The strict hyperbolization process of Charney and Davis produces a large and rich class of negatively curved spaces (in the geodesic sense). This process is based on an earlier version introduced by Gromov and later studied by Davis and Januszkiewicz. If M is a manifold its Charney-Davis strict hyperbolization is also a manifold, but the negatively curved metric obtained is very far from being Riemannian because it has a large and complicated set of singularities. We show that these singularities can be removed (provided the hyperolization piece is large). Hence the strict hyperbolization process can be done in the Riemannian setting.
@article{PMIHES_2020__131__1_0,
author = {Pedro Ontaneda},
title = {Riemannian hyperbolization},
journal = {Publications Math\'ematiques de l'IH\'ES},
pages = {1--72},
year = {2020},
publisher = {Springer Berlin Heidelberg},
address = {Berlin/Heidelberg},
volume = {131},
doi = {10.1007/s10240-020-00113-1},
mrnumber = {4106793},
zbl = {1442.53026},
language = {en},
url = {https://pmihes.centre-mersenne.org/articles/10.1007/s10240-020-00113-1/}
}
TY - JOUR AU - Pedro Ontaneda TI - Riemannian hyperbolization JO - Publications Mathématiques de l'IHÉS PY - 2020 SP - 1 EP - 72 VL - 131 PB - Springer Berlin Heidelberg PP - Berlin/Heidelberg UR - https://pmihes.centre-mersenne.org/articles/10.1007/s10240-020-00113-1/ DO - 10.1007/s10240-020-00113-1 LA - en ID - PMIHES_2020__131__1_0 ER -
%0 Journal Article %A Pedro Ontaneda %T Riemannian hyperbolization %J Publications Mathématiques de l'IHÉS %D 2020 %P 1-72 %V 131 %I Springer Berlin Heidelberg %C Berlin/Heidelberg %U https://pmihes.centre-mersenne.org/articles/10.1007/s10240-020-00113-1/ %R 10.1007/s10240-020-00113-1 %G en %F PMIHES_2020__131__1_0
Pedro Ontaneda. Riemannian hyperbolization. Publications Mathématiques de l'IHÉS, Volume 131 (2020), pp. 1-72. doi: 10.1007/s10240-020-00113-1
[1.] S. Ardanza-Trevillano, Exotic smooth structures on negatively curved manifolds that are not of the homotopy type of a locally symmetric space, PhD. Thesis, SUNY Binghamton, 2000. | MR
[2.] Classification of negatively pinched manifolds with amenable fundamental groups, Acta Math., Volume 196 (2006), pp. 229-260 see also corrected version (28 August 2010), arXiv:math1040 2268rt | MR | DOI | Zbl
[3.] Manifolds of negative curvature, Trans. Am. Math. Soc., Volume 145 (1969), pp. 1-49 | MR | DOI | Zbl
[4.] Metric spaces of non-positive curvature, Springer, Berlin, 1999 | DOI | MR | Zbl
[5.] Strict hyperbolization, Topology, Volume 34 (1995), pp. 329-350 | MR | Zbl | DOI
[6.] Archimedean superrigidity and hyperbolic geometry, Ann. Math., Volume 135 (1992), pp. 165-182 | MR | DOI | Zbl
[7.] An almost flat manifolds with a cyclic or quaternionic holonomy group bounds, J. Differ. Geom., Volume 103 (2016), pp. 289-296 | MR | Zbl | DOI
[8.] Hyperbolization of polyhedra, J. Differ. Geom., Volume 34 (1991), pp. 347-388 | MR | DOI | Zbl
[9.] A negatively curved Kähler threefold not covered by the ball, Invent. Math., Volume 160 (2005), pp. 501-525 | MR | Zbl | DOI
[10.] Harmonic mappings of Riemannian manifolds, Am. J. Math., Volume 86 (1964), pp. 109-160 | MR | DOI | Zbl
[11.] The Whitehead group of poly-(finite or cyclic) groups, J. Lond. Math. Soc., Volume 24 (1982), pp. 308-324 | MR | Zbl
[12.] Negatively curved manifolds with exotic smooth structures, J. Am. Math. Soc., Volume 2 (1989), pp. 899-908 | MR | DOI | Zbl
[13.] Do almost flat manifolds bound?, Mich. Math. J., Volume 30 (1983), pp. 199-208 | MR | Zbl | DOI
[14.] Manifolds of negative curvature, J. Differ. Geom., Volume 13 (1978), pp. 231-241 | MR | DOI
[15.] Almost flat manifold, J. Differ. Geom., Volume 13 (1978), pp. 223-230 | MR | DOI | Zbl
[16.] Hyperbolic groups (S. M. Gersten, ed.), Essays in group theory, 8, Springer, New York, 1987, pp. 75-284 | MR | Zbl | DOI
[17.] Foliated plateau problem, Geom. Funct. Anal., Volume 1 (1991), pp. 14-79 | MR | DOI | Zbl
[18.] Pinching constants for hyperbolic manifolds, Invent. Math., Volume 89 (1987), pp. 1-12 | MR | Zbl | DOI
[19.] Flat Riemannian manifolds are boundaries, Invent. Math., Volume 66 (1982), pp. 405-413 | MR | DOI | Zbl
[20.] Kähler manifolds and 1/4-pinching, Duke Math. J., Volume 62 (1991), pp. 601-611 | MR | DOI | Zbl
[21.] On the geometric boundaries of hyperbolic 4-manifolds, Geom. Topol., Volume 4 (2000), pp. 171-178 | MR | DOI | Zbl
[22.] Geometric superrigidity, Invent. Math., Volume 113 (1993), pp. 57-83 | MR | DOI | Zbl
[23.] A compact Kähler manifold of negative curvature not covered by the ball, Ann. Math., Volume 112 (1980), pp. 312-360 | DOI | MR | Zbl
[24.] Elementary differential topology, 54, Princeton University Press, Princeton, 1963 | DOI | MR
[25.] Rational Pontryagin classes. Homeomorphism and homotopy type of closed manifolds. I, Izv. Akad. Nauk SSSR, Ser. Mat., Volume 29 (1965), pp. 1373-1388 | MR | Zbl
[26.] Almost every group is hyperbolic, Int. J. Algebra Comput., Volume 2 (1992), pp. 1-17 | MR | DOI | Zbl
[27.] On the Farrell and Jones warping deformation, J. Lond. Math. Soc., Volume 92 (2015), pp. 566-582 | MR | DOI | Zbl
[28.] Normal smoothings for smooth cube manifolds, Asian J. Math., Volume 20 (2016), pp. 709-724 | MR | Zbl | DOI
[29.] Deforming an -close to hyperbolic metric to a warp product, Mich. Math. J., Volume 65 (2016), pp. 293-701 | MR | Zbl | DOI
[30.] Cut limits on hyperbolic extensions, Mich. Math. J., Volume 65 (2016), pp. 703-714 | MR | DOI | Zbl
[31.] Normal smoothings for Charney-Davis strict hyperbolizations, J. Topol. Anal., Volume 9 (2017), pp. 127-165 | MR | DOI | Zbl
[32.] Hyperbolic extensions and metrics -close to hyperbolic, Indiana Univ. Math. J., Volume 66 (2017), pp. 609-630 | MR | Zbl | DOI
[33.] Deforming an -close to hyperbolic metric to a hyperbolic metric, Proc. R. Soc. Edinb. A, Volume 148 (2018), pp. 629-641 | MR | Zbl | DOI
[34.] Almost flat manifolds, J. Differ. Geom., Volume 17 (1982), pp. 1-14 | MR | DOI | Zbl
[35.] Applications of harmonic maps to Kähler geometry, Contemp. Math., Volume 49 (1986), pp. 125-133 | DOI | MR | Zbl
[36.] On complete Riemannian manifolds with collapsed ends, Pac. J. Math., Volume 163 (1994), pp. 175-182 | MR | DOI | Zbl
[37.] A bounding question for almost flat manifolds, Trans. Am. Math. Soc., Volume 353 (2001), pp. 963-972 | MR | DOI | Zbl
[38.] Open problems in differential geometry, Proc. Symp. Pure Math., Volume 54 (1993), pp. 1-28 | Zbl | MR
[39.] Hirzebruch-Kato surfaces, Deligne-Mostow’s construction, and new examples of negatively curved compact Kähler surfaces, Invent. Math., Volume 103 (1991), pp. 527-535 | MR | DOI
Cited by Sources: