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ABSTRACT

The strict hyperbolization process of Charney and Davis produces a large and rich class of negatively curved
spaces (in the geodesic sense). This process is based on an earlier version introduced by Gromov and later studied by Davis
and Januszkiewicz. If M is a manifold its Charney-Davis strict hyperbolization is also a manifold, but the negatively curved
metric obtained is very far from being Riemannian because it has a large and complicated set of singularities. We show
that these singularities can be removed (provided the hyperolization piece is large). Hence the strict hyperbolization process
can be done in the Riemannian setting.

Classical flat geometry is characterized by the condition that the sum of the internal
angles of a triangle A is equal to 7. We write 2 (A) = 7. In other fundamental geome-
tries the equality 2(A) = 1s replaced by inequalities: in positively curved and nega-
tively curved geometries we have the inequalities 2 (A) > 7 and X2 (A) < 7, respectively,
where A runs over all small non-degenerate triangles in a space. It is natural then to
try to find spaces that admit such geometries, and this task has been a driving force in
Riemannian Geometry for many decades. But surprisingly there are not too many ex-
amples of smooth closed manifolds that support either a positively curved or a negatively
curved metric. For instance, besides spheres, in dimensions > 17 (and # 24) the only posi-
tively curved simply connected known examples are complex and quaternionic projective
spaces. In negative curvature the situation is arguably more striking because negative cur-
vature has been studied extensively in many different areas in mathematics. Indeed, from
the ergodicity of their geodesic flow in Dynamical Systems to their topological rigidity in
Geometric Topology; from the existence of harmonic maps in Geometric Analysis to the
well-studied and greatly generalized algebraic properties of their fundamental groups,
negatively curved Riemannian manifolds are the main object in many important and
well-known results in mathematics. Yet the fact remains that very few examples of closed
negatively curved Riemannian manifolds are known. Besides the hyperbolic ones (R, G,
H, O), the other known examples are the Mostow-Siu examples (complex dimension 2)
which are local branched covers of complex hyperbolic space (1980, [23], see also [39]),
the Gromov-Thurston examples (1987, [18]) which are branched covers of real hyper-
bolic ones, the exotic Farrell-Jones examples (1989, [12]) which are homeomorphic but
not diffeomorphic to real hyperbolic manifolds (and there are other examples of exotic
type), and the three examples of Deraux (2005, [9]) which are of the Mostow-Siu type
in complex dimension 3. Hence, excluding the Mostow-Siu and Deraux examples (in
dimensions 4 and 6, respectively), all known examples of closed negatively curved Rie-
mannian manifolds are homeomorphic to either a hyperbolic one or a branched cover of
a hyperbolic one.
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This lack of examples in negative curvature changes dramatically if we allow sin-
gularities, and a very rich and abundant class of negatively curved spaces (in the geodesic
sense) exists due to the strict hyperbolization process of Charney and Davis [5]. The hy-
perbolization process was originally introduced by Gromov [16], and later studied by
Davis and Januszkiewicz [8], and Charney-Davis strict hyperbolization is built on these
previous versions. The hyperbolization process is conceptually (but not technically) quite
simple since it has a lego type flavor: in the same way as simplicial complexes and cubical
complexes are built from a basic set of pieces, basic “hyperbolization pieces” are chosen,
and anything that can be built or assembled with these pieces will be negatively curved.
This conceptual simplicity could be in some sense a bit deceptive because hyperboliza-
tion produces an enormous class of examples with a very fertile set of properties. But
the richness and complexity of the hyperbolized objects are matched by the richness and
complexity of the singularities obtained, and hyperbolized smooth manifolds are very far
from being Riemannian. Interestingly one can relax and lose even more regularity and
consider negative curvature from the algebraic point of view, that is consider Gromov’s
hyperbolic groups, and it can be argued [26] that “almost every group” is hyperbolic.
So, negative curvature is in some weak sense generic, but Riemannian negative curva-
ture seems very scarce. It is natural then to inquire about the difference between the class
of manifolds with negatively curved metrics with singularities and its subclass of more
regular Riemannian counterparts. More specifically we can ask whether the strict hyper-
bolization process can be brought into the Riemannian universe. In this paper we give
a positive answer to this question, and we do this by proving that all singularities of the
Charney-Davis strict hyperbolization of a closed smooth manifold can be smoothed, pro-
vided the “hyperbolization piece” is large enough (which can always be done). Moreover
we prove that we can do this process in a g-pinched way. Here is the statement of our
Main Theorem.

Main Theorem. — Let M" be a closed smooth manifold and let € > 0. Then there is a closed
Riemannian manifold N" and a smooth map f : N — M such that

(1) The Riemannian manifold N has sectional curvatures in the interval [—1 — &, —1].
(i) The induced map f. : Ho(N, A) — H,(M, A) s surjective, for every abelian group A.
(i11) If R s a commutative ring with identity and M s R-orientable then N s R-orientable,
S has degree one, and f* : H*(M, R) — H*(N, R) s wyective. Thus follows from (1)
and the naturality of the Poincare Duality Isomorphism.
(iv) The map [ sends the rational Pontryagin classes of M to the rational Pontryagin classes
of N.

Addendum to Main Theorem. — The manifold N s the Charney-Davis strict hyperbolization of
M but with a possibly different smooth structure. The hyperbolization is done with a sufficiently “large”
hyperbolization prece X.
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By “large” above we mean that the normal neighborhoods of every face of X has
large width. These large pieces always exist (see Proposition 9.1). Also, the underlying
cube complex of M is assumed to have the usual intersection property: any two cubes
intersect in at most one common subcube. This condition does not seem to be essential
in the proof, but is technically useful.

Corollaries 1, 2 and 3 below are the &-pinched Riemannian versions of classical
applications of hyperbolization.

Corollary 1. — Every closed smooth manifold ts smoothly cobordant to a closed Riemannian
manifold with sectional curvatures in the interval [—1 — &, —1], for every € > 0.

Corollary 2. — The cohomology ring of any finite CW -complex embeds in the cohomology ring of
a closed Riemannian manifold with sectional curvatures in the interval [—1 — &, —1], for every € > 0.

Proof. — Let X be a finite CW-complex. Embed X in some R” and let P be a
compact neighborhood of X that retracts to X. Let M be the double of P. Then there is
a retraction M — X, and Corollary 2 follows from (ii1) in the Main Theorem. 0J

Since degree one maps between closed orientable manifolds are m,-surjective we
obtain the following result.

Corollary 3. — For every finite CW-complex X there is a closed Riemannian manifold N and
amap | : N — X such that: (1) N has sectional curvatures in the interval [—1 — e, —1], (11) f s
7T -surjective, (1) [ is homology surjective.

All previously known examples of closed negatively curved Riemannian manifolds
with less than i—pinched curvature have zero rational Pontryagin classes (for the Gromov-
Thurston branched cover examples this was proved by Ardanza [1]). The next corollary
gives examples of such manifolds with nonzero rational Pontryagin classes.

Corollary 4. — For every € > 0 and n > 4 there is a closed Riemannian n-manifold with
sectional curvatures in the interval [—1 — &, —1] and nonzero rational Pontryagin classes.

Proof. — Take M in the Main Theorem orientable with nonzero Pontryagin
classes. U

All manifolds given in Corollary 4 are new examples of closed negatively curved
manifolds, provided ¢ < 3. We state this in the next corollary.

Corollary 3. — For any € > 0 and n > 4 there are closed Riemannian n-manifolds with
sectional curvatures in the interval [—1 — e, —1] that are not homeomorphic to a hyperbolic manifold
R, C, H, O), or the Gromov-Thurston branched cover of a real hyperbolic manifold, or one of the
Mostow-Stu or Deraux examples.
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Proof. — Let N be as in Corollary 4, with ¢ < 3. So, N is less that quarter-
pinched negatively curved. Then N is not homeomorphic to a real hyperbolic manifold
or the Gromov-Thurston branched cover of a real hyperbolic manifold. This follows from
Novikov’s topological invariance of the rational Pontryagin classes [25], and Ardanza’s
result in [1] mentioned above. Also the quarter-pinched rigidity results given in (or im-
plied by) the work of Corlette [6], Gromov [17], Herndndez [20], and Mok-Siu-Yeung
[22] imply that N is not homeomorphic to a quaternionic or Cayley hyperbolic manifold
(specifically, one can use Theorem 1 in [22] together with Theorem 2.5(b) in [20]). Finally
since a closed Kédhler manifold of dimension > 4 cannot be homeomorphic to a less than
i—pinched negatively curved manifold (see remark below), N cannot be homeomorphic
to a complex hyperbolic manifold, or any of the Mostow-Siu or Deraux examples. This
1s because Mostow-Siu and Deraux examples are all Kahler. UJ

Remark. — In the proof of Corollary 5 we are using the result: a closed Kdihler man-
yfold of dimension > 4 is not homeomorphic to a less than quarter-pinched negatively curved manifold.
One can obtain this result using the work of Hernandez (see Theorems 1.1 and 2.5(b)
in [20]), though the homeomorphic part is not stated explicitly in Hernandez paper.
For completeness, here is a sketch of the proof of the homeomorphic part. Let X — N
be a homeomorphism, where X is closed Kahler of dimension n > 4 and N 1is less that
quarter-pinched negatively curved. By a result of Eells and Sampson [10] f is homotopic
to a harmonic 4. Since £ has degree one, it is onto, so Sard’s Theorem implies that there is
xp € X such that dh,, has rank n. On the other hand, since N is less that quarter-pinched,
all of its complex sectional curvatures are negative (see 2.5(b) in [20]). We can now apply
a result of Sampson (see [35], or 3.1 in [20]) that says that in this situation the rank of dh,
is at most 2, for every x € X, which is a contradiction because n > 4.

The next application was suggested to us by Stratos Prassidis and deals with cusps
of negatively curved manifolds. Recall that if M is a complete finite volume noncompact
real hyperbolic manifold then there is a bounded set B C M such that M \ B is isomet-
ric to a manifold of the form Q x [, 00) with the metric ¢ %'k + dt*, where (Q, %) is a
closed flat manifold and 4 € R. In this case we say that the manifold Q) bounds geometrically a
hyperbolic manifold. More generally, in 1978 Gromov defined almost flat manifolds in [15]
and similar facts hold for them replacing hyperbolic manifolds by pinched negatively
curved manifolds. That is, let M be a complete finite volume noncompact manifold with
pinched negative curvature (i.e. all sectional curvatures lie in a fixed interval [—a, —b],
0 < b < a < 00). Then there is a bounded B C M such that M \ B is diffeomorphic to
a manifold of the form Q x [, 00), where () is an almost flat manifold. In this case we
say that the manifold Q bounds geometrically a negatively curved mamfold. Of course a neces-
sary condition for Q) to bound geometrically as above is to smoothly bound a compact
manifold.

Remark. — Here we do not assume Q) to be connected.
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It was proved by Hamrick and Royster [19] that every closed flat manifold bounds
smoothly. This together with the work of Gromov in [14], [15] motivated Farrell and
Zdravkovska to make the following well-known conjectures in [13].

Comjecture 1. — Every closed almost flat manifold bounds smoothly. This comjecture was also
proposed, independently, by Yau in [38].

Congecture 2. — Every closed flat manifold bounds geometrically a hyperbolic manifold.

Conjecture 3. — Every closed almost flat manifold bounds geometrically a negatively curved
manifold.

It was showed by Long and Reid [21] that Conjecture 2 is false by giving examples
of three dimensional flat manifolds that do not bound. The following result says Conjec-
ture 1 implies Conjecture 3.

Theorem A. — Let Q) be a closed almost flat manyfold. Assume that Q bounds smoothly. Then
Q bounds geometrically a negatively curved manifold M.

Conjecture 1 has generated a lot of research in the last 30 years and it is known
to be true for an almost flat manifold in many cases, depending on the holonomy of the
manifold. Recall that a nilmanifold is the quotient of a simply connected nilpotent Lie
group L by a lattice. Gromov-Ruh [34] proved that every almost flat manifold Q) has a
finitely-sheeted affine cover that is diffeomorphic to a nilmanifold, and the deck group G
of the affine covering is called the Aolonomy group of Q. Let Q be an almost flat manifold
and G its holonomy. Conjecture 1 is known to be true in the following cases.

(a) The manifold Q) is a nilmanifold.

(b) The holonomy G has order £ or 2k, where £ is odd, due to Farrell-Zdravkovska
[13].

(c) The holonomy G of Q) acts effectively on the center of L, also due to Farrell-
Zdravkovska [13].

(d) The holonomy G is cyclic or quaternionic, due to Davis and Fang [7]. Also
Upadhyay [37] had proved that Conjecture 1 is true when the following con-
ditions hold: G is cyclic, G acts trivially on the center of L, and L is 2-step
nilpotent.

Hence in all of the above cases Q) bounds geometrically a pinched negatively
curved manifold. Note that for any closed Q we have 3(Q x I) = Q[ [ Q, Thus we get
the following corollary of Theorem A.

Corollary 6. — Let Q be a closed almost flat manyfold. Then Q| [ Q bounds geometrically a
pinched negatively curved manifold.
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In other words, for every closed connected almost flat manifold there is a complete
finite volume pinched negatively curved manifold with exactly two connected cusps, each
diffeomorphic to Q) x [, 00).

A complete pinched negatively curved metric g on Q) x R is called a (pinched neg-
atwely curved) cusp metric if the g-volume of Q x [0, 00) is finite. And we say that a cusp
metric g on Q x R is an eventually warped cusp metric if g = ¢ *'h + di*, for ¢ < ¢, for some
¢ € R and a metric # on Q, Belegradek and Kapovitch [2] showed, based on earlier work
by Shen [36], that if Q) is almost flat then ) x R admits an eventually warped cusp
metric.

Addendum to Theorem A. — Let g be an eventually warped cusp metric on QQ x R. If the
sectional curvatures of g lie in (a, b), with a < —1 < b, then we can take M in Theorem A with
sectional curvatures also in (a, b). Moreover the sectional curvatures of M away from a cusp can be taken
m[—e—1,—1], forany € > 0.

Even though a flat manifold may not necessarily bound geometrically a hyperbolic
manifold the next corollary says it does bound geometrically an e-pinched to —1 mani-
fold, for any & > 0. It follows from the Hamrick and Royster result [19], Theorem A and
its addendum.

Corollary 7. — Every closed flat manifold bounds geometrically a manifold with sectional cur-
vatures in [—& — 1, —1], for any € > 0.

We next give a rough idea of some of the methods used in smoothing the singulari-
ties of a Charney-Davis hyperbolized smooth manifold. We do this first in dimension two
and then in dimension three where we can visualize some of these methods.

A Charney-Davis hyperbolization piece X" of dimension 7 is essentially a compact
hyperbolic manifold with corners that has the symmetries of an n-cube, and all “faces” in-
tersect perpendicularly. We shall assume throughout this introduction that X is as “large”
as we need it to be (see Proposition 9.1).

(1) Dimension two.

Fix an X? and let K be a cubical 2-complex. Replace each cube by a copy of
X? to obtain a piecewise hyperbolic space Kx. This is essentially the Charney-Davis
hyperbolization of K. We shall identify the vertices of K with the vertices of Kx. Note
that the edges (1-faces) match nicely and the piecewise hyperbolic metric o 1s smooth
away from the vertices. Near a vertex o the metric is a warped product of the form o =
or, = SinhQ(t)%O'sl + d?, where:

(1) we are identifying a punctured neighborhood of o with §' x (0, r+ 2), for some
r> 0,
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(2) the metric og! is the canonical metric of the circle S',
(3) L is the number of 2-cubes (or equivalently, the number of copies of X) con-
taining o.

Of course if L = 4 the metric oy, is already hyperbolic and smooth near o. The
problem arises when L # 4. In this case the solution is given by the Gromov-Thurston trick.
Choose d > 0 with d < r and subdivide (0, r 4+ 2) in three pieces I, = (0,7 —d], I, =
[r—d,r], I =[r,r4+ 2) and let p = pr,, s be a smooth function on (0, r + 2) such that
p=lonl, p= % on I5. Consider now iy, =y, s = sinh?(¢) p (H)ogt + di*. Then Ay, and
o1, coincide on S! x I5, hence we can define the smoothed metric Gy, = G (L, r, d) near o to be
equal to oy, outside S' x (I; UT,) and equal to 2 on S' x (0, r). Using the Bishop-O’Neill
formula in [3] it can be shown that by choosing » and d large enough (depending on L)
the metric Gy, will have curvature very close to —1. Furthermore, since Gy, is canonically
hyperbolic on S x I} we can extend the metric Gy, to a smooth metric on the whole (r+2)-
ball centered at o which is hyperbolic on the (r — d)-ball. We do this for every vertex and
we are done. Note that for the above construction to work the injectivity radius of the
vertices of X* must be very large.

(i) Codimension two and the Gromov-Thurston trick.

If N 1s a closed codimension two totally geodesic submanifold of a hyperbolic man-
ifold (M, g), with trivial normal bundle, then N has a neighborhood N, isometric to
N x B, (where B,,, C H? is the ball, centered at 0 € H?, of radius r + 2) with metric
cosh® (£) + o2, where & = gln, ome is the canonical metric on H? and ¢ is the distance to
0 € H?. We call this metric a hyperbolic extension of og2. Suppose now that we have a singular
metric on M, which is smooth outside N, and on NV, — N is isometric to N x (B,, — {0}),
with metric cosh?(£)% 4 o1.. Then we can smooth the metric g to obtain a smooth metric
On =GN, L, 7, d) by changing g using the smooth metric cosh*()h + Gy, (where Gy, is
as in (i)) instead of the singular metric cosh?(£)4 + oy. This method was used by Gro-
mov and Thurston [18] to smooth singular metrics obtained using branched covers. The
smoothed metric cosh?(1)h + Gy, is a hyperbolic extension of Gy, Note also that Gy is hyper-
bolic on N x B,_; and equal to g outside N.

(i11) The Farrell-Jones warping trick.

Before we deal with the dimension three case we have to discuss the Farrell-fones
warping trick which in some sense is a generalization of the Gromov-Thurston trick in
dimension 2.

Suppose we have a metric /£ on the sphere 8". Consider the warp metric g =
sinh®()h + di> on R™! — {0} = 8" x (0, 00). If & = o, the canonical metric on S,
then g is hyperbolic and, in particular, smooth everywhere. But for general / the metric
g 1s singular at 0. Before we continue here is an important observation that can easily be
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deduced from Bishop-O’Neill curvature formula in [3].

0.1) Given € > 0 there is £ such that the sectional curvatures of g at (x, ?)

are within ¢ of — 1, provided ¢ > 4.
To smooth the metric g consider the family of metrics (see [12]):

g 1) = sinh? () (1 = pa(D) 05 (0) + pu(DA(D) + d?

where p, (1) = p(é), and p : R — [0, 1] is a smooth function with p(¢) =0 for t < 1 and
p () =1fort > 2. Hence, for ¢t < «, the metric g, 1s hyperbolic, for ¢ > 2« we have g, = ¢
and in between ¢ = o and ¢ = 2« the metric og: deforms to 4. The metrics g, have two
important properties:

(1) they are all hyperbolic for ¢ < &, hence smooth everywhere,
(2) given € > 0 there is & such that all sectional curvatures of g, lie within € of —1,
provided o > .

Here is an idea why (2) holds. If « is very large the deformation between og. and £
happens very slowly (on the “stretched interval” [a, 2a]), so gy 1s “almost warped”, hence
the Bishop-O’Neill formula should give a good approximation of the curvatures of g,.
Therefore, by (0.1) the curvatures of g, should be close to —1, provided we are far away
from 0. But since we are assuming « large, we are in fact far away from 0. Interestingly,
the actual proof of (2) given in [12] does not follow exactly this intuitive explanation
because there is a more direct proof.

In this paper we need a more elaborate version of the Farrell-Jones trick, which we
call the two varable warping deformation. We need to know to what extent the “stretching”
(which in the Farrell-Jones trick [12] is given by a variable «) to be independent of the
“far-away constant” (given in the Farrell-Jones trick also by «). Moreover, we need a more
quantitative version also. Here is an important remark.

0.2) Given ¢ > 0, the stretching and the far-away constants needed
in the two variable warping deformation

(to obtain an e-pinched to — 1 metric) do depend on the metric 4.

(iv) Dumension three.

Suppose we have a cubical complex K of dimension 3. As in (i) choose X* and
construct Kx. Call the piecewise hyperbolic metric on Kx by 0 = ok, . Again as in (i) the
codimension one faces (the 2-faces) of X match nicely and there are singularities only on
the “l-skeleton” of K, that is, along the edges (i.e. I-faces) and vertices (i.e. 0-faces). The
singularities along the 1-faces can be smoothed using the Gromov-Thurston trick as in (i)
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and (ii), 1.e. using smoothing in dimension two plus hyperbolic extension. In this way we
obtain a metric 6’ which is smooth near (part of) the edges. Let N, 4(¢) be the normal
neighborhood of width 7+ 2 of the edge ¢. Then o = 0’ outside the union | ,, dge N o(e).
Notice that there is some ambiguity in the definition of the metric o’ because for different
edges ¢, ¢ with a common vertex the neighborhoods N,;s(e), N, 2(¢) have nonempty
intersection. So o is only well-defined outside the s-neighborhoods (i.e. s-balls ) NV;(0) of
the vertices o, where s is large enough. Let L(¢) be the number of copies of X that contain
the edge e, and write G, = Gy, and o, = o71,). Therefore on each N,;5(e), and outside
U, verien N(0), the metric o’ is equal to the metric cosh?(¢)or + G, which is the hyperbolic
extension of the metric G,.

We are left to smooth the metric near the vertices. Fix a vertex o. Let {¢;} be the
edges containing o and write ¢ = ¢;. Let P be the link of 0. Then P is a PL-sphere of
dimension 2 and it has a natural all-right spherical metric op, that is, op is the piecewise
spherical metric with all edges in P having length 7/2. Note that the metric o near o
is the warped piecewise hyperbolic metric sinh®(s)op + ds?, where s is the distance to o.
Write 1; = L(¢;) and L = L;. Then the metric o on N, »(¢) is equal to the hyperbolic
extension metric cosh?(4)ogr + o,, where ¢ is the distance to ¢. Hence o is sinh-warped
from 0 and cosh-warped from each ¢; (near ¢).

What about the metric o'? It is also cosh-warped from ¢; because, by definition, the
metric o’ is equal to cosh®(t)or + G, near ¢ (i.e. on Mio(6) — U, verex N,(¢)). But, and
this is a key observation, the metric o’ is not, in general, warped from o. (Even though
o’ is undefined on a neighborhood of o it could still be warped from o away from that
neighborhood.) Here is a heuristic idea why this is so. Write &; = cosh?(t)or + g, and
& = &,. Note that £ has rotational symmetry, that is it is invariant by rotations fixing
¢e=¢. Let d =d, as in (i) and (ii), corresponding to ¢ = ¢;. Let H be a plane containing
e. Since £ has rotational symmetry H is totally geodesic. Then the boundaries of N, (e),
N,_4(e) intersect H in two lines each. Let p € HN N, 5(¢), p ¢ ¢, and x € ¢ C H be the
closest point in ¢ to p. Also let v a vector at p perpendicular to H, and denote the circle
centered at x, perpendicular to H and passing through p (hence tangent to v) by S(p).
Let ¢t = t(p) be the distance from p to x and s = s(p) the distance from o to p. Now, it can
be checked from the definitions that the metrics 0 and ¢’ coincide on vectors tangent
to H. They differ on their values on the vectors v as above. These values are directly
proportional to the lengths £(S(p)), £'(S(p)) of the circle S(p) with respect to the metrics
o and o’ respectively. Hence these metrics can be understood by looking at these lengths.
We have £(S(p)) = 2r % sinh(4) and £'(S(p)) = 27 p(¢) sinh(?) (see (1)). Let 6 be the angle
at o between ¢ and the geodesic segment B = [o, p] (which lies on H). Let p(s) be the point
in B at distance s from o. Now if 0’ were sinh-warped from o the lengths of the circles
S(s) = S(p(s)) would have the form ¢sinh(s) for some constant ¢. But from the hyperbolic

smb! “hence #(s) = sinh ™' (sin @ sinh 5) and we get

law of sines we have sinf = 3°—,

(0.3) €'(S(s5)) =27 p((s)) sinh(£(s)) = 27 p(t(s)) sin O sinh s



10 P. ONTANEDA

Note that if L =4, then p = 1 and the formula above shows why hyperbolic three space
H? is at the same time sinh-warped from a point 0 and cosh-warped from a line contain-
ing o. But in general p(#(s)) is not a constant, hence ¢’ is not, in general, sinh-warped
from o, as we wanted to show. Note that p(#) is constant for ¢ ¢ [r — d, r].

Why do we want ¢’ to be sinh-warped from o? Because in this case we could
apply two variable warping deformation (see (0.3)) and force/extend the metric o’ to be
hyperbolic near o, hence smooth near o. (Even in this case there would be a problem in
using two variable warping deformation because of (0.2), but more on this in a moment.)
Now, even though ¢’ is not warped from o it is “very close to being warped”, provided
r and d are large. Here is an idea why this is true. Since sinf = %}}If, if ¢ 1s large, so
is s and we get s & t — Insin#, and if  and  are large then the function p(¢(s)) in (0.3)
even though is not constant, it does in this case change very slowly, hence behaves (locally)
almost like a constant. Therefore o’ is “almost warped” in this case, and we can “deform”
o' to a sinh-warped from o metric. We call this process warp forcing. Therefore the idea is to
first warp force the metric 0’ near 0 and then use the two variable warping deformation to
make it hyperbolic near o, hence smooth. In our particular case the sinh-warped metric to
which we deform o is sinh?(s)h,, + ds*, where A, = ——h,, h, =0'|s , and S, =8, (0)
1s the sphere of radius sy in Kx centered at o (recall X is as large as needed).

Now we deal with the problem mentioned above. Suppose we succeeded in warp
forcing the metric ¢’ and obtained the sinh-warped from o metric sinh? (s)izX0 +ds?. Recall
that we needed to assume 7 and  large. By (0.2) the constants needed for two variable
warping deformation (call them o, oty) depend on ilm, which in turn depend on 7, d. It
may happen that the «; = (7, d) are too big for sy and we have no space to use the two
variable warping deformation. And in fact this may happen if we do not do things in a
precise way. To solve this problem we proceed in the following way. Fix an angle 6, > 0
and d large as needed but fixed. Consider the plane H as before. Let ¢ be a point in H at
distance r from ¢ such that the geodesic (in H, recall H is totally geodesic) [o, ¢] makes an
angle 6y at 0. Let s = s(r) be the distance from o to ¢. Now let p = p(7) be the point in H
such that the distance from p to o 1s also s, and the distance to ¢ is » — d. Let 6,(7) be the
angle at 0 between ¢ and [o, p].

It can be shown with a straightforward calculation that in this particular case the
corresponding metrics }Azj.(,) C?-converge to a smooth metric h. The angles 6, (r) also con-
verge. (Here 6 is fixed.) And it can be shown that in this case (0.2) does not pose a
problem any more because all metrics obtained are in fact very close, so the correspond-
ing constants «; are close. In particular they do not grow indefinitely. And this is what we
needed. Consequently, we first take ¢ very large (for curvature and other considerations)
and then take r large so that everything else works, and during all this process we have to
make sure to be far enough away from e, and this is given by the constant 6, > 0.

Here is a brief description of the paper. In Section 1 we introduce some notation
and basic concepts, including the definition of &-close to hyperbolic metrics. This is a
slightly technical but important concept. The idea is to try to measure how close a metric
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is to being hyperbolic; we do this in a chart by chart fashion. In Section 2 we define and
study the “hyperbolic extension” of a metric (or space), which is a key geometric construc-
tion. In this section there are no proofs and we essentially collect the main results of [32].
In Section 3 we describe another key geometric construction, hyperbolic forcing; it is the
composition of two deformations: warp forcing and the two-variable deformation, which
are studied with more detail in [29] and [27], respectively. The results of these two papers
are put together in [33]. Section 4 is a family version of Section 3. Again, in Section 4
there are essentially no proofs and we mostly collect the main results of [29], [27], and
[33]. In Section 5 we study neighborhoods of simplices of all-right spherical complexes. In
this section we introduce a technical device that we called sequence of widths. These are sets
of positive real numbers that are used as widths for normal neighborhoods of simplices
of all-right spherical complexes. We prove that there are sets of widths, independent of
the complex, that satisfy very useful properties. These are fundamental objects that make
all matching processes work. Section 6 is a sort of a “cone version” of Section 5; in it
we study (all-right) piecewise hyperbolic cone complexes, which are just cones over all-
right spherical complexes with the metric warped by sinh. In Section 7 we deal with the
smoothing issue for cubical and all-right spherical complexes; here we collect the main
concepts and results of [28]. We put everything together in Section 8 to smooth hyper-
bolic cones. Section 9 is dedicated to the Charney-Davis strict hyperbolization process;
in this section we collect the results in [31], in particular we mention that strictly hyper-
bolized smooth manifolds have “normal differentiable structures”. Finally we prove the
Main Theorem in Section 10 and Theorem A in Section 11. Subsections at the end of
Sections 7, 8, 9 deal with generalizations to the case of manifolds with codimension zero
singularities. These subsections are used in Section 11.

1. Some notation, definitions, and metrics e-close to hyperbolic

In this paper p will denote a fixed smooth function p : R — [0, 1] such that:
(1) pl(=c0.0+61 = 0, and (11) p|{1—s.00) = 1, where § > 0 is small.

Let A C R" be an open set. Let ||z denote the uniform C2-norm of R/-valued
functions on A, ie. if f = (fi,...,/) : A — R/, then fleza = supzeA’lSl-ﬂ’lfj,kSn{lﬁ(z)|,
10,/i(2)|, 19;,4/i(2)]}. Sometimes we will write |.[c2 = [.|c2(a) When the context is clear.
Given a Riemannian metric ¢ on A, the number [g|c2() 1S computed considering g as
the R”-valued function 2 > (gj(2)) where, as usual, g; = g(¢;, ¢), and the ¢’s are the
canonical vectors in R".

Let M”" be a complete Riemannian manifold with metric 4. We say that a point
0 € M is a center of M if the exponential map exp, : T,M — M is a diffeomorphism. In
particular M is diffeomorphic to R”. For instance if M 1s Hadamard manifold every point
to denote a chosen center
of a Riemannian manifold, unless it is necessary to specify the manifold M, in which case

@ 9
0

is a center. In this paper we will always use the same symbol
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we will write oy. Using the diffeomorphism exp, onto M and an identification of T,M
with R” via some fixed choice of an orthonormal basis in T,M, we can identify M with
R"” and M — {0} with $"~! x R*. By the Gauss lemma the metric /& of M, restricted to
M — {0}, can be written as %, + dt*> on $"~! x R*, where {4}~ is a one-parameter family
of metrics on 8"~!. Moreover, the set of curves ¢+ (x, ) € S""! x RT are speed one /-
geodesics on M — {o} = §"~! x R*, and we call this set the set of rays of M with respect to o,
or simply the set of rays of M, if the center is understood.

Remarks 1.1.

1. We will need a partial version of the concept of sets of rays. Let U C M be an
open set and let / be a metric on U. We say that f is ray compatible with (M, o) over
U if the following two conditions hold. First, the restriction of every speed one
geodesic of M to U is a speed one f-geodesic. Second, each of these restrictions
1s f perpendicular to the spheres of M centered at o.

2. If U =M, that is f 1s globally defined, then f is ray compatible with (M, o) if
and only if M = (M, #) and (M, /) have the same set of rays.

3. The metric f defined on U is ray compatible with (M, o) if and only if we can
write f =f +dr* on UN M\ {0}) =UN(S"! x R").

4. Trivially, for any U, 4|y is ray compatible with (M, o).

5. If f is ray compatible with (M, 0) over U and V, then / is ray compatible with
M, 0) over UU 'V,

The standard flat metric on R’ will be denoted by og. Similarly, oy and ogi-1 will
denote the standard hyperbolic and round metrics on H' and S'~!, respectively.

Let B=B'"! C R be the unit ball, with the metric og-1. Write [; = (—1 — &,
1+&) CR, & > 0. Our basic models are ng; =T; = B x I C R/, with hyperbolic metric
o = ¢¥opi-1 + d*. In what follows we may sometimes suppress the subindex &, if the

context is clear. The number £ is the excess of T.

Remarks.

1. One of the reasons to introduce the excess is that the process of hyperbolic
extension (see Section 2) decreases the excess of the charts, as shown in the
statement of Theorem 2.7.

2. In the applications we may actually need warp product metrics with warping
functions that are multiples of hyperbolic functions. All these functions are close
to the exponential ¢ (for ¢ large), so instead of introducing one model for each
hyperbolic function we introduced only the exponential model.

Let ¢ > 0. A Riemannian manifold (M/, g) is e-close to hyperbolic if there is & > 0
such that for every p € M there is an e-close to hyperbolic chart with center p and excess &, that
is, there is a chart ¢ : Te — M, ¢(0, 0) = p, with |¢p*g — o|c2(T,) < €. Note that all charts
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are defined on the same model space T;. More generally, a subset S C M is ¢-close to
hyperbolic if every p € S is the center of an ¢-close to hyperbolic chart in M with fixed
excess &.

If N’ has center o we say that S C N is radially &-close to hyperbolic (with respect to o) if
there is & such that for every p € S there is a radially e-close to hyperbolic chart ¢ with center
p and excess &, where the latter means that there is an ¢ € R and an e-close to hyperbolic
chart ¢ with center p and excess § such that for every ¢ the projection of ¢ (., ¢) on the
R*-factor of N — {0} = $/~! x RT is 1+ a. Here the “radial” directions are (—1 — &, 1 +£)
and R" in T and N — {0} = §"~! x R, respectively.

Remarks 1.2.

1. The definition of radially e-close to hyperbolic metrics is well suited to studying
metrics of the form g, + df* for ¢ large, but for small ¢ this definition is not useful
because we need some space to fit the charts. An undesired consequence is that
even punctured hyperbolic space H" — {0} = §"~' x R" (with warp product
metric sinh? togi-1 + d/?) is not radially e-close to hyperbolic for ¢ small. In fact
there is @ = a(n, €) such that hyperbolic n-space is ¢-close to hyperbolic for
¢t > a (and not for all ¢ < a), see Corollary 4.14 [27]. This is not essential for
what follows.

2. For every n there is a function ¢’ = ¢'(¢, &, n) such that: if a Riemannian metric
g on a manifold M”" is &’-close to hyperbolic, with charts of excess &, then the
sectional curvatures of g all lie e-close to —1. This choice is possible, and de-
pends only on 7 and &, because the curvature depends only of the derivatives up
to order 2 of ¢*g on T, where ¢ is an g-close to hyperbolic chart with excess &.

Lemma 1.3. — Let ¢ : Tz — M be a radially e-close to hyperbolic chart with center p € M.
Then

dM(¢(‘]),P) <2+&+n'e
Jor every q € T

Proof. — Write ¢ = (x9, t)) € B x Iz. Consider the path a(f) = (&x, 0), t € [0, 1],
B(t) = (x, ), t € [0, 1], and ¥y = o * B. Write g’ = ¢*g and we have g = o + &, with
|hlc2cr,) < €. Then the g-length £,(p o y) of poy is £y(y) =Ly () +£,(B) < {;() +
() + (14+8) <1+en’+ (1 +&). Hence dy($(9), p) <€, (poy) <2+4+&+n'e. O

Next we deal with a natural and useful class of metrics. These are metrics on R”
(or on a manifold with center) that are already hyperbolic on the closed ball B, = B,(0) of
radius a centered at 0, and are radially e-close to hyperbolic outside B, (here a is slightly
less than ). Here is the detailed definition. Let M" have center o and let B, = B,(0),
B, = B,(0) be the open and closed balls in M of radius a centered at o, respectively. We
say that a metric # on M 1s (B, €)-close to hyperbolic, with charts of excess & , if
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(1) On B, — {0} = 8" ! x (0, a) we have / = sinh?® tog.—1 +dt>. Hence h is hyperbolic
on B,.

(2) The metric / is radially e-close to hyperbolic outside B,_;_¢, with charts of
excess .

Remarks 1.4.

1. We have dropped the word “radially” to simplify the notation. But it does ap-
pear in condition (2), where “radially” refers to the center of B,.

2. We will always assume @ > a+ 1, where a is as in Remark 1.2(1).

3. Let &' be as in Remark 1.2(2). Then the following is also true: if a Riemannian
metric g on a manifold M" is (B,, &")-close to hyperbolic, with charts of excess &, then
the sectional curvatures of g all lie ¢-close to —1.

4. If ametric is (B,, €)-close to hyperbolic with charts of excess & then it is (B,, €)-
close to hyperbolic with charts of excess &', with 0 < &’ <§&.

Let ¢ > 1. A metric g on a compact manifold M is ¢c-bounded if |g|c2(my < € and
| detg|coan > 1/¢. A set of metrics {g,} on the compact manifold M is c-bounded if every
g 1s c-bounded.

Remarks 1.5.

1. Here the uniform C*-norm |.| is taken with respect to a fixed finite atlas A.
2. We will assume that the finite atlas A is “nice”, that is, it has“extendable” charts,
1.e. charts that can be extended to the (compact) closure of their domains.

2. Hyperbolic extensions

Recall that hyperbolic n-space H" is isometric to H* x H"™* with warp prod-
uct metric (cosh?r)og + o, where ogr denotes the hyperbolic metric of H', and
r: H"F — [0, 00) is the distance to a fixed point in H"~*. For instance, in the case n = 2,
since H' = R! we have that H? is isometric to R? = {(«, v)} with warp product metric
cosh? vdu? 4+ dv?. In the following paragraph we give a generalization of this construction.

Let (M", k) be a complete Riemannian manifold with center o = oy € M. The warp
product metric

g= (Cosh2 r)GHk + A

on H* x M is the hyperbolic extension (of dimension k) of the metric 4. Here r is the distance-
to-o function on M. We write £(M, &) = (H* x M, g), and g = &;(h). We also say that
EM) = &M, h) is the hyperbolic extension (of dimension k) of (M, k) (or just of M). Hence,
for instance, we have & (H') = H*'. For S € M and A C H* we define the partial hyperbolic
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extension Ex(S) = A x S C E(M). Also write H* = H* x {0y} C E(M); any p € H' is a
center of £ (M) (see Remark 3.3(1) in [32] or 2.3 below).

In this paper convex subset means specifically the following. A subset S of a length
metric space X (e.g. a Riemannian manifold) is convex in X if every two points in S can
be joined by a minimizing geodesic contained in S.

Let n be a complete geodesic line in M passing though o and let n* be one of its two
geodesic rays (beginning at o). Then 7 is a totally geodesic subspace of M and n is convex
(see (ii) of Section 3 in [32]). Also, let ¥ be a complete geodesic line in H*. The following
two results are proved in [32] (Lemma 3.1 and Corollary 3.2 in [32], respectively).

Lemma 2.1, — The subset’y x 0 is a convex subset of E(M) and y x 0 is totally geodesic
in E(M).

Corollary 2.2. — The subsets H* x n™ and y x M are convex in E,(M). Also H* x n is
lotally geodesic in E(M).

We also have that H* and every {y} x M are convex in £,(M) (see Section 3 in

[32]).
Remarks 2.3.

1. Note that H x 1 (with the metric induced by £(M)) is isometric to H* x R with
warp product metric cosh? voge + dv?, which is just hyperbolic (£ + 1)-space
H"*!'. Also y x 7 is isometric to R x R with warp product metric cosh? vdu® +
dv?, which is just hyperbolic 2-space H?. In particular every point in H =
H* x {0} C £(M) is a center.

2. Recall that the concept of sets of rays was introduced in Section 1. It follows
from Lemma 2.1 and Remark 2.3(1) that the set of rays of &(%) with respect
to any center o € H* C £(M) only depends on the set of rays of M and the
center ogt. That is, if 4 and #, defined on M, have the same sets of rays with
respect to o, then &i(h), E(/') have the same sets of rays with respect to any
oe H C gk(M)

3. Denote by B,(M) the ball of radius  of M centered at 0. Note that if 4 and #
on M have the same sets of rays then the balls B,(M) coincide.

4. Recall that H is convex in £,(M). Moreover, for [ < k, let H be a convex subset
of H" isometric to H'. If 4 and /' on M have the same sets of rays then the
r-neighborhoods (with respect to £ and /') of the convex subset H in &,(M)

coincide.

As before (see Section 1) we use £ to identify M — {0} with §"~! x R*. Sometimes
we will denote a point v = (u,7) € 8""! x RT =M — {0} by v = ru. Fix a center 0 € H* €
E,(M). Since Hf is convex in £,(M) we can write H' — {0} = §/! x Rt ¢ $/"~! x R*
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and $*=! € $"=! Then, for y € H* — {0} we can also write y = tw, (w, t) € $*"! x RT.
Similarly, using the exponential map we can identify £(M) — {0} with $/"~! x R*, and
for p € E,(M) — {0} we can write p = sx, (x, s) € S""~! x RT.

A point p € (M) — H* has two sets of coordinates: the polar coordinates (x, s) =
(x(p), s(p)) € S*=1 x R* and the hyperbolic extension coordinates (y,v) = (y(p), v(p)) €
H* x M. Write M, = {0} x M. Therefore we have the following functions:

the distance to o function: s:E M) — [0, 00), s(p) = de,on (p5 0)
the direction of p function: x: E (M) — {0} — S"H! p=sp)x(p)

the distance to H* function: r: & M) — [0, 00), r(p) = deg,on (s HY)
the projection on H* function: 9:E&M) — HY,

the projection on M function: v:E M) - M,

the projection on 8"~! function:  u: & M) — Hf — §"! v(p) = r(p)u(p)

the length of y function: t:E(M) — [0, 00), Up) = dgk (), 0)
the direction of y function: w:EM) —M, — §! () = t(phw(p)

Note that r = dy(v, 0). Note also that, by Lemma 2.1, the functions w and u are
constant on geodesics emanating from o € £,(M), that is w(sx) = w(x) and u(sx) = u(x).

Let 0, and 9, be the gradient vector fields of 7 and s, respectively. Since the M-fibers
M, = {y} x M are convex the vectors 9, are the velocity vectors of the speed one geodesics
of the form a+> (y, au), u € "' C M. These geodesics emanate from (and orthogonally
to) H* C &(M). Also the vectors 9, are the velocity vectors of the speed one geodesics
emanating from o € £&(M). For p € £,(M), denote by A = A(p) the right triangle with
vertices o0, y = y(p), p and sides the geodesic segments [0, p] € E(M), [0, 7] € HE, [p, 1] €
{»} x M C £;(M). (These geodesic segments are unique and well-defined because: (1) H*
is convex in E(M), (2) (9, 0) = opxm and o are centers in {3} x M and H* C (M),
respectively:)

Let o : £(M) — HF — [0, ] be the angle between 0, and 9,, thus cosa = g(d,, ;).
Then o = a(p) is the interior angle, at p = (y, v), of the right triangle A = A(p). We call
B(p) the interior angle of this triangle at o, that is B(p) = B(x) is the spherical distance
between x € $“7~! and the totally geodesic sub-sphere $/~!. Alternatively, B is the angle
between the geodesic segment [0, p] C E(M) and the convex submanifold H*. Therefore
B is constant on geodesics emanating from o € £, (M), that is B(sx) = B(x). The following
corollary follows from Lemma 2.1 (or see Lemma 4.1 in [32]).

Corollary 2.4. — Let n* (or 1) be a geodesic ray (line) in M through o containing v = v(p)
and y a geodesic line in H* through o containing y = y(p). Then A(p) Cy x nt Cy x 1.

Note that the right geodesic triangle A(p) has sides of length r = r(p), t = t(p)
and s = s(p). By Lemma 2.1 and Remark 2.3 we can consider A as contained in hy-
perbolic 2-space. Hence using hyperbolic trigonometric identities we can find relations
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between r, ¢, s, @ and B. For instance, using the hyperbolic law of cosines we get:
cosh(s) = cosh(r) cosh(¢). Note that this implies ¢ < 5. Here is an application of this equa-
tion.

Proposition 2.5 (Iterated hyperbolic extensions). — The following identity holds
E(EMD) = Er (M,
where we are identifying H* with H' x HY with warp product metric (cosh® £)ogs + oge.
This proposition is proved in [32] (it is Proposition 4.1 in [32]).

Remarks 2.6.

1. Note that the identification of H™* with H' x H* (as a warp product) depends
on the order of / and £, that is, on the order in which the hyperbolic extensions
are taken.

2. As before, here the function ¢ : H* — [0, 00) is the distance in H* to the point
o€ H.

We next explore the relationship between hyperbolic extensions and metrics &-
close to hyperbolic. Since &£,(H') = H**! one would expect that if M is “close” to H',
then £,(M) would be close to H*™, This motivates the following question.

Question. — What can we say about the hyperbolic extension of a (B,, €)-close to hyperbolic
metric?

The next result answers this question; it is Theorem B in [32].

Theorem 2.7. — Let M" have center 0. Assume M is (B,, €)-close to hyperbolic, with charts
of excess &€ > 0. Then E (M) s (B,, Ce)-close to hyperbolic, with charts of excess &', provided a is
sufficiently large. Explicitly we want

a>R =R,k £).
Here C = C(n,k,§), and §' =& — /" > 0.

Explicit formulas for C and R are given in [32] (the constant C here is called Cy
in [32]). Note that the excess of the charts decreases. This is one of the main reasons to
introduce the excess. In Section 3 (see also [29]) we describe another geometric process,
warp forcing, which also reduces the excess of the charts.
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3. Deformations of metrics

The goal of this section 1s to describe the “hyperbolic forcing” method. It has as
input a metric on R" of the form g = g, + dr* (or, more generally a metric on a manifold
with center) and as output a metric still of the form 4, 4+ &, but which is hyperbolic on a
ball centered at the origin.

Hyperbolic forcing is defined as the composition of two other metric deformations:
the two variable deformation and warp forcing. We present these first.

In this section M" = (M", g) is a Riemannian manifold with center o. As before we
identify M with R” and M — {0} with $"~! x RT. Therefore on M — {0} = $""! x R we
can write g = g, + dr*. Also B, and B, will denote the open and closed balls in M =R" of
radius a centered at 0 = 0, respectively.

3.1. The two variable warping deformation

Let ¢’ be a metric on $"~! and consider the warp product metric ¢ = sinh? 7g” +
on $" ! x R, Recall that p : R — [0, 1]1is a fixed smooth function with p(r) = 0 forr < 0
and p(r) = 1 for r > 1. Given positive numbers a and d define p, (1) = p(25*). Also fix
an atlas Ag: on 8"! as before (see Remark 1.5). All norms and boundedness constants
will be taken with respect to this atlas. Recall that og.1 is the round metric on $"~!. Write

g; = (1 - /Oa,d(r))o’sn—l + pa,d(f)g//

and define the metric
Toig = sinh? g+ ar.

We call the correspondence g’ + 7T, ¢’ the two variable warping deformation. By con-
struction we have that 7, ;¢ satisfies the following property:

sinh? 70g-1 + dr*  on B,

/

7;,d§/ =

outside B, 4.

Hence, the two variable warping deformation changes a warp product metric ¢ inside
the ball B, ‘ making it (radially) hyperbolic on the smaller ball B,. The warp product
metric g’ does not change outside B, -

Remarks 3.1.1.

1. Note that if we choose g’ to be the warped-by-sinh hyperbolic metric, that is,
g =sinh’rog1 +d’, then T, .0 = ¢

2. To be able to define 7, ¢ the metric ¢ does not need to be a warp product
metric everywhere. It only needs to be a warp product metric in the ball B, ‘.

3. Since T, 4¢' = sinh® 7g' + d&r* the metric T, ;¢ also has 0 = 0 as center.
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3.2. Warp forcing

Recall that we can write the Riemannian metric g of M on M — {0} = $"7! x R"
as g =g + dr*. For a fixed 7, > 0 we can think of the metric g, as being obtained from
g=g + d* by “cutting” g along the sphere of radius ry, so we call g, the spherical cut of g
at 79. In the same vein, we call the metric

R 1
£ = (sinh2 (r9) )gm

the normalized spherical cut of g at ry . Note that in the particular case where g = g, + dr* is
already a warped-by-sinh metric (that is, g, = sinh” 7¢’ for some fixed ¢’ independent of 7)
we have that the spherical cut of g = sinh? g+ d* atry is sinh? (r0)¢', and the normalized
spherical cut at 7y is g, = ¢'.

Fix ny > 0. We define the warped-by-sinh metric g,, by:

1
éro = sinh? 7@7‘0 + dr* = sinh? 7(#)&0 + .
sinh” 7

We now force the metric g to be equal to g, on B,, and stay equal to g outside B, . 1 For
this we define the warped forced metric W, g as:

Wrog = (1 - pm)éro + /Omgy

where p,, (1) = p(2t —21), and p : R — [0, 1] is as before (see Section 1). Hence we have

g, on B

10

W,g=
b { g outside B

1.
o+g

We call the process g = Wg warp forcing. Hence warp forcing changes the metric

only on B, , 1, making it a warp product metric inside B,,. The metric g does not change

0
outside B, , L.

Remarks 3.2.1.

1. Notice that to define W, g we only need g, to be defined for r > .

2. Note that if we choose g to be the warped-by-sinh hyperbolic metric, that is,
g=sinh?rog-1 + dr?, then W, g = g.

3. Note that the metric W, g also has 0 = 0 as center.

3.3. Hyperbolic forcing

Recall that (M", g) has center o, and we are writing g = g, + dr*. Let ry > d > 0. We
define the metric H,, 4¢ in the following way. First warp-force the metric g, i.e. take W, g.
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Recall W, g is a warp product metric on B, and has o0 as center (see Remarks 3.2.1(1),
(3)). Hence we can use the two variable warping deformation given in Section 3.1 (also

see Remark 3.1.1(2)) and define
(3.3.1) Hy.ag = Ton-iy.aWi8)-

The process g — H,, ¢ is called hyperbolic forcing. Write h = H.,, 4¢. Note that % also has the
form A=k, + dr*. In the next results we explicitly describe %, and give some properties
of the metric 4 = H,, 4¢. These results are proved in [33] (see Propositions 5.1 and 5.2 in

[33]).

Remark 3.3.2. — Let g be a metric on R” that can be written in as g = g, + dr>.
To define H,, ;¢ we only need g, to be defined for r > 7, (see Remarks 3.1.1(2), 3.2.1(1)).
More generally, if (M, gy) has center o then we can define H,, ;¢ for any metric on M of
the form g = g, + dr*, where g, is only defined for > 7). Here we are using gy to identify
M and R". This construction is used in Section 4.

Proposition 3.3.3. — Let h, be as above. Then

& T+ 3 <r
L A= puesin® g, + 0,00 n<r<n+i

sinh® r((1 = pgo—a.a (N5t + Poo-i.a(N&y) 10 —d <71 <15

sinh? rOgn-1 r<nry—d,

where the glung functions p,, and P ,—q).a are defined in Sections 3.2 and 3.1, respectively.

Proposition 3.3.4. — The metric h = "H,,, 4 has the following properties.

(1) The metric b is canonically hyperbolic on E,O_d, i.e. h =sinh®rog: + dr? on B,.O_d.
(1) We have that g = h outside B, , L.
(iii) The metric h concides with W, (g, ) outside B, _ ‘.

iv) The metric h coincides with Ty —a). 48, on 1_3,0.

(v) All the g-geodesic rays v v ru, u € S", emanating from the center are geodesic rays of
(M, h). Hence, the space (M, h) has center o. Moreover the function r (distance to the
center 0) is the same on the spaces (M, g) and (M, h). In other words, the spaces (M, g)
and (M, h) have the same set of rays.

—

Next we discuss the following question:
Is the hyperbolically forced metric h = H,, 4g close to hyperbolic, when g is close to hyperbolic?

Notice that from Remarks 3.1.1(1) and 3.2.1(2) it follows that if we choose g to
be the warped-by-sinh hyperbolic metric, that is, g = sinh® togi-1 + d?, then H,, 4g = g.
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Therefore one would expect that the answer to the previous question is “yes”. So, it is
better ask a more quantitative question:

1o what extend is the hyperbolically forced metric h = H,, 4g close to hyperbolic, when g is
close to hyperbolic?

The next theorem deals with this question. This theorem is proved in [33] (see
Theorem 1.7 in [33]).

Theorem 3.3.5. — Let M" have center o and metric g = g, + dr*. Assume the normalized
spherical cut g, is c-bounded. If the metric g is radially €-close to hyperbolic outside B,y _¢ with charts
of excess & > 1, then the metric H,, 4 is (B,—4, n)-close to hyperbolic with charts of excess & — 1,
provided

1 —(—d)
n= Cl g +e + CQS.
Here C 15 a constant depending only on n, &, ¢, and Cq depends only on & .

Remarks 3.3.6.

1. An important point here is that by taking r and & large the metric H,, 4¢ can
be made 2Cy¢e-close to hyperbolic. How large we have to take 4 and ry depends
on ¢, which is a C* bound for g,,, the normalized spherical cut of g at 7, (see
Section 3.2).

2. Note that the excess of the charts decreases by 1. This is because of warp forcing

4. Deformations of families of metrics

In this section we give a one-parameter version of the concepts and results pre-
sented in Section 3. Let (M",g) be a complete Riemannian manifold with center
0 € M. As before we identify M with R” and M — {0} with $"~' x R". Therefore on
M — {0} =S8"! x R we can write g = g, + dr*, where 7 is the distance to 0. We will still
use the notation B, and B, for the open and closed balls in M = R" of radius a centered
at 0 = 0, respectively.

Fix £ > 0, and let Ay > 1 + &. We say that the collection {g, },55, 13 2 O-famuly of
melrics on M if each g, is a metric of the form g, = (g,), + dr*, where the metrics (g, ), are
defined (at least) forr > A — 1 —&.

Remarks 4.1.

1. Note that we are not demanding the metrics g, to be globally defined, 1.e. that the
(g,), are defined for all » > 0. The reason is that in the applications (in Section 8)
we actually do get an O-family of metrics that is only partially defined, 1.e. that (g, ),
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are defined (at least) for all » large. Also we intend to apply hyperbolic forcing
‘H,..q to each of the g, and for this we only need the (g,), to be defined for r > A
(see Remark 3.3.2). Moreover, we want a family version of Theorem 3.3.5, this
1s why we demand a bit more: that the (g,), be defined forr > A — 1 —&.

. Since g, = (g,), + d* is defined on the complement of the closed ball ]_3,\_1_5

of radius A — 1 — &, centered at o, g, is ray compatible with (M, 0), over the
complement of B,_,_¢, see Remark 1.1. This is why we used the symbol ©, to
evoke the idea that all metrics g, have, in some sense, a common center and
spheres. Note that the property of being an O-family is actually equivalent to
each metric in the collection being ray compatible with (M, o).

We want to give a one-parameter version of Theorem 3.3.5, that is, a version for
a O-family {g,}. Since the constant C; in Theorem 3.3.5 depends on the bound ¢ there
is no uniform C; that would work for every g,. This problem motivates the following

definition.

4.2)

Let b € R. By cutting each g, at b+ A we obtain a one-parameter family {(g;\)A b
of metrics on the sphere $"~!. Here A > max{q, —b}, so that the definition makes sense.
We say that the {g, } has cut limit at b if the family {@:)A o} C? converges. That is, there is
a C? metric g, on $"~! such that

— ~2
b C
‘(&)Hb —goo‘CQ(sn_l) — 0 asA— oo.

Remarks 4.3.

1.

Recall that the metric (/g;/\ 4, 1s the normalized spherical cut of g, at A + 4. See
Section 3.2.

. The arrow above means convergence in the C*-norm on the space of C* metrics

on 87!, See Remark 1.5.

. Note that the concept of cut limit at 4 depends strongly on the indexation of the

family.

. Ifa family {g,} has cut limits at 4, then the family {(g, ), ), is clearly c-bounded,

for some c.

Consider the ©-family {g, } and let d > 0. Apply hyperbolic forcing to get

hx = Hk,dgk-

We say that the family {#,} is the Ayperbolically forced family corresponding to the O-family
{g.}. Note that we can write 4, = (%), + dr*. Using Proposition 3.3.3 we can explicitly
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describe (4,),:

(4.4) (h), = (1 — p,(r) sinh? y(/gx\)A +p,(N(g), N AT+
sinh® /(1 — po—a).a(r)os1 + po—ay.a(N(g) ) r—d<r<ai
sinh? rogi-1 y<h—d.

The next proposition is a one-parameter version of Proposition 3.3.4. It is proved
in [33] (see Proposition 6.3 in [33]).

Proposition 4.5. — The metrics b, have the following properties.

(i) The metrics b, are canonically hyperbolic on B,_y, i.e. equal lo sinh® rog—1 + dr® on
B;_4, provided A > d.
(1) g =h, outside B, , 1
(1) The metric b coincides with WW; (g,) outside B, _ ‘.
)

(iv) The metric h coincides with T —q), d(@k) on B;.

V) If the O-family {g, } has cut limats for b =0 then {h, } has cut limits on (—o00, O]. In fact

—~

we have
8o b=0
Bo=10=pQ+2)os +pQ2+2)5), —d<b=<0
Og b<—d,

where p 1s as n Section 1.
(Vi) If we additionally assume that {g, } has cut limits on [0, %], then {h,} has also cut limats

on [0, 1]. In fact, for b € [0, %] we have

o= (1= p1)d + p)E.,

where p s as in Section 3. Of course if {g,} has a cut limit at b > % then {h,} has the
same cut limit at b (see item (i1)).

(vii) Al the rays rv— ru, u € 8", emanating from the origin are geodesic rays of (M, h, ). Hence,
all spaces (M, h, ) have center o € M and have the same geodesic rays emanating from the

common center 0. Moreover the function r (distance to o € M) is the same on all spaces
(M, h,). Therefore all spaces (M, h,) have the same set of rays as (M, g).

We now state one of our most important results. It is used in an essential way
in smoothing Charney-Davis strict hyperbolizations. It is proved in [33] using Theo-
rem 3.3.5 (see Theorem 1.11 in [33]). Before, we need a definition. We say that an ©-
family {g, } 1s radially &-close to hyperbolic, with charts of excess & , if each g, 1s radially e-close to
hyperbolic outside B;_;_¢, with charts of excess §.
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Theorem 4.6. — Let M have center o, {g,} an O-family on M, and €' > 0. Assume that {g; }
has cut limits at b= 0. If {g,} is radially €-close to hyperbolic, with charts of excess & > 1, then, for
every A, Hy ag. 15 (Bi—q, & 4 Cog)-close to hyperbolic, with charts of excess & — 1, provided

(i) A —d>mn(Z).
(i) d> 2t

Here C and Cy are as in Theorem 3.3.5.

Remarks 4.7.

1. Note that we can take & as small as we want, hence we can take &' + Cyée as
close as Cye as we desire, provided we choose d and A sufficiently large.

2. The constant C; = Cy(c,n, &) in Thg(gem 4.6 depends on c. Here ¢ is as in
Remark 4.3(4), that is, ¢ is such that {(g,),_,}, 1s c-bounded.

4.8. Cuts limuts and hyperbolic extensions

In (4.2) we gave the definition of a cut limit. More generally, let I C R be an interval
(compact or noncompact). We say the O-family {g,} has cut limts on I if the convergence
in (4.2) 1s uniform with compact supports in the variable 4 € I. Explicitly this means: for
every & > 0, and compact K C I there is A, such that [(g,),,, — Gooti |21y < €, for
A>A,and b € K.

If the ©-family {g, } has cut limits on R we will just say that {g, } has cut limats.

Remark 4.8.1. — Let a € R. If {g, }, has cut limits then so does the reparametrized
famlly {gx+a}k~

Here is a natural question:

If{h,}s has a cut limits, does {E(h,)}s. have cut limits?

Remark 4.8.2. — More generally we can ask whether {&;(%;)}, has cut limits,
where A = A()). Of course the answer could depend on the change of variables A =
A(A).

The next result gives an affirmative answer to this question provided the family
{A,} 1s, In some sense, nice near the origin. Explicitly, we say that {#, } is hyperbolic around
the onigin if there 1s a B € R such that

(}ll))n b = Ogn-1,
+

for every b < B and every (sufficiently large) A. Note that this implies that each £, is canon-
ically hyperbolic on the ball of radius A + B. Examples of ©-families that are hyperbolic
around the origin are families obtained using hyperbolic forcing, as above.



RIEMANNIAN HYPERBOLIZATION 25

Remark 4.8.3. — If {k, } 1s hyperbolic around the origin then it is globally defined (see
Remark 4.1(1)).

As mentioned before the next result answers affirmatively the question above.
Moreover it also says that some reparametrized families {& (%)}, for certain change
of variables A = A (1), have cut limits as well. Write A = A()X’, 8) = sinh™!(sinh A’ sin 6),
for fixed 6. Note that A = A’ for 6 = /2. We say that {&,(h.)},/ is the O-reparametrization
of {€(I)}i. If we consider an hyperbolic right triangle with one angle equal to 6
and side (opposite to ) of length A, then A’ is the length of the hypotenuse of the
triangle. As A" — oo all f-reparametrizations differ by an additive constant, that is,
lim;/ 0o A(X) — A" = Insin®, as simple computation shows. The next proposition is
proved in [30]; it is the Main Theorem in [30].

Proposition 4.8.4. — Let M have center o. Let {h, }, be O-family of metrics on M. If {h, },
is hyperbolic around the origin and has cut limats, then for every 6 € (0, 7w /2] the 0 -reparametrization
{Ex(h) )y has cut limals.

Note that the case 6 = /2 gives A = A’, answering the question above.

5. Normal neighborhoods on all-right spherical complexes

The goal in this section 1s to define “natural normal neighborhoods” of simplices
in all-right spherical complexes, and give some of its properties.

We use the definition and properties of a spherical complex given in Section 1 of
[5]. Recall that a spherical complex is an all-right spherical complex if all of its edge lengths
are equal to r /2. We will denote a complex and its realization by the same symbol. In this
paper we shall assume that all spherical complexes satisfy the “intersection condition” of
simplicial complexes: every two simplices have at most one common face.

Remark 5.0.1. — Let P be an all-right spherical complex and A € P. The symbol
A denotes the interior of A. (If A is a point then it is equal to its interior.) In this paper
we will use the three definitions of link Link(A, P) of A in P. The geometric link Link(A, P)
1s the union of the end points of geodesic segments of small length B8 > 0 emanating
perpendicularly (to A) from some point x € A. If we want to specify 8 and x we say
that Linkg(A, P) is the B-link based at x. The geometric star Star(o, K) is the union of the
corresponding segments. The simplicial link 1s the subcomplex of P formed by all simplices
A’ such that (1) A’ is disjoint from A, (2) A" and A span a simplex (this simplex is the
join A x A" € P, and A’ is the opposite face of A in A x A’). Note that if we continue a
geodesic [x, u], with « in the geometric B-link at x, we will hit a unique point in A’. This
radial geodesic projection gives a relationship between geometric links and simplicial
links. The simplicial star is the subcomplex of P formed by all simplices A’ that contain A,
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together with its faces. For x € A the direction link of A in P at x is the set of all vectors
at x perpendicular to A*. Using geodesics emanating from x perpendicularly to A we
also get a relationship between geometric links and the direction links. These different
definitions of link all come with natural all-right spherical metrics: the simplicial link
with the induced metric, the direction link with the angle metric, and the geometric link
Linkg (A, P) with the induced metric from P rescaled by 1/%. The relationships between
the different definitions of link mentioned above all respect the metrics.

Remark 5.0.2. — Let P be an all-right spherical complex and A € P. The sim-
plices of Link(A, P) are of the form A’ N Link(A, P) where A" € P and A C A’. Here
by Link(A, P) we mean either the geometric or the simplicial link. Alternatively, the sim-
plices of Link(A, P) are Link(A, A"), A" € P, A C A’. Again, here Link(A, P) is either the
geometric or the simplicial link. Note that if we write A’ = A % A”, where A" is opposite
to A in A, then A” =Link(A, A’). In this last equality Link is the simplicial link.

5.1. Sequences of widths of normal neighborhoods on the sphere 8™

The 2"! quadrants of R™"! intersect the unit sphere $” centered at the origin
in the canonical m-simplices. We consider the m-sphere 8™ with its canonical all-right spherical
structure formed by the canonical m-simplices together its faces. For A € §” we will denote
by A its interior.

Remark 5.1.1. — Let A* € §” be an all-right £-simplex in $”, and p € A*. The
perpendicular sphere Sar , o A* at p is the union of (images of) geodesics in $” emanating
from p and perpendicular to A*. Note that this makes sense even if p is in the boundary
of A because the tangent space to A at p is well defined. We can identify this sphere with
S"~* in such a way that the set {A N Saky}aesn corresponds to the canonical all-right
spherical structure of $"*. The proof of this fact is straightforward.

Let B € (0,7/2] and A* € §™, 0 < k < m. The closed normal neighborhood of A* in S™
of width B is the union of (images of) geodesics of length B emanating perpendicularly
from A*. Tt will be denoted by Ng(A*, §™). For the special case dim A = m by definition
we take Ng(A™, 8") = A™, for any B.

Let B = {Bi}i=0.1.2.. be a (finite or infinite) sequence of real numbers with B, €
(0,7/2) and Br11 < Bi. We write B(m) = {Bo, - .., Bn_1, }. The set B determines the set
of spherical B-neighborhoods Ng(8™) = Ng,» (8") = {N ﬂk(Ak, S™)} Atesn j<m, for any sphere 8"
(of any dimension). Note that the normal neighborhoods of all £-simplices A* have the
same width B;. The set B is called a sequence of widths of spherical normal neighborhoods or
simply a sequence of widths. The sequence B(m) is a finile sequence of widths of length m. The
definitions above still make sense if we replace 8" by §J, the m-sphere of radius u (for
small B;’s).
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We are interested in pairs of sequences of widths (B, A), B = {B;} and A = {«a;},
having the following Dusjoint Neighborhood Property:

(5.1.2) DNP: Tor every £ < m any two sets in the

following collection are disjoint

{Nﬁk (aF,87) = [ JNg (a7, 8") } :
Akesm

J<k

The disjoint neighborhood property obtained by fixing £ and m above will be denoted
by DNP(%, m). In this case we allow the sequences of widths to be finite, and of length
at least £ + 1. It is straightforward to verify that DNP(£, m) is equivalent to the following
property. For fixed & and m we have: for different £-simplices A% and A} we have

(5.1.2%) Np (A1, 8”) ((Ng, (A% 87) C [ Na (&7, 87).

J<k

The same is true for DNP. We define the A-neighborhood of the (k — 1)-skeleton as
Uj< . N%.(Aj ,§™). Then (5.1.2°) says that the B-neighborhoods of different £-simplices in-
tersect only inside the A-neighborhood of the (£ — 1)-skeleton.

Proposition 5.1.3. — The pair of (finite or infinite) sequences of widths (B, A) satisfy
DNP(k, m) if and only if 2P < 32,

sino—|

Note that the inequality condition is independent of m. The proposition follows
directly from Lemmas 5.1.4 (taking £ =/ and B = y) and 5.1.5 given below, and the fact
that {o;} 1s decreasing.

Lemma 5.1.4. — Let A¥, Al e S" and N = A*"N AL Leta, B,y € (0, /2) such that
ok e = Then

Ng (A", 8") NN, (A", 8") C No (A7, 8").

Proof. — In this proof Link(A, §™) shall denote the simplicial link and Star(A, §™)
the simplicial star (see Remark 5.0.1). Note that Ng(A,S8™) C Star(A,S"), for every
A € §™. Write S = Link(A/, "), At =S N Af and A, =8N A!. Then A is a simplex in
the all-right triangulation of S. Also A and Aj are disjoint. Hence their distance in S is
at least 7.

Take ¢ € Nﬂ(Ak, S™ N N,,(A[, S™). Since both of these neighborhoods lie in
Star(A/,S™) there is a geodesic segment [p, ¢] in Star(A/,8™) with p € AV and [p, q]
perpendicular to A/. Since ¢ € Nﬁ(Ak, S™) C Star(A*, §") there is A, € §” with ¢q €
A, D Af. Note that p € N C AF C Ay, hence [p, q] C A,. Because N C A, we can
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write A; = A % A/, where A is opposite to AV in Aj; notice that A} € S. Analogously,
replacing A* by A’ above we have that there are Ay and A with Ay = A x A}, A} € S,
and [p, g] C A,.

Write o’ = length([p, ¢]). We have to prove o’ < o. We assume o’ > o and get a
contradiction. Let ¢; be the closest point in A to ¢, and ¢, be the closest point in A’ to ¢.
We have a; =length([q), ¢]) < B and ay = length([¢, ¢]) < y. Note that [¢;, ¢g] C A;. It
is straightforward to show that [¢;, p] is perpendicular to AV at p (the simplex {p} * A] is
convex in A and perpendicular to A*; similarly for Af). We get a right (at ¢;) spherical
triangle A(q, ¢;, p) with one side equal to ¢; and hypotenuse equal to o’. Let 6, be the
angle at p, that s, the angle opposite to the side of length g;. Then by the spherical law of
sines we get

. sing; sinf V2

sinf; = — < — < —.

sina’ sino 2

Consequently 6; < 7. Similarly we get 6 < 7. Let z; be the intersection of S with the
ray at p with direction ¢;. Analogously let ¢’ be the intersection of S with the ray at
p with direction ¢. Note that z; € Al and ¢ € A7 N AJ. Since Al C A7 we get seg-
ments [¢, z;] C A”. Because the angle at p of the triangle A(g, ¢;, p) C A; is ;, we get
length([¢, z;]) = 6;. Therefore

Hence § <6, + 6, <% + T = 5 which is a contradiction. O

Lemma 5.1.5. — Let A%, A5 € 8™ be two different k-simplices, and A*' = A} N AL,
Moreover the A* are k-faces of a k + 1-simplex. Let o, B € (0, 71/2). Suppose that Ng(A*, 8™ N
N5(A%, 8™) C No (A1, 8™). Then S8 < 2,

sinoe — 2

Progf. — The lemma is certainly true for S'. Using the spherical law of sines it is
straightforward to verify the lemma for §2. The case §", m > 2, can be reduced to the
case m = 2 in the following way. First note that A% and A} span a simplex A**! which is
contained in a canonical (k+ 1)-sphere 87! C §”. Now the case m > 2 can be reduced to
the case m = 2 using the orthogonal sphere S = Syi-1 , in $! (see Remark 5.1.1), where
 is the barycenter of A*!, UJ

The next result says that DNP implies a seemingly stronger version of itself (see

(5.1.2°).

Lemma 5.1.6. — Suppose the pair of sequences of widths (B, A) satisfies DNP. Let N =
AN AL <k, . Then

Ng (A%, 8") [Ng (A" 8") c [ JNa, (A%, 87).
isi
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Remark 5.1.7. — Note that the condition A/ = A*N A/, j < k, [, is equivalent to
AF ¢ Aland A’ ¢ A*, where the empty set is considered a simplex of dimension —1.

Proof of Lemma 5.1.6. — From Proposition 5.1.3 we have S2ft snbi g The

Q3 LY .
Sme; ” s

lemma now follows from Lemma 5.1.4. O

5.2. Natural neighborhoods on the sphere 8™

Let A = A" € §”. In this section the B-geometric link at the barycenter of A (see
Remark 5.0.1) will be called the link sphere of A of radius B, and will be denoted by Sy = Si.
Rescaling gives an identification between Sr and $”7*!, thus we will consider S, as an
all-right spherical complex (alternatively we can consider S+ with the angle metric). The
simplices of Sy are Sy N A, A’ D A.

Let A = Af, where A* C AV € 8™, and y € (0, /2). It is straightforward to verify
that there is 8’ € (0, /2] such that

Sh NN, (A7, 8") =Ny (Shnal,sh),

where the last term is the f’-normal neighborhood of the simplex Si N A in S’Z. Recall
that we are identifying S, with $”7*~!  or, using the angle metric. Therefore the equality
above says that the set on the left of the equality is equal, after rescaling, to the right side
of the equality. The next lemma gives a relationship between B, B’ and y. Note that when
y > B then B ' =m/2.

Lemma 5.2.1. — Let B, B’ and y be as above, with y < B. Then sin g/ = 22X

sinf”

Proof.— Let p € SK NN, (A7, 87), where A = A¥ € AV, Then there is a g € A/ such
that d = ds»(p, ) = ds»(p, V) < y. We are interested in the case when d is maximum, so
we assume d = y. Let o be the barycenter of A. Since ds»(0, p) = B we get a right (at ¢)
spherical triangle with one side equal to y and hypotenuse equal to . The angle opposite

to the side of length y is B’. Then, by the spherical law of sines we get ﬁ = % UJ

Let B = {B;} be a sequence of widths. Let A = A* € §” and S, = S’Z" be the
link sphere of A of radius B;. By intersecting S, with each element of the set Ng(S™)
we get the set N(Sa, B) ={SA N N@,(Af, S™)} ajesn. It follows from Lemma 5.2.1 that for

simplices A/, with A C A/, there are decreasing B_;— > 0 such that
SA N N@(A/, Sm) == Nﬁ;—k—l (SA N A/, SA)

Since the B;’s are decreasing, we have B, < m/2. Hence we can write N(S,,B) =
NB’(m—k—l)(SA) where B/(m—k— 1) = {,36, ey ﬂ:ﬂik72} and we also say that NB’(m—k—l)(SA)
is the set of B'(m — & — 1)-neighborhoods of S,. Note that B'(m — £ — 1) depends only on
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B and the dimension £ of A*. The next corollary, which is immediate from Lemma 5.2.1,
gives this relation explicitly.

Corollary 5.2.2. — For (=0, ..., m — k — 2 we have sin(B]) = %

Let B={B;}i=0.1.... be a sequence of widths. We say that B is a natural set of neighbor-
hood widths for all spheres if B(m — k — 1) =B'(m — k — 1) for all m and £ with m > k.

. Corollary 5.2.3. — The sequence of widths B = {B;} s natural if and only if sin(B;) =
sin'™'(By) and By < /4.

Progf: — It follows from Corollary 5.2.2 with [ = 0 that sin(By,) = sin(B;)
sin(Bo). O

Given ¢ € (0, 1) we define B(c) = {B;} by i =sin"'(¢'™"). Hence the corollary
says that B is natural if and only if B = B(¢), for some ¢ € (0, 1). In fact, in this case we
have ¢ = sin(fy).

Let ¢ € (0,1) and ¢ > 1. We denote by B(g;¢) = {y;} the set defined by y;, =
sin™!(c¢™"). Note that B(¢; ¢) is a sequence of widths provided ¢ < 1. Proposition 5.1.3
implies the next corollary.

Corollary 5.2.4. — The pair of sequence of widths (B(s; ¢), B(g; ¢)) satisfy DNP provided

g<§.

|~

~

If ¢ = ¢ =1, then a natural sequence of widths satisfies DNP with A =B = B(g).

5.3. Neghborhoods in piecewsse spherical complexes

This subsection is essentially a version of Section 5.1 in which we replace 8" by an
arbitrary all-right spherical complex. Let P be an all-right spherical complex and A/ € P.
As before A is interior of A. We can write Link(A/, P) = UNCME}, Link(A/, A%) as sets
and complexes (see Remark 5.0.2). The set {A*} A/Cakep 18 In one-to-one correspondence
with the set of spherical simplices of Link(A/, P), that is A* corresponds to Link(A/, A¥),
which is an all-right spherical simplex of dimension £ —j — 1 in Link(A/, P). The all-right
spherical metric on Link(A/, P) will be denoted by OLink(A/.P)-

Remark 5.3.1. — The above paragraph is valid regardless of the type of link, see
Remarks 5.0.1, 5.0.2, and all definitions of Link(A, P) are equivalent as metric complexes
because P has the “intersection condition”. Any of these will lead to the corresponding
definition of Link(A, P), but they are all equivalent as metric complexes (note that we are
assuming P has the “intersection condition”). We will use any of the definitions depending
on the situation.
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Lemma 5.3.2. — Let N C A* € P. Then
Link(Link(A/, A"), Link(A/, P)) = Link(A", P).

Remark 5.3.3. — The equation in Lemma 5.3.2 is an equality of all-right spher-
ical metric complexes. If we use the simplicial definition of link it is an equality of
sets. In this case the lemma takes the form Link(A’, Link(A/, P)) = Link(A*, P), where
A' = Link(4A’/, A") is opposite to A/ in A* (see Remark 5.0.2).

Proof. — Let N C A*. Let Al be the opposite face of A/ in A*. We use the sim-
plicial definition of link, so we have to prove: Link(A, Link(A/, P)) = Link(A*, P) (see
Remark 5.3.3). We have that A’ € Link(A', Link(A/, P)) if and only the following two
statements hold: (i) A’N A’ =@, (ii) AU A’ is contained in a simplex in Link(A/, P).
But statements (1) and (i1) hold if and only if the following four statements hold: (recall
NNA =@ (1) AANAN =0, (2) A'U N is contained in a simplex, (3) A'N Al =@,
4) AU A'U A is contained in a simplex. On the other hand A € Link(A*, P) if and
only if the following two statements are true: (a) A’ N A* =, (b) A’ U A is contained in
a simplex. Since A’ is opposite to A/ in A* we have that statements (a) and (b) are true if
and only if statements (1) to (4) are true. U

Let AV C A*. Define the closed normal neighborhood of N in A" of width B as
Ng (A, Af) = Nﬂ(Af, S™) N A*. Note that this subset of A* does not depend on the par-
ticular isometric embedding A* <> 8™, If AV is a simplex in the all-right spherical com-
plex P, we define the closed normal neighborhood of N in P of width B as

No (&, P)= [ ] Ng(a, A,

N CAkeP

Hence Ng(A/, P) is the union of (images of) geodesics of length 8 emanating perpendic-
ularly from AV,

Let B = {B;} be a sequence of widths. Then, for any all-right spherical complex P
the set B induces the set of neighborhoods Ng(P) = {N ,‘gk(A’C , P)} atep. The next lemma is
the spherical complex version of Lemma 5.1.4.

Corollary 5.3.4. — Let A*, A'€ Pand N = A*NA'. Leta, B,y € (0, 70/2) such that
inf vy < ¥2 Then Ng(AF, P) NN, (AY, P) C N, (A, P).

sina’ sine — 2

Progf: — The proof is the same as the proof of Lemma 5.1.4, just replace §” by P.
Recall that we are assuming P to have the intersection condition. UJ

As in Section 5.1, the next two results follow directly from Corollary 5.3.4. The
first is a version of DNP (see (5.1.2)) for P, obtained by replacing $” by P.
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Corollary 5.3.5. — Let the pair of sequences of widths (B, A) satisfy DNP. Then for any
all-right spherical complex P and k the following sets are disjoint

J<k
The next is a version of Lemma 5.1.6 for general P.

Corollary 5.3.6. — Let the par of sequences of widths (B, A) satisfy DNP. Then
Na (A% P) ()N (A% P) € [N (4%, P),
i
Sfor any all-right spherical complex P and N = A* N A!, j < k, [, simplices in P.

6. Normal neighborhoods on hyperbolic cones

In this section we give some properties of neighborhoods of faces in hyperbolic
cones, and define some special type of neighborhoods. Hyperbolic cones are cones over
all-right spherical complexes; they admit a canonical piecewise hyperbolic metric. To
define the special type of neighborhoods on hyperbolic cones we will use the objects and
results of Section 5.

6.1. Newghborhoods in precewise hyperbolic cones

We write R = (0, 00)*!, R = [0, 00)*! and H!' = B' N REL where
Bi' is the disc model of H*!. The canonical all-right spherical k-simplex is Ag =
sk N I_{/fl. We denote the origin of H*! by 0 = ogr+1. We can identify I:I/_‘:rl — {0} with
Agi x R* with the metric sinh® sog + ds?, where s is the distance to the “vertex” o. We
say that I:Ii+1 1s the wfinite hyperbolic cone of Agr and write CAg = I:I’fl.

Let P be an all-right spherical complex. The piecewise spherical path metric on P
will be denoted by op. Recall that P is constructed by gluing the all-right spherical sim-
plices A € P via isometries, where each A = A% is a copy of Ag, for k£ depending on A.
The wmfinite precewise hyperbolic cone of P is the space CP obtained by gluing the hyperbolic
cones CA,; A € P using the same rules used for obtaining P. The gluings of the CA use
the identity on [0, 00). Note that all vertex points of the CA get glued to a unique vertex
0= ocp. The cones CA, A € P, are the cone simplices of CP and the faces of the cone simplex
CA are of the form CA’ where A" C A. The set of all cone simplices will also be denoted
by CP. The complex CP (i.e. CP together with its cone faces) is an all-right hyperbolic cone
complex.

The piecewise hyperbolic metric on CP shall be denoted by o¢p and its correspond-
ing geodesic metric by dep. Note that CP is smooth and hyperbolic outside the cone of
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the codimension 2 skeleton of P. All (constant speed) rays emanating from o are length
minimizing geodesics defined on [0, 00). Then we can identify CP — {o} with P x R*
with warp product metric sinh” sop + ds?, where 7 is the distance to the vertex o. Even
though o¢p is not (generally) smooth, the set of speed one geodesic rays emanating from
the vertex ocp gives a well defined set of rays as in Section 1.

Remark 6.1.1. — It also makes sense to consider the concept of a partially defined
metric / on U C CP being ray equivalent with (CP, 0), see Remark 1.1. Moreover, the
remarks in 1.1 are still valid in this context.

For s > 0 we denote the open ball of radius s of CP centered at o by B,(CP). Note that
this ball is the “finite open cone” P x (0, 5) U {0}, where we are using the identification
above. The closed ball will be denoted by B,(CP) and the sphere of radius s, s > 0, will be
denoted by S,(CP), which we shall sometimes identify with P x {s} or simply with P.

Let A € P. In this section Star(A, P) and Link(A, P) will denote the simplicial
star and link of A in P, respectively. Since Star(A, P) is an all-right spherical com-
plex then C(Star(A, P)) is a well defined all-right hyperbolic cone complex, which we
could interpret as the simplicial star of CA in CP. To save parentheses we will write
CStar(A, P) instead of C(Star(A, P)) and CLink(A, P) instead of C(Link(A, P)). Note
that CLink(A, P), CStar(A, P) C CP.

Items 6.1.2, 6.1.3, and 6.1.4 below, will be very useful in what follows of Section 6
and in Section 8. We will use the notation £, (S) given at the beginning of Section 2.

6.1.2. Let AV C A* and let A’ be the opposite face of AV in A, Thus A*f =
AN % A'. We have [ = k —j — 1. As we mentioned at the beginning of Section 6.1 we can
write CA = H' c B!, CA/ = H'M' C H*. Also, H*! = ' x H*! with warp
product metric cosh’ roggi+1 + o1, where 7 is the distance in H! to a fixed center o.
Equivalentdy H**!' = &, | H'*!'. Therefore we can write

CA*=CA x CA'cH™ xH' =&, HT,

with warp product metric cosh? rog+1 + oge+1, where 7 is the distance in H*! to 0. Thus
we can write CA* = £, (CA'). (Here we using the definition of partial hyperbolic ex-
tension E5(S) given at the beginning of Section 2.) Note that the order of the decomposi-
tion here is important (see Proposition 2.5, Remark 2.6(1)). The identification above can
be done explicitly in the following way. Let p € CA* € H*' = Eivi (HT!). We use the
functions (or coordinates) given in Section 2: s, 7, £, », v, x, u, w. Then p = sx € CA*,
(s5,x) € R x A% corresponds to (y,v) = (tw,ru) € CA x CA!, (1,w) € RT x A,
(r,u) € Rt x Al. Note that x = [w, u](B), where B is as in Section 2, i.e. it is the an-
gle between w and x, and [w), ] is the spherical segment in A* = AV % A’ from w € A to
ue Al
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6.1.3. Fix A = A/ € P. Then the cone simplices in CStar(A, P) are CA*, where
AP D A (thus A" = AV % A, where A is opposite to A/ in A*). We can now apply the
identification in 6.1.2 to each cone CA* where A* D A/, Gluing all these identifications
we obtain the following important identification:

CStar(A, P) = CA x CLink(A, P),

where we consider the term on the right CA x CLink(A, P) with the metric cosh? rog+1 +
Octink(a.py, and 7 is the distance in CLink(A, P) to the vertex o € CLink(A, P). This
identification will be used many times. Note that the vertex of CStar(A, P) is iden-
tified with (¢, 0”), where o, 0" are the vertices of CA and CLink(A, P), respectively.
The identification here is an identification of all-right hyperbolic cone complexes. Ex-
plicitly using the coordinates s, 7, ¢, », v, x, u, w given in Section 2 we see that an el-
ement p = sx € CA* € CStar(A, P), where A* = A/ x A’, can be written as (tw, ru) €
CAN x CA' c CAN x CLink(A, P), using that A’ is a simplex in Link(A, P). Since we can
write x = [w, u](B), where B is the angle between w and x, the identification is given by

slw, u](B) = (tw, ru).

6.1.4. Asmentioned above, even though o¢iinka p) 1s not in general smooth it has
a well defined set of rays, where we are taking ocp = ocrink(a . p) as the center of CLINk(A, P).
Hence it makes sense to consider, as in Section 2, the Ayperbolic extension £;(CLink(A, P)) =
CA x CLink(A, P) with the metric cosh? rogi+1 + Octink(a.p)- LTherefore, using 6.1.3, we
can write

CStar(A, P) = Eca(CLink(A, P)) € &(CLink(A, P)),

where we consider CStar(A, P) C CP with the metric ogp and CLink(A, P) with the

metric OcLink(A,p)-

6.1.5. Note that the cone (or center) point 0 = ocp of CP belongs to CLink(A, P);
furthermore, every geodesic s = sx in CP (with the metric o¢p) emanating from o,
with x € Star(A, P) is contained in CStar(A, P). Therefore, it follows from 6.1.4 that
these geodesics coincide with the geodesics in Ega (CLiNk(A, P)), emanating from o €
CStar(A, P) C CP. In other words, the metric on CStar(A, P) is ray compatible with
both, (CP, 0) and (Eqa(CLink(A, P)), 0), see Remarks 6.1.1 and 1.1.

Remark. — The set CStar(A, P) is not open in CP, nor in Exa (CLiNk(A, P)). The
second condition given in (1) of Remark 1.1 in our contex here means that the geodesics
are perpendicular to the spheres on each cone CA, for A € Star(A, P).

The next lemma tells us how the identification in 6.1.3 behaves when we pass to
subsimplices.
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Lemma 6.1.6. — Let NN C A* € P. Then
CStar(A*, P) = CA* x CLink(A*, P) = CA’ x CA' x CLink(A*, P)
= CA’ x CStar(A’, Link(4/, P)) C CA’ x CLink(4/, P),
where A' = Link(A/, A*) is the opposite face of N in A* = N x AL
Progf: — The first equality 1s given in 6.1.3 above. The last inclusion follows from

the inclusion Star(A!, Link(A/, P)) C Link(A/, P). The two middle equalities in the state-
ment of the lemma are equalities of hyperbolic cone complexes. We have

CA" x CLink(A*, P) = (CA’ x CA') x CLink(A", P)
=CA x (CA' x CLink(A*, P))
= CA x (CA' x CLink(A', Link(&/, P)))
= CA x CStar(A', Link(A7, P))

where the first equality follows from 6.1.2, and the third one from Lemma 5.3.2, and the
fact that A’ = Link(A/, A*"). Finally the fourth equality follows from 6.1.3. U

Here is a metric version of Lemma 6.1.6. Let A/, A*, and A’ be as in Lemma 6.1.6.
Fix a homeomorphism 4 : §"*~! — Link(A*, P) and consider its cone C/: R"™* —
CLink(A*, P). Let /" be a metric on R" ™ of the form /" = /" + d*. Thus f” and oga-+ have
the same set of rays. The metric / = (Ch),f” is a metric on CLink(A*, P) in the smooth
structure induced by G/, and it has the same set of rays as o¢pinkat,p). We can consider
the (restriction of the) metric £;(f) defined on &, (CLink(A*, P)) to Exar(CLiNk(A*, P)) =
CA* x CLink(A*, P). And, since we have Link(A*, P) = Link(A’, CLink(A/, P)) (see
Lemma 5.3.2) the metric f is also a metric on CLink(A/, Link(A’, P)), and we can
consider the metric E(E/(f)) on Eqai(Ecar(CLiNK(A!, Link(A/, P)))) = CA x CA x
CLink(A!, Link(A/, P)).

Corollary 6.1.7. — Using the identification in Lemma 6.1.6 we get E(f) = E;(E(f)).
Progf: — The proof follows from Proposition 2.5 and the proof of Lemma 6.1.6. [J

Taking /' = ocuinkat p) gives the following corollary which follows from 6.1.4 and
Corollary 6.1.7.

Corollary 6.1.8. — Let A*, N, A" as in Lemma 6.1.6. Then
CStar(A", P) = Eqar(CLink(A", P)) = Eca (Ecar (CLink(A*, P)))
= Ecai(Ecar(CLink(A', Link(A7, P)))),
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where CStar(A, P) C CP s considered with the metric ocp, G(LinK(A, P)) with the metric
OCLink(A,P)> and CLInk(AZ, Llnk(A], P)) with the metric OCLink(A!,Link(A/,P)) -

For a cone simplex CA € CP, we define its closed normal neighborhood of width s by
(6.1.9) N,(CA,CP)=CA x ]_S_Y(CLink(A, P)) C CStar(A, P),

where we are using the identification given in 6.1.3. Hence N;(CA, CP) is the union of
(the images of) all geodesics of length s emanating perpendicularly from CA. The open

normal neighborhood of width s will be denoted by Iils (CA,CP). For A C A we will write
N,(CA, CP) = CA x B,(CLink(A, P)) C N,(A, CP).
The next two results will be needed in Section 6.2.

Lemma 6.1.10. — Let N C A* € P. Then

N,(CA*, CP) = CA’ x N,(CA', CLink(4/, P)),
where A' = Link(A/, AY). A similar statement holds if we replace N by N.

Remark 6.1.11. — Note that N,(CA*, CP) is a subset of CStar(A*, P). The
right-hand side is a subset of CA’ x CLink(A/, P). By Lemma 6.1.6 we can write
CStar(A*,P) ¢ CA/ x CLink(A/, P). Lemma 6.1.10 says that under this inclusion
N,(CA*, CP) corresponds to CA’ x N,(CA!, CLink(A/, P)).

Proof: — We have
N,(CA*, CP) = CA’ x (CA’ x B,(CLink(A*, P)))
= CA x N,(CA', CLink(A/, P)),

where the first equality follows from (6.1.9) and 6.1.2 and the last from Lemma 5.3.2 and
(6.1.9). 0J

Lemma 6.1.12. — Let s> 0, B € (0,7/2) and A € P. Then
N, (CA, CP) NS,(CP) =Ng(A, P) x {s} CP x {s} =8,(CP)
where sp = sinh ™! (sinh ssin B).

Progf: — Recall that in the identification CStar(A, P) = CA x CLink(A, P) given
in 6.1.3 the vertex o of CStar(A, P) is identified with (o', 0”), where o', 0" are the vertices
of CA and CLink(A, P), respectively.

Let p € N,(A, P) N S;(CP), for some ¢, 0 < ¢ < 5. Then dcp(o, p) = 5. From (6.1.9)
we have that N,(A,P) C CStar(A, P). Hence there is Af € P, where A C A%, such
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that p € CA*. Write A* = A * A!, thus CA* = CA x CA’ ¢ CA x CLink(A, P) (see
6.1.2 and 6.1.3). Therefore we can write p = (x,7) € CA x CA'. Since p € N(A,P) =
CA x B,(CLink(A, P)) (see (6.1.9)), we have that y € CA’NB,(CLink(A, P)) = B,(CA").
Consider the geodesic segments A = [o, p], B = [(x, o), p] and C = [o, (x, 0')]. These
three geodesic segments lic in CAF. Since CA* = Eq/(CA') the slices {x} x CA! C
{x} x CLink(A,P) are totally geodesic in CA* (see Section 2). Therefore B lies in
{x} x CA!. Also, since CA is totally geodesic in CA*, we have that C lies in CA x {0'}.
The length of A is s, and the length b of B is < ¢. Therefore we get a hyperbolic
geodesic triangle A with sides s, b, ¢ = length C, whose angle at (x, ¢') is /2 (because
CA x {0} and {x} x CA’). Let B’ be the angle at o. By the hyperbolic law of sines
applied to the right triangle A we have b = sinh ™! (sinh ssin 8’). We have shown that
p €N,(A,P)NS,(CP) if and only if b = b(p) < t. On the other hand p € Ng(A, P) x {s}
if and only if 8" = B'(p) < B. These last two equivalences, together with the identity
b = sinh ™! (sinh ssin B'), prove the lemma. 0

6.2. Construction of the fundamental neighborhoods in hyperbolic cones

In this section we construct the fundamental sets ) and X on the cone of a given
all-right spherical complex P. These sets are meticulously constructed objects that depend
on a number of pre-fixed variables; they are key objects which will be used in Section 8
to smooth the metric ocp on CP. In Section 8 the idea is to define metrics on each of
the X and ), and then glue all these metrics using the properties given in this section,
specifically Propositions 6.2.1, 6.2.3, and 6.2.5.

Let £ >0,c€(0,1)and ¢> 1 with c¢ <¢ %,  LetB=B(¢;¢) ={B;} and A=
B(s) = {a;} be sequence of widths as in Section 5.2. We have sin 8; = ¢¢"*!, sina; = ¢
Since ¢ 0% < g, the condition ¢g < ¢ %% together with Corollary 5.2.4 imply that
(B, A) and (B, B) satisty condition DNP in Section 5.1.

Given a number r > 0 and an integer £ > 0 we define 7, = 7.(r) = sinh™ I(sinhry

sinay
By convention we also set 7_; = r. Alternatively, we could restrict to widths {¢;} with
a_; =1 /2. Let k£ and m be integers with m > 2 and 0 < £k < m — 2. Define s, =
sinh™ (mh”’nﬂ By — sinh ™! (sinh 7,,_ sin B;). We write 7,, ; = 7,_;_3. Note that 7, ; < 5,4

SN &y, —2

Let P =P" be a finite all-right spherical complex of dimension m, with m < §, and
let r > 6 4 2. For every A" € P, 0 < k < m — 2, define the following subsets of CP:

V(P. A1 E () =N, (Cak, CP) — (UN (ca, CP>

J<k

—B,,_, (125 (CP)

V(P,7,&, (c,5))=CP— < U N, (Ca/, cp)) —B, , (195 (CP).

vy <m—1
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Since &, ¢ and ¢ will remain constant, in the rest of this section we will write
V(P, A*,r) and Y(P,r) instead of Y(P, A%, 1,&, (¢, ) and V(P,7,£, (¢, §)), respec-
tively. Recall that A is the interior of A € P.

Proposition 6.2.1. — Forr > 6 + 28 and 0 < k < m — 2 the_following properties hold
i) V(P, Ak, 7) CNY y (CA*, CP) C int CStar(A*, P).
(i) Y(P, A", r)N N,W (CA,CP) = @ﬁ)r] <k.
(i) Y(P, A ;) NB, , 19 (CP) =
(iv) CP =B, _, (1425 (CP) = Y(P, ) U Unteprzns Y@, AL D).

V) AN AF = implies
[N,,,(CA’,CP) =B, _, (1426 (CP)]
N[N,,,(CA",CP) — B, ,_ (4425 (CP)| =¥

Sm, k

Vi) AN AR =@ implies Y (P, N, r) N Y(P, AF,r) = 0.
(vii) & = A*N A withj < k, 1, implies

[N, (CA7, CP) =B, ,— 1126 (CP)]
N[N,,,(CA*, CP) — B, , 19 (CP)] C U N, (CA',CP).
iy

viil NN, with k < 1,7, implies LN Ir) =
i) Af= AN N, with k 7, tmplies Y(P, A", r) N Y (P, AN, r) =
(ix) Y(P,r)N NW,(CAJ, CP)=0, forj<m—1.

Proof. — The statements (i1), (i), and (ix) follow from the definition of ).
We prove (1). The second inclusion holds because Kjw (CA*, CP) is open. We prove
the first inclusion. By definition we have Y(P, A%, 7) Clilsm.k (CA*, CP). If a point

p Elzlsw (CAF, CP)— lilsm.k (CA", CP) then its distance to COA* is < smi- Hence p Elilsw
(CA/, CP) for some A C dA*; thus j < k. But it can be checked that g > Smis

J < k (this follows from ¢c < ¢ "% < 1). Therefore p Gltl, (CAj CP), which implies
p ¢ Y (P, A* 7). This proves (i). Next we prove (iv). Using 7, < snj and the definition of
Y (P, r) we have

CP - B’}n 2_(4+2§)(CP) C y(P 7/-)
u N, (ca.cP)cy®.nu [ J N, (CA, CP).

Jj<m—2 Jj<m—2

This together with (ii1) imply that we can prove (iv) by showing, by induction on £, that
U=U.,_, Y@, A7) contains N,,, (CA*, CP) — B, _,_(40¢ (CP) for every k-simplex
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of P, k < m — 2. For k= 0 this statement holds because J(A", P) =N;,, (CA°, CP) —
B, , (19:(CP). Assume U contains every N (CAJ CP) — B, ,_49)(CP), for all
J < k. By the definition of J(A*, P) we have that NW (CA*,CP) — B, , (1495 (CP) is

contained in

[ P)U(_N, (CA, CP] B, , (1126 (CP).

J<k

This together with the fact that s, > 7, and the inductive hypothesis imply that Iil% .
(CA*,CP) — B, _, (1126 (CP) C U. This proves (iv). To prove the other statements we
need a lemma.

Lemma 6.2.2. — For t > 1,9 — (4 + 28) and r > 6 + 2& the following hold (see
Lemma 6.1.12)

Nrm,k(CA7 CP) N St(CP) = N9m.k(t)(A’ P) X {L‘}
N-fm,k(CA’ CP)NS,(CP) = N¢m,/;(f)(A? P) x {¢},

where 6,, (1) and ¢, (1) are defined by the equations sin(6,, (1)) = "sinoy, sin(¢, (1) =
¢ sin By, with " = % < 26"% . Moreover 0,, (1) and ¢, (1) are well defined and less that
/4.

Progf: — Lemma 6.1.12 says that the first equation above holds if the variables
Twis L and 0, ,(¢) satisfy certain relationship. Similarly for the second equation with the
variables s,, s, ¢ and @,, ;(¢). These relationships are the first equalities on the left below:

) sinh7,;  sinh7,_o sinh7, y .
s1n(9m,k(t)) = — = — - = ¢ sinq;
sinh ¢ sinh¢ sinh7,_o

and

sinhs,; sinhr7,_o sinhs, ;

sin(,4(1)) = o = T2 FRIE _ iy

sinh ¢ sinh¢ sinh7,_o

where we are using the definitions of 7, and s,,; in the second equalities, and the defi-
nitions of oy and B in the third equalities. Since & > 0, a simple calculation shows that
" < 2¢"% provided ¢ > 7,9 — (4 +2§), r > 6+ 2§ (thus 7,,_s > 6 + 2&). Hence the def-
initions of o, and B; and the condition ¢¢ < ¢ =% given at the beginning of this section
imply ¢’ sinoy, = ¢ " < *f and ¢’ sin B; = " e < ? O

We now finish the proof of Proposition 6.2.1. Statement (v) follows from
Lemma 6.2.2 and the fact that B-neighborhoods, 8 < 7 /4, of disjoint simplices in an
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all-right spherical complex are disjoint. Note that to apply Lemma 6.2.2 we need the
condition ¢ > 7,5 — (44 2&); this is why we have the terms B, ,_ 49 (CP) in (v). State-
ment (vi) follows from (v) and the definition of the sets ). Next we prove (vii). Note that
" ="(t) (r and m are fixed). Using items (1), (i1), and Lemma 6.2.2 and Corollary 5.3.6 it
is enough to prove that, for fixed ¢, the pair of sequences of widths ({¢,, (1)}, {0,..:(¢)}) sat-
isfies DNP. But from the definitions we have {¢,, (1)} = B(g, ¢/") and {6,,4(¢)} = B(g, ¢").
Therefore Corollary 5.2.4 and the condition ¢ < ¢ % imply ({¢h,,+()}, {0,.4(1)}) satis-
fies DNP. This proves (vii). Item (viii) follows from (vii) and the definition of the sets ). [

Define the sets
X(P", A ) =Y(P", A", 1) =B, _,(CP"),
X(P",r)=Y(P",r) —B,_,(CP").
Alternatively, we can define X'(P", Af,7) by the same formula that defines

Y(P", A%, r) with just one change: in the last term replace the radius 7,y — (4 + 2§)
by 7,,—9, and similarly for X' (P", r).

Proposition 6.2.3. — For N C A" € P the following holds
Y(P, A", r) CCA x X(Link(&7, P), A',7),
where A' = A* N Link(A, P) is opposite to N in A,

Remark 6.2.4. — The left term in the proposition is a subset of CStar(A*, P), thus
also a subset of CStar(A/, P). The right term is a subset C A/ x CLink(A/, P) and, by 6.1.3,
we can write CA/ x CLink(A/, P) = CStar(A/, P). Proposition 6.2.3 says that ) (P, A%, 7)
is a subset of CA/ x X (Link(A/, P), A’, r) under this identification.

Proof- — By the (alternative) definition of X, it is enough to prove the following
three statements

(1) Y(P, Ak, 1) CCAIX N,,_,_,, (CA, CLink(A/, P)).
(2) For A’ € Link(A/,P),i<{=k—j— 1, we have
Y(P, A" r)Nn[CA' x N, __ (CA’,CLink(A',P))] = 0.

Tm—j—1,i

(3) (P, A", n N[CA x B, . (CLink(A/,P))]=40.

Tn—j=3

Statement (1) follows from (i) of Proposition 6.2.1, Lemma 6.1.10 and the equalities
Sk = Sm—j—1,h—j—1 and [ =k —j — 1. Statement (2) follows from (ii) of Proposition 6.2.1,
Lemma 6.1.10 and the statements 7,, ;441 = 7,—j—1,;, 1 +7 + | < k. For (3) note that (6.1.9)
and the definition of 7, ; imply

CA x B, (CLink(A/, P)) =N, (CA/, CP).

= T

This together with (ii) of Proposition 6.2.1 imply (3). 0J
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Proposition 6.2.5. — For A* € P, k < m — 2, we have
Y@, nNY(P, A" r) C CA" x X(Link(A", P), 7).

Proof. — Using the definition of X' (Link(A¥, P), r), it is enough to prove the follow-
ing three statements

(1) Y(P, A%, r) c CA* x CLink(A*, P).
(2) For N € P, A*C N, <m—k—3,and A’ opposite to A" in A/, we have

Y@®,nn[CA*xN,_,  (CA, CLink(A", P))] =0.

(3) Y(P,r) N[CA* x B, . (CLink(A*, P))]=0.

Tm—k—3

Statement (1) follows from (i) of Proposition 6.2.1, and 6.1.3. Statement (2) follows
from Proposition 6.2.1(ix), Lemma 6.1.10, the identities 7, -1 =7, A+ [+ 1=},
the fact that [ <m — k — 3 if and only if j < m — 2, and the definition of (P, r). Finally
(3) follows from (6.1.9), Proposition 6.2.1(ix), the definition of 7, ; and the definition of

Y(P, 7). O

We will need one more property of the sets Y(A, P) C Star(CLink(A, P)) C CP.

6.3. Radial stability of the sets Y (P, A*, r)

In Section 8 we will need a certain stability property for the sets ). We use the
objects and notation in Section 6.2. Recall that Star(A, P) is the simplicial star of A in P,
and that an element in CP can be written as sx, s € [0, 00), x € P. Let 6 € (0, 7/2), and
write a(s) = ay(s) = sinh™ ' (sinh ssin 0).

Lemma 6.3.1. — Let b € R, A* € P, and x € Star(A*, P). Then for every s > 0

sinh(s + b) .

(s+ b)x € Ny (CA*, CP)0  if and only if siny < sin6,

sinh s

where y =y (x) = dp(x, A").

Progf: — Note that y is the angle opposite to the cathetus of length d(s) =
dep((s + b)x, CA") of the right hyperbolic triangle with hypotenuse (s + 6). We
want d(s) < a(s); equivalently sinhd(s) < sinha(s). By the hyperbolic law of sines
sinh d(s) = sin y sinh(s+ ), hence sinh d(s) < sinh a(s) is equivalent to sinh(s+6) siny <
sinh ssinf. ]

Note that the lemma also holds if we replace N by N and < by <. Write R(s) =
R.(5) = (s + b)x.
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Lemma 6.3.2. — Let A*, P and x as in Lemma 6.3.1. There are three mutually exclusive

cases:
Cl: dsiny < sin, which implies that R(s) elil,l(s) (CA, CP), for all s > sy, for some s;.
C2: e’siny > sinf, which implies that R(s) ¢ N, (CA, CP), for all s > sy, for some 5.
C3: dsiny =sinf.
Progf: — The lemma follows from Lemma 6.3.1 and the equation lim,_, «, % =
e. O

From the definition of 7; given at the beginning of Section 6.2 we have 7,9 =

Tneo(r) = sinh™'(=81)  hence we can write 7 = 7(r,,_s) = sinh™! (sinh7,_o sin a,,_).
sin Q-9 . ’

Therefore we can write 7,,; = 7,,.4(7) and s, = s,.4(7) in terms of the new variable 7,,_o,

and a calculation shows that 7,,, = a,,(r,—2) and s,,; = ag,(r,,—2). We will use these iden-

tities in the proof of the next result.

Proposition 6.3.3. — Given b € R and x € P there 1s v € R such that at least one of the
Jollowing conditions holds.

(1) Thereis A*, k < m — 2, such that R, ;(r,_9) € Y (P, A*, r(r,_0)), for all 1,,_y > 7,
Jfor some 1.

(2> Rx,b(rme) € y(P’ 7(%1*2));“][07 all T—o > 7/;ﬂ7 some 1.

Moreover, these two conditions are stable in the following sense. If x' and b’ are sufficiently close to x
and b, respectively, and R satisfies (1) then Ry y also satisfies (1) (with the same 1'). Sumalarly for
condition (i1).

Proof: — By induction. Suppose C1 of Lemma 6.3.2 holds for R = R, ;, with
0 = «ay, for some A°. Then, since Naaoo,m_Q)(AO,P) = N,.mﬁo(,,m_Q)(AO,P) C Y@, A7)
we see that R satisfies (1) for Y(P, A%, 7) and we are done. Suppose C3 holds with
0 = a, for some A°. Then x € Star(A°, P) and ¢’ sin y = sina, where y = y(x). Since
o, < Bi, we have ¢’ siny < sin By, hence by Lemma 6.3.2 (with 8 = ) we have that

R(r,—9) elilym_o(m_ﬂ (A", P), for large 7,_o, and follows that R satisfies (1) for Y(P, A, r)
and we are done. Now, if neither C1 nor C2 hold for all A” then we have that G2 happens
for all AY, with 6 = a; (and some s, independent of A, which is possible because P is
finite). As before we have three possibilities. First C1 holds for R =R, , with 6 = «, for
some A'. This, together with the assumption that C2 holds for all A® (with # = «), and
the definition of Y(P, A', 7) imply that R satisfies (1) for Y (P, A',7) and we are done.
Suppose C3 holds for R and A' (with § = a;), for some A'. Using the same argument as
in the A" case (when we assumed C3 some A”) we get that R satisfies (1) for Y(P, A', r)
and we are done. The third case is that C2 happens for R and all A'. Proceeding in this
way we obtain that either R satisfies (1), for some Af, k¥ <m — 2 or C2 holds for R and
all A*) k <m— 2 (with 8 = «;). Hence (2) holds for R. Moreover it does so stably. 0J
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7. Smooth structures on cube and all-right spherical complexes

For the basic definitions and results about cube complexes see for instance [4].
Given a (cube or all-right spherical) complex K we use the same notation K for the
complex itself (the collection of all closed cubes or simplices) and its realization (the union
of all cubes or simplices). For o € K we denote its interior by o.

Let M" be a smooth manifold of dimension n. A smooth cubulation of M is a pair
(K., f), where K is a cube complex and / : K — M is a non-degenerate PD homeomor-
phism [24], that is, for all 0 € K we have /|, is a smooth embedding. Sometimes we will
write K instead of (K, /). The smooth manifold M together with a smooth cubulation is
a smooth cube manifold or a smooth cube complex. A smooth all-right-spherical triangulation and a
smooth all-right-spherical manifold (or complex) 1s defined analogously.

In this section Link(o”/, K) means the geometric link of an open j-cube or j-all-right
simplex o/, defined as the union of the end points of straight (geodesic) segments of
small length & > 0 emanating perpendicularly (to /) from some point x € 67. The star
Star(o, K) is the union of such segments. We can identify the star with the cone of the link
CLink(o, K) (or g-cone) defined as CLink(o, K) = Link(o, K) x [0, €)/Link(o, K) x {0}.
Thus a point x in CLink(o, K), different from the cone point 0 = ocpink.x), can be writ-
ten as x = tu, t € (0, €), u € Link(o, K). For s > 0 we get the cone homothety x — sx = (st)u
(partially defined if s > 1). If we want to make explicit the dependence of the link or the
cone on ¢ we shall write Link, (o, K) or C.Link(o, K) respectively.

Remark 7.0.1. — As usual we shall identify the normal e-neighborhood of ¢ in K
with C,Link(o, K) x ¢ which we may denote CLink(o, K) x o.

In what follows we assume that / : K — M is a smooth cubulation (or an all-
right spherical triangulation) of the smooth manifold M. Since the PL structure on M
induced by / equals the PL structure induced be the given smooth structure on M (see
Theorem 10.5 in [24]) we have that the link Link(c?, K) is PL. homeomorphic to §"7!.
A link smoothing for &' (or ¢') is a homeomorphism /,: : $"7'~! — Link(o", K). The cone
of hyi is the map Ch,i : D" — CLink(c’, K) given by &x =[x, t] —> thyi(x) = [h,i(x), 1],
where we are canonically identifying the &-cone of $"7~! with the disc D"™'. We remark
that we are not assuming #,: to be smooth. A link smoothing /i induces the following
smoothing of the normal neighborhood of 6

h i =f o (Chyi X 14i) ‘D" x ¢ —> M.

The pair (4, D" x '), or simply 1., is a normal chart on M. Note that the col-
lection A = {72, D" x 6)}4ick is a topological atlas for M. Sometimes will just write
A= {&}siex. The topological atlas A is called a normal atlas. It depends uniquely on the
complex K, the map / and the collection of link smoothings {/, },ck. To express the de-
pendence of the atlas on the set of links smoothings we shall write A = A({, },cx) (this is
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different from A = {i2:}siek, as written above). The most important feature about these
normal atlases is that they preserve the radial and sphere (link) structure given by K.

Note that not every collection of link smoothings induce a smooth atlas. But when
the induced atlas is smooth we call A a normal smooth atlas on M with respect to K and the
corresponding smooth structure S’ a normal smooth structure on M with respect to K. In this
case we say that the set of link smoothings {/,},ck 1s smooth. The following theorem is
proved in [28]; it is the Main Theorem in [28].

Theorem 1.1. — Let M be a smooth cube or all-right spherical manmifold, with smooth struc-
ture S. Then M admats a normal smooth structure S diffeomorphic to S.

Hence if M" is a smooth manifold with smooth structure S and K is a smooth
cubulation (or all-right spherical triangulation) of M, then there are link smoothings #,,
for all 0 € K, such that the atlas A = A({A; },ex) is smooth or equivalently, {/,},ck is
smooth. Moreover the normal smooth structure &', induced by A4, is diffeomorphic to S.

7.2. Induced link smoothings

Let K be a cubical or all-right spherical complex. Then the links of o € K are
all-right-spherical complexes. We explain here how to obtain from a given collection of
link smoothings for K (and its corresponding normal atlas and structure) a collection of
links smoothings for a link in K (and its corresponding normal atlas and structure).

The all-right-spherical structure on Link(o, K) induced by K has all-right-spherical
simplices {t N Link(o, K), T € K}. Note that t N Link(o, K) is non-empty only when
o C 1, hence we can write

Link(o, K) = {r NLink(c,K),o C 7 € K}.

Since T N Link(o, K) is a simplex in the all-right spherical complex Link(o, K) we
can consider its link Link(t N Link(o, K), Link(o, K)). By definition we have:

(7.2.1) Link(t N Link(o, K), Link(c, K)) = Link(z, K)

provided we choose the radii and bases of the links properly. In the formula above radii
and bases are not specified but the radii are certainly not equal. The simple relationship
between these radii is given by Equation (1) in the proof of Lemma 1.2 [28] (or the
corresponding one in the spherical case; see Remark 1 after the proof of Lemma 1.3
[28]). By (7.2.1) we can say that the set of link smoothings {/,},cx for K induces, by
restriction, a set of link smoothings for Link(o, K), o € K. That is, we set Z;ALink(o.K) = fiz»
o C 7 € K. The next result is proved in [31] (see Corollary 1.3.5 in [31]).

Proposition 7.2.2. — Let {h, }sex be a set of link smoothings on K, and let o* € K. Assume
{ho Yo ek ts smooth; that is, the atlas A = A({hy }oex) 1s smooth. Let S’ be the normal smooth structure
on K induced by A. Then:
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(1) The set of link smoothings {hyinLinko.k) ot Coi for the links of Link(a*, K) is smooth;
that is, the atlas Ayt = ALkt k) = {r s a smooth normal atlas on
Link(c¥, K).

(2) The link smoothing

hot : 8" — (Link(0", K), S,)

iﬂLink(ok,K)}Jkgai

is a diffeomorphism. Here Sy is the smooth structure induced by the atlas Agyr.
(3) The link Link(o*, K) is a smooth submanifold of (K, S"). Moreover
S| Sy

Link(o ¥, K) —

where S'|Linko* x) denoles the restriction of S’ to Link(o*, K).

7.3. The case of manifolds with codimension zero singularities

Here we treat the case of manifolds with a one point singularity. The case of man-
ifolds with many (isolated) point singularities is similar.

Let Q be a smooth manifold with a one point singularity ¢, that is Q — {¢} is a
smooth manifold and there is a topological embedding CN — Q), with ocx > ¢, thatis a
smooth embedding outside the vertex ocx. Here N = (N, Sy) is a closed smooth manifold
(with smooth structure Sy). Also CN is the (closed) cone of N and we identify CN — {ocx}
with N x (0, 1]. We write CN C Q. We say that the singularity q of Q is modeled on CN.

Assume (K, /) is a smooth cubulation of Q, that is

(1) Kis a cubical complex.
(i) f : K —= Q is a homeomorphism. Write f(p) = ¢ and L. = Link(p, K).
(i1) f|, 1s a smooth embedding for every cube o not containing .
(1v) fls—ipy 13 @ smooth embedding for every cube o containing p.
(v) Lis PL. homeomorphic to (N, Sy).

Many of the definitions and results given before for smooth cube manifolds still
hold (with minor changes) in the case of manifolds with a one point singularity:

(1) A link smoothing for L = Link(p, K) (or ) is a homeomorphism /%, : N — L.

(2) Given a set of link smoothings for K we get a set of normal charts as before. For
the vertex p we have the cone map £} =/ o Cly, : CN — Q. We will also denote
the restriction of 7 to CN — {ocx} by /5. As before {4}k is a (lopological) normal
atlas on Q with respect to K. The atlas on Q is smooth if all transition functions
are smooth, where for the case £ : CN — {ocn} = Q — {¢} we are identifying
CN — {ocn} with N x (0, 1] with the product smooth structure obtained from
some smooth structure Sy on N. A smooth normal atlas on Q) with respect to
K induces, by restriction, a smooth normal structure on Q) — {¢} with respect to
K — {p} (this makes sense even though K — {p} is not, strictly speaking, a cube
complex).
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(3) We say that the set {/,} is smooth if the atlas A = {2 },ck is smooth. If {#,} is
smooth and the associated smooth structure S~'N is diffeomorphic to Sy, then
we say that the smooth atlas A (or the induced smooth structure, or the set
{ho}) 1s correct with respect to N.

(4) Also it 1s straightforward to verify that Proposition 7.2.2 holds in our present
case.

(5) In [28] the following version of Theorem 7.1 is proved (see Theorem 2.1 in
[28]):

Theorem 7.3.1. — Let Q) be a smooth manifold with one point singularity q modeled on CN,
where N s a closed smooth manifold. Let (K, f) be a smooth cubulation of Q. Then Q) admits a normal
smooth structure with respect to K, whose restriction to Q — {q} us diffeomorphic to Q — {q}. Moreover
this normal smooth structure is correct with respect to N of

(a) dimN < 4.
(b) dim N > 5 and the Whtehead group Wh(N) of N vanushes.

8. Smoothing hyperbolic cones

Given an all-right spherical complex P" of dimension m and a compatible smooth
structure Sp on P, by Theorem 7.1 we can assume that Sp is a normal smooth structure,
and Sp has a normal atlas Ap. The atlas Ajp and its induced differentiable structure Sp
are constructed (canonicaly) from a set of link smoothings Lp = {fa}acp. To express this
dependence we will sometimes write Ap = Ap(Lp) and Sp = Sp(Lp).

Recall that the cone CP has a piecewise hyperbolic metric induced by the piecewise
spherical metric on P. We denote these metrics by ocp and op respectively. As mentioned
in Remark 6.1.1 the piecewise hyperbolic metric ocp has a well defined set of rays.

(8.0.1) Consider the following data.

1. A positive number &.

2. Asequence d = {dy, ds, . ...} of real numbers, with d; > 6 +2&. We write d(k) =

{dy, ds, ..., di}.

A positive number 7, with » > 2d;, 1 =2, ..., m+ 1, and m as in item 5.

4. Real numbers ¢ € (0, 1), ¢ > 1, with ¢ < ¢ %% This defines the sequences of
widths (see Sections 5.2 and 5.3) A =B(¢) = {o;} and B=B(s; ¢) = {B;}, where
sin; = ¢!, sin B; = ¢! Recall that (B, A) satisfies DNP (see Section 6.2 or
Corollary 5.2.4).

5. An all-right spherical complex P”, dimP = m, with smooth normal atlas

©°

Ap(Lp), where Lp is a smooth set of link smoothings on P.
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6. A diffeomorphism ¢p = ¢p 2, : (P, Sp(Lp)) — §” to the standard m-sphere.
The map ¢p is called a global smoothing for P, with respect to Sp (or A,, or Lp). For
m =1 the diffeomorphism ¢p will be defined canonically (that is, depending
only on P) in Section 8.1.

The smooth atlas Ap(Lp) on P induces, by coning, a smooth atlas on CP — {ocp},
and, by item 6, this atlas together with the coning C¢p : CP — R"*! of the map ¢p
induce a smooth atlas Acp = Acp(Lp, ¢pp) on CP. We denote the corresponding smooth
structure by Scp = Scp(Lp, ¢p). Note that we get a diffeomorphism Cep : (CP, Scp) —
R,

With the data given in items 1-6 in (8.0.1) above we will construct the smoothed
Riemannian metric G(P, Lp, ¢p, 7, E,d, (¢, ¢)) on the cone CP of P, where we consider CP
with smooth structure Scp. This construction will be done by induction on m.

In Sections 8.1 and 8.2 we will assume &, d, ¢, ¢ fixed. In particular we shall
assume A, B fixed. So, to simplify our notation, we shall denote the smoothed metric by
GP, Lp, ¢p, 1) or just G(P, r) or G(P). In Sections 8.3 and 8.4 we need to make explicit
the dependence of the smoothed metric on the other variables, and we will show that,
given € > 0, we can choose rand d;, 1 =2, ..., m, large so that G(P, Lp, ¢p, 7, &, d, (¢, §))
has curvatures near — 1, provided the variables satisty certain conditions. Before we begin
with dimension 1 we need to discuss induced structures.

Let A = A" € P. The restriction of Lp to Link(A, P) is the set Lp|Linka . p) = {hA/}AgA/,
see Section 7.2. Sometimes we will just write Liina p) o1, more specifically, Liinka p)(Lp).
The corresponding induced atlas on Link(A, P) is Apinka.p) (Lp) = {h’A,}AgA/, and some-
times we will simply write Ajjnka.p). The smooth structure on Link(A, P) induced by
Avinkca py will be denoted by Spinka.p)(Lp), or simply by Spinka p)- By Proposition 7.2.2
we have that, for A € P, the link smoothing %, is a global smoothing for Link(A, P)
with respect to Spinkca.p). Write @pinka py = Prinka.p)(Lp) = hia. Therefore we obtain the
following restriction rule:

(8.0.2) Lp —> (»CLink(A,P) (Lp), Prink(a.p) (EP)),

where Lp satisfies 5 in (8.0.1) for P, and the objects Liinka.p), Prinkca.py satisfy 5, 6 of
(8.0.1) for Link(A, P). The smooth structure on CLink(A, P) constructed from the data
(»CLink(A,P)’ ¢Link(A,P)) will be denoted bY 'SCLink(A,P) (/:P), or SCLink(A,P) (»CLink(A,P)v ¢Link(A,P))>
or simply by Scrinka p). The next lemma says that the restriction rule (8.0.2) is tran-
sitive, that is, it respects the identity Link(A’, Link(A/, P)) = Link(Af, P), where Al =
Link(A/, A%) (see Lemma 5.3.2).

Lemma 8.0.3. — Let N C AF € P and let A' = Link(A, A%). Then

»CLink(A/,Link(Ai,P)) (»CLink(A/,P) (»CP)) = »CLink(Ak,P) (»CP)’

¢Link(A1,Link(Ai,P)) (ﬁLink(N,P)(ﬁP)) = ¢Link(M,P)(£P)~
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Proof. — If we use the simplicial definition of link the identity Link(A',
Link(A’/, P)) = Link(A*, P) is an equality of sets; hence the lemma follows from the defi-
nition of £ and ¢. U

Recall that we have an identification CStar(A, P) = CA x CLink(A, P) (see 6.1.3).
The “open” version of this identification is C(Star (A, P)) = CA x CLink(A, P). Here
Star (A, P) =N, (A, P). Define the open set CStar (A, P) to be the set C(Star (A, P))

with the cone point deleted. Note that CStar (A, P) as an open subset of CP has the

induced smooth structure Scp| and, for simplicity, we will just write Scp. Define

CStar(A,P)’
the set CO(A) to be C(A) with the cone point deleted. Then CoA = CyA* as an open
set of H*'! has the natural smooth structure Sge+1, and CLink(A, P) has the smooth
structure Sciinka p)- Therefore we can give COA x CLink(A, P) the “product” smooth
structure Sy = S¢ A xCLink(A.P)-

Lemma 8.0.4. — The following identification is a diffeomorphism
(CStar (A, P), Scp) = (CoA x CLink(A, P), S,.).

Progf: — We use the variables s, ¢, 7, y, v, x, w, u, B defined in Section 2. We also
use the notation from 6.1.2, 6.1.3 and Remark 7.0.1. Using rescaling we can assume that

the image of the chart A} is Kln /2 (A, P). Again by rescaling, and using the notation in
6.1.2 and 6.1.3 we can write

B DR/ x A — P
(ﬁu/, w) > [W,flA(u/)](,B),
where D"*(77/2) is the disc of radius 7 /2, and we are expressing and element D"~ (77 /2)

as Bu/, with B € [0, 7/2), ' € S"*~!. A chart for (CSOtar (A, P), Scp) is the cone of A3,
which we shall denote by 4} . Explicitly, from (1) we have (see Remark 7.0.1)

B Ry x D" /) x A — CP
(s, B, w) = s[w, ha(@)](B).
And for (CA x CLink(A, P), S,) we can take the following chart

(1)

(2)

Ki: Ry xR"™*x A —s CA xCLink(A,P)
(t, rd, w) — (tw, N (u’)),

where we write an element in R"™* as r/, r € [0, 00), «' € $"*!. From (2) and (3) and
6.1.3 we get

3)

(}ZZ)_1 o hiy (s, B, w) = (t, r, w), 4)
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where the relationship between the variables s, B, ¢, 7 is the following (see Section 2).
There is a right hyperbolic triangle with catheti of length ¢, », hypotenuse of length s and
angle B opposite to the cathetus of length 7. Using hyperbolic trigonometry we can find
an invertible transformation (s, 8) — (¢, 7). In particular r = sinh ™! (sin B sinh 5). The
variables s and ¢ are never zero, but 8 and r could vanish. Note that 8 = 0 if and only if
r=0. To get differentiability at § = 0 note that the map (s, f«’) — ¢’ can be rewritten
as (s,2) — (T(‘j%z), B = |z|, which is smooth because “:2 is a smooth even function
on B. Similarly, the smoothness of the inverse of the map in (4) follows from the fact that
the map (¢,7) — £:D {5 a smooth even function on 7. O

r

8.1. Dimension one

An all-right spherical complex P! of dimension one satisfying item 6 of (8.0.1) is
formed by a finite number £ of segments of length 7 /2 glued successively forming a
circle. Hence P is isometric to S' with metric K*og1, k= ¥ /4 (i.e. a circle of length 27 k).
Let ¢ = ¢pp : P— (S!, Kog1) be an isometry. Consequently we can identify CP with R?,
and CP — {ocp} to R? — {0} with hyperbolic metric ocp = sinh? sk?0g1 + ds>. Notice that
this metric is smooth on R* away from the cone point ocp = 0 € R?, and it does have a
singularity at O unless £ = 1.

As promised after (8.0.1) we now construct the metric G(P) when P is one-
dimensional.

Let p be as in Section 1. Define

. s r—d s r—d
= Wi (5) =K p| = — 1—pl—— :
w0 = =ro( 5 =)+ (1-0(5 - 5%))

Hence u(s) =1, for s <r — dy and u(s) = k> for s > r. Define

G(P, r) = sinh® su(s)og + ds>.

Since the metric G(P, r) is equal to the canonical hyperbolic warp product metric
sinh? sog1 + ds? on the ball of radius 7 — dy, we can extend G(P, r) to the cone point ocp =
0 € R?. It is straightforward to verify that G(P, ) satisfies the following three properties:

P’1. The metrics G(P, 7) and ocp have the same set of rays.

P’2. The metric G(P, r) coincides with o¢p outside the ball of radius 7.

P’3. The metric G(P, r) coincides with sinh® sog1 + ds> on the ball of radius 7 — ds.

P’4. The family of metrics {G(P, )},~, has cut limits (see Section 4). Here we
think of d; as fixed while 7 is the index of the family.

The cut limit of G(p, 7) at b is

(8.1.2) Qgguwmﬁr+@ymu:<1+(ﬁ——0p<k+§>)09-

2
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8.2. The inductive step

In this section we follow notations of (8.0.1). We fix d, &, ¢, ¢ and hence A, B. With
the data &, A, B, r > 0 and an all-right spherical complex P we defined in Section 6.2 the
numbers 7, = 7(r) and for every A* constructed the sets Y(P, A, 7), Y(P, ), X (P, A, ),
X (P, r), where A" € P. The inverse of the function 7, = 7,(r) shall be denoted by r = r(r).
Recall also that in 6.1.4 we identified CStar(A*, P), with the metric ocp|csiarat.p), With
Ecar(CLink(A*)), with the metric (o cyinkat.py). We will use these objects in this section.

Inductive hypothesis

Let m > 2 and suppose that for every triple (P, Lp, ¢p), ) = dimP <m — 1, as in
items 5 and 6 of (8.0.1), and r > d;, 1 =2, ..., m+ 1 there are two Riemannian metrics:
the smoothed metric G(P, Lp, ¢p, 7, &,d, (¢, ¢)), and the paiched metric § (P, Lp, r). Some-
times we will use the notation G(P, Lp, ¢p, 7), or even G(P, r), for the smoothed metric,
and (P, r) for the patched metric. We demand these metrics satisfy the following prop-
erties

P1. The smoothed metric G(P, r) is a Riemannian metric defined on the whole of
(CP, Scp), and it has the same set of rays as ocp.

P2. The patch metric (P, r) is a Riemannian metric defined outside the ball
in CP of radius 7,_o — (4 + 2&) (with smooth structure Scp), and it is ray
compatible with (CP, o).

P3. On Y(P, A%, r), k<j—2=dimP — 2, the patched metric g (P, r) coincides
with the metric

Ecat(G(Link(A", P), 7)),

where G(Link(A*, P), r) = G(Link(A*, P), Liinkat,py (Lp)s Puinkat,py (Lp), 1) s
defined on (CLink(A, P), Scp). (Recall Y(P, Af, r) C CStar(Af, P) = CAF x
CLink(A*, P), see 6.1.3, Propositions 6.2.1, and Lemma 8.0.4.)

P4. On Y(P, r) the patched metric (P, r) coincides with o¢p (which is hyperbolic
on Y (P, 1)).

P5. The metrics G(P, r) and (P, r) coincide outside the ball in CP of radius 7;_,.

Note that the patched metric § (P, Lp, ) does not depend on ¢p.

Remark 8.2.1. — Here is a subtle point. In the Inductive Hypothesis we are assum-
ing the existence of the metrics G(P, Lp, ¢p, 1), (P, Lp, 7) for every abstract all-right
spherical complex P of dimension < m — 1. On the other hand in P3 we are considering
Link(A, P) as a subcomplex of P. We will identify the abstract complex Link(A , P)®s"!
with the subcomplex Link(A, P) of P using the other data given in (8.0.1):

¢Link(A’P)abxmn ] }ZA

Lin k( A , P) abstract Sz

Link(A, P) C P,
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where { = dimP — dim A — 1, and % € Lp is the given link smoothing of Link(A, P)
in P. Lemma 8.0.3 implies that these identifications are transitive, that is, they preserve
the identification given in Lemma 5.3.2.

Properties P3, P4, P5 and the definition of the sets X (P, A%, r), X' (P, r) imply

P6. On X (P, Af,7), k <j— 2 =dim P — 2, the smoothed metric G(P, r) coincides
with the metric

Ecat(G(Link(A", P), 7)),

where Q(Link(Ak,P), r) = Q(Link(Ak, P), ﬁLink(Ak,P)(ﬁP),¢Link(Ak,P)(£P), r) 13
defined on (CStar(A, P), Scp).
P7. On X (P, r) the smoothed metric G(P, 7) coincides with the metric ocp.

Note that the metrics G(P', r) constructed for spherical all-right 1-complexes in
Section 8.1, together with the choice (P!, 7) = o¢p satisfy properties P1-P5. Indeed
P1” implies P1, P2’ implies P5 (recall 7_; =, see Section 6.2) and P2, P3, P4 are trivially
satisfied.

Inductive step

Now, assume we are given the data: P, dimP = m, Lp, ¢p, r as items 5 and 6 in
(8.0.1). We define the patched metric (P, r) = (P, Lp, 7) as in P3 and P4 above. That
is, we define (P, ) by demanding that:

P’3. On Y(P, A% r), k < dimP — 2, (P,7) coincides with the metric
é’CAk(g(Link(Aks P)7 V))
P”4. On Y(P, r), the patched metric (P, r) coincides with the metric ocp.

Lemma 8.2.2. — The patched metric (P, r) defined by properties P”3 and P4 s well
defined.

Proof. — The metric (P, 7) is defined on the “patches” V(P, A,r), A € P,
and Y(P,r). We have to prove that these definitions coincide on the intersections
Y@, A NYEP, AN, 1), YP,r) N VP, N,r). If NN A* =@ then (vi) of Proposi-
tion 6.2.1 implies Y (P, N, NYEP,AF ) =0. Also if N ¢ AF and AF ¢ N by (viii)
of Proposition 6.2.1, we also get V(P, N,7r) N Y(P, A*,r) = (. Therefore we assume
N C A j <k

Recall that Y(P, A/, r) C CStar(A/, r) and Y (P, A%, r) C CStar(A*, r) (see Propo-
sition 6.2.1(1)). The metrics

h=Ecni (Q(Link(Af, P), Liink(ar.py (Lp), Plinkai,p) (Lp), T))v (1)
g=Eunr (Q(Link(Ak, P)a Liink(at 2y (Lp)s Prinkat,py (L), T)), (2)
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are defined on the whole of CStar(4A/, P) and CStar(A*, P), respectively. From 6.1.3 we
have that CStar(A/, P) = CA’ x CLink(4/, P). And from Proposition 6.2.3 we have that
V(P, At r) c CA x X (Link(A, P), A’,r), where A = A¥ N Link(A/, P) (alternatively
A' is opposite to AV in A% or A' = Link(A/, A¥)). Hence it is enough to prove that the
metrics 4 and g coincide on CA/ x X (Link(A/, P), A!, r). But (2) and (the second equality
in) Corollary 6.1.8 imply

g=CEn [&;A’ (g(Link(Ak, P), Liinkat,py (Lp)s Prinkat,py (Lp), T))] 3)

Note that the inductive hypothesis (specifically property P6, which is implied by P3, P5)
applied to the data Link(A/, P) and A’ gives us that on the set X'(Link(A/, P), A’, r) we
have

Q(Link(Af, P)» £Link(N,P)(£P)a Dlink(ai P) (Lp), 7) = Eenl(f), (4)

where

f = g(Link(Al, Link(Aj, P)), L:Link(A/,Link(A/,P))(ELink(Af,P))’
¢Link(A/,Link(Ai,P)) (ELink(N,P))- (5>

Using Lemma 5.3.2 (and Remark 5.3.3) together with the transitivity of the restriction
rule (Lemma 8.0.4) in (5) we get

f= Q(Link(A/‘, P), Liink(at,py(Lp)s Prinkar,py (L), T)- (6)

Putting together (1), (4) and (6) we obtain an equation with the same right-hand side as
in (3) but with % instead of g on the left-hand side. This proves that g = 4 on Y(P, A/, 7) N
V(P, A", 7).

The proof that the patched metric is well defined on Y (P, A )y N Y(P, ) uses a
similar argument and it follows from Proposition 6.2.5, the inductive hypothesis applied
to Link(A*, P) (that is, properties P4, P5 which imply P7) and Corollary 6.1.8. 0J

By construction, the patch metric g (P, ) we just constructed satisfies P3 and P4.
We next prove it also satisfies P2.

Lemma 8.2.3. — The patch metric § (P, r) satisfies P2.

Proof. — Yollows from (iv) of Proposition 6.2.1 that the patch metric (P, 7) is
defined outside the closed ball in CP of radius 7i_y — (4 + 2§). The ray compatibility
property (see Remark 1.1) is proved by induction on the dimension of the complex P. It
is clearly true for dimP = 1. Assume is true for complexes of dimension <, and take
P with dimP =;. We have to show that (P, r) is ray compatible with (CP, 0) over
the complement of the closed ball in CP of radius 7_y — (4 + 2§). By P”4 (that is, by
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construction) this is true over Y (P, 7). And 6.1.5 together with P3, P2 (for complexes of
dimension <) imply that this is also true over Y (P, A’, ), i <j— 1. By Remark 1.1(5) the
patch metric is ray compatible with (CP, 0) over the union of all the ) sets, which 1s, by
Proposition 6.2.1(iv), the complement of the closed ball in CP of radius 7,_o — (4 +2§). U]

We now define the smoothed metric G(P, r). Recall that 7,9 = 7,,_9(r). Let r =
7(r,—9) be the inverse, where we consider 7, as a large real variable. For P = P" using
C¢p we get an identification between CP and R™"!. Therefore we can consider the family

of metrics {g (P, 7’(7’,"_2))}””72_% as a family of metrics on R""!, Lemma 8.2.3 (see also
Remark 4.1(2)) implies that this family is an ©-family of metrics. We define
(8'2'4) g(P’ 7) = H"m—Qfé’ m+17%g€)(P’ T(Tm,Q)).

Property P5 for G(P, 7) holds by construction and by (ii) of Proposition 4.5. Prop-
erty P1 follows from P2, P5 and (i) of Proposition 4.5.

Remarks 8.2.5.

1. The terms % above are introduced to “correct” the % term that appears in hy-
perbolic forcing (see Section 3.3 and Proposition 4.5). Without the term % prop-
erty P5 would appear with radius 7_, + % instead of just 7;_y, so that P7 would
not be true, and the last part of the proof of Lemma 8.2.2 would fail.

2. We want to apply Proposition 4.5 to the family {§ (P, 7(7,—2))}; this is why we
are considering this family indexed by 7,y — % instead of 7,,_s.

3. Note that because of the way we constructed the patch metric (P, 7), it does

not depend on the map ¢p; but the smoothed metric G(P, r) does depend on ¢p.

By construction and Proposition 4.5(1) we have the following property.

P8. The smoothed metric G(P", r) is hyperbolic on B (CP).

=9 =41

Note that the patched metric g (P", r) does not depend on d;, ¢ > m. Also the
smoothed metric G(P”, ) does not depend on d;, i > m+ 1.

This concludes the construction of the smoothed metric G(P, r) = G(P, Lp, ¢p, 1,
£,d, (¢, ¢)), and the patch metric o (P, ) = G(P, Lp, 1, &,d, (¢, §)).

8.3. On the dependence of G(P, 1) on the variable ¢

In this section we show that the smoothed metric G(P, r) = G(P, Lp, ¢p, &, 1, (¢, ¢))
does not depend on the variable ¢, provided ¢g is small enough. In the next section we will
show that, assuming d and r large, the metric G(P, 7) is e-close to hyperbolic. However
the excess of the ¢-close to hyperbolic charts does depend on ¢. In the next result assume
¢, & and d fixed. We shall write G(P, r, ¢©) = G(P, Lp, ¢p, 1, &, (¢, ¢)) and similarly for the
patch metric.
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Proposition 8.3.1. — Let ¢ > ¢ > 1 be such that g < e 7%, Then (P,r,¢) =
P, r,c) onCP—B, , 4196 (CP). Also G(P, 7, ) =GP, 1, ¢) on CP.

Proof. — Write A =B(¢, ¢). Denote by V' (P, A, r) = YV(P, A, 1,&, (¢, 5)) the sets
obtained by replacing ¢ in the definition of Y(P, A, 7) = Y(P, 1, &, (¢, ¢)) (see Section 6.2)
by ¢. Similarly we obtain J'(P, 7). Also, let s/, , be obtained from s,, ; by replacing ¢ by ¢
(see Section 6.2). Then s, , > s,,+. Since ¢’ > ¢ we have

YP, A, )CY@P,A,r) and Y@P,r)CV'(P,7). 1)

We will prove the proposition by induction on the dimension m of P™. It can be checked
from Section 8.1 that when m = 1 the metrics are independent of the variable ¢. Assume
GP, 7, ) =G(P, 1, ¢), for every P*, k£ < m. Consider P™. First we prove that the corre-
sponding patched metrics (P, 7, ¢') and (P, r, ¢) coincide. But it follows from proper-
ties P3 and P4 applied to both metrics, the inductive hypothesis and (1) that g (P", 7, ¢') =
© P, r,¢c)on Y(P, A*,7), forall A* € P, k < m—2, and on Y (P, r). Therefore, by Propo-
sition 6.2.1(iv), the metrics (P, 7, ¢), (P, 7, ¢) coincide on CP — 1_3,,”_2,(“25)(01)).
Finally note that the smoothed metrics G(P, 7, ¢), G(P, r, ¢') are obtained from the corre-
sponding patched metrics by using the hyperbolic forcing process of Section 4. But this
process depends only on d and 7,_y = sinh ™' (=22, The former is fixed and the latter,

SINQp—9

since sin o,y = ¢"! (

see Section 6.2), 1s independent of ¢ and ¢'. 0

In the next section we will need the following result. We use the notation in the
proof of the previous proposition. Recall s/, , is obtained from s,,; by replacing ¢ by ¢'.

Lemma 8.3.2. — (s, — snp) > ln(ﬁ—;) — 1, provided r > 1 and ¢ > c.
Progf: — A simple calculation shows that the function ¢ sinh ™' (¢'t) — sinh ™" (¢t)

is increasing. And another calculation shows that the value of this function at =1 has
value at least In¢’ —In¢ — 1. Hence

sinh™! (c’t) —sinh™'(¢t) >Ind —Inc—1, fori>1 1)
From the definition at the beginning of Section 6.2 we have s,,; = sinh_l(c;i’f,}fz) and
Spp = sinh™! (c’%). Take t = ;jfi},:fQ in inequality (1). ]

8.4. On the e~close to hyperbolicity of G(P, 1)

In this section we prove that the smoothed metrics on CP" are e-close to hyper-
bolic, provided dy, ..., d,+1 and r are large enough. Recall that an element of CP can be
written as sx, s > 0, x € P.
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Lemma 8.4.2. — The famuly of metrics {0 (P™, r(r,,—2))}
Also, the family of metrics {G (P™, r(r,—2))},,,_, has cut limits on R.

has cut limits on [—1, 00).

rﬂl — 2

Proof. — First note Propositions 4.5(v), 4.5(vi) and (8.2.4) imply that the first state-
ment in the lemma implies the second. We prove the first statement by induction on the
dimension m of P". For m = 1 the lemma follows P4” and (8.1.2) in Section 8.1.

Claim. — Suppose the O-famaly of metrics {G (Link(A*, P™), r(r,_1—3))},,_,_ has cut limits

on R. Then the O-family of metrics {Ecar (G (LINK(AF, P)), 7(r,,_9))},,_, also has cut limits on R.

Tm—2

Proof of Clazm. — By construction (see Proposition 4.5(1) or P8), the family
{G(Link(A*, P), (7,,_41—3))},,_,_, satisfies the hypothesis of Proposition 4.8.4: the family
1s hyperbolic around the origin. Since 7,,_;_3 = sinh™!(sinh 7,y sin ;) the claim follows
from Proposition 4.8.4. O

We continue with the proof of Lemma 8.4.2. Assume the lemma holds for P,
k < m. Let P = P" Suppose that the lemma does not hold for the family F =
{ P, r(1,-2))},, ,. We will show a contradiction. To simplify our notation write s = 7,,_9
and g, = G(P", 7(s)). We have g, = sinh? r(g,); + dt*, where ¢ is the distance to ocpn. Since
JF does not have cut limits on [—1, 00) there is a bounded closed interval I C [—1, 00)
such that F does not have cut limits on I. For (x, ) € P" x I write / (s, x, ) = @Hb(x).
Note that sinh?(s + b)f (s, x, b) + di* = g,((s + b)x). Since we are assuming that F does
not have cut limits on I we have that the family {f (s, x, b)}, defined for (x,5) € P x 1
does not converge in the C? topology as s — 00. Hence there is a derivative &, for
some multi-index of order < 2, and sequences s, = 00, x, = x, b, — b such that
1 (Su s b2) — Ff (Spp1s %0y b)| > @ for some fixed @ > 0, and n even. By Proposi-
tion 6.3.3 we have that R, ;(s) = (s + b)x € (P, A*, 7(s)), for some Af, k <m— 2, and
s> g, for some §; or R, ;(s) = (s + b)x € Y(P,7(s)), s > §, for some s'. Consider the
first case: R, ;(s) = (s + b)x € Y(P, AF, r(s)), for some A, k < m — 2. Moreover, also by
Proposition 6.3.3, we can assume R, , (s) = (s + b,)x, € Y(P, A%, r(s)), for s > §'. But by
property P3, on Y(P, A%, 7(5)) the metric g is equal to Eqar(G(LiNk(AF, P), 7(s))). Con-
sequently the family of metrics {Eqar (G (Link(A*, P), 7(5))}, does not have cut limits on I
either. But the claim, together with the inductive hypothesis, imply that this family does
have cut limits, which leads to a contradiction.

Now consider the second case in Proposition 6.3.3, that is, R, ,(s) = (s + b)x €
Y(P,r(s)), s > ¢, for some 5. But by P4 the metric § (P", 7(r,—2)) coincides with ocp,
hence f is constant on s (s large) near (x,b). This is a contradicts the assumption

|8Jf(‘yﬂ’ Xns bﬂ) - a]f(srkH’ Xns bn)| = a. O

.. .. . . _ _ l
For a positive real number & and a positive integer write §; =§ — k+ ;. Note that

£ =¢.
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Proposition 8.4.3. — Let ¢ € (0,1),& >0, ¢ > 1, and consider (P", Lp, ¢p). Assume

(i) cc < e 107
(ii) ¢> Mt

(i) m+1<&.

Let € > 0. Then we have that G(P, Lp, ¢p, &, 7,d, (¢, c)) is (B, &)-close to hyperbolic
(a = Ty—9 — dyi1), with charts of excess &, provided d; and r — d;, 1 =2, ..., m+ 1, are sufficiently
large.

Remarks.

1. By “sufficiently large” we mean that there are 7,(P,¢) and 4;(P,¢), 1 =

2,...,m+ 1, such that the proposition holds whenever we choose r — d; >
r;(P, &) and d; > d;(P, ¢). We will write r,(P) = r,(P, ¢), and 4;(P) = 4;(P, ¢),
if the context is clear.

2. The choices of ¢, & and ¢ do not depend on ¢.

3. If we want the smoothed metric on a cone CP” to be (B,, €)-close to hyperbolic
we can choose £ =m+ 1, ¢ = ¢ and ¢ < ¢ 2% With these choices the
method would not work for P of dimension > m.

4. The condition ¢g = ¢~ ®*t%) is stronger than the condition ¢ < ¢~*. The latter
1s used to construct the smoothed metric but it is not strong enough to give us

g-close to hyperbolicity.

Progf. — We assume ¢, &, ¢ fixed and satisfying (i) and (ii), that is, cg¢ < ¢~ ®™) and
¢ > ¢"*5. We will only mention the relevant objects to our argument in the notation for the
smoothed metrics. That is, we will write G(P, d, 7, &, (¢, ¢)) or just G(P, d, ). Our proof
1s by induction on the dimension m of P”, with m 4+ 1 < &. Without loss of generality we
can assume every & we take satisfies:

1

EL< ——.
(1+§)

(1)
For m = 1 we have that the proposition follows from Section 8.1 and Theorem 4.6 by
writing A = 7, choosing g, = ocp, replacing & by & 4+ 1, and taking & = ¢. Also, since
g = ocp 1s e€-close to hyperbolic, for every €, we can take the & in Theorem 4.6 to be
zero. With all these choices Theorem 4.6 implies that G(P, do, r) is e-close to hyperbolic,
with charts of excess § =&, provided r — dy and d, are large enough.

Let m such that m 4+ 1 < &. We write @, = 7,_y — d}1, and note that G(P, r, d) is,
by construction (see P8), radially hyperbolic on the ball of radius ;. We now assume that
the proposition holds for all £ < m. That is, given ¢ > 0 and P*, the smoothed metric
G(P*, r,d) is (B,,, &)-close to hyperbolic, with charts of excess &, provided r — &; and d;,
1=2,...,di4 are large enough. Note that, since we are assuming £ < m, we get that
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k41 <§&. For 0 <k <m— 2 we use the following notation

&
=C0n—k k+ l,sm—k—l)BZCQ(s)Ek=ﬁ, (2)

where C is as in Theorem 2.7 and C, as in Theorem 4.6. Let P = P”. For £ < m write
L; = {Link(A*, P)} tcp. A generic element in L; will be denoted by Q = Q/, j+k=m— 1.
By inductive hypothesis, for each Q/ there are 7,(Q) = 7,(Q/, &;) and d}(Q)) = d:|(Q, &),
i=2,...,j+ Lsuch that G(Q, r, d) is (B, &r)-close to hyperbolic, with charts of excess &,
provided r — d; > r,(QY) and d; > d:(Q)). For 2 <1< m,let d;(P) be defined by

d:(P) = max {d,(Q)}.

(®) = max {4(Q)]

We write d(P) = {&,(P), ..., d,(P), ...} where d;(P), : > m 4+ 1, is any positive number.
This is just for notational purposes and the arguments given below will not depend the
d;(P), : > m+ 1. We do reserve the right to later choose d,,4,(P) larger. Also for 2 <: <m
write

1(P) = d;(P) + [nax {4In(m), ;(Q),R(g,iym—i+ 1,6 D},

Q.igj+l

where R is as in the statement of Theorem 2.7. Therefore we get that (recall j+k =m—1)

(8.4.4) For every Q' € L, the metric G (Q )7, d) is (B, €1)-close to hyperbolic,
with charts of excess, §; provided r — d; > 7,(P) and
di>dP),1=2,....k+1.

By definition we have 7;(P) > 4In(m). Also, from the definition of 7 (see Section 6.2),

we have 7,_o =7_9(r) > r. Hence, if r — djy; > 74,1 (P) and 0 <j < m — 1 we get that

a4 =19 — dipy >1r—dyy > 11(P) > 4In(m). Therefore @2 < % and we get & —
W > g — L =¢ j—l———i>$ —J+ +1 >& — (m— 1)+ L. Also, from the

7’2

definition of 7,(P) we get 7, +1(P) > R(ep, b+ 1 SJ) Therefore r — C{;+1 > 7,41 (P) implies

4 =ri_9g —dipy >1r—dy >14(P) > R(g, b+ 1,§). We just proved the following two
inequalities.

§— > E— (= 1)+~
‘ m (3)
a; > R(Sk, k+ 1, %-/)

Taking the inequalities in (3), together with (8.4.4), Theorem 2.7 and the definitions
given in (2) we get that

(8.4.5) For every Link(A*, P) € L;, the metric &1 (G (Link(A%, P), 7, d)),

€
defined on the space &4, (CLink(A’“, P)), 1s (Baj, 3—B>—Close to
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1
hyperbolic, with charts of excess § — (m — 1) + —, provided

m
r—d;>r(P)and d; > d;(P),i=2,...,k+ 1.

Lemma 8.4.6. — The patched metric §3 (P, r, d) is radially (35)-close to hyperbolic on CP —
1_3,.7”_2,1,5, with charts of excess € —(m—1) + %,pmvidedr— d>rP),d>d(P),1=2,...,m.

Proof. — The idea of the proof'is to apply (8.4.5) on the patches ). The problem is
fitting the e-close to hyperbolic charts. We need some preliminaries.

For A = A* € P write Yo = Y(P, A, 7,&,(¢,¢)) and Y = V(P, 1, &, (¢, ©)) (see
Section 6.2). For A = A, k < m define

Ns=N, (CA,CP)— | ] N, (CA'.CP)-B, , , ¢(CP), 4)
AleP,l<k
N=cpP- [J N, (CALCP)-B, , (CP). (5)
AleP,i<m—2

Write N = UparepNack. It is straightforward to show that CP — 1_3,”[72_1_5 =NU UkSm—Q N,.
Let ¢ = ¢*™¢. From hypothesis (i), that is from ¢g < ¢7'°7% we get that /¢ < ¢ 7%
hence we can define the sets Y, =Y(P, A, 7, &, (¢, ¢)) and Y = YV(P, 1, &, (¢, ¢)) (see

Section 6.2). That is

Y, =Ny, (CA"CP)— | J N, (CA"CP) =B, , (42 (CP).
AleP, i<k
Here s, , is defined by replacing ¢ by ¢ in the definition of s,, ;. Note that if we define Y’
in the obvious way, we would just get Y =Y. From the definitions we have N, C Y', and

N C Y. Note that if we replace ¢ by 1 in the definition of s,, ; we obtain 7,, ;. This together
with hypothesis (ii), the definition of ¢/, and Lemma 8.3.2 imply

(s;n’k — sm,k) >3+ ©
(Sm,k - 7’771,/() >3 + 5

It follows from ¢ < ¢ ®%* and Proposition 8.3.1 that the Riemannian metrics
G(Link(A*, P), r,d, ¢) and G(Link(A*, P),r,d, ) coincide. Therefore we have a ver-
sion of (8.4.5) with G(Link(A*, P), r, d, ¢) replacing G(Link(A*, P), d, r) = G(Link(A*, P),
r,d, ¢):

(8.4.7) For every Link(A*, P) € L;, the metric & (G (Link(A", P), 7, d,¢)),

defined on the space &4, (CLink(Ak, P)), 1S (Baj, %)—close to
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1
hyperbolic, with charts of excess § — (m — 1) + —,
m

provided » — d; > r;(P) and &, > 4;(P),1=2, ..., k+ 1.
For p € CP denote the ball of radius s centered at p by B, ,(CP), with respect to the

metric ocp.
Claim 1. — For A = AF, k< m — 2, we have L‘/zatdg,)(NA, CP-Y),)>3+&.
Here dgy (., .) denotes path distance with respect to the metric (P, 7).

Proof of Clazm. — Let p € Ny and ¢ ¢ Y/, and @ : [0, 1] — CP a path joining «(0) =
p to (1) = ¢g. After taking a restriction of this path, we can assume that ¢ € 9Y’, and that
a([0, 1)) CY/,. Let £(«) be the length of & with respect to the 4 (P, r) metric. To prove
the claim we need to show that £(«) > 3 4+ &. From the definition of Y, we have that the
boundary of Y/, has 3 types of pieces, thus we have three cases.

Case 1. ¢ € 3B, , 4405 (CP). From the definition of N, we have p ¢
B, ,_1_:(CP), hence £(a) > (59 — | — &) — (r,o — (4 +28)) =3 +&.
This concludes case 1.

Case 2. g € aNSI/n’k(CA, CP). Since «([0,1)) € Y, and Y/, C Ny (CA,CP) we
get that a([0, 1)) C Né‘,’n,k(CA’ CP). This last inclusion together with the
fact that p € Ny CN,,,(CA, CP) imply £(a) > s, , — 5,4 But by (6) we
have s), , — 5,4+ > 3 + &. This concludes case 2.

Case 3. g € BN,MJ.(CAj, CP), for some A, j < k. In this case, by restricting a
if necessary, we can assume that ; is minimum in the following sense:
([0, 11) does not intersect any N, ,(CA!, CP), with [ <j. Since p € N,
we get that p ¢ NW(AJ', P). This together with the fact that (B, A) sat-
isfies DNP (see item 4 in (8.0.1)) imply that there is ¢ € [0, 1] such that
a([t, 1] C Ns.mJ.(A»j, P) and a(?) € 8NA‘"U.(A-", P). Therefore the g-length
of a1y is atleast s,, j — 7, ;. This with (6) imply £(a) > 5,,j —7,,; > 3+&. [

Claim 2. — We have that dgy (N, CP —Y) > 3 +§.

Proof of Clavm. — The proof is similar to Case 3 in the proof of the previous claim.
LetpeNand ¢¢ Y and « : [0, 1] = CP a path joining a(0) = p to (1) = ¢. Let £(c)
be the length of o with respect to the 2 (P, ) metric. To prove the claim we need to show
that £(a) > 3 + &. By restricting « if necessary, we can assume that ¢ € N, (A7, P), for
some A, j < k. Furthermore, we can assume that j is minimum as before. The rest of the

Tmy

proof'is exactly the same as Case 3 in Claim 1. UJ
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Before we prove Lemma 8.4.6 recall that Y), C CStar(A,P) (see Proposi-
tion 6.2.1(1)). Note that CStar(A,P) C CP but we can (and will) also consider
CStar(A, P) C &1 (CLink(A, P)) (see 6.1.4).

We are now ready to prove Lemma 8.4.6. By Proposition 8.3.1 it is enough to prove
the lemma for (P, 7, d, ¢). Recall that CP—B, , |, =NU (U< N First we prove
that on each Ny, 0 < £ <m — 2, the patched metric (P, r, d, ¢) is radially (%)—close to
hyperbolic, with charts of excess " =& — (m— 1) + i Assume p € N;. Then p € Nax
for some AF. Since Nx C Y, C CStar(Af, P) C &1 (CLink(A, P)), from (8.4.7) we
get a radially (35)-close to hyperbolic chart ¢ : Ter — Ery1(CLink(AF, P)) with center p.
But it follows from Lemma 1.3 and inequality (1) that dg,, Lkt p) (@ (9) < 3 +§,
for every ¢ € Ter. This together with Claim 1 imply that ¢(Te») C Y),,. Here Y/, C
CStar(A*, P), and CStar(A*, P) is a subset of the space &, (CLink(A*, P)). But we can
also consider CStar(A*, P) is as subset of the space CP, hence we can consider the chart ¢
as a chart with image in Y',, C CP — B, , _:. Therefore, by P3 ¢ is a radially (55)-close
to hyperbolic chart with center p on CP — B, _, | with the metric (P, ). This proves
the case p € N;, 0 < £ <m — 2. It remains to prove the case p € N. But this case follows
from a similar argument as above (in this case fitting a chart in Y) and using Claim 2 and
Property P5. O

We now finish the proof of Proposition 8.4.3. Set ¢’ = £. By Lemma 8.4.6 the fam-
ily {g2(P, r,d)}, is radially (35)-close to hyperbolic, provided r — &; > r,(P), d; > d(P),
t=2,...,m. Note that » = r(r,_9) is large if and only if 7,5 is large. We can now
apply Theorem 4.6 to the family {§(P,r(r,—2),d)}, ,_ L. Notice that we have to use
Lemma 8.4.2 to satisfy one of the hypothesis of Theorem 4.6. Since &' + Bz < ¢
(recall B = Cy, see (2)) from Theorem 4.6 we obtain a number 7,,(P) and a (pos-
sibly larger) number d,.,(P) such that H, Ldy—t 0P, 7(r,—0)) 1s (B,, €)-close to
hyperbolic, provided r — d; > 7;(P) and 4, > 4;(P), i1 =2,...,m+ 1. Here a = q, =
(rp—o — %) — (dpy1 — %) = T—9 — dy41 (see Proposition 4.5(1)). The excess of the charts
given by Theorem 4.6 1s (§ — (m— 1) + i) — 1 =£,. This proves Proposition 8.4.3 be-

cause by definition (see (8.2.4)) we have G(P,r) = HM_Q,%‘ -1 82 (P r(r,29)). 0J

8.5. Smoothing cones over manifolds

As in the beginning of Section 8, let P" be an all-right spherical complex and
Sp = S(Lp) a compatible normal smooth structure on P. In the previous sections we have
canonically constructed a Riemannian metric G(P, Lp, ¢p, 1, &, d, (¢, ¢)) on the cone CP.
An important assumption was that (P, Sp) was diffeomorphic (by ¢p) to the sphere 8™,
We cannot expect to do the same construction on a general manifold P because CP is not
in general a manifold. But we will canonically construct a complete Riemannian metric
on CP — o¢p that has some of the previous properties.
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We consider some of the same data as before: P”, 7, &, d, (¢, ¢) satisfying (8.0.1). We
replace the map ¢p in (8.0.1) by a Riemannian metric /p on the closed smooth manifold
(P, Sp). Here the smooth structure is compatible with the all-right spherical structure
of P. Hence, by Theorem 7.1, we can assume that Sp has a normal atlas A(Lp) induced
by some smooth set of link smoothings Lp. We will assume that P has either dimension
<4 or Wh(mr,P) =0, so that we can apply Theorem 7.3.1. Therefore we begin with the
following data: P", Ly, hp, 1, &, d, (¢, ).

Note that the sets Y(P, A, r), Y(P, r) are defined for general P (no just for P = 8")
and satisfy all the properties given in Section 6.2. Now, since all the links of P are
spheres, and the patch metric does not depend on ¢p (see Remark 8.2.5(3)), we can
define, as in Sections 8.1 and 8.2 the patch metric (P, r) = (P, Lp,7,£,d, (¢, 5)) on
CP-— l_i,m_r(Hgg) (CP), and this metric satisfies properties P2, P3, P4 given in Section 8.2.

Recall that in Section 8.2 this construction is completed by applying hyperbolic
forcing to the ©-family of metrics {2 (P, 7(r,—2))}, ,- ! (see (8.2.4)). This method consists
of two parts: warp forcing and then the two variable deformation. In our more general
setting here we can still apply warp forcing, but we cannot directly apply hyperbolic
forcing (at least not in the way given in Section 3) because we do not have P =8". In our
case, to finish our construction we apply first warp forcing and then a version of the two
variable deformation for general P; this new version will use the metric /p instead of the
canonical metric og» on the sphere $™.

Consider now the O-family of metrics {4 (P, 7(7,-2))} 1 and apply warp forc-

. X "Tm—2—79
ing to obtain

8rn—o = Wrm_gfég‘)(l% 7(7’7’272))9

and we have that g, , 1s a warp product B 1 (CP) — ocp, specifically we have g, , =

2 Tm—2—"79
sinh” g + di?, where g is a Riemannian metric on P (it is the normalized spherical cut of

P, r(r,—0)) at 7,9 — %) and ¢ 1s the distance-to-the-vertex function on CP. Let p, , be

the function in Section 3.1. Define the metric g =4+ (0,,_, 4,,,.4,,,~1 (D) (g — 7). Now
define the metric G(P, &, 7) = G(P, Lp, h,1,&,d, (¢, 5)) by

sinh’fg,+d*> onB, , 1(CP)—B
G®,h,r)= _
wOh+d*  onB, ,_,. (CP),

(CP)

Tn—2—tn+1

t_ () .
where u(t) = —=—,and 2 = p,,_,-24,,,.4,,,- Also we are assuming r,,_» — 2d,1 > 0. Note

that G(P, h, r) = %eth +di? on B, , 9. (CP)—ocp, that is for 0 < t < 1,9 — 2d,,4.1. We
write CP — ocp = P x (0, 00) and extend the metric G(P, ,7) to P x R by %eth + df? for
-0 < ZS 7m_2 - Qdm+1.

Corollary 8.5.1. — The metrics G(P, h, r) and § (P, r) have the following properties

(i) G(P,7) is a Riemannian metric on P x R that has the same set of raps as ocp (on
P x (0, 00)).
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(1) Properties P3 and P4.

(i) G(P, A, 1) = %e‘h +df for —00 < t <19 — 2d,11.

(iv) Given & > 0 we have that the sectional curvatures of G(P, h, r) are &-pinched to —1 for
t> 19— 2dyiy providedr —di, di, 1 =2, ...,m+ 1, and r — 2d,,1, are large enough.

Proof. — Item (i) follows the same argument used for P1 in the spherical case. Item
(i1) is true by construction (see also Lemma 8.2.2). Item (iii) follows from the discussion
above, and (iv) from Proposition 8.4.3 and Bishop-O’Neill warp product curvature for-

mula [3], p. 27. O

9. On Charney-Davis strict hyperbolization process

We use some of the notation in [5]. In particular the canonical n-cube [0, 1]" will
be denoted by [J" and [ = (0, 1)". (This differs with the notation used in Section 7,
where an n-cube was denoted by ¢”.) Also B, is the isometry group of [J".

A Charney-Dauvis strict hyperbolization piece of dimension n is a compact connected ori-
entable hyperbolic n-manifold with corners X = X" satisfying the properties stated in
Lemma 5.1 of [5]. The group B, acts by isometries on X" and there is a smooth map
S : X" — [0" constructed in Section 5 of [5] with certain properties. We collect some facts
from [5].

(1) For any k-face (0F of (0" we have that ~!(CJ%) is totally geodesic in X". More-
over X" is a Charney-Davis hyperbolization piece of dimension .. The sub-
manifold (with corners) f~' () is a k-face of X". Note that the intersection
of faces is a face and every k-face is the intersection of exactly n — £ distinct
(n— 1)-faces.

(2) The map f is B,-equivariant.

(3) The faces of X" intersect orthogonally.

(4) The map f is transversal to the k-faces of ", £ < n.

The k-face f~1({0%) of X will be denoted by X The interior /! (CI) will be denoted by
X, The normal neighborhood of a k-face X in X of width 7 is the union of all speed
1 geodesics y : [0, r) = X emanating from and perpendicular to Xpy; it is assumed that
this set U is open in X and the exponential map T+Xm: — U is a diffeomorphism. Here
T+X is the subbundle of TX]x_, formed by vectors of length < 7 perpendicular to
TXgr. We say that the width of the normal neighborhood of X is larger that 7 if there
1s a normal neighborhood of X of width 7" > 7. The following is proved in [31] (see
Lemma 2.1 in [31]).

Proposition 9.1. — For every n and r > 0 there s a Charney-Dauvis hyperbolization prece of
dimension n such that the widths of the normal neighborhoods of every k-face, k=0, ...,n— 1, are
larger that r.
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For a k-face X and p € X, the set of inward normal vectors to X at p can
be identified with the canonical all-right (n — £ — 1)-simplex Agi—-1. In this sense we
consider Ag.-+1 C T,X. Similarly we can consider Ag.—+1 C T,[1", for ¢ € [*. We make
the convention that the two identifications above are done with respect to an ordering of
the (n — 1)-faces Xm-1 of X and the corresponding ordering for [1". For a proof of the
following proposition see [31] (see Lemma 2.5 in [31]).

Lemma 9.2. — For p € ng, we have that Df), sends non-zero normal vectors to non-zero
normal vectors; thus Df,| Mgt P Agiot = Agiie. Moreover, m o (Df,|a ) 1 Agii-1 —
Agi-i-1 15 the identity, where m(x) = o is the normahzation map.

sn—k—1

The strict hyperbolization process of Charney and Davis is done by gluing copies
of X" using the same pattern as the one used to obtain the cube complex K from its cubes.
This space is called Kx in [5]. Note that we get a map I : Kx — K, which restricted to
each copy of X is just the map / : X" — [I". We will write Xge = F~1((0"), and Xy =
X = F1([0Y), for a k-cube [F of K.

By Lemma 9.2 we can use the derivative of the map F: Kx — K (in a piecewise
fashion) to identify Link(X:, Kx) with Link(CJ*, K), where in both cases we consider
the “direction” definition of link, that is, the link Link(Xr, Kx) (at p € ng) is the set
of normal vectors to Xy (at p) and the link Link(C), K) (at ¢ € [0 is the set of normal
vectors to [ (at ¢). Hence we write Link(Xm, Kx) = Link(CJ*, K); thus the set of links
for K coincides with the set of links for Kx.

In what follows we assume that the width of the normal neighborhoods of all X
to be larger than s, for some sy. Also let r such that sy > 27. By Proposition 9.1 we can
take sy and 7 arbitrarily large.

Let Xt C X be a k-face of Kx, contained in the copy Xm» of X over [,
For a non-zero vector u normal to X at p € X, and pointing inside X., we have
that expp(tu) is defined and contained in X, for 0 < ¢ < sy/|ul. Let Ao : 85! —
Link(CJ*, K) = Link(Xg¢, Kx) be a link smoothing of the link corresponding to [I* € K.
We define the map

Ho: D" xXgo —> Kx
(tv, p) —>  Ho(tv, p) = exp, (2rthoi (),

where D" is the open (n — k)-disc, v € $"*! and ¢ € [0, 1). For £ = n we have that Hq.
is the inclusion X, C K (or we can take this as a definition). Note that Hry: is a topolog-
ical embedding because we are assuming the width of the normal neighborhood of X
to be larger than sy > 2r. We call a chart of the form of Hr (for some link smoothing /)
a normal chart for the k-face Xgr. A collection {Hp}oek of normal charts is a normal atlas,
and if this atlas is smooth (or C*) the induced differentiable structure is called a normal

smooth (or C*) structure. The following theorem is proved in [31]; it is the Main Theorem
in [31].
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Theorem 9.3. — Let L = {ho}nex be a set of link smoothings for K. If L is smooth then the
normal atlas {Ho}oex on Kx s smooth.

We will write Ak, = {Ho}oek. Note that the normal atlas Ak, depends uniquely
on the smooth set of link smoothings £ = {ig}gck for K (hence for Kx). To express this
dependence we will sometimes write Ag, = Ak, (£). We will denote by Sk, = Sk, (L)
the smooth structure on Ky induced by the smooth atlas Ak, . The following theorem is
proved in [31]; it is the Addendum to the Main Theorem in [31].

Theorem 9.4. — The smooth manifold (Kx, Sky) smoothly embeds in (K, S") x X, with
trivial normal bundle. Here 8" is the normal smooth structure on K induced by L.

9.5. Hpyperbolized manifolds with codvmension zero singularities

In this section we treat the case of manifolds with a one point singularity. The case
of manifolds with many (isolated) point singularities is similar. We assume the setting and
notation of Section 7.3. Let Kx be the Charney-Davis strict hyperbolization of K. Denote
also by p the singularity of Kx. Many of the definitions and results given before still hold
(with minor changes) in the case of manifolds with a one point singularity (see Section 5
in [31] for more details).

(1) Given a set of link smoothings for K (hence for Kx) we also get a set of charts
Hp. For the vertex p we mean the cone map H, = Ck, : CN — CL C Kx. We
will also denote the restriction of H, to CN — {ocn} by the same notation H,.
As in item (2) of Section 7.3 here we are identifying CN — {ocn} with N x (0, 1]
with the product smooth structure obtained from some smooth structure Sn
on N. As before {Hp}oex is a normal atlas for Kx (or Kx — {p}). A normal atlas
for K — {p} induces a normal smooth structure on Kx — {p}.

(2) Again we say that the smooth atlas {Hp} (or the induced smooth structure, or
the set {/,}) is correct with respect to N if Sy is diffeomorphic to SN.

(3) Let the set £ = {ig}gek induce a smooth structure on K — {p}, that is, £ is
smooth. As in Theorem 9.3 we get that {Hg}gek 1s a smooth atlas on Kx — {p}
and it induces a normal smooth structure Sk, on Kx — {p}. Moreover, from
Theorem 7.3.1 we get that Sk, is correct with respect to Sy when dimN < 4
(always) or when dimN > 4, provided W/(N) = 0. Note that in this case we
can take the domain CN — {ocn} = N x (0, 1] of H, with smooth product
structure Sy X Sg.13-

(4) It can be verified that a version of Theorem 9.4 also holds in this case:
(Kx — {p}, Sky) smoothly embeds in (K — {p},S") x X with trivial normal
bundle.
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10. Proof of the Main Theorem

In Section 2 the concept of hyperbolic extension over hyperbolic space was intro-
duced. We next extend, in the obvious way, this concept to hyperbolic extensions over
hyperbolic manifolds.

As in Section 2, let (N, 4) be a complete Riemannian manifold with center 0 = oy.
Let (Q, 0g) be a hyperbolic manifold. The Ayperbolic extension of h over Q) is the Riemannian
metric g = cosh? 70 + & on Q x N, where 7 : N — [0, 00) is the distance-to-o function
on N. We write g = &g(h) and (Q x N, g) = Eq(N, ) (or simply £g(N)) and we call
Eq(N) the hyperbolic extension of N over Q,

We now begin the proof of the Main Theorem. Let M” be a closed smooth man-
ifold. Let K be a smooth cubulation of M. We can take K such that K satisfies the in-
tersection condition (see beginning of Section 5). Let Kx be the Charney-Davis strict
hyperbolization of M, as in Section 9. We can assume that the Charney-Davis hyper-
bolization piece X is such that the widths of the normal neighborhoods of every face of X
is large (see Proposition 9.1), all larger than a large number 255 > 0. Let Ax, = {Ho}oex
be a smooth normal atlas for Kx, and Sk, the induced normal smooth structure on Kx.
Recall that the Hg are constructed from a smooth set of link smoothings Lx = {fg}oex
for the links of K (or Kx).

The domains of the charts Hy are the sets D" 7 x XD;. But in this section, for nota-
tional purposes, we will consider the rescaling of Hpy; given by Hi (v, p) = expp(thg;'(v)),
defined on D"7(sp) x XD/. We shall denote this chart also by Hy.

In what follows, to simplify our notation, we write Link(Xg) = Link(Xg, Kx). Re-
call that given [J € K, the set Lk of link smoothings for the links Link(Xg) of Kx (and
of K) induce, by restriction (see Section 7.2), the set of link smoothings {4 € Lk, ' C J}
for the links of Link(Xm). We denote this induced set of smoothings by Lijnkx.) or
just L.

The space Kx has a natural piecewise hyperbolic metric which we denote by ok .
The piecewise hyperbolic metric on the cones CLink(Xg) of the all-right spherical sim-
plices Link(X) will be denoted by o¢iinkxy)- The restriction of ok, to the totally geodesic
space X shall be denoted by ox,.

For U € K, the (closed) normal neighborhood of X i Ky of width s < 5o is the
set N, (XD,KX) H (D" (5) x XD) That 1s, 1t 1s the union of the images of all
geodesic rays of length < s in each copy of X containing Xy, that begin at (and are

normal to) Xgy. Similarly the open normal neighborhood of X of width s < 59 is the set Iils
(X, Kx) = Hgi(D"7(s) x Xg). Sometimes we will just write N,(X) = N,(X, Kx)

and lilx (XD/) =Iilj. (XD;, Kx). Note that normal neighborhoods respect faces, that is:
(10.1) N, (Xe) N Xy = N (Kpyinoes X

Herq NS(XDijk, ng) is the union of all gegdesics oflength < sin the hyperboliza-
tion piece X that begin in (and are normal to) X
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Since the normal bundles of the Xp are canonically trivial (see construction of X
in [5], or Section 2 in [31]) we can make the following canonical identification:

(10.2) N,(Xm) = X x C,Link(X),

where C,Link(Xg) = B,(CLink(X)) is the closed s-cone of length s, that is, it 1is
the ball of radius s on the (infinite) cone CLink(X) centered at the vertex, see Sec-
tion 6.1. Similarly we have the identification Iils (ng) = XDjX (OJS Link(Xj), where
(O]S Link(X) is the open s-cone of length s. Moreover these identifications are also met-
ric identifications, where we consider N,(Xp;, Kx) C Kx with the (restricted) piecewise
hyperbolic metric ok, and X x C,Link(Xg) with the hyperbolic extension metric
5XD,- (ocLinkex ) = cosh? lox_; + OcLinkX )
tion on the cone CLink(X;). Therefore we have the metric version of (10.2): N,(Xgj) =
€XD/. (C,Link(X)).

where ¢ is the distance-to-the-vertex func-

Remarks 10.3.

1. The metric ocpinkxg) 1s not smooth but the formula above makes sense, giving
a well defined piecewise hyperbolic metric.

2. Since we are identifying NX(XD') with XD' x C,Link(X;) we will consider
N,(Xp) also as a subset of X x CLink(Xgy), where CLink(Xgy) is the (in-
finite) cone over Link(X). Note that the metric EXD, (chLink(XD].)) is defined on
the whole of X5 x CLink(Xg).

Lemma 10.4. — Lat OV =0 N O, 7=>0. Let sy, 59,5 < 5o be positive real numbers such
that S Snhs < 32 e N (X)) NN, (X)) © N(X ).

sinhs > sinhs — 2
Progf: — Using (10.1) we can reduce the lemma to the case were Kx is just a
hyperbolization piece X. This case is proved in [31]; it is Lemma 2.3 in [31]. U

Suppose [V C O € K. Then [0 determines the all-right spherical simplex
ALk (0% = OF N Link(CV, K) in Link(CV, K) = Link(X). We will just write A(CF)
if there is no ambiguity. (Other definition previously used: A x) (%) = Link(CV, %))
Using this new notation, (10.1) and (10.2) we can write

(10.5) N, (Xg) N X = X x G, A(TF) € X x C,, Link(X).
Lemma 10.6. — Let TV C OF and sy, 59 < so. Then
N, (Xm) NN, (X)) = Xy x N, (CA(O), G, Link(Xm)).

Note that the last term 1s a subset OfXDj x CGLink(X).
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Proof. — Using (10.2) we see that both sides of the equality above are contained
in NH(XD) = XD x G, Link(X). Let p € NH(XD) Let (' such that p € X Then
[ ¢ 0. There is a geodesic segment [x, p], x € Xgy, perpendicular to Xgy at x, and
with length < ;. Note that [x, p] is totally contained in X Using (10.2) and (10.5)
we have that [x, p] is a geodesic segment in {x} x C, A(C)). Now, p € N,, X) implies
[0* ¢ O and there is a geodesic segment [g, p], ¢ € Xcx, perpendicular to Xy at ¢, and
has length < s,. Note that [g, p] is totally contained in X Since {x} x C;, A(C)) is convex
in ng, and {x} x C,, A(0" is convex in {x} x C,, A((0"), we have that the segments [q, ]
and [x, ¢] are contained in {x} x C, A(C0'). Moreover, since [g, ] is perpendicular to
X at ¢, we have that [g, p] is a geodesic segment in {x} x G A(C)') perpendicular to
{x} x CA(OF) at q of length < s;. This shows p € X % N, ,(CA(OY, G, Link(X)) and
the inclusion N; (XD;) NN, (XDk) C XD; x N, (CA(OH, CYl Link(X)). The proof of the

other inclusion is similar. U
Remark 10.7. — Clearly the open version of Lemma 10.6 also holds:

Ny, (Xo)N N, X) =X x Ny, (CA (D), Gy, Link(X))

Now, letd, r, &, c and ¢ be as in items 1, 2, 3, 4 at the beginning of Section 8, and
let the numbers s, 1 = $,,.4(7), 7i = 7,.4(r) be as in Section 6.2. Recall » = dim M. For
each [0F € K define the sets

Z(Xo) =N,,, X — [N, Xe),

i<k
Z=Kyx— U N, ,(X0).
i<n—1
Note that these sets depend on 7. By Proposition 9.1 we can take sy as large as needed,

hence we can assume that Z(X) Clzlé.0 (Xw).

We next use the sets X'(P, A, r) and X' (P, r) of Section 6.2. The sets X (Link(X),
A(OH), r) and X (Link(Xm)), r) are a subsets of the (infinite) cone CLink(Xq)).

Lemma 10.8. — The following properties hold

Q) FON0 =0 thee ZXp)NZXg) =0

(i) O =0'N00<j <,k then N, (Xg) NN, ,(Xg) CN,  (X).
(i) O =0N00<j <,k thn ZXg) N ZXt) =0
(iv) If0Y C O then (see Remark 10.3(2))

Z(Xp) N Z2Xg) € X x X (CLink(Xm), A(T), 7).

(v) Fork <n—1 wehave Z N Z(Xgk) C X x X (CLink(X), 7).
i) Kx=Z2U;_, , Z2X).

1 <n—1
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Proof. — Let 0’ N0 = @. Then the distance in Kx from X to X is at least
25p. This proves (). Statement (i1) follows from Lemma 10.4, item (4) at the beginning of
Section 8, and the following calculation for / =, £ (see Section 6.2 for the definition of
Sp and 7,

. sinh 7 sin f;
sinh s, ; (—qman ) - 6% V2
- P =c¢5g '<c¢g<e < —.
sinhr7, (b 2
sin o, —j—3

Statement (iii) follows from (ii) and the definition of the sets Z. We next prove (iv).
Write Z = Z(X) N Z(Xr). By the definition of the sets Z we have

Z = Nf";l' (XD;)m N‘yﬂ.k (XDA) - U NTn,l(XD/)

I<k

CN,, Xg)NN,, Xoo) — [N, Xo)

ji<k

C Nsn:,‘ (XDJ)m Nsﬂ,k (XEVf) - Nr,l,/(XDZ) - Nrn (XEI/)
W

J<i<k

s,,J (XD)m Ns,zk (XD‘) - U (Nso (XD) N Nm./(XD/)) - Nrn‘/'(XDf)

J<l<k

This together with Lemma 10.6 imply Z € X x A where

o

A=N,, (CA(D), C,, (Link(Xp)))

_ U N,,(CA(O'), C, (Link(Xm))) — B, (CLink(X)),

j<l<k
hence
ACN,, (CA(TF), CLink(X0))
— [N, (CA(D). CLink(Xm)) — B, (CLink(Xg)).
J<l<k
But for 7 > j we have s,; = $i—ji—j, Tui = fu—j-1,i-1 and r,; =7, (see definitions in

Section 6.2). Therefore A C X' (CLink(X), A(%), r). This proves (iv). The proof of (v)
1s similar to the proof of (iv) with minor changes. The proof of (vi) is similar to the proof
of (iv) in Proposition 6.2.1. OJ

We now smooth the metric ok . For each U € K using the construction in Section 8
we get a Riemannian metric G(Link(Xg), L0, o, 7, &, d, (¢, ¢)) on CLink(Xg), which
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we shall simply denote by G(Link(Xg)). Define the Riemannian metric G(Xg) on Iil
(Xo) by

50

G(Xn) = &, (G(Link(X0)))

Remark 10.9. — Recall that we can also consider lilm (Xp) contained in X x
CLink(Xg), where CLink(Xg) the infinite cone (see Remark 10.3(2)). In this case note
that the definition of G(X) makes sense in the whole of X x CLink(X).

Proposition 10.10. — The Riemannian metrics G(Xry) and G(Xgy) coincide on the inter-
section Z(Xi) N Z(Xe), 1,] < n— 1. Also the Riemannian metric G(X) coincides with ok
on Z N Z(Xp).

Proof. — Yor the first statement items (1) and (iii) of Lemma 10.8 imply that we
only need to consider the case [V C [I*, j < k < n— 1. By item (iv) of Lemma 10.8 it is
enough to prove that G(X) and G(X¢) coincide on X x X(CLink(Xm), A, r),
where we are considering this last set as a subset of XD/ x CLink(X) (see Remark 10.9).
Property P6 in Section 8.2 implies that the metric G(Xry) coincides with the metric

& [Ecacm (G[Link(A (OF), Link(Xp))]) ]
on X x X (CLink(X5), A, r). But

Link(A(O%), Link(Xm)) = Link(A (%), Link(C¥, K))
= Link(C", K) = Link(Xy)

Hence we have to prove that gX[v' (Ecamm (@) = SXDk (9), where g = G(Link(X)). This
follows from applying Proposition 2.5 locally. To prove the second statement in Propo-
sition 10.10, using a similar argument as above (with P7 instead of P6) we reduce the
problem to showing that on ng x CLink(X) we have EXD/; (UCLink(XDk)) = Oky. And
this follows from applying Corollary 6.1.8 locally. UJ

Finally define the metric G(Kx) = G(Kx, £, 7,&,d, (¢, )) to be equal to G(Xr)
on Z(Xgy), for 0" € K, k£ < n— 1. And equal to ok, on Z. By Lemma 10.8(vi) and
Proposition 10.10 the metric G(Ky) is a well defined Riemannian metric on the smooth
manifold (Kx, Sky).

Corollary 10.11. — Let € > 0 and M" closed. Choose &, ¢, ¢ satisfying (1) and (i1) in
Proposition 8.4.3, and & > n. Then the metric G(Kx) has all sectional curvatures €-pinched to —1,
provided d;, r — d;, 1 =2, .. ., n, are sufficiently large.
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Proof: — Choose &', as in Remarks 1.2(2) and 1.4(3), so that a (B,, &’)-close to
hyperbolic metric with charts of excess 1 has sectional curvatures e-pinched to —1. Take
A so that A > C(n, £, &) (see Theorem 2.7), for all £ <n — 1. Since M is compact we
only have finitely many cubes in a cubulation K of M. Hence the set of links of K (hence
of Kx) is finite. This together with Proposition 8.4.3 imply that all G(Link(CJ¢, K), r, d),
are (B,, %)—close to hyperbolic (here j =n — £ — 1 and ¢; = 7;_y — d}4), with charts of
excess &. All this provided d;, r — d;, 1 = 2, ..., n, are sufficiently large. We can apply
Theorem 2.7 (locally, see remark below) to get that the metrics G(Xpx) are (B, g’)-close
to hyperbolic on Z(Xpy), with charts of excess § — 1, provided d;, r — d;, i =2, ..., n, are
sufficiently large. Here &§ — 1 > 1 and Remark 1.4(4) imply that we can take the excess to
be 1. Therefore all the G(X+) have curvatures e-close to —1. ]

The corollary proves (i) of the Main Theorem. Items (ii), (iii) follow from [5]. Item
(iv) follows from Theorem 9.4. This proves the Main Theorem. O

Remark 10.12. — Note that it does not make sense to say that G(Xy) is &'-close
to hyperbolic because neither ng nor ng X CLink(X#) have a center. What we mean
by the “local application of Theorem 2.7” mentioned in the proof above is the following.
Take p € Z(X) and let B C X be an open ball centered at p. Note that we can
also consider B x CLink(X+) C H"* x CLink(X) = &, (CLink(X)) and we can now
apply Theorem 2.7 to £(CLink(X:)), where we are considering p as the center.

11. Proof of Theorem A

Let N be a closed smooth manifold that bounds a compact smooth manifold M™.
Denote the given smooth structure of N by Sy. Let Q be the smooth m-manifold with
one point singularity formed by gluing the cone C;N to M along N C M. Let ¢ be the
singularity of () and note that it is modeled on CN (see Section 7.3). A triangulation of
Q) is obtained by coning a smooth triangulation of the manifold with boundary M, and
let / : K — Q be the induced cubulation. Write ' (¢) = p. Note that (K, f) is a smooth
cubulation of Q) in the sense of Section 7.3. By item (2) of Section 7.3 we have that Q) — {¢}
has a normal smooth structure S’ for K, induced by a set of links smoothings L.

Let Kx be the Charney-Davis strict hyperbolization of K. Also denote by p the
singularity of Kx. By item (1) of Section 9.5, the space Kx — {p} has a normal smooth atlas
{Ho}oex and normal smooth structure Sk,,. Moreover, since we are assuming WA(N) =
0 (if dim N > 4) we have that we can take the domain CN — {ocn} = N x (0, 1] of H,,
with product smooth structure Sy X S(.17 (see Theorem 9.4).

We can now proceed exactly as in Section 10 and define the sets Z(Xp), Z,
and the metrics G(Xg) depending on L, r, &,d, (¢, ¢). For the special case 0° =p we
use the results in Section 8.5. We obtain in this way a Riemannian metric G(Kx) =
G(Kx, L,1,&,d, (¢, 5)) on Kg — {p}. Theorem A and its addendum now follow from
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Corollary 8.5.1(ii1), (iv) and the result of Belegradek and Kapovitch [2] mentioned in the
introduction (before the addendum to Theorem A). To be able to apply Corollary 8.5.1
we need to satisfy the hypothesis made at the beginning of Section 8.5: that the White-
head group W/ (sr;N) vanishes. But this follows from [11]. 0
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