,& =0
from (2.4.3). It follows that

(2.4.5) Ef:=m.¢&

is a locally free sheaf on Qg ;(X, ) and we obtain a perfect complex

(2.4.6) oL, 1.2 @V —E,

whose dual represents the canonical perfect obstruction theory
(R*7,'T,)"

for Qg (X, d) relative to %uﬁék. We have proved the following result.

Proposition 2.2. — The virtual fundamental class of Qg (X, B) is

[Q (X, &)™ =0}, (IC.1)

where G, C K, denotes the Behrend-Fantechi obstruction cone, see [1], associated o the relative perfect
obstruction theory given by (2.4.6).

2.5. An embedding of Q; (X, d) wnto a smooth stack. — Set
d:=d+dy=d+deg(A|c).

Consider the moduli stack QZ PV CN), d'), with universal curve Qz, 1o+ By a slight
abuse, denote also by . the twisting line bundle on €, o (defined by the construction

in Section 2.3, as the pull-back of 7*.57 & a)fg on &, ; by the stabilization morphism).

Definition 2.3. — Define Uy, C Qf ,(P(V® CN), d') as the open substack consisting of the
g-stable quasimaps

((C’pl’ ce ’pk)’ L/, u/)
to P(V® CN) such that H'(C, L) = 0.
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Note that U5, is the complement of the support of the coherent sheaf R'7,.Z”, so
it is indeed an open substack.

Lemma 2.4. — The stack US, 1s a separated DM-stack of finite type, smooth and of pure
dimension over ‘Bung&k, and hence over M, .. In particular, fixing a locally-closed substack of ‘Bungdk
parametrizing prestable curves with fixed topological type, together with line bundles of given degrees on
the components, produces a corresponding locally-closed substack of U, with the same codimension.

Proof. — The separatedness and finite type properties follow from the correspond-
ing ones for Qg  (P(V® CY), d'). By definition, the quasimaps in Uf, are unobstructed,
which gives the smoothness and the pure dimensionality. (In fact, U¥, is also irreducible,
since it is the smooth locus in the “main component” of % P(VRCY), d). Irreducibil-

ity of the “main component” follows from the connectedness of Mg,k(P(V R CN), d),
proven in [22].) 0

Letm: Q:g ha = U?, be the universal curve and let %' be the universal line bundle
of 7-relative degree d’" on & ; ,. By the very definition of Uy, the sheaf 7.7 is locally
free. Put

L =L"QM",

and consider the diagram of vector bundles on &7, ,

@3
(2.5.1) 0 — 2RV — 0L .2'® ", 0
J/ ®;(Dide:)
®, st
W
0 —_— @§=1$Zi —_— @izj(g/)[i ‘QZ’ 0

As before, the exact rows are obtained from the tautological exact sequence (2.4.2) on
P(CY) via pull-backs, tensoring with appropriate line bundles, and taking direct sums.
The components of the map between the middle terms (for fixed ¢ and j) are given by

’ ’ - 8¢)l ’ ’ ’
d(pi(v]'O’ te vjﬂ) = Z ((uj'O’ te ujn) |A)vjm’

m=0 aXm
where
(2.5.2) U = (”/10’ e Wy gy e Uy Uy s ui\n)
is the universal global section of@}il.,f/@)\/ on Qf;k’d, and (Vg ..., V], ees Uggs -« - UN,)

is a local section of EBN 2" ®V overanopen A C &, .
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Let us denote
o — EBN L'V R = @N (ag/p/)li R =& T
¢ = Dz ’ id += D=1 ’ o= D=1 Hia
The tautological section ° of 7,47, induces a natural section o of the vector bundle

P =, 7

on Uf. On the other hand, we also have the section o of the vector bundle

R =%,
whose (7, 7)-component is given by (pl-(uj’-o, e, uj’-n). Set
(2.5.3) o°:= (o}, 05) e H' (U5, P, ®R).

Because the exactness of the rows of (2.5.1) is preserved for any base change, it follows
immediately that the zero locus of the section o is identified with the stack Q; (X, d).
Thus, we have an explicit embedding of %8 +(X, d) in the smooth stack U?,, summarized
in the diagram

(2.5.4) P, ® R,

closed >
Q; (X, ) = (0°)71(0) ——— U,

\ smooth

g,k
Burg, .

Over Qg (X, d), the diagram (2.5.1) restricts to the diagram (2.4.1). Denoting by
# the ideal sheaf of the closed substack Q‘Z; (X, d) in U, and setting

(2-5.5) FZ/ = PZ/ 69 RZ/ = jT* 5/ @ T[*%;/,

we obtain the commuting diagram of coherent sheaves

(2.5.6) (F2/|Q§_k(x,d))v — (E)Y —— (m%’ﬂqgk(x,d))v
j/jQ QUZ//%uﬂé”Q;.k(X’d) ’

where the existence of the surjection (E5)Y — /. 2 follows from a standard deforma-
tion theory calculation.
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The square in the diagram (2.5.6) is precisely the map of complexes from the
obstruction theory (2.4.6) to the two-term truncation of the relative cotangent complex

LQ;U X/ Bui The indicated equality (7.47;)" = Q. o, & follows from the definition
s ’ d

of U, and the identification of (R*m,7;)" with the relative obstruction theory over
‘Bungék for ng(P(V ® CN), d'), see [6, §5.3]. Here £’ denotes, by abusing notation, also
the universal line bundle on the universal curve on Q\z (PV® CcY), d).

Lemma 2.5. — The relative normal cone G (x.4) jue, Jor the embedding in (2.5.4) coincides
with the obstruction cone G, C Ef. ‘

Proof. — First, we have by definition

&

C. =G, Xy A Eys

L‘j,/%mﬂ'
. S y:
where G;, 1s the relative intrinsic normal cone of Qg (X, d) over Burg, (see [1]) and

[Ef,/TUZ/ B ”gdk] denotes the stack quotient. Since G, = [CQ;k(X’d)/U;, /TU;/ B ngG,k], the

Lemma follows. O

Proposition 2.2 and Lemma 2.5 imply the following concrete description of the
virtual classes of moduli spaces of e-stable quasimaps to X.

Corollary 2.6.

(@, X )] = O ([Coye ./, 1)

Remark 2.7. — Recall that in genus zero we take a trivial twisting line bundle .Z,
so in this case U}, = Qj ,(P(V), d) and the construction reduces to the known realization
of Qg’k(X, d) as the zero locus of a section of the bundle @,7,(.%)" on Q5 (P(V), d).
This bundle has “correct” rank )./ + r, hence its refined top Chern class gives
[Qg (X, d)]". However, for g > 1 the rank of the bundle ¥, = 7, 9% @ m. %", is larger
than the virtual codimension of % (X, d) in U, so the virtual class is not the refined top
Chern class.

3. Proof of Theorem 1.6

3.1. Overview. — Adapting an idea of Bertram from [3], we consider a one-
parameter degeneration of the diagram (2.5.4) which is obtained via a refinement of
MacPherson’s Graph Construction. The proof of Theorem 1.6 will then follow by ana-
lyzing the central fiber limit of the virtual cycle [% (X, )] in this degeneration.
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3.2. Boundary strata. — Let &, be a wall, so that m := 1/¢ is a positive integer. Let
e+ > &) > €_ be stability parameters separated only by the single wall ;. Fix the numer-
ical data (g, £, ). We will denote by %k(X, d), Uy etc. the moduli spaces corresponding
to the stability parameters €. The contraction morphisms with the abused notation

c:%k(X, d) — Q, (X, d), c: U, — U,

contract precisely the rational tails of degree m.

The evaluation maps at the markings will be denoted by ¢v; for Q\z (PV® CN), d)
and for its open substack Uf,, while we reserve the notation ev; for the evaluation maps
on Q;,C(P(V), d) and on Q;k(X, d).

For a finite index set A, with [A| =1,2,..., [%] we associate to each a € A the
integer d, = m and set

(3.2.1) dy = d* ::d—Zda:d—|A|m20.
acA
Denote
DA = U/;:—A,dé XP(V®CN)"\ 1_[ QX{I(P(V X CN)’ da)a
aceA
EA = U/_c:-A,d(’) XP(V®CN)A 1_[ Qa:a,da’
acA

where €af od, Qg ,P(V® CY), d,) is the universal curve, the notations U,ir A ATe the
obvious ones, and the fiber products are made via (¢v,),ea on the left and [],_, ¢v, on
the right. The easiest way to describe the evaluation map ev, : Q:Sr’a, o > PV® CY) is
by identifying &, , with the moduli stack Q] nPVe CY), d,) which parametrizes ¢, -
stable quasimaps of degree d, from rational curves with one marking a of weight 1 and
one additional marking of weight 0+, see [8] for more on these moduli stacks.

We will need an alternative description of these boundary strata which takes into
account the twisting line bundles .7 .

Consider the diagram of universal curves

(3.2.2) oy —= €, —— €, — P(CY)




220 IONUT CIOCAN-FONTANINE, BUMSIG KIM

with cartesian square and the maps /4 given by the sections sy, ... sy € l—'((’:g_’k’d,, M), so
that Ay = (he)*(Opexy(1)). For each a € A we obtain maps
(3.2.3) h;t (Ut b5 P(CN)

k+A,

as the compositions

oY ba he
. - - N
h, 'Uk+A,dé i Q:g,/f+A,gz(J =€ - P(CY),
+ + CA _ ha_ N
A -Uk+A,dg, - Uk+A,d(’) — P(CY).

Here %, is the section corresponding to the marking a € A, by is the map that trades each
marking in A for a base-point of length d,, and ¢4 is the contraction of rational tails of
degree d,. There 1s a natural identification

(3.2.4) DAZ U, 4 Xevechxeeo | [(QFL(B(VOCY).4,) x B(CY)),
acA
where the fiber product is now done using ((€V,, £))4ea on the left and [, (v, x
idp(cx)) on the right. Similarly,
DA = U++A,d[/) X(P(V®CN)XP(CN))A l_[(etz)r,a,da X P(CN))
acA

We have the following commuting diagram of canonical morphisms:

c

(3.2.5) Uy U,
VA T ba
Pr; 7.
Da - (ORI §

k+A,d) k+A,dj

Pra

[1.ea(Q5 (P(V®CY), d) x P(CY)),

where b, denotes the morphism which trades the markings A for base points of length d,.
The two projections pr, and Pry are those coming from the fiber product description
(3.2.4) of Ds. The map v, has degree |[A]! and sends D, onto the boundary stratum of
U}, generically parametrizing (unobstructed) &, -stable quasimaps to P(V ® C~) whose
domain curves have exactly |A| unordered rational tails of degree d,. In particular, for
A = {a} the map vy, is an embedding of Dy, as a boundary divisor.
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The contractions ¢, ¢y are isomorphisms over the (nonempty) loci of quasimaps
with irreducible domain curves. By Lemma 2.4, the complements of these loci have pos-
itive codimension and we conclude that ¢, ¢y are birational morphisms and hence degree
1 maps.

We finally introduce one more piece of notation. Let p, denote the Cartier divisor
on the universal curve Qf;fk Had, of the moduli spaces Uzcﬂa}’ p which is the image of the
section ¥, corresponding to the marking a. Similarly, we have the Cartier divisor p
on the universal curve Q:af od, X P(CY) of Qar JP(V®CY), d) x P(CY) defined by the
image of the section ¥, , corresponding to the marking a. As usual, O(p,), respectively
O(p“"), will stand for the associated line bundles; and O,,, respectively O, will stand for
the coherent sheaves X, 27O, Xyi.w 2;;,,0 on the universal curves. Then X*O(—p,),
respectively X%, O(—p"), is identified with the line bundle with first Chern class ¥, on
U/ir A respectively wé"” on QB’ PV ® CY), d,) x P(CN). Abusing notation, we will
write O(,) and O(Y") for these line bundles, and O(—,), O(—v¥“") for their duals.

3.3. MacPherson’s Graph Construction. — For easy notation, for A = {a} in (3.2.5) we
write D,, Pr,, ¢,, b,, etc instead of Dy, Pry ¢y by, etc. Let 7 : Q:;k’d/ — Uy be the
universal curve and denote by ¢ the contraction morphism from Q:;k’ + 0 €, which is
an isomorphism outside the divisor D,. Hence & =L (—d,D,). Here the coefficient
—d, is obtained by the consideration of deg.Z" |c, = d,, deg O¢,(C,) = —1 for the con-
tracted rational tail C, on the fiber curve of 7w over a general closed point of D,. It follows
that for every /> 1 there are homomorphisms

(2 =2#(2) (-uD,) - #(Z)

of line bundles on @;k, 7
In particular, taking / = 1 and using the top line of the diagram (2.5.1) gives a map
P, —> (2. Applying . we obtain homomorphisms

CI)P P;; —> C*P;, CDR . R;, —> C*R;,
o = (CDP, CDR) : F;}; — C*FJ
of vector bundles on Uj,, which are isomorphisms outside D,. We have used here the
canonical isomorphisms 7, %, = ¢*n,. %, and n,.* P, = ", S, obtained by apply-

ing to (3.2.2) the base-change followed by the projection formula.
Consider the Grassmann bundle over U,

Gr = Gr(Fj, o) c*F;) - Gmss(rd, Fi @ C*F[;),

with r; = rank(F;C). Letn: Gr — U:j, be the projection and denote by ¢ the tautological
subbundle of rank 7, in n*(F;, @ *F,).
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The map 7 x id has a section
v:U) xA' — GrxA',  v(,A) = (y, graph(A(D),), 1).
Define the closed substack
I':=Im(v) C Gr x P!

as the stack-theoretic closure of the image of v. As U}, is nonsingular and irreducible, I’
is also irreducible, of dimension equal to 1 + dim U},.
In fact, if we consider the “component” Grassmann bundles

Grp = Gr(PI D c*P{]) = Gmss(rp, P:[, ) c*P(]),
Gry = Gr(R:, ® C*R;) = Gmss(rR, R;, ® c*R[}),

with projections np, nr and tautological subbundles ¢p, {g, then there is a natural inclu-
sion

Grp XU Gry C Gr

such that ¢ restricts to {pH¢g and the inclusion of " in Gr x P! factors through (Grp XU
Gryp) x P!
For A € P! = A U{A = 00} denote by ' the fiber of the projection I' — P!, When

A € A, under the identifications v, : U; — T, we have
(id, A ®) _
vi¢ =Im(F) =5 F) @ ¢'F,).

In particular, at A = 0 we have vi¢ = F} @ {0}.

At A = oo the fiber breaks into components encoding the degeneracy of the
map @, asin [15, Example 18.1.6]. First of all, there 1s a distinguished component I'w 4
o =10} @ CF,.
All other components of I'o, come with some multiplicities and project into D, under 7.
Their description 1s our next task. The analysis is similar to the one in the proof of [3,

which has multiplicity one and projects birationally to U}, while ¢

Lemma 4.4], where a related genus zero case is treated. In our situation there are com-
plications due to the twisting by .#, but also slight simplifications, due to the fact that ¢
only contracts rational tails of fixed degree d,, which therefore do not interfere with each
other.

3.3.1. Description of T'ny. — For each j, > 1 consider the P'-bundle over D,

P, :=P(prrO(i.yv") & Pr:O(—jy.))
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and their fiber product
PJA = 1_[ Pja |DA
acA
over Dy.
Theorem 3.1. — Let jo be the multi-index (j,)aen with each j, in the range 1 < j, <

max{d,, ;| i=1,...,r} and let mj, =[], rJu- For each jy, there exists a map o, : P, — Gr,
described below, satisfying that

"
(3.3.1) [Fac) = (Mool 3 i [Poc] = ol 3 70 @), Py ]
(Aga) GV

in the Chow group A, (Gr)g. Here T j, is the image stack of &j, . Furthermore I, j, projects to D
under the projection map 1 : Gr — U}

Defining «;, amounts to finding a subbundle &* of mpvi(F} @ ¢*F,) with its
rank equal to the rank of F}. Denote by 7p : P;, — D, the projection map. Then
the vector bundle & will be constructed as an extension of EﬂaeAOij(—l) ® mTpF" by

% « Hua+l * xp—Ja—l
e (prik i, @® Pric\F Z ) for some vector bundles

At p—ia—l
Fe, F AT F 7 on D,

il d, L)
H Q. (P(V®CY),d) xP(CY), U, 4, Tespectively.
acA

The bundles perZ;[];“da (resp. Pr:c:F;[,J’j") for j, will form a decreasing (resp. increasing) fil-

tration of the kernel sheaf of v ® (resp. of the sheaf v)¢*F ).

3.3.2. Description of the vector bundle Fi's' on Qf (P(V ® CN), d,) x P(CN). —
Consider first the case A = {a} of the boundary divisor D,. On the universal curve

m: €, xP(CY) = QF (P(V®RCY),d,) x P(CY),
put Z; := 2] X Opx)(—1). We have the diagram

Dis;

77
0 — Z,®V —— Gajlilg—i/-(gv e yz;z,da —0

J/ ®;(®idy;)
@i Ji

: J .
0 > @Zzlgﬁ @iz;'(gfr)ll — Q;ﬂ,da — 0,
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whose rows are obtained from the exact sequence
N
0— Opcey)(—=1) — EBFlop(cN) —->Q—0

via pull-backs, tensoring with appropriate line bundles, and taking direct sums, as ex-
plained in Section 3. Now define the vector bundles

l.
+ — + + M 7\ i
sz‘z,da = n*‘@mil,da’ ‘%mil,dﬂ = ®1J($+) )

RZz'l,a’a =T *‘@;—il,da’ F;:il,da = P;Zz'l,da & R;;z'l,da'
For integers j, =1, ..., max{d,, d,; | t=1, ..., r}, we have the subbundles
(3.3.2) o, = P00 ("))
+a .n . N (ll‘
(3.3.3) Rzaiz],da =T (‘%Zil,da (_jdpﬁz l))

of vector bundles Pzﬂ’ d R;ﬂ’ 4, respectively. They are vector bundles on Qg PV
CM), d,) x P(CN). We also put

+0 . pt +0 ._ R+ +0 . pt
sz’l,da T Pmil,da’ Rtail,da T Rtai[,d,,’ Ftail,da T Ftail,da'

Note that PZ;Z”da =0 ifj, > d,, and that (Z])" does not contribute to R;Z-’i"{ja if

Ja > lid,. Hence the quotients of the decreasing filtrations given by (3.3.2) and (3.3.3) are
0— PEZ? ' P;:iidda - P/;u‘/ ® O(juy.,") = 0,
0— R;fz]; - R;:iidda — R ® O(v;") — 0,

where we put for each 0 <j, <max{d,, lid, |i=1,...,7}

P’"’- o (ev, X idP(CN))*((OP(V@CN)(l) ®VIXKQ), ifj,<d,
il =1 (), ifj, > d,

and
Ja R r Ja
Rt ' = @im1 Ry s

Rjﬂ L (€Ua X idp(cN))*(Op(V®CN)(ZZ‘) g EB]«I\LIOP(CN)), lf]a < Zida
0, i, > bd, "

i tail =
Alternatively, when they are not set to zero,
la — + . l(l J— + .
Py =7(Z wuit.d, ® O ). Rigit = T+ (‘%mil,da ® Opi).
Taking the direct sums
F

N +ya o .__ pla a
tail,dy * sz‘z,dﬂ ® Rtai/,d,,’ Fuit = Py ® R

tail * tail tail
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gives a filtration of the vector bundle F;}; , on Qf ,(P(V ® C), d,) x P(CY), with quo-

tients F*, ® O(j,¥""). The pull-back v*F} can be written as the extension

res

(3.3.4) 0 — priFly, — VT, — PrF, —= 0 .
3.3.3. Description of the vector bundle F;é".“ on U, 4 — Let Fb s denote the vec-

tor bundles on Uk A defined as in (2.5.5), but using the twisting line bundles M * induced
Jrom € ; » (and hence from Mg, x) via pull-back by

bat € ping = Corar
The homomorphism & factors when pulled-back to Dy as

generic. isom

I QA ey S O
A+ d A AYA

*
band, —— PricioiF, =viF, .

N

Here the first map res is given by the restriction of sections to the non-contracted parts of
the universal curve. The middle arrow is the pull-back by Pry of the map ® on U] A,
and is therefore an isomorphism generically on Dy. The third map is induced from
the canonical injections on the universal curve .Z” e gi d{)(Za dp.) = l;’:\g_’ » and

(L )= (L )N, i, D) =B(ZL )"

Consider the codomain Pri¢*b*F, of ®|p, and the square diagram of universal

curves

Q:_ U4 > th_,k,d’

g k+{a}, 4

| |

U/;L{}d/ . Up

In the bundle 6;F, on U, , we have the increasing filtrations
70
—0 -1 —da __ p¥Pp—
PUCP o CP Y =0,
-0 -1 —maxi{d.i} __ s —
Rdé CRdé C---CRd6 =bR,
induced via the subbundles

P = (P Gipd)) N 6Py, ji=0,1,....d,
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R ;(,j“ =T, (%‘% Gp)) NER,,  ju=0,1,...,max;{ld,}.

Here we use the natural injections c@%(jﬂpa) — c@%(da ) = /;Zc@d_, for j, < d, and
‘%i:zé Gupa) = %;dé(lidapa) = 77:%; v for j, < ld,. The quotients are

0— P;(/)Jafl N P;é»ja N P—Ja ® O(_jawa) —0,

0— R, - R," - R @ O(~j,) — 0,
0

4
where we put for each 0 <, < max{d,, [d, | i=1,....7}
(3.3.5) poi o [T (T @0y, Mji<ds
09 1f]a > da
and
(3.3.6) R_J.a = @:le;Ja,
g | T @LEDI®O,), i), <ld,
. . O, ifja - Zida .

Setting

Fd_éz]a p— Pd_(/]xja @ Rd_(/)sja

gives an increasing filtration of the vector bundle 5;F, on U, , with quotients Fie ®
O(—j.¥,) and Fe ;= P~ @ R,

3.3.4. Description of ;, : P;, — Gr. — For each j, > 1 recall the P'-bundle over D,
P, = P(prO(i,y") & PrO(—jh)),
with projection mp : Pj, —> D,. Consider the tautological sequence

0—> Op, (=) —> mp(priO(i. ™) @ PrrO(—j,))
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Now define the extension & as the vector bundle uniquely fitting in the commuting

diagram with exact columns

Op, (—1) @ mp P —— 73 ((prr Oy ") @ PriO(—ju,)) @ P)

+Ja

ja C * k k sk _Ja
& 7p(pr, Py, © Pric Pdé )

|

% ey ! * xP—dJa—1 * *ptiatl * xP—da—1
mp(pr, P @Pracang) ) —— 7p(pr Py, @Pracané )

tail,d,

0 0

where the horizontal arrows are injective as maps of vector bundles and
o o * ja ~ * k=
Pl = pr, Plz‘az'l - Praca P

Similarly, we define & as an extension, via

0 0

Op, (—1) @ m3RI = 13((priOG ") ® PriO(—j,¥,)) ® RY)

jﬂ C * * +Jﬂ * % *Ja
E T[P (pra Rtail,da @ Pra Ca Rd(’) )

|

* s« Toatl * k) a1 * x« Toatl * 4 —da—l
mp(priR @ PricR " ) — mp(pryR,i, ©PrigR " )

tail,d,

0 0
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where

R := pr'R" = Pric R

a~ “lau

Since
Ja - Ja )\
§ =8 D&

is canonically a subbundle of 7jv*(F} @ ¢*F,) whose rank is equal to the rank of F}, it
gives rise to a morphism

aj, : P, — Gr(F[';, ® c*F[;)

which is birational onto its image and such that & = ¢ (respecting the decompositions
into P and R components). We will show in Section 3. 3 6 that the image is a component
of the limit fiber I'o, which we denote by I', ;, and which has multiplicity j, in the fiber.

3.3.5. Description of o, : P;, — Gr and the vector bundle ¥ on D,. — For general
A the above analysis extends immediately, as the various rational tails may be treated
independently. Specifically, this means that we now consider a collection j, := {j, | a € A}
of positive integers and define

P;;l}[]itlj_l = BageAjT*(:@mlld ( (]a + l)l)l‘azl))
R;i}]}\djl = Heam. (‘%mzzd ( G+ l)pilaﬂ))

on [1,.,(Qf,(P(V — CN), d,) x P(CY)) and
Pd{;;;\ L m(%g (Z(J — l)pa)> Nb5P;,
a€A
R%ﬁ N <;%% (Z(j — l)pa>> NGRS
a€A

on U Further, we put

A
+ya+l ,_ ptoatl +ga+1 —Ja—1 . p—va—l —ga—1
Flail,da T Plai/,rla @ R, F T p @ R .

tail,d, ° d(/)

Setting

P, = HPJa|DA’

acA
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where the product is fiber product over Dy, we have the projection 7p : P;, — D, and
extensions

(3.3.7) 0— 73 (priPus” @ PriciP, ™) = &' — Bica(Op, (—1) @ m3P")
— 0,

(3.3.8) 0— mp(priRyry ®@PriaR, ™) > & — Buea(Op, (1) ® 73R")
— 0,

(3.3.9) 0— mp(praFuly @ PriciE, ) = & — s (Op, (- 1) @ m3F")
— 0,

with

(3.3.10) Eh =gl @E), Fo=P @R

As before, this gives a morphism «;, : P;, — Gr such that §* = o ¢. We will show in
Section 3.3.6 that the image of «;, , denoted I'y j,, is a component of the limit fiber, with

multiplicity m;, 1= [],c\Jje-

3.3.6. Proof of Theorem 3.1. — The description of the components I'y j, of 'y
supported over D, with their multiplicities, as well as the fact that they exhaust the special
fiber, all follow from writing explicitly the map ® in local coordinates in an analytic (or
étale) neighborhood of a general point p of the boundary stratum D4. An explicit proof
is as follows.

Choose an étale open neighborhood U of U such that p is a closed point in the

scheme U. Let @p be the completion of Oy, and let C be the fiber curve of 7w over p. The
curve C has exactly |A|-many nodal points ¢. Let Cy,;; , be the rational tail component of
C which meets ¢ and let C,,;, be the remained component of C so that C =U,Cy;;,, U

Cuiin- We may express the completion O, at the node as

O, = O,lx, 2,11/ (i, — 1)

with local defining equations x, € @q, t, € @p of the divisors D,, D, respectively.

Consider a commuting diagram of natural O,-module homomorphisms

(P & D, %)) @ O) € O PL o B, %), ® 0,

P,®id l = \L DV

(TP (duD0) & B, Z) (14 D))y ® O) —— @,(Z (4D & B, %, (1d:Dw)), ® O,
b2
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where 77 := 2/ @V®Q, %, :=®L,(Z])" as in (2.5.1), the horizontal maps ¢; are
the restriction maps, and W, are the natural maps.
Since the horizontal restriction maps ¢; are injections, we will use &,W¥, to express

®; explicitly. For this, let us choose a (’) -basis {¢ J}J(Nl DdmV- Py, ® @q and a @q-
basis {eZ]}Z 1= of @; %’J’ ® (’)q. With respect to this basis, we have also a basis {¢] ;i ®
_”l}(\I Ddimy f@; ®O,1(df)a)2 :@; D, )®@ and a basis { ®x; by 1j=1 of
D; %+ ®0 ,(ld, D, = g; X ,(id, D) ® (’) With respect to these bases the right vertical

map \IJ is the component-wise multiplication byx“ xéldl . x;d
Let k(p) be the residue field of O, and let e 5 E;’J be the restrictions in

) @i%:rd,)q ® @q ® k(p) of ¢ s ezj respectively. Choose also a k(p)-basis B,
of H*(C,,.n, (g@j é® @iﬁiﬁ,)lcm(— Zq ¢)) by taking the union of some bases of
HO(C,poins 32{;7|Cmm(— Zq 7)), HO(Cmm,%lfdJCW(— Zq q)), Vi. Consider the following

subset

= =g | (N=1)dimV P Ldy=g 17N
(3.3.11) {@qsq}felgmnizzuU{e(),j’ng()t]""",yq oJ}] ! UU{ei,j’_y([ei,j’”"y([ ZJ}izlle

q q

of ® (75 ® @iz@:rd,)q ® (5,1 Q@ k(p). Here 5, denotes the stalk of s at ¢ € C,,;,. Note that
(3.3.11) is a k(p)-basis of the subspace H(C, (9{? @ %fd,) |c). Extend this k(p)-basis

(3.3.11) to a basis of (7.(Z; & B, %)), ® (’) as a (’) -module,

~ (1\ 1)dimV lid, N
<3°3'12> {@,]Sq}ye[,’mmUU{ng,yqng, M .)) g UU l/’.yq ZJ’ ""yq ql/}':

=1 =1
q

where 5 € m,(Z; @ P, %Z7,) @ (’A)p is an extension of s.

Let [, =1 and let {(s) = [, for s € B,,, if s comes from lecm( Z 9,

I(s) = ; if s comes from %', lc,,,(—=_,¢). Choose also a basis of (7.(Z; (d, D, @
@i%:d,(lidaﬁa))),, ® (’5,, which is expressed via ¢ as
(3.3.13) {®5,}seB,

vy, { (eod ® x_d) xg"_l (ng ® xq_d“) 6 ® x_d “)

DU, (24, © 554), 81 (& @ ), ., o @ |

q

}(N )dimV

=1y =1"

The map A®; sends

®,5,—~ ®,A5, and ykeq — M"xld k(eld ®x;l"d“),

7t

1=0,1,...,1 k=0,1,...,0Ld; V)



QUASIMAP WALL-CROSSINGS AND MIRROR SYMMETRY 231

so that with respect to the @p-bases (3.3.12) and (3.3.13), A ®; is a diagonal matrix with
entries A’s, kt;‘, k=0,1,...,max,—,__{ld,}.

Now according to the fate of Mf;, k=0,1,...,as A — o0 and {, — 0 Vg, the
cycle class [I'»] can be easily identified yielding the decomposition (3.3.1) for each A.
Namely, for the node ¢ corresponding to a, if M{; goes to a nonzero number w, € C for
some j,, then the limit of graph(A®) in the region is the point Point(j,, w,).ea in Gr|,
corresponding to the direct sum of the following three subspaces (1), (i1), (ii1)

: +yat+1 +lgd Lid, =4 .
<1> Flazld(, |prA(ﬁ) = Dea @lj {)}7 t]’ ---qu g21> CFd/|]J’

i Peocr = H(Coains Py | (— D0 da)) B
zle (Cmama z,d’ |Cmm Za l; dag))@
Diea D (X,Z[id” (EZJ & xq_l‘d“), ey ng“_(j“_l)(EfJ- & X,[_lid"))
C C*F,; |p§
(1) Doea @iliﬁ’iﬁgg' @w"xf;drjﬂ (EZ/' ® xq_Mﬂ) C pry ;j:z lp ® PriciF d)

—JA |/7
It is clear that there is a natural correspondence between the irreducible compo-
nents of I', and Point(j,, 1),ea Yja. Denote by I' ;, the component corresponding to
Point(j,, 1) 4ea. The intersection multiplicity of I'og N {A = 00} at I, is m;, 1= [ ,c\Ju ac-
cording to the equations £ =0, Ya € A In the open affine coordinate ring of Gr around
Pont(j,, 1) sen-

3.3.7. Remark. — Denoting by e the Euler class, [15, Example 18.1.6] gives

(3.3.14) e(F;) N[Uj] —e(cF,) N[Uf] = Z

(Aya)

A |v i)+ (€(6) N [T ).

For ¢ = 0, when no twisting occurs, U;t, reduces to Qf)t’k(P(V),d), while Ffjt, =
T, (@;zlfﬁ ). After applying ¢,, the left-hand side of (3.3.14) becomes precisely

ai [ QK D] = i [Qg (X, D]

On the other hand, it is not too difficult to show' that the right-hand side can be written
in the form

vir vir

Z A ()@ (]‘[ eV, 14, () ey, N [ Qe a (X dA)]m>

acA

for some polynomial Chow cohomology class w4, (z) € A*(X)g[z]. Combined with the
identification of p,, in Section 3.6 below, this proves for X the weaker equality (1.2.1) in
Conjecture 1.1 in genus zero.

! The argument is a considerably simplified version of the proof of Theorem 3.8 in Section 3.5 below.
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3.4. A refinement of the graph construction. — The equality (3.3.14) may be viewed as a
degeneration formula for the top Chern class of the vector bundle F; on U7. As a main
step in our proof of Theorem 1.6, we establish in this subsection a refined degeneration
formula which relates the Gysin pull-backs O!EZ([CQ;k(X,d) /Uj/]) of the normal cones from
Corollary 2.6.

3.4.1. Deformation of the embedding (2.5.4). — The map @ fits in the following com-
muting diagram

+ ¢ - -
FY —— ¢F, — F,

ot T T o) T -

U U’ U,
= C

with 0% the canonical sections (2.5.3). Recall that the zero locus of 0%, call it Y, is
identified with %k(X, d). Denote by Z = Z, 4 the zero locus of ¢"(67) = P oo ™; in
other words, Z = ¢! (Q;k(X, d)). Observe that there is a closed embedding Y* — Z.

Remark 3.2. — If we restrict ¢ further to Y+ C Z, the resulting map coincides with
the contraction ¢: Y+ — Y~ induced from the natural embedding X C P(V) and the
contraction ¢ : Q: (PWNV),d) - Q; (P(V), d). This follows from the fact that the twisting
line bundle .# is trivial on the rational tails.

It turns out that it is better to consider the deformation of Z induced by the family
I — P'. To this end, consider the universal quotient bundle T on Gr, so that
0—>¢—>n*(F,®dF,)>T—0,

is exact. As before, we also consider the universal quotient bundles Yp on Grp and Tg
on Grg. We will use the same notations for the induced vector bundles on T".
The section n*(o*, ¢*0 ™) of n*(F} @ ¢*I,) induces a section

o eH (T, T)

of T on I', via composition with the projection.
Let

N':=s"'0 crcGrxP',

be the zero locus of .

As before, let T') denote the fiber of '’ over A € P'. For A # 1, 00, under the
isomorphism v, : Uj, x {1} = TI';, the section & corresponds to the section (1 — A)c*o~
of F,. Hence, for A ¢ {1, 00}, we get that I'} is isomorphic to Z.
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The fiber over 1 € A' is the entire U}, so from now on we will consider the families
" and 'Y only over P! \ {1} (but will keep the same notation).
The fiber over 0o € P! decomposes in the Chow group as

[Fgo] = [Fgo,dist] + Z UON [FgoJA]’

(Ayga)
: 0 . 0 0 . 0
with Foo,a’i.rt = Foo,dz'sl xr 'Y and Foo,jA = Foo,j_\ xp 'Y,

Note that on 'y 4y = Uj, the quotient bundle Y is equal to n*F} @ {0} and o =
(07,0), hence '’ . is identified with %k(X, d), embedded as in (2.5.4).

00, dist

3.4.2. Deformation of the obstruction theory. — The normal cone Cro, is a subcone
of Y'|ro. We claim that, possibly after a birational modification of the fiber I', it actually
sits inside a subbundle Y of the “correct” rank.

Recall the twisting line bundle .# on the universal curve szy , of U3 introduced in

. . . . ~ % s
the beginning of Section 2.5 and recall 5; the sections /i, 7; of .# where i : @;k’ v Sk
is the stabilization map; see Section 2.3 for the definition of 7;. Here &, is the universal
curve over M, ;.
On the universal curve Q;k , over U there is a vector bundle monomorphism

P P =L @MOVCH)

Jbig *
induced from the homomorphism

L OV — Pr s WL > @iy (5,0 — 5,0:)-
Similarly there are vector bundle monomorphisms

Py s> Py =L @ MSVRCH);

95— 25, =a (L o) ech).

We replace the stack I' by the closed substack I of the product Gr"* x P!

defined via the MacPherson graph construction, where Gr"" is now the fibered product

over U}, of the various Grassmann bundles:

(3.4.1) Gr' =Gr(n.7; ® ‘1. P;) v, Gr(n. %) © ‘1. %)
Xy Gr(@jn*.,iﬁ VP &L ® V) xys Gr(m. 2, & ¢'n.2;)
Xy Gr(n. P}, ® . P, ,,) Xt Gr(n. 2, ® .25 ).

The projection onto the first two factors induces a birational morphism p9 : I'" — T7,
which is an isomorphism outside oo € P!,
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Denote by Te;j,g/@\z, ngm.g, Yo, T Dyigr - the universal quotient bundles on I'"* C
Gr" x P! obtained via pull-back from the third, the fifth, the second, the sixth, . .. factor
of Gr™™ respectively. Similarly, denote by {g #/gv, . . ., the universal subbundles on I""*.
Recall that T4 and Y4 come with the sections op and og, the components of the section
o of

T="Tr® Ty
(see Section 3.4.1). We set
Fnew,O — 571 (0)

As in the case when we had only the fibered product of the first two relative Grass-

mannians, for each j, there is a natural morphism
oszw : P, —> Gr"” x {oo},

which has generic degree |A|! to the image and such that the relation (3.3.1) still holds
for the new special fiber (in other words, the birational modification pyy : I'" — T" does
not introduce additional components over oo € P!). These morphisms are obtained by
constructing extensions analogous to (3.3.7) and (3.3.8) for the remaining four factors in
(3.4.1). We have &, = p1» o &{"”. Our proof of Theorem 1.6 will eventually reduce to
intersection-theoretic computations performed after transfering everything to the P;,’s.
Hence it is harmless to drop from now on the superscript “new” from the notations for
Gr, ', I etc.

We are now ready to construct the required vector bundle Y. Define two homo-
morphisms

. + + L. . . . . Y4 . L.
Ao b : ‘@d’,big - ‘gd’,bz’g’ () = @ D)), V(/’l(% “jg) Yji o s

where @;u is the universal sections of @7, 2 ® V as in (2.5.2).
On I', there is a natural diagram

(3.4.2) T@jf/’@V - T.@bzg
\L \L Tl d‘/’big
T T,

which is not necessarily commutative. Here 7,d¢;;, is the homomorphism mduced from
d¢y 4, via push-forward. The remaining three arrows are all constructed by the same
procedure. For example, the top horizontal homomorphism is obtained as follows. The
composition of natural maps

+ - + -
a0V —> (.75 & n. 7)) > nt(n. P " i D c*n*f@d,,big) — Yo,

big

vanishes on I' \ I'y, and hence vanishes on the closure I.
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Let 77 denote the composition of natural maps I' = Gr x (P'\ {1}) — U;“,.

Lemma 3.3. — The following hold.

(1) The zero locus of the P-component oy of & 1is contained in the zero locus of N*op (see
(2.5. 3)]?)7 the definition of oy ).
2) (o) 71(0) = Q,(P(V),d) = (¢*op )~ (0)

(3) The diagram (3.4.2) becomes commutative when it is restricted to o' (0).

Progf: — (1) Consider the homomorphism of locally free sheaves
(T)*P; @ T]*C*P[;) BE' Opl\{l} —> n*C*P; BH (Opl (1))|P1\{1}
(vf,v7) > A @(vY) — A7,

where Ag, A denote homogeneous coordinates of P'. Since ¢ |1 is contained in the kernel
of the above homomorphism, there is a map Yp — 1*¢*P, H (Opi (1)) [p1\(1}, under which
the section o'p goes to (Ag — A;)c*op . Therefore the zero locus of op is contained in the
zero locus of N0y .

(2) The first equality is clear. The second equality is the claim

QL (P(V), d) = 7 (Q,(P(V), d)).

The claim is obvious since for a T-family of ¢, -stable quasimaps to P(V ® CY), it is
a T-family of e, -stable quasimaps to P(V) if and only if the family restricted to every
geometric point of the test scheme T is a € -stable quasimaps to P(V).

(3) The diagram (3.4.2) is by definition induced, by the pullback ¥, from the dia-
gram of homomorphisms of locally free sheaves on U,

(3.4.3) @ L OV (DL ®V) — 1P @D,
J/ l T d 4 big®c* T dp— 1
.y ® K, 7.2y, ® 1Dy

The diagram (3.4.3) is commutative on the zero locus Qg L(P(V), d) of the section o
since the difference of the clockwise path and the counterclockwise path in each =-
component

@i(V(Pi(Sjl uj/z) ’ (Sjl Vj, — 5]’2”]1) - (Sjli Vgoi(uj/é) - qul( ) 11))
= @i(—VgOi(s»l u/'Q) “5p U+ Vgoi(sj?u]{ ) "5 vjl)

vanlshes for the universal section (u ); of &2} ® V with the vanishing condition s;, u]2

spu, = 0. Hence it is enough to show that the zero locus of op contained in I’ Xt
(057)71(0). This follows from (1) and (2) above. D
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In particular, the diagram (3.4.2) commutes when restricted to I'’. Since the hor-
izontal maps factor through Y4 and Y g, it follows that on I'” we have the commuting
diagram

Teajf’@\/ lro —— To|ro

| |

aLY

Yolro Y 2[ro,

where fy = m.d@y|v 2o The map of vector bundles

Yy (Y="2®Y%)|ro— Yo, Y () =fr(x) —a;r(»)

1s surjective since it is so at each closed point of I' (this needs to be checked at points on
the special fiber I'o, where it follows by pulling-back to the appropriate P;, and using the
description of the three universal quotient bundles as extensions, as in e.g. (3.5.11) below).
Define the required vector bundle on I' to be

T’ :=kery.
Lemma 3.4. — The normal cone Gro,r s a subcone of 1O,

Proof.: — Let Fro denote the defining ideal sheaf of the closed substack '’ of T.
We will check that the induced homomorphism (Y 2)|/, — Iro/ fﬁo is identically zero.
For this consider the commuting diagram

(Ya,,)" T o

| | |

ﬁ*(n*"@;,big D C*H*Q;’blg)v E— ﬁ*(F;}; ) C*F{;)v E— OI‘,

where 7] denotes the composition I' = Gr x (P'\ {1}) — Uj,. By the above commuting
diagram and the surjection (TQ@)HZO — (Y2)|fo, it is enough to show that the com-
position of the bottom arrows lands in .. On the other hand 7*Im(oy™) C o by
Lemma 3.3 (1). Here we view the dual o * of o3 as the cosection oy ¥ : (P})Y — OU; .

Hence by Lemma 3.3 (2) it is enough to check that the composition comp of (7, Q; big)v —
(F{j;)v — OU;% lands in (ImGPiV)Q. This is easy to check as follows. Recalling the definition
of o, o in (2.5.3), note that, for § € (J'I,Fc,@[:;,n»g)v

comp(8) = (8’ Di Dji>p V(pi(sjl u]/g) ) (Sjl ZéQ - szuj/']) - (‘Pz’(sjl u_]/g) - %(Sﬁu}l)))

€ (Imofv)g.



QUASIMAP WALL-CROSSINGS AND MIRROR SYMMETRY 237

Here the last line is due to the Taylor expansion of the last term ¢;(s;, uj’-l) in the first line:

0i(5p14,) = (5, + Vi) - (50, — 54,

modulo the square of the ideal Imop™ generated by s;, W, — S, U
By construction, on the fiber I'J := '’ x I’y we have
0 —
while on the distinguished component Fgo, gg =T O X Too.gi OVEr A = 00,
0
T |F0®o,(lisl = E;}_’
with EJ as defined in (2.4.5).
3.4.3. Refined degeneration formula. — Consider the diagram, whose squares are all

cartesian,

GI‘Z Fg CFO/Flk — A

T T

P'\ {1} ~— Gr,x (P'\{1}) ~— I'" —— Cro;r — P'\ {1}

.

re 10

where Gr; denotes the relative Grassmannian Gr restricted to Z, with projection 1|y :
Gl"z — 7.

Lemma 3.5. — In A (Z)q we have the equality

(3.4.4) (112)+(10):00; , (ICrg/ 1) = (112) (1) (0o, ([Cise]))

00, dist

= Y m(112). o) (O, (IC,1)),

(Agn) o0A

where Gy, 15 the normal cone CFQO ) Do and G, 1s the normal cone CF?,O /T

Progf: — By Theorem 6.2.(a) and Theorem 6.4 in [15] (as extended to DM-stacks
in [29]), we have

(3.4.5) )»!L*O![Cro/r] = (Lx)*)h!o![cro/r] = (lx)*o!)\![cro/r]-
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When A =0,
04 [Croyr] = O!mr(, (ICro/r,1)-
0
By Lemma 3.6 below, when A = 00,

O!A![CFO/[‘] == O!T(]lro ([Cdm]) + Z mjz\ozr()\r(] ([CJ)\])'

00, dist (A,jf\) 00 JA

The first term in (3.4.5) is independent of A. Hence

(LO)*OEY'O\FO ([CFS/FU]) = (LOO)*(O!T0|FO ([Cdz'.yz‘]))

00, dist
+ D mi (s (O, (ICL))
(Ada) A
in A,(Gry)q. Pushing forward to Z we get (3.4.4). 0J

To state Lemma 3.6 used in the above proof, we set up some notation first. Recall
from [23, p. 489] that for a local embedding X — ) of algebraic stacks of finite type
over the base field, one has the normal cone Cx,y to X in ) and also the deformation
of normal cone, denoted M5 ())). This is a stack with a morphism to P' such that the
general fiber is isomorphic to ) and the special fiber at ¢ = 0 € P' is isomorphic to Cx/y.
If X is a closed substack in ), the deformation can be obtained as in [15, Chapter 5], by
constructing

Mx(Y) :=Blyy ) x P!

and setting

M5 () :=Max V) \ Bla (0 x {0}.

Now form the commuting diagram, whose squares are all cartesian

Crgo/roo (%' CFO/I" |A:oo
J

\L Vo

My, (Foo) &= Mpy(D) e ——> M, (1) —— P!

C[‘O/r —— =0

P'\ {1}.

A=00
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Lemma 3.6. — The equalities

00'[Crror] =7:[Crg /r 1 =[Gl + Z m;, [G;, ]

Aga

hold in A (o1 |3200) -

Proof. — The equality 0o'[Cro yr] =J[Cro 11 1s a consequence of the definition
of Gysin maps, their commutativity, and their compatibility with proper push-forward, as
follows:

00'[Cror] = 00wy [Mi (1] = w00 [Mgo (1) ] = v [M7o (D)
=vy[Too x (P — {1 = 0}) ] = v} [M}g (Too) ] =0 [M (Te)]

:]'*[Crgo/ roo]-

Here some explanation is in order. For the third equality in the above chain, note that
Mg, (T") is irreducible and dominant over P! \ {1}. The closure is taken in M (') oo
The fifth equality follows by the very definition of proper push-forward.

The decomposition

].* [Crgo/roo] = [Cdist] + Z UON [CIA]

Aga

is a consequence of the decomposition [I'oo] = [[Neo sis] + ZAJA M [Coo ] in Ay(T'0) g
(Theorem 3.1), via the specialization to the normal cone homomorphism A,(I's)g —
A, (CFQO/FOO)Q_- U

We finish this subsection by recording a basic intersection-theoretic Lemma which
will be used several times in the sequel.

Lemma 3.7. — Let f : V' — Y be a proper morphism between finite type Deligne-Mumford
stacks of the same pure dimension. Let 1 : X < Y be a closed embedding and form the fiber square

X/ y/

.

X — .

Letf: Cyi 1y —> Cx )y be the induced map between normal cones. If f,[ V'] = m[ Y] for a nonneg-
ative rational number m, then f.[Cx' /1 =m[Cx/y].
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Proof.-— When Y, X', and )’ are schemes, this is [29, Lemma 3.15]. For the conve-
nience of the reader, we give a short argument. Consider the deformations to the normal
cone

MxY = Bly,9) x P, MaxY = Bly Y x P

The map ¢ : My)' —> My Y induced by f is proper and ¢.[My V'] = m[MyY]. Let
vy : {0} = P! be the inclusion. Denoting by 1 the trivial rank one vector bundle, we have

(3.4.6) m[P(Cxyy & 1]+ mBlx Y] = my[Mx V] = vy [Ma)']
= (@i=0)-v5[Mar ']

where we have used the commutativity of Gysin maps with proper push-forward for the
last equality. Since

vy [MarY'] = [P(Cayy & D]+ [Blr Y]
and (@],=0)«[Blx'Y'] = m[Bly Y], we conclude from (3.4.6) that
(@l1=0)«[P(Cxjp ® )] =m[P(Cx )y & 1)].

The Lemma follows, since f is the restriction to G,y of ¢|,—. O

3.5. The correcting classes ufd\i (2). — Consider the Segre embedding
(3.5.1) Seg : P(V) x P(CY) — P(V® CY).
Recall the map £ : U —> P(CY) given by the twisting line bundle .#, and its

A
sections 51, ..., $nj; see (3.2.3). Viewing qHA(X, dp) as a substack of U/:rA , via the em-
5 70

bedding (2.5.4) for the bundle F;:,), we have the restriction 7 : ,Q: (X, do) —> P(CY);

see (3.2.1) for notation dy = d'. The two evaluation maps on % (X, dy) at markings
in A are related by

N — +).
evalQ;A_FA(X’dO) = Seg (e] (eva, ha ),

see Section 3.2 for notations ¢v, and ev,.
In this subsection we prove the following weaker version of the main theorem.

Theorem 3.8. — Let z be a_formal variable. There exists a Chow cohomology class MI,Z (2) €
A*(X x P(CN))gl 2, dependent on g and k only through the dependence on N, such that afler push-
Jorward to A, (ij(X, d))q by clz, the equality of Lemma 3.5 becomes

(3.5.2) [0, X D]™ — e [Q (X, d)]
1 * vir
= Z m(bA)*(CA)* (1_[ (Zva, }l:) /'le\i (2) Iz:—llf,, N [QZ/;J,_A(X’ d(?)] )

A acA

vir
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Progf: — We analyze the push-forward to A.(Q, (X, d))q of each term in (3.4.4)
by ¢|z which will be also denoted by ¢ for easy notation. We have also induced maps

*
Cro/r, = ¢ Go; xaovy, = Cosxauys

whose composition will be denoted by ..
The terms on the left-hand side are very easy. First, by the identifications (I C
I'y)=(ZcC U;) and Tolrg = ¢"E; we have

C*(U|Z)*(£0)*(Ogr0|ro ([Cl"g/l“o])) = 0;:; (Cc* [Cl"g/ Fo])

= O!FJ ([CQ;k(x,d)/U;,])

=[x 0] ™,

where we have used standard properties of the Gysin map for the first equality,
Lemma 3.7 for the second equality, and Corollary 2.6 for the third equality.
Second,

010005, (€)= e ([Q X 0],
again by the identifications (I'; C I.sis) = (%k(X, d) C U;r/) and YO|p

00, dist

together with Corollary 2.6.

— kTt
=L,

00, dist

The analysis of the right-hand side of (3.4.4) is significantly more subtle, so we
divide it into several steps for clarity.

Step 1: Transferring the computation to P, . The Segre embedding (3.5.1), together with
the inclusion ¢ : X < P(V), induces the embedding

(3.5.3) is, : X x P(CY) > P(V® CY) x P(CY),
(x.0) P> (Seg(i(x).9).).
We identify X x P(CN) with its image under ig,. Set
Qf, = (v, X idpex)) ' (X x P(CY)),
a closed substack in QF,(P(V ® GY), d,) x P(CN), and

Q:r A +
al,A * T ail,a?

acA

so that we have the cartesian square

QJ;Z‘Z,A — HaeA(Qg,a(P(V ® CY), d,) x P(CN))

l l [1, (A xidp N,

l‘SeK

(X x P(CM))A P(V®CN) x P(CM)A.
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Further, define the closed substack Dx o C D4 by the cartesian square

Pra
(3.5.4) D a QA (X, do)
Pra \L ((eva»h;r))ael\
Qjlira (X x P(CY)",

[1, (Ao xidp eN,)

where by abusing notation Prs, pr, denote Prslpy,, pripy, respectively. Note that
[1,(ev, x idpcv)) is a flat map (in fact, smooth) and therefore so is Pry.
Now fix the pair (A, j4) and define Z;, C P;, by the cartesian square

(3.5.5) 7 P,
YA J/ l LN
Fgo,jA ——— Foo,j/\-

Z;, 1s the zero locus of the section o0 € H'(P,, o T). The restriction to Z;, of the
projection 7p : P;, —> D, factors through Dx .
We assemble everything in the commuting diagram

(n1z)otoo ¢

3.5.6 T z Q. (X, d)
LN T VA T ba
p Pra i A _
ZjA DX‘A - = Qg,k+A(X, dO) Qg,kJrA(Xv dO)
Pra l ((fva»h;))ae\
Qliia (X x P(CM)*
’ [T(év,xid)

with abusing notation again ¢ = ¢|z, ca = ¢alq?, x4 (this notation is justified by Remark

3.2 in Section 3.4.1) and vy = v |py , etc.
Let

(3.5.7) C.:=Cyp,.

By Lemma 3.7 applied to (3.5.5) and the commutativity of the Gysin map with push-
forward,

| 1 . ~
Olrolrn ([CJ\]) - m(aﬂ\)*o&z\(’r“‘r“ ) ([Cj"\])’

)
OOJA JA
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where G, :=Cro - asdefined in Lemma 3.5. From the diagram (3.5.6)
JA OCJA/ SHIN ’

1 ~
| Al,c*mm (1)2@): (0 oy, (IGAD)

A (0 (00, ) (o). (0 o, (IG5D))-

Tooa

IAI‘
Letting Tjg denote Ot;;TO|F0 _, it remains to show that
OOJA
(3.5.8) > iy (Pr). (e). (04 (IC,1))
~ i
has the form
(l_[(eva, h;)*uda(z)u:_%) [Q (X )™,
a€A

as claimed in Theorem 3.8.
Step 2: Description of Y, . We start by describing first

(3.5.9) Y, = Tl

COJA

on P; . Define vector bundles G d,‘]A and G ~ on Dy via exact sequences

+z]‘\ + z/”\
O—>ermM—>vAF —- G, =0,

(3.5.10)

0— PrAcAF Ay vic'F, — Gd,‘/A — 0.
0

By (3.3.9), we have an extension

(3.5.11) 0 — Biea(Op, (1) @ TpF") — Tj, — 7TP(G4/‘]A D Gd(’;M) — 0.

Further, if we let
G;;ﬁa 1= (Baeapr, d, )/ pra ;;zﬁa’
then from (3.3.4) and (3.5.10) it follows that G;‘i‘\ fits into an extension
(3.5.12) 0— Gt — G — Pril} — 0.
Note that we may write alternatively
G;(/)JA =P1“Z€2(@aeA;;'a§da7T*(<@d_6 ® O,—jnp. (da a)))EB
Prici (Dueats (@iy‘,,sl,-d,l%;dé ® Oarmjop (b))
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and

i = {prZ(E“EA”*((@(Z S DZ,) ® O—iyt (=), il < do
b prZ(EaaeAn* (@i;]}lflida%:dd &® O(/};—l)pf,“”(_pilaﬂ)))7 lf]a >d,,

from which it follows that in the K-group of vector bundles on D
G~ (Biea &4 (Pri;O(—mp,) @ ")) @
(FBaca @1, @12, 41 (Pric: O(=myp,) @ RI“™),
and?
Gl ~ Bea (@) (priO(my") ® F"))

where P4~ ;= Pr¥¢p—hn Rﬁfdf’" := PR (see (3.3.5), (3.3.6), (3.3.10) for the
definition of P™% " R." e g respectively).

To summarize, the outer terms of the exact sequences (3.5.11) and (3.5.12) give
four pieces that combine to make Yj, .

We now move to the description of the subbundle TJ?\ C Y|z, (see(3.5.8) for the
notation Tﬁ\) For each 1 <¢ <rand 0 <, introduce the bundles

8 pri(ev, X idpieyy)* (Opvecy) (b)) W Openy (—1)),  if), < ld,,
Hmall 0, if\].a > Zida,

on D,. We use the same notation for the restrictions of R
Dx a of D,. Further, we set

, to the substacks Dy and

1, smal

R/small 691 1 R]z small*

Note that, alternatively, we may write on Dx A

R}, = Pra (T (@:(Z1.0)" © Opi))
= Pri(m. (®:1(Z10)" ® Oy,)),

for j, < lid,. Finally, put

e

small *

=P QR

small *

% The notation F™ is a little ambiguous, since the dependence on the marking a is not apparent anymore. The same
will happen later, e.g., with the bundles F° in (3.5.17) below. Hopefully this will not cause any confusion.
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The surjection Y, —» ”P*Prj\F;zz on P;, (coming from (3.5.11) and (3.5.12)) induces

: : 0 * PRt 0
asurjection Y, — wpPriE, on Z;, . Define the excess bundles Yj, .. and Y, as the corre-
sponding kernels:

* * T+
0— Y, —> Y, —> mpPr ik, — 0,

(3.5.13) ’

0 0 * * T+
0—7, , — T, — mpPriE; — 0.

To complete the description of T]a, we note that the excess bundle in turn fits into
an extension

* +JA —JA
— Tlp (Gtail,da,small D Gdo,small)

(3.5.14) 0= Bea(Op, (D7, @ THE",) = Y

small JAex

— 0,
with

i o1 tail

Gt matt ™ EBHGA(@Zzl (Prfxo(m%m) & lenall))’
— 4 L

Gy ™~ (Buea D, (PriciO(—my,) ® P“))@

lida lidy—m

(Buea B By 11 (Prici O(—myr) @ RIS

in the K-group of Dy. For later use, we note that from the above K-group expressions it
follows that the Euler classes of these bundles have the form

(3.5.15) (Gl nar) = Pra [ [ (@0 X idpie)) /i ()] oy,
aeA

(3.5.16) e(G, ) =Pri [ [(eves i) i (D) ey
acA

where the Chow cohomology classes
S5 (2) € A (X x P(CY)) g2l = (A" (X)g ® A" (P(CY)) ) <]

are polynomials in z with coefficients which are universal expressions in Chern classes of
various tautological bundles Ox (/) on X, and Op(cx)(m) and the tautological quotient
bundle Q on P(CY).

In the formula (3.5.16) we have used that the -classes at markings in A on
Q; ra (X, dp) and % 14 (X, dp) pull-back under ¢y, that is, (¥, = ¥,.

Step 3: Deformation. The idea for computing (3.5.8) is to deform the bundle Tﬂ,
together with its closed subcone 6;\ (see (3.5.7) for the notation ("JVM), to the bundle Y &

JA,€X

+ . .
mpPriE, with the closed cone n;Prf\CQ;HA(X, @) /Uzr+x\,(d0,z/6) (see (3.5.13) for the notation

0
]A,ex)'
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To begin with, consider on D, the vector bundle homomorphisms

lail
Dy Ty

®aEAF07

prz(@aeAF;ﬂ,dﬂ)

Dara 0
®aerF )

* o+
PrAFd{)

where 7%

a

and 7, are given by “restricting sections at the marking a”. The resulting sur-
jective gluing map

@a(”a_rflal/)

DuerF’ —— 0

PrZF;iz &) prj;(@aeAFZz_il,dd)

has kernel vj;F}.
. . . . + —_ .
Via its embedding in g (ViF; @ PriciF,), we may view o (Cgeaghﬁwm) as a sub-
bundle

@ Cpealry,,) C 7y (Prj;F;z ® pri (DueaFry . ) ® PriciFy).

The quotient is an “unglued” version of Yj,. Precisely, it splits as n;,"PrZ(FZ,)) Y, .o
and there are exact sequences

@ar{tlzlil
0 Tj«,ex Frj/\,ex,(c) nlt(@dFO) O
and
_dail
(3.5.17) 0 T, P OT. o (@) 0
«Je JA Tplry d(’) JA,ex,0 Tp(Da

on P;, 2 D,. Composing the section & : Op, —> T, with the monomorphism in
(3.5.17) gives the section
*Pk o+ — . *P,k T+
(7TPPI‘AO' iz a(,x) : (’)ij — nPPrAFd6 O,

Arex,0°

The base of our deformation will be A" with coordinate ¢. Denote ¢ : P, x A! —
P, the projection. Define on P;, x A! the vector bundle ker via the exact sequence

Ba(tr =)
0 ker Q*(H;PrKF;[E@T]. ) Q*nl’;(@aFo) ——= 0

JA
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deforming (3.5.17). The section
o= (Q*n;Prjgng, (0"T )

of Q”‘(n;Pr:"\th’,J @7, ..o factors through ker, so we will view it from now on as a section
of ker. We have the identifications

(ker|i=1, 0 |=1) = (Y}, 0)
and
(ker |,—o, O |,=0) = (n;Prf\FZ/J <720 FNP (H;Priagg, ))
Let
7Z:=57'0) cP;, x Al
be the zero locus and observe that we have in fact
Z CPlng, x A,
where P;, [p, is the fibered product

p Pra +
PjA|DX,A - DX,A - ngkJrA(Xv d())

I

P, Da U’

A /.
J » Pra kA )

The fibers of the A'-family Zatt=1andat (=0 arc
Zlie =2 Zlco=Plog,.

Notice that the normal cones satisfy

3.5.18)  [Cyep, xanli=ol = [Cew, oy /e, ] = ToPrAICy, cxanyey,, 1
and
(3.5.19) [CZ/(pj[\xAl)h:l] = [6;\]’

as desired.
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The “correct” obstruction bundle TJO\ also deforms. Namely, if we repeat the con-
struction in this step, but with the bundles 2% @ %%, F§, replaced by 2%, Q3 := n,2;
respectively, we obtain an unglued version of Yo, := o Tolr,, given as the extension

B (r—ri")
+ 0
0 TQ\/A ”;PrT\Qd(’l @ Ta@{]l\,ex,ﬁ ﬂ;(@aFQ) 0,

and a vector bundle kerg on P;, x A" defined via the deformation

Daltrg—74")
0 kero O MEPAQy O g, 5) —> O'TE@Fp) —— 0.

0
small

Fip = pri(m(2y, ® Op)) = Pri(m.(2; ® 0,))-

Here FY, “at the marking @” is the cokernel of 0 — F? , — F'; alternatively,

After restricting to Z, there is a surjection
+ +
0" (TP BT, .5) — 0" (TPQ Yy 5) — 0.
(just as in Section 3.4.2), making the diagram

Daltrg— 7,'llazl)

0" (mpPriF, & Y, o) 0" mp(®.F")

Daltrg— 7’5}(12[)

O (mpPriQy ® Yo, ,5) — = O Tp(DFY)

0 0
commutative. We conclude that there is an induced map of vector bundles
ker — kerg,

which is easily seen to be surjective at all closed points, and hence surjective. Now define
the correct obstruction bundle Y on Z as the kernel:

0—>?—>ker—>kerg—>0.
At t =1 we have

(3.5.20) Yoy =10

JA?



QUASIMAP WALL-CROSSINGS AND MIRROR SYMMETRY 249

while at t =0

(3.5.21) Tlo=mgPriEl &© Y0 ..

Here Tjg’m on P; |p, , 1s given by the same extension as in (3.5.14):

(3.5.22) 0 —> Hea (OP,-a (H® H;P‘i(:nall) - Tji,ex — 7Tp (G:(:Z}Z/};/,,,small ® G/;oﬁmu) — 0.

By a calculation similar to the one used to prove Lemma 3.4, one checks that the
normal cone CZ/(I)j\XAl) is a subcone of T.

Lett:Z < P |p,, X Al denote the inclusion and consider the diagram

L

t P [nx 7|, CZ/(PijAl)lt — 1
1 1 7 ~ 1
A Py, xA —— 7 Crmyay — A

N
=

The proof of Lemma 3.5 shows the equality

(Ll)*o%ltzl ([CZ/(P_,-AxAl)h:l]) = O%hﬂ)([ci/@m xAl) |z:0])

in the Chow group of P, |p, ,. By (3.5.18), (3.5.19), (3.5.20), (3.5.21), the Excess Intersec-
tion Formula ([15, Theorem 6.3]), the compatibility of Gysin maps with flat pull-back,
and Corollary 2.6, this can be rewritten as

JA,€X

3.5.23) (.04 (1G]) = e (X)) NagPri[ QL (X, )] ™,

where e denotes the Euler class and g, Pr}| are the flat pull-backs.
Step 4: Final calculation. Recall the diagram from (3.5.6)

le\ |DX,A
/
p
p Pra +
Zj,\ Dxa %,HA(Xa dy)
Pra l ((ashi)) aer

Q;Zil,A X x P(CM)A

(. xid)
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and that we want to compute (3.5.8). From (3.5.23) this is the same as computing

3.5.24) Y my (Pra).Ce)(e(T),.) NPy [QF A (X, )] ™).

]\

By (3.5.29),
(T(i ev) ( HEA(OP (1) ® T[ mzal/)) (T[P (GZ;;IJ;’ sma/l))
X e((”P) (G loan))-

Seta :=e(G/ 7 e(G,™

tail,dy, sma
CCSSIVCIY rewritten as

)N PrZ[%HA(X, dy)]'". Then (3.5.24) can be suc-

d, Amal

>y, (Pra).{ (7e). (e(Buca (Op, (1) ® m3F%,,)) N )}

JA

rk (F]:mall )

_ZmM<PrA>*1'[<nP> ( > a(Op,)"

acA m=0

m7'[1’( Cox (7

smai

() )

Ji
rk (F am//)

SO DTN ) (D DRSISTIAZY
JA

aeA m=0

D PI‘ZO(_\].awa))Crk (Fiia//)_'" (F];mall) N O()

where s, denote the Segre classes.
The Chow cohomology class

rk (F

mra//)

> s (priOGw) @ PO ey (o)

m=0

is a polynomial in Pr} v, of the form
D pra (60, x id)*8,(2) | ey eyl
b

where the §,’s are themselves polynomials with coefficients given by universal expres-
sions in Chern classes of various tautological bundles Ox (/) on X, and OP(CN)(WZ)

and Q on P(CY). Further, by (3.5.15), (3.5.16), the Euler classes e(G, ) and

tail, d ,small
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e(G,’ mmzz) appearing in & are given respectively by the universal expressions [ [, prj (ev, x

id)*f; " (wlty and T, Pri(eva, i)y (= ).
Setting

Vo= (v, x id)* (8,/,7) (wi") € A*( hia)o

and recalling that m;, = [],_, ., we conclude that (3.5.24) has the form

max;{/;d;}

(3.5.25) ]"[( > Ja(PrAs{ZprA(yb)PrA(w (eva 1) S, ”’“(—m))}

acA Ja=1

< (o]

Here (Pra)s : A*(Dxa)g —> A*(%MA(X, dy))q denotes the Gysin map induced by
the bivariant class [Prs] corresponding to the canonical orientation of the flat proper
morphism Pry, see equation (Gy) in [15,§17.4]. Applying [15, Example 17.4.1(b)] to the
cartesian square (3.5.4) and using the projection formula for bivariant classes, equation
(3.5.25) proves Theorem 3.8, with

max;{/;d;}
(3.5.26) un = ) ey (= (D, x id). () € AT(X x B(CY)) [2].
J-azl b |:|

We stress again that our argument shows that the formula (3.5.26) for the correct-
ing class w1 is universal in the followmg sense: it depends on g and % only through the
dependence on N of the polynomials f, e (2.1, e (2),6,(2) € A*(X x P(CN))Q[z] This
will be used in the next subsection.

3.6. Identification of the correcting class. — In this subsection we finish the proof of
Theorem 1.6 (for (g, k) # (1, 0)) by showing that the class (3.5.26) satisfies

(3.6.1) 11y (2) = coefficient of ¢* in z(J%, (2) —J5(2)) ® lpey).

Indeed, assuming (3.6.1), it follows first that the coefficient of ¢% in 25 () = J5k(2) 1s
a polynomial in z (because the left-hand side is such) and then by the general asymptotic
properties of the small J*-functions it coincides with the coefficient of ¢ in [z1,,(g, z) —
z]+. Second, (3.6.1) also shows that the class (ev,, 2)* ,UV;Z (2) 1s independent of N, so that
we may replace it by ev’u,, (2) in the formula (3.5.2). Hence Theorem 3.8 together with
(3.6.1) imply Theorem 1.6.

To prove (3.6.1), we take d = d, (so that dy = 0) and consider the graph spaces
QGoi,o, 4, (X). These are the moduli stacks of e1.-stable quasimaps of degree d, to X, whose
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domains are genus zero unpointed curves with a component which is a parametrized P',
see [7, 12]. Similarly, we have the moduli stacks QG , P(V)) and QGj,, P(V ®
CY)), which are smooth. The &_-stability condition implies that the domain curve must
be an irreducible parametrized P', while & -stability allows in addition quasimaps with
domain consisting of one rational tail and the parametrized P'. These quasimaps have
degree d, on the rational tail and are constant maps on the parametrized P'. In particular,
there are identifications

QGy ., (P(V)) ZP(Sym*“(C*) @ V),

QGy, . (P(V® CY)) ZP(Sym“(C*) @ V® CY).
Recall that we have the embeddings

X x P(CY) = P(V) x P(CY) — P(V® CY) x P(C"),

whose composition is the map g, from (3.5.3). The induced embeddings of graph spaces
commute with the contraction maps:

(3.6.2) QG 4, (X) x P(CY) —— QG (P(V® CY)) x P(CY)

exid l \L exid

QG 4, (X) x P(CY) = QG , P(V® CY)) x P(CY).

The right contraction map ¢ x id is an isomorphism outside the boundary divisor
D, = (Q,(P(V®CY), &) x P(CT))
xpvec @) (QG, 0 (P(V ® CY)) x P(CY))
=(Q)y(P(VRC),d) x P(CY))
Xpvachxpey) (P(V®CY) x P! x P(CY)),

where Q_GOJ“’{Q}’O(P(V ® CY) =ZP(V® CY) x P! is the moduli stack of &, -stable
quasimaps of degree 0 to P(V ® CN), whose domains are genus zero one-pointed curves
with a component which is a parametrized P', see [7, 12]. Let £ denote the uni-
versal line bundles of degree d, on the fibers of the universal curves over the various
QG* x P(CN). Let .# denote the pull-back of Opcvy(1) to QG* x P(CY), with the
basis {t, ..., ix} of global sections, and set .Z| = %, ® .# . With these notations (which
are justified, since the line bundles are compatible with the above embeddings), the con-
struction of Section 2.4 produces the obstruction theory (2.4.6) of QGSE,O) . (X) x P(CY)

relative to the smooth, pure dimensional stack %ung x P(CY). Here ’Bunl&l — m
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is the relative Picard stack over the Fulton-MacPherson stack P'[0] of unpointed ra-
tional curves with one parametrized component. The corresponding virtual class is
[Q{Goi’o, 4 (X)I'" x [P(CN)]. Note that for all universal curves, the map 4 to P(CN) is
just the projection.

Further, if we put

U*:=QGy,, (P(V® CY)) x P(CY),

then the construction of Section 2.5 also applies to produce the vector bundles F* on
U#, with sections o such that (6%)~!'(0) = QGOJ“’O’ 4, (X) X P(CY). This embedding of
QGy . (X) x P(CY) in U* is precisely the one in (3.6.2). The diagram (2.5.6) holds as
well, hence we have the concrete description

[QGT,., (X)]Vir x [P(CY)] =0 (Cocz, , coxpEy)us)

as in Corollary 2.6.
From the degeneration analysis in Section 3.2 — Section 3.3, it follows that Theo-
rem 3.8 holds in the situation considered in this section, giving the equality

(3.6.3) [QG;, . O] x [P(CY)] = (¢ x id).([QGT,., X]™ x [P(CY)])
= (b, % i) (v 1) 13 (=) N ([QGE 1.0 X0] ™ x [P(CY)]),

with ,udNa the universal class in (3.5.26). Notice that the one-pointed, degree zero graph space
is identified with X x P!, with virtual class the usual fundamental class (for any stability
parameter ¢), while the maps

w, X xP' xP(CY) — X, £ :XxP'xP(CY) — P(CY)

are respectively the first and third projections. The class ¥, 1s the pull-back of ¢| (wp1) via
the second projection.

Now recall that graph spaces carry a G*-action (induced by the standard action on
the parametrized domain component) for which the maps ¢ and b, are equivariant. It is
customary to denote by z the equivariant parameter for this action. In each graph space
there is a distinguished part of the G*-fixed locus corresponding to quasimaps for which
the entire nontrivial data is concentrated over the point O in the parametrized domain
component. The restrictions of the maps ¢ and b, to the fixed point locus respect the de-
composition into distinguished and non-distinguished parts. It follows that if we apply the
virtual localization formula of [19] to (3.6.3) (using the trivial action on the P(CY) factors)
and discard from both sides the localization residues at all non-distinguished fixed-point
loci, we still have an equality between the remaining distinguished residues.
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In our particular case, the distinguished fixed locus in QGg, , (X) x P(CY) is iden-
tified with X x P(CY), the distinguished fixed locus in QGBLVOQ 4, (X) x P(CY) is identified
with %I(X, d,) x P(CY), and the distinguished fixed locus in QG:{{Q}’O(X) x P(CY) =
X x P! x P(CN) is X x {0} x P(CN). Moreover, the restriction of ¢ x id to the distinguished
fixed locus is ev; x id, while b, x id, (ev,, &) are the identity map on the distinguished
fixed locus. The equality of distinguished residues of (3.6.3) becomes

uh (2)

(3.6.4) coefficient of ¢ in (J%, (2) —J% (2)) ® Lpex) =

in A*(X x P(C))q[z, 2 '], proving (3.6.1). Indeed, the left-hand side is as stated by the
very definition of the small J-functions in (5.1.1) of [7], while for the right-hand side we
used that, in the right-hand side of (3.6.3), ¥,|xx0xpcN) = —2, and that the equivariant

normal bundle of {0} C P! has first Chern class z, i.e., the denominator z in the right-
hand side of (3.6.4) so that é is the distinguished residue of [QGUJf{a}’O(X)]Vir x [P(CM)].

3.7. The unpointed genus 1 case. — Since M, o is empty, we do not have the twisting
line bundles .# satisfying Lemma 2.1 and which are all compatible. However, it turns
out that an appropriate modification of the set-up in Section 2 allows for an application
of the arguments in Section 3 to establish Theorem 1.6 in this case as well.

3.7.1. Set-up. — By an unpointed semistable genus 1 curve we mean an unpointed
prestable genus 1 curve with no rational tails. Let 9}, denote the moduli stack of
semistable genus 1 curves.

Fix positive integers d and e. Let My denote the moduli stack of degree ¢ unpointed
genus 1 stable maps to P(CN) with semistable domain curves. Since all line bundles of degree
¢ on semistable genus | curves are non-special, My 1s a smooth (non-proper) Deligne-
Mumford stack. Denote by €}’ ; —> My the universal curve and by

h: €}, — P(CY)

the universal map.

Let d =d + ¢ and let Qf:‘(‘)"”b(P(V ® CN), d') be the open substack of Q; (PV®
CM), d") consisting of &-stable quasimaps (C, L/, «') with vanishing H'(C, L). Define
UZ}N as the fiber product

BV © €Y). ) xor, My.

&,unob

Here the morphism Q) ("™ (P(V & CcY),d) — 9Ny is the composite of the contraction
map Qj"”ﬁ””b(P(V R CY), d) — Qﬁ) (P(V ® CY), d") and the forgetful map Q?’JB(P(V ®
cN,d) — M.

Since My is smooth over I}, and Qj:?)"”b(P(V ® CN), d') is smooth over ‘Bunéo,
the stack UZ’,N is smooth over Bung”.
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. &, N . e . . .

The universal curve €7, over U," has a semistabilization morphism ss, :

<l — €7, (the contraction of rational tails of universal curves), fitting into the com-
muting diagram

5§ P(CN)
h

&
!
10 T 1.0

UsN —— M.
proj
We set he = hosse 1 &1 o — P(CY) and A, = 1 Opcyy(1). Further, the sections # of
Opcy)(1) associated to the homogeneous coordinates of P(CY) give the sections 5=
It € HO(Q’M,, M), =1,...,N.

3.7.2. Obstruction theory for Qf (X, d) Xamy, My relative to ‘Buné’o. — Denote by £/

the universal line bundle on the universal curve €%, , of U™ and put &, := £/ @ 4.
Consider the diagram of vector bundles and Ogi ,,“linear maps, corresponding to

2.5.1),

(B)sj,1d) i
0 —= ZOVerTpeyy — &L L VeI Ty Z, 0
J/ (@, (@idg).0)
@i
0 O L > @ (L) 2 0.

Let Q% := Qj ((X, d). As before, there is a vector bundle
[.
Py— 7\ “
P OR, =m.7 @ n.(0:,(L]))
on UZiN, with a section 0° whose zero locus is naturally isomorphic to the product stack

3
Q.X Xg);niﬁo MN.

On the universal curve €5 over Q% Xomy My (associated to the universal curve of
Q%), we may complete the diagram above to a homomorphism of short exact sequences.
In particular, we obtain a natural homomorphism

Z. ®V @ Tpcr) — ), L
and an exact sequence
0> & — P, ® (@w-(.,fg’)li) — 25— 0,

defining a vector bundle & on €%, with & also locally-free.
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Denote by G,: the normal cone to Q% Xony, My 1n UZ}N. As before, Cge is a
closed subcone of the vector bundle 7,.&7, with the embedding induced by a surjection

.8 — I | I? where Z is the ideal sheaf of the closed substack Q% Xy M.
Consider the following commuting diagram

e &,N
QX XSJ?j{O My C Ud’ My

closed

smooth
TRV OCN), ) —— My,

smooth

1,0
Bung

and define a perfect obstruction theory E for Q% Xy My relative to Bung by
[R'JT* (% @V @ Tecex) — @;:10%1")]\/
Rl(r.6)" — (@7 L @ VS mhiTeey) ] = E
\ V=
[f/fQ - QU;,N/%M;;O|Q§<Xm-;§01v1w]~
The associated virtual class is, by definition,

[ Xy, Mx]™ =07 [Cor].

3.7.3. Wall-crossing. — We will compare the virtual classes [Qi Xomy, My ]¥" under
the contraction map ¢ : Qs Xomy, My — Qg Xams, My, where the contraction map does
not do anything on the My factor.

The comparison can be carried out as before. Similar to (3.2.2), there is a com-
muting diagram

T
+ * - 5! N
o = g = € - <o \ P(CY)

~N ]

N -.N
U;; %‘ Ud/ —— MN-
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First use the homomorphism ® : P, @ R} — ¢*P, & ¢*R}, induced from the con-
traction map to perform the MacPherson graph construction. Second, deform the ob-
struction normal cone of ¢! (Qx Xomy My) in U;F,’N using the induced section of the
universal quotient bundle of Gr(Pj, &) R} @ P, ®R).

Repeating word for word the arguments of Sections 3.3-3.6, we obtain the follow-
ing analogue of Theorem 3.8. Let z be a formal variable. Let the Chow cohomology class
;,LZ (2) € A*(X x P(CN))g[z] be given by the universal formula (3.5.26). The equality

vir

(3.7.1) [Qf,o(X, d) Xy, MN] - C*[Qto(X, d) Xomy MN]Vir =
: * vir
ZW (bA)*(CA)* (1_[ (EUa, /l:) MZ (Z) |5:_1/,a N [QTA(X’dé) Xm"f,o MN] )
A ’ acA

holds i the Chow group A.(Q; ((X, d) Xy, Mx)q, where
e ¢, is the contraction map
QA (X, ) xamy, Mx = Q7 4 (X, d5') Xy, M,
e by 1s the morphism
QA (X, d3') xamy, My = Q7 (X, d) Xany, My
which trades the markings A for base points of length ,,

e the morphism 4} : QF (X, d)) Xany, My — P(CY) is the composite of the con-
traction

Q-i_,z\(X’ d(l)\) Ximf() MN - QJ_,A(X’ d(?) me[) MN’
the marking section
T QA (X, d) xamy, Mx = € ¢

of the universal curve over Q; (X, 4}') Xony, My (associated to the universal
curve of Q7 (X, dy")), the morphism

x> &

induced from b,, and finally h—|¢;( € — P(CY).
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3.7.4. Relation between [Q% Xomy My and [jS]"ir. — By aresult of Cooper, [13],

the stack Q 1 (P(V), d) has projective coarse moduli and hence there is a morphism from
the universal curve of Qﬁ)fg (P(V), d) to P(CN) for some N such that the morphism does
not contract any irreducible component of any fiber of the universal curve. Fix such a
morphism ¢ and let ¢ be the degree of a fiber curve under ¢. The degree ¢ is inde-
pendent of the choice of fiber since Q?JB (P(V), d) 1s connected. (In fact, Q?fg(P(V), d)
is irreducible; this follows from the connectedness of M, o(P(V), d) (see [22]), the sur-
jectivity of the contraction map MI,O(P(V), d) — Q%(P(V), d), and the smoothness of
QY L(P(V), d) (see [25]).) From now on we work with the stack My corresponding to these partic-
ular choices of N and e.

By the universal property of My, upon restricting ¢ to the universal curve over
QY%", we obtain a morphism by Q%" — My fitting in the diagram with the cartesian
square

¢

T
e ¢, —= P(@Y)

| |

ﬁl,()

We also let

K Q5 — QU B A
IO N

denote the composition of /, , and the contraction Q% — Q.
One checks directly that there is a natural cartesian square

G o)

Q% —— O% Xy, My

L l i (A g-id)
A

MN E—— MN Xgﬁfﬁo MN'

In the derived category of coherent sheaves on Q% there is a commuting diagram

(ﬁi,o)*(LA[_ 1= (n*h*TP(CN))V)

|

. &
LQ%/Q%XWJI{UMx [-1] ——— (d, él,o)*LQg(xm,slsOMN/‘Bun(';'O

(id, £} \)"E
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whose mapping cone is the obstruction theory for Q% relative to Bung’, as in Section 2.4.
The functoriality result of [1, Proposition 5.10] implies the relation

3.7.2 A'TQL xamy, My =[]

Now apply A' to (3.7.1). Using the compatibility of the Gysin homomorphism for
proper push-forward, the commutativity of Chern classes with Gysin homomorphism,

vir

the relation (3.7.2), and the identification of /LI{Z (2) from Section 3.6, we conclude the
proof of Theorem 1.6 in the remaining case (g, k) = (1, 0).
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