Article
Why are inner planets not inclined?
Publications Mathématiques de l'IHÉS, Volume 141 (2025), pp. 1-98

Poincaré’s work more than one century ago, or Laskar’s numerical simulations from the 1990’s on, have irrevocably impaired the long-held belief that the Solar System should be stable. But mathematical mechanisms explaining this instability have remained mysterious. In 1968, Arnold conjectured the existence of “Arnold diffusion” in celestial mechanics. We prove Arnold’s conjecture in the planetary spatial 4-body problem as well as in the corresponding hierarchical problem (where the bodies are increasingly separated), and show that this diffusion leads, on a long time interval, to some large-scale instability. Along the diffusive orbits, the mutual inclination of the two inner planets is close to $\pi /2$, which hints at why even marginal stability in planetary systems may exist only when inner planets are not inclined. More precisely, consider the normalised angular momentum of the second planet, obtained by rescaling the angular momentum by the square root of its semimajor axis and by an adequate mass factor (its direction and norm give the plane of revolution and the eccentricity of the second planet). It is a vector of the unit 3-ball. We show that any finite sequence in this ball may be realised, up to an arbitrary precision, as a sequence of values of the normalised angular momentum in the 4-body problem. For example, the second planet may flip from prograde nearly horizontal revolutions to retrograde ones. As a consequence of the proof, the non-recurrent set of any finite-order secular normal form accumulates on circular motions – a weak form of a celebrated conjecture of Herman.

Received:
Accepted:
Online First:
Published online:
DOI: 10.1007/s10240-024-00151-z

Andrew Clarke 1; Jacques Fejoz 1; Marcel Guardia 1

1
@article{PMIHES_2025__141__1_0,
     author = {Andrew Clarke and Jacques Fejoz and Marcel Guardia},
     title = {Why are inner planets not inclined?},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {1--98},
     year = {2025},
     publisher = {Springer International Publishing},
     address = {Cham},
     volume = {141},
     doi = {10.1007/s10240-024-00151-z},
     mrnumber = {4916233},
     zbl = {08054048},
     language = {en},
     url = {https://pmihes.centre-mersenne.org/articles/10.1007/s10240-024-00151-z/}
}
TY  - JOUR
AU  - Andrew Clarke
AU  - Jacques Fejoz
AU  - Marcel Guardia
TI  - Why are inner planets not inclined?
JO  - Publications Mathématiques de l'IHÉS
PY  - 2025
SP  - 1
EP  - 98
VL  - 141
PB  - Springer International Publishing
PP  - Cham
UR  - https://pmihes.centre-mersenne.org/articles/10.1007/s10240-024-00151-z/
DO  - 10.1007/s10240-024-00151-z
LA  - en
ID  - PMIHES_2025__141__1_0
ER  - 
%0 Journal Article
%A Andrew Clarke
%A Jacques Fejoz
%A Marcel Guardia
%T Why are inner planets not inclined?
%J Publications Mathématiques de l'IHÉS
%D 2025
%P 1-98
%V 141
%I Springer International Publishing
%C Cham
%U https://pmihes.centre-mersenne.org/articles/10.1007/s10240-024-00151-z/
%R 10.1007/s10240-024-00151-z
%G en
%F PMIHES_2025__141__1_0
Andrew Clarke; Jacques Fejoz; Marcel Guardia. Why are inner planets not inclined?. Publications Mathématiques de l'IHÉS, Volume 141 (2025), pp. 1-98. doi: 10.1007/s10240-024-00151-z

[1.] A. Albouy Histoire des équations de la mécanique analytique: repères chronologiques et difficultés, Siméon-Denis Poisson, Ed. Éc. Polytech, Palaiseau, 2013, pp. 229-280 | MR

[2.] V. M. Alekseev, Quasirandom dynamical systems. I, II, III. Math. USSR, 5, 6, 7, 1968–1969. | MR

[3.] V. I. Arnold Small denominators and problems of stability of motion in classical and celestial mechanics, Usp. Mat. Nauk, Volume 18 (1963), pp. 91-192 | MR | Zbl

[4.] V. I. Arnold Instability of dynamical systems with many degrees of freedom, Dokl. Akad. Nauk SSSR, Volume 156 (1964), pp. 9-12 | MR | Zbl

[5.] V. I. Arnold Mathematical Methods of Classical Mechanics, 60, Springer, Berlin, 1978 | MR | Zbl

[6.] K. Batygin; A. Morbidelli; M. J. Holman Chaotic disintegration of the inner solar system, Astrophys. J., Volume 799 (2015) | DOI

[7.] P. Bernard The dynamics of pseudographs in convex Hamiltonian systems, J. Am. Math. Soc., Volume 21 (2008), pp. 615-669 | MR | Zbl | DOI

[8.] P. Bernard; V. Kaloshin; K. Zhang Arnold diffusion in arbitrary degrees of freedom and normally hyperbolic invariant cylinders, Acta Math., Volume 217 (2016), pp. 1-79 | MR | Zbl | DOI

[9.] S. Bolotin Symbolic dynamics of almost collision orbits and skew products of symplectic maps, Nonlinearity, Volume 19 (2006), pp. 2041-2063 | MR | Zbl | DOI

[10.] S. Bolotin; D. Treschev Unbounded growth of energy in nonautonomous Hamiltonian systems, Nonlinearity, Volume 12 (1999), pp. 365-388 | MR | Zbl | DOI

[11.] G. Boué; J. Laskar A collisionless scenario for Uranus tilting, Astrophys. J. Lett., Volume 712 (2010) | DOI

[12.] G. Boué, J. Laskar and F. Farago, A simple model of the chaotic eccentricity of Mercury, Astron. Astrophys. (2012).

[13.] M. J. Capiński Computer assisted existence proofs of Lyapunov orbits at L 2 and transversal intersections of invariant manifolds in the Jupiter-Sun PCR3BP, SIAM J. Appl. Dyn. Syst., Volume 11 (2012), pp. 1723-1753 | MR | Zbl | DOI

[14.] M. J. Capiński; M. Gidea Arnold diffusion, quantitative estimates, and stochastic behavior in the three-body problem, Commun. Pure Appl. Math., Volume 76 (2023), pp. 616-681 | MR | DOI | Zbl

[15.] M. J. Capiński; P. Zgliczyński Cone conditions and covering relations for topologically normally hyperbolic invariant manifolds, Discrete Contin. Dyn. Syst., Volume 30 (2011), pp. 641-670 | MR | DOI | Zbl

[16.] M. J. Capiński; M. Gidea; R. de la Llave Arnold diffusion in the planar elliptic restricted three-body problem: mechanism and numerical verification, Nonlinearity, Volume 30 (2017), pp. 329-360 | MR | DOI | Zbl

[17.] J. Chazy Sur l’allure du mouvement dans le problème des trois corps quand le temps croît indéfiniment, Ann. Sci. Éc. Norm. Supér., Volume 3 (1922), pp. 29-130 | MR | JFM | Numdam | DOI

[18.] C. Cheng Dynamics around the double resonance, Camb. J. Math., Volume 5 (2017), pp. 153-228 | MR | Zbl | DOI

[19.] C. Cheng; J. Yan Existence of diffusion orbits in a priori unstable Hamiltonian systems, J. Differ. Geom., Volume 67 (2004), pp. 457-517 | MR | DOI | Zbl

[20.] T. Cheny, A. Clarke and M. Guardia, Arnold diffusion in the planetary 5-body problem, preprint.

[21.] L. Chierchia; G. Gallavotti Drift and diffusion in phase space, Ann. Inst. Henri Poincaré A, Phys. Théor., Volume 60 (1994) | MR | Zbl | Numdam

[22.] L. Chierchia; G. Pinzari Deprit’s reduction of the nodes revisited, Celest. Mech. Dyn. Astron., Volume 109 (2011), pp. 285-301 | MR | DOI | Zbl

[23.] L. Chierchia; G. Pinzari The planetary N-body problem: symplectic foliation, reductions and invariant tori, Invent. Math., Volume 186 (2011), pp. 1-77 | MR | Zbl | DOI

[24.] B. V. Chirikov The passage of a nonlinear oscillating system through resonance, Sov. Phys. Dokl., Volume 4 (1959), pp. 390-394 | MR | Zbl

[25.] A. Clarke; D. Turaev Arnold diffusion in multidimensional convex billiards, Duke Math. J., Volume 172 (2023), pp. 1813-1878 | MR | DOI | Zbl

[26.] A. Clarke; J. Fejoz; M. Guàrdia Topological shadowing methods in Arnold diffusion: weak torsion and multiple time scales, Nonlinearity, Volume 36 (2023), pp. 426-457 | MR | DOI | Zbl

[27.] A. Clarke; J. Fejoz; M. Guardia A counterexample to the theorem of Laplace–Lagrange on the stability of semimajor axes, Arch. Ration. Mech. Anal., Volume 248 (2024) | MR | DOI | Zbl

[28.] A. Delshams; G. Huguet Geography of resonances and Arnold diffusion in a priori unstable Hamiltonian systems, Nonlinearity, Volume 22 (2009), pp. 1997-2077 | MR | DOI | Zbl

[29.] A. Delshams; R. de la Llave; T. Seara A geometric approach to the existence of orbits with unbounded energy in generic periodic perturbations by a potential of generic geodesic flows of 𝐓 2 , Commun. Math. Phys., Volume 209 (2000), pp. 353-392 | DOI | MR | Zbl

[30.] A. Delshams; R. de la Llave; T. Seara Orbits of unbounded energy in quasi-periodic perturbations of geodesic flows, Adv. Math., Volume 202 (2006), pp. 64-188 | MR | DOI | Zbl

[31.] A. Delshams; R. de la Llave; T. M. Seara A geometric mechanism for diffusion in Hamiltonian systems overcoming the large gap problem: heuristics and rigorous verification on a model, Mem. Am. Math. Soc., Volume 179 (2006) | MR | Zbl

[32.] A. Delshams; R. De La Llave; T. M. Seara Geometric properties of the scattering map of a normally hyperbolic invariant manifold, Adv. Math., Volume 217 (2008), pp. 1096-1153 | MR | DOI | Zbl

[33.] A. Delshams; M. Gidea; P. Roldan Transition map and shadowing lemma for normally hyperbolic invariant manifolds, Discrete Contin. Dyn. Syst., Volume 33 (2013), pp. 1089-1112 | MR | DOI | Zbl

[34.] A. Delshams; R. de la Llave; T. M. Seara Instability of high dimensional Hamiltonian systems: multiple resonances do not impede diffusion, Adv. Math., Volume 294 (2016), pp. 689-755 | MR | Zbl | DOI

[35.] A. Delshams; V. Kaloshin; A. de la Rosa; T. M. Seara Global instability in the restricted planar elliptic three body problem, Commun. Math. Phys., Volume 366 (2019), pp. 1173-1228 | MR | DOI | Zbl

[36.] A. Deprit Elimination of the nodes in problems of n bodies, Celest. Mech., Volume 30 (1983), pp. 181-195 | MR | DOI | Zbl

[37.] J. Fejoz Quasiperiodic motions in the planar three-body problem, J. Differ. Equ., Volume 183 (2002), pp. 303-341 | MR | Zbl | DOI

[38.] J. Féjoz Démonstration du ‘théorème d’Arnold’ sur la stabilité du système planétaire (d’après Herman), Ergod. Theory Dyn. Syst., Volume 24 (2004), pp. 1521-1582 | DOI | MR | Zbl

[39.] J. Fejoz On action-angle coordinates and the Poincaré coordinates, Regul. Chaotic Dyn., Volume 18 (2013), pp. 703-718 | MR | DOI | Zbl

[40.] J. Féjoz, Celestial Mechanics, chapter the N-body problem. Encyclopedia of life support systems, Unesco-EOLSS (2015).

[41.] J. Fejoz; M. Guardia Secular instability in the three-body problem, Arch. Ration. Mech. Anal., Volume 221 (2016), pp. 335-362 | MR | DOI | Zbl

[42.] J. Fejoz; M. Guardia A remark on the onset of resonance overlap, Regul. Chaotic Dyn., Volume 28 (2023), pp. 578-584 | MR | Zbl | DOI

[43.] J. Féjoz; M. Guàrdia; V. Kaloshin; P. Roldán Kirkwood gaps and diffusion along mean motion resonances in the restricted planar three-body problem, J. Eur. Math. Soc., Volume 18 (2016), pp. 2315-2403 | MR | DOI | Zbl

[44.] N. Fenichel Persistence and smoothness of invariant manifolds for flows, Indiana Univ. Math. J., Volume 21 (1971), pp. 193-226 | MR | Zbl | DOI

[45.] N. Fenichel Asymptotic stability with rate conditions, Indiana Univ. Math. J., Volume 23 (1974), pp. 1109-1137 | MR | DOI | Zbl

[46.] N. Fenichel Asymptotic stability with rate conditions, ii, Indiana Univ. Math. J., Volume 26 (1977), pp. 81-93 | MR | DOI | Zbl

[47.] E. Fontich; P. Martín Arnold diffusion in perturbations of analytic exact symplectic maps, Nonlinear Anal., Volume 42 (2000), pp. 1397-1412 | MR | Zbl | DOI

[48.] E. Fontich; P. Martín Arnold diffusion in perturbations of analytic integrable Hamiltonian systems, Discrete Contin. Dyn. Syst., Volume 7 (2001), pp. 61-84 | MR | DOI | Zbl

[49.] C. Froeschle; H. Scholl The three principal secular resonances nu(5), nu(6), and nu(16) in the asteroidal belt, Celest. Mech. Dyn. Astron., Volume 46 (1989), pp. 231-251 | DOI

[50.] V. Gelfreich; D. Turaev Unbounded energy growth in Hamiltonian systems with a slowly varying parameter, Commun. Math. Phys., Volume 283 (2008), pp. 769-794 | MR | DOI | Zbl

[51.] V. Gelfreich; D. Turaev Arnold diffusion in a priori chaotic symplectic maps, Commun. Math. Phys., Volume 353 (2017), pp. 507-547 | MR | Zbl | DOI

[52.] M. Gidea; R. de la Llave Topological methods in the instability problem of Hamiltonian systems, Discrete Contin. Dyn. Syst., Volume 14 (2006) | MR | Zbl | DOI

[53.] M. Gidea; R. de la Llave; T. M-Seara A general mechanism of diffusion in Hamiltonian systems: qualitative results, Commun. Pure Appl. Math., Volume 73 (2020), pp. 150-209 | MR | Zbl | DOI

[54.] M. Guardia; P. Martín; T. M. Seara Homoclinic solutions to infinity and oscillatory motions in the restricted planar circular three body problem, Progress and Challenges in Dynamical Systems, 54, Springer, Heidelberg, 2013, pp. 265-280 | DOI | MR | Zbl

[55.] M. Guardia; P. Martín; T. M. Seara Oscillatory motions for the restricted planar circular three body problem, Invent. Math., Volume 203 (2016), pp. 417-492 | MR | DOI | Zbl

[56.] M. Guardia; J. Paradela; T. M. Seara; C. Vidal Symbolic dynamics in the restricted elliptic isosceles three body problem, J. Differ. Equ., Volume 294 (2021), pp. 143-177 | MR | Zbl | DOI

[57.] M. Guardia, P. Martín, J. Paradela and T. M. Seara, Hyperbolic dynamics and oscillatory motions in the 3 body problem, preprint (2022), | arXiv

[58.] R. S. Harrington, Dynamical evolution of triple stars, Astron. J. (1968), 190–194.

[59.] M. Herman, Some open problems in dynamical systems, in Proceedings of the International Congress of Mathematicians (Berlin, 1998), volume Extra Vol. II, pp. 797–808 (electronic), 1998. | MR

[60.] M. W. Hirsch, C. C. Pugh and M. Shub, Invariant manifolds, Bull. Am. Math. Soc., 76 (1970). | MR

[61.] V. I. Arnold Huygens and Barrow, Newton and Hooke, Birkhäuser, Basel, 1990 (Pioneers in mathematical analysis and catastrophe theory from evolvents to quasicrystals, Translated from the Russian by Eric J. F. Primrose.) | DOI | MR | Zbl

[62.] T. Ito; K. Ohtsuka The Lidov-Kozai oscillation and Hugo von Zeipel, Monogr. Environ. Earth Planets, Volume 7 (2019), pp. 1-113 | DOI

[63.] W. H. Jefferys; J. Moser Quasi-periodic solutions for the three-body problem, Astron. J., Volume 71 (1966), pp. 568-578 | MR | DOI

[64.] V. Kaloshin; K. Zhang Arnold Diffusion for Smooth Systems of Two and a Half Degrees of Freedom, 208, Princeton University Press, Princeton, 2020 | DOI | MR | Zbl

[65.] Y. Kozai, Secular perturbations of asteroids with high inclination and eccentricity, Astron. J. (1962).

[66.] P.-S. Laplace, Théorie de Jupiter et de Saturne. Mém. Acad. Royale des sciences de Paris, Œuvres complètes, Tome XI, 1785–1788.

[67.] J. Laskar A numerical experiment on the chaotic behavior of the Solar System, Nature, Volume 338 (1989), pp. 237-238 | DOI

[68.] J. Laskar, Sfogliando la Méchanique analitique, Giornata di studio su Louis Lagrange, chapter Lagrange et la stabilité du système solaire, Edizioni Universitarie di Lettere Economia Diritto, Milano, 2006.

[69.] J. Laskar Chaotic diffusion in the Solar System, Icarus, Volume 196 (2008), pp. 1-15 | DOI

[70.] J. Laskar Le système solaire est-il stable?, Le Chaos, Number XIV in Séminaire Poincaré, Birkhäuser, Basel, 2010, pp. 221-246

[71.] J. Laskar; P. Robutel The chaotic obliquity of the planets, Nature, Volume 361 (1993), pp. 608-612 | DOI

[72.] L. Lazzarini; J.-P. Marco; D. Sauzin Measure and capacity of wandering domains in Gevrey near-integrable exact symplectic systems, Mem. Am. Math. Soc., Volume 257 (2019) | MR | Zbl

[73.] M. Lecar; F. A. Franklin; M. J. Holman; N. J. Murray Chaos in the solar system, Annu. Rev. Astron. Astrophys., Volume 39 (2001), pp. 581-631 | DOI

[74.] M. L. Lidov The evolution of orbits of artificial satellites of planets under the action of gravitational perturbations of external bodies, Planet. Space Sci., Volume 9 (1962), pp. 719-759 | DOI

[75.] J. Llibre; C. Simó Oscillatory solutions in the planar restricted three-body problem, Math. Ann., Volume 248 (1980), pp. 153-184 | MR | Zbl | DOI

[76.] J. Llibre; C. Simó Some homoclinic phenomena in the three-body problem, J. Differ. Equ., Volume 37 (1980), pp. 444-465 | MR | Zbl | DOI

[77.] R. Moeckel Chaotic dynamics near triple collision, Arch. Ration. Mech. Anal., Volume 107 (1989), pp. 37-69 | MR | DOI | Zbl

[78.] R. Moeckel Generic drift on Cantor sets of annuli, Celestial Mechanics (Evanston, IL, 1999), 292, Am. Math. Soc., Providence, 2002, pp. 163-171 | DOI | MR | Zbl

[79.] R. Moeckel Symbolic dynamics in the planar three-body problem, Regul. Chaotic Dyn., Volume 12 (2007), pp. 449-475 | MR | Zbl | DOI

[80.] F. Mogavero; J. Laskar The origin of chaos in the solar system through computer algebra, Astron. Astrophys., Volume 662 (2022) | DOI

[81.] R. Montgomery The zero angular momentum, three-body problem: all but one solution has syzygies, Ergod. Theory Dyn. Syst., Volume 27 (2007), pp. 1933-1946 | MR | DOI | Zbl

[82.] R. Montgomery Oscillating about coplanarity in the 4 body problem, Invent. Math., Volume 218 (2019), pp. 113-144 | MR | DOI | Zbl

[83.] A. Morbidelli Modern Celestial Mechanics. Aspects of Solar System Dynamics, CRC Press, Boca Raton, 2002 | Zbl

[84.] J. Moser Stable and Random Motions in Dynamical Systems. Princeton Landmarks in Mathematics, Princeton University Press, Princeton, 2001 (With special emphasis on celestial mechanics, Reprint of the 1973 original, with a foreword by Philip J. Holmes) | DOI | MR

[85.] S. Naoz The eccentric Kozai-Lidov effect and its applications, Annu. Rev. Astron. Astrophys., Volume 54 (2016), pp. 441-489 | DOI

[86.] I. Newton, Philosophiae naturalis principia mathematica, Maclehose, 1871.

[87.] L. Niederman Stability over exponentially long times in the planetary problem, Nonlinearity, Volume 9 (1996), pp. 1703-1751 | MR | Zbl | DOI

[88.] G. Pinzari, On the Kolmogorov set for many-body problems, PhD thesis, Università degli Studi di Roma Tre, 2009.

[89.] H. Poincaré Les Méthodes Nouvelles de la Mécanique Céleste, Gauthier-Villars, Paris, 1892 | JFM

[90.] P. Robutel Stability of the planetary three-body problem. II. KAM theory and existence of quasiperiodic motions, Celest. Mech. Dyn. Astron., Volume 62 (1995), pp. 219-261 | MR | Zbl | DOI

[91.] K. Sitnikov The existence of oscillatory motions in the three-body problems, Sov. Phys. Dokl., Volume 5 (1960), pp. 647-650 | MR | Zbl

[92.] D. Treschev Evolution of slow variables in a priori unstable Hamiltonian systems, Nonlinearity, Volume 17 (2004), pp. 1803-1841 | MR | DOI | Zbl

[93.] D. Treschev Arnold diffusion far from strong resonances in multidimensional a priori unstable Hamiltonian systems, Nonlinearity, Volume 25 (2012), pp. 2717-2757 | MR | Zbl | DOI

[94.] H. von Zeipel, Sur l’application des séries de m. lindstedt à l’étude du mouvement des comètes périodiques, Astron. Nachr., 183 (1910).

[95.] J. Xue Arnold diffusion in a restricted planar four-body problem, Nonlinearity, Volume 27 (2014), pp. 2887-2908 | MR | DOI

[96.] L. Zhao Quasi-periodic solutions of the spatial lunar three-body problem, Celest. Mech. Dyn. Astron., Volume 119 (2014), pp. 91-118 | MR | Zbl | DOI

[97.] S. L. Ziglin, Secular evolution of the orbit of a planet in a binary-star system, 1975.

Cited by Sources: