In this article we construct many examples of properly convex irreducible domains divided by Zariski dense relatively hyperbolic groups in every dimension at least 3. This answers a question of Benoist. Relative hyperbolicity and non-strict convexity are captured by a family of properly embedded cones (convex hulls of points and ellipsoids) in the domain. Our construction is most flexible in dimension 3 where we give a purely topological criterion for the existence of a large deformation space of geometrically controlled convex projective structures with totally geodesic boundary on a compact 3-manifold.
Accepted:
Online First:
Published online:
DOI: 10.1007/s10240-024-00152-y
Pierre-Louis Blayac 1; Gabriele Viaggi 1
@article{PMIHES_2025__141__99_0,
author = {Pierre-Louis Blayac and Gabriele Viaggi},
title = {Divisible convex sets with properly embedded cones},
journal = {Publications Math\'ematiques de l'IH\'ES},
pages = {99--189},
year = {2025},
publisher = {Springer International Publishing},
address = {Cham},
volume = {141},
doi = {10.1007/s10240-024-00152-y},
zbl = {08054049},
language = {en},
url = {https://pmihes.centre-mersenne.org/articles/10.1007/s10240-024-00152-y/}
}
TY - JOUR AU - Pierre-Louis Blayac AU - Gabriele Viaggi TI - Divisible convex sets with properly embedded cones JO - Publications Mathématiques de l'IHÉS PY - 2025 SP - 99 EP - 189 VL - 141 PB - Springer International Publishing PP - Cham UR - https://pmihes.centre-mersenne.org/articles/10.1007/s10240-024-00152-y/ DO - 10.1007/s10240-024-00152-y LA - en ID - PMIHES_2025__141__99_0 ER -
%0 Journal Article %A Pierre-Louis Blayac %A Gabriele Viaggi %T Divisible convex sets with properly embedded cones %J Publications Mathématiques de l'IHÉS %D 2025 %P 99-189 %V 141 %I Springer International Publishing %C Cham %U https://pmihes.centre-mersenne.org/articles/10.1007/s10240-024-00152-y/ %R 10.1007/s10240-024-00152-y %G en %F PMIHES_2025__141__99_0
Pierre-Louis Blayac; Gabriele Viaggi. Divisible convex sets with properly embedded cones. Publications Mathématiques de l'IHÉS, Volume 141 (2025), pp. 99-189. doi: 10.1007/s10240-024-00152-y
[1.] Properly convex bending of hyperbolic manifolds, Groups Geom. Dyn., Volume 14 (2020), pp. 653-688 | MR | Zbl | DOI
[2.] Convex projective structures on nonhyperbolic three-manifolds, Geom. Topol., Volume 22 (2018), pp. 1593-1646 | MR | Zbl | DOI
[3.] Generalized cusps in real projective manifolds: classification, J. Topol., Volume 13 (2020), pp. 1455-1496 | MR | Zbl | DOI
[4.] Nonpositively curved manifolds of higher rank, Ann. Math., Volume 122 (1985), pp. 597-609 | MR | Zbl | DOI
[5.] Collisions of particles in locally AdS spacetimes I. Local description and global examples, Commun. Math. Phys., Volume 308 (2011), pp. 147-200 | MR | DOI | Zbl
[6.] Automorphismes des cônes convexes, Invent. Math., Volume 141 (2000), pp. 149-193 | MR | DOI | Zbl
[7.] Convex divisible II, Duke Math. J., Volume 120 (2003), pp. 97-120 | MR | DOI | Zbl
[8.] Convex Divisible I, in Algebraic Groups and Arithmetic, 17, 2004, pp. 339-374 | Zbl
[9.] Convex divisible III, Ann. Sci. ENS, Volume 38 (2005), pp. 793-832 | MR | Zbl | Numdam
[10.] Convex divisible IV, Invent. Math., Volume 164 (2006), pp. 249-278 | MR | Zbl | DOI
[11.] A survey on divisible convex sets, Geometry, Analysis and Topology of Discrete Groups, 6, Int. Press, Somerville, 2008, pp. 1-18 | Zbl
[12.] Five lectures on lattices in semisimple Lie groups, Géométries À Courbure Négative Ou Nulle, Groupes Discrets et Rigidité, 18, Soc. Math. France, Paris, 2009, pp. 117-176 | Zbl
[13.] Exercises on Divisible Convex Sets, 2012 (https://www.imo.universite-paris-saclay.fr/~benoist/prepubli/12GearJuniorRetreat.pdf)
[14.] Sur les variétés localement affines et localement projectives, Bull. Soc. Math. Fr., Volume 88 (1960), pp. 229-332 | DOI | Zbl | Numdam
[15.] Hyperplane sections in arithmetic hyperbolic manifolds, J. Lond. Math. Soc., Volume 83 (2011), pp. 431-448 | MR | DOI | Zbl
[16.] Extensions of Jentzsch’s theorem, Trans. Am. Math. Soc., Volume 85 (1957), pp. 219-227 | MR | Zbl
[17.] P.-L. Blayac, Dynamical aspects of convex projective structures, PhD thesis, Laboratoire Alexander Grothendieck, Université Paris-Saclay, 2021.
[18.] P.-L. Blayac, Patterson-Sullivan densities in convex projective geometry, Comment. Math. Helv., to appear, | arXiv
[19.] Ergodicity an equidistribution in Hilbert geometry, J. Mod. Dyn., Volume 19 (2023), pp. 879-945 | MR | Zbl | DOI
[20.] Convex projective manifolds with a cusp of any non-diagonalizable type, J. Lond. Math. Soc. (2), Volume 100 (2019), pp. 183-202 | MR | DOI | Zbl
[21.] Laminations mesurées de plissage des variétés hyperboliques de dimension 3, Ann. Math., Volume 160 (2004), pp. 1013-1055 | MR | DOI | Zbl
[22.] Compact Clifford-Klein forms of symmetric spaces, Topology, Volume 2 (1963), pp. 111-122 | MR | DOI | Zbl
[23.] Relatively hyperbolic groups, Int. J. Algebra Comput., Volume 22 (2012), pp. 1-66 | MR | Zbl | DOI
[24.] Manifolds of nonpositive curvature and their buildings, Publ. Math. IHES, Volume 65 (1987), pp. 35-59 | MR | Zbl | Numdam | DOI
[25.] R. Canary, Anosov representations: Informal lecture notes, preprint, available at http://www.math.lsa.umich.edu/~canary/lecnotespublic.pdf.
[26.] Convex real projective structures on closed surfaces are closed, Proc. Am. Math. Soc., Volume 118 (1993), pp. 657-661 | MR | Zbl | DOI
[27.] Lengths are coordinates for convex structures, J. Differ. Geom., Volume 73 (2006), pp. 75-116 | MR | Zbl | DOI
[28.] Convex projective generalized Dehn filling, Ann. Sci. Éc. Norm. Supér., Volume 53 (2020), pp. 217-266 | MR | Zbl | DOI
[29.] A geometric transition from hyperbolic to anti-de Sitter geometry, Geom. Topol., Volume 17 (2013), pp. 3077-3134 | MR | DOI | Zbl
[30.] J. Danciger, F. Guéritaud and F. Kassel, Convex-cocompact actions in real projective geometry, Ann. Sci. Éc. Norm. Supér., to appear, | arXiv
[31.] J. Danciger, F. Guéritaud, F. Kassel, G.-S. Lee and L. Marquis, Convex compactness for Coxeter groups, J. Eur. Math. Soc., to appear, | arXiv
[32.] On Hilbert’s metric for simplices (G. A. Niblo; M. A. Roller, eds.), Geometric Group Theory, Cambridge University Press, Cambridge, 1993, pp. 97-119 | DOI | Zbl
[33.] The limit set of the handlebody set has measure zero, appendix to Are large distance Heegaard splittings generic? by M. Lustig and Y. Moriah, J. Reine Angew. Math., Volume 670 (2012), pp. 117-119 | MR
[34.] Pinching constants for hyperbolic manifolds, Invent. Math., Volume 89 (1987), pp. 1-12 | MR | Zbl | DOI
[35.] M. Islam, Rank-one Hilbert geometries, Geom. Topol., to appear, | arXiv
[36.] Convex co-compact actions of relatively hyperbolic groups, Geom. Topol., Volume 29 (2023), pp. 470-511 | Zbl
[37.] M. Islam and A. Zimmer, The structure of relatively hyperbolic groups in convex real projective geometry, preprint, | arXiv
[38.] Deformation Spaces Associated to Compact Hyperbolic Manifolds, Birkhäuser, Basel, 1986 | DOI
[39.] Quasihomogeneous cones, Math. Notes, Volume 1 (1967), pp. 231-235 | DOI | Zbl
[40.] Convex projective structures on Gromov-Thurston manifolds, Geom. Topol., Volume 11 (2007), pp. 1777-1830 | MR | Zbl | DOI
[41.] Hyperbolic Manifolds and Discrete Groups, Modern Birkhäuser Classics, Birkhäuser Boston, Inc., Boston, 2009
[42.] The measure of the limit set of the handlebody group, Topology, Volume 29 (1990), pp. 27-40 | MR | Zbl | DOI
[43.] The Minnesota Notes on Jordan Algebras and Their Applications, 1710, Springer, Berlin, 1999 (Edited, annotated and with a preface by Aloys Krieg and Sebastian Walcher) | Zbl | DOI
[44.] Déformation des connexions localement plates, Ann. Inst. Fourier, Volume 18 (1968), pp. 103-114 | MR | DOI | Zbl | Numdam
[45.] An extension of the Masur domain (Y. Minsky; M. Sakuma; C. Series, eds.), Spaces of Kleinian Groups, Cambridge University Press, Cambridge, 2019, pp. 49-74
[46.] A small closed convex projective 4-manifold via Dehn filling, Publ. Mat., Volume 66 (2022), pp. 369-403 | MR | DOI | Zbl
[47.] Espace des modules de certains polyèdres projectifs miroirs, Geom. Dedic., Volume 147 (2010), pp. 47-86 | Zbl | DOI
[48.] Exemples de variétés projectives strictement convexes de volume fini en dimension quelconque, Enseign. Math., Volume 58 (2012), pp. 3-47 | MR | Zbl | DOI
[49.] L. Marquis, Around groups in Hilbert geometry, in G. Besson, M. Troyanov and A. Papadopoulos (eds.) Handbook of Hilbert geometry.
[50.] An Introduction to Geometric Topology, 2016 (CreateSpace Independent Publishing Platform) | Zbl
[51.] J. S. Milne, Algebraic Number Theory, https://jmilne.org/math/CourseNotes/ANT.pdf.
[52.] B. Nica, Linear groups - Malcev’s theorem and Selberg’s lemma, preprint, | arXiv
[53.] Acylindrically hyperbolic groups, Trans. Am. Math. Soc., Volume 368 (2016), pp. 851-888 | MR | Zbl | DOI
[54.] Weakly commensurable arithmetic groups and isospectral locally symmetric spaces, Publ. Math. IHES, Volume 109 (2009), pp. 113-184 | MR | DOI | Zbl | Numdam
[55.] Geometric transition from hyperbolic to anti-de Sitter structures in dimension four, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 23 (2022), pp. 115-176 | MR | Zbl
[56.] Analytic manifolds of nonpositive curvature with higher rank subspaces, Arch. Math., Volume 56 (1991), pp. 81-85 | MR | Zbl | DOI
[57.] Topological Methods in Group Theory, in Homological Group Theory, 36 (1979), pp. 137-203 | DOI
[58.] Arbres, Amalgames, , Rédigé Avec la Collaboration de Hyman Bass, 46, Société Mathématique de France, Paris, 1977 | Zbl | Numdam
[59.] Cohomologie des groupes discrets, Prospects in Mathematics, (AM-70), 70, Princeton University Press, Princeton, 2016, pp. 77-170
[60.] Indefinite quadratische formen und funktionentheorie, Math. Ann., Volume 124 (1951), pp. 17-54 (364–387) | MR | Zbl | DOI
[61.] Geometry and Topology of Three-Manifolds, 1979 (Princeton lecture notes)
[62.] Three-dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Am. Math. Soc. (N.S.), Volume 6 (1982), pp. 357-381 | MR | DOI | Zbl
[63.] W. Thurston, Hyperbolic structures on 3-manifolds, III: Deformations of 3-manifolds with incompressible boundary, preprint, | arXiv
[64.] Conical limit points and uniform convergence groups, J. Reine Angew. Math., Volume 501 (1998), pp. 71-98 | MR | Zbl | DOI
[65.] Sur les automorphismes affines des ouverts convexes saillants, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 24 (1970), pp. 641-665 | MR | Zbl | Numdam
[66.] The theory of homogeneous convex cones, Trudy Moskov. Mat. Obsc., Volume 12 (1963), pp. 303-358 | MR | Zbl
[67.] Structure of the group of automorphisms of a homogeneous convex cone, Trudy Moskov. Mat. Obsc., Volume 13 (1965), pp. 56-83 | MR | Zbl
[68.] Discrete linear groups that are generated by reflections, Izv. Akad. Nauk SSSR, Ser. Mat., Volume 35 (1971), pp. 1072-1112 | MR | Zbl
[69.] Rings of definition of dense subgroups of semisimple linear groups, Math. USSR, Izv., Volume 5 (1971), pp. 45-55 | MR | Zbl | DOI
[70.] Dynamical properties of convex-cocompact actions in projective space, J. Topol., Volume 16 (2023), pp. 990-1047 | MR | DOI | Zbl
[71.] T. Weisman, An extended definition of Anosov representation for relatively hyperbolic groups, preprint, | arXiv
[72.] T. Weisman, Examples of extended geometrically finite representations, preprint, | arXiv
[73.] An Introduction to Arithmetic Groups, 2015 (Deductive Press) | Zbl
[74.] A topological characterization of relative hyperbolic groups, J. Reine Angew. Math., Volume 566 (2004), pp. 41-89 | MR | Zbl
[75.] A higher rank rigidity theorem for convex real projective manifolds, Geom. Topol., Volume 27 (2023), pp. 2899-2936 | MR | DOI | Zbl
Cited by Sources:
