We study the Fröhlich polaron model in , and prove a lower bound on its ground state energy as a function of the total momentum. The bound is asymptotically sharp at large coupling. In combination with a corresponding upper bound proved earlier (Mitrouskas et al. in Forum Math. Sigma 11:1–52, 2023), it shows that the energy is approximately parabolic below the continuum threshold, and that the polaron’s effective mass (defined as the semi-latus rectum of the parabola) is given by the celebrated Landau–Pekar formula. In particular, it diverges as for large coupling constant .
Accepted:
Online First:
Published online:
DOI: 10.1007/s10240-024-00150-0
Morris Brooks 1; Robert Seiringer 1
@article{PMIHES_2024__140__271_0,
author = {Morris Brooks and Robert Seiringer},
title = {The {Fr\"ohlich} polaron at strong coupling: {Part} {II} {\textemdash} {Energy-momentum} relation and effective mass},
journal = {Publications Math\'ematiques de l'IH\'ES},
pages = {271--309},
year = {2024},
publisher = {Springer International Publishing},
address = {Cham},
volume = {140},
doi = {10.1007/s10240-024-00150-0},
mrnumber = {4824749},
zbl = {07962137},
language = {en},
url = {https://pmihes.centre-mersenne.org/articles/10.1007/s10240-024-00150-0/}
}
TY - JOUR AU - Morris Brooks AU - Robert Seiringer TI - The Fröhlich polaron at strong coupling: Part II — Energy-momentum relation and effective mass JO - Publications Mathématiques de l'IHÉS PY - 2024 SP - 271 EP - 309 VL - 140 PB - Springer International Publishing PP - Cham UR - https://pmihes.centre-mersenne.org/articles/10.1007/s10240-024-00150-0/ DO - 10.1007/s10240-024-00150-0 LA - en ID - PMIHES_2024__140__271_0 ER -
%0 Journal Article %A Morris Brooks %A Robert Seiringer %T The Fröhlich polaron at strong coupling: Part II — Energy-momentum relation and effective mass %J Publications Mathématiques de l'IHÉS %D 2024 %P 271-309 %V 140 %I Springer International Publishing %C Cham %U https://pmihes.centre-mersenne.org/articles/10.1007/s10240-024-00150-0/ %R 10.1007/s10240-024-00150-0 %G en %F PMIHES_2024__140__271_0
Morris Brooks; Robert Seiringer. The Fröhlich polaron at strong coupling: Part II — Energy-momentum relation and effective mass. Publications Mathématiques de l'IHÉS, Volume 140 (2024), pp. 271-309. doi: 10.1007/s10240-024-00150-0
[1.] The Fröhlich polaron at strong coupling: Part I—The quantum correction to the classical energy, Commun. Math. Phys., Volume 404 (2023), pp. 287-337 | DOI | MR | Zbl
[2.] The strongly coupled polaron on the torus: quantum corrections to the Pekar asymptotics, Arch. Ration. Mech. Anal., Volume 242 (2021), pp. 1835-1906 | MR | Zbl | DOI
[3.] The effective mass problem for the Landau–Pekar equations, J. Phys. A, Math. Theor., Volume 55 (2022) | MR | DOI | Zbl
[4.] Quantum corrections to the Pekar asymptotics of a strongly coupled polaron, Commun. Pure Appl. Math., Volume 74 (2021), pp. 544-588 | MR | DOI | Zbl
[5.] Theory of electrical breakdown in ionic crystals, Proc. R. Soc. Lond. A, Volume 160 (1937), pp. 230-241 | DOI
[6.] On the global minimum of the energy-momentum relation for the polaron, Math. Phys. Anal. Geom., Volume 26 (2023), p. 17 | MR | DOI | Zbl
[7.] Effective mass of a polaron, Zh. Eksp. Teor. Fiz., Volume 18 (1948), pp. 419-423
[8.] Bogoliubov spectrum of interacting Bose gases, Commun. Pure Appl. Math., Volume 68 (2015), pp. 413-471 | MR | DOI | Zbl
[9.] Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation, Stud. Appl. Math., Volume 57 (1977), pp. 93-105 | MR | Zbl | DOI
[10.] Optimal parabolic upper bound for the energy-momentum relation of a strongly coupled polaron, Forum Math. Sigma, Volume 11 (2023), pp. 1-52 | MR | Zbl | DOI
[11.] The polaron revisited, Rev. Math. Phys., Volume 18 (2006), pp. 485-517 | MR | DOI | Zbl
[12.] Ground states of nonlinear Choquard equations: existence, qualitative properties and decay asymptotics, J. Funct. Anal., Volume 265 (2013), pp. 153-184 | MR | Zbl | DOI
[13.] K. Myśliwy, The ground state energy of the strongly coupled polaron in free space–lower bound, revisited. PhD Thesis, IST Austria, 2022.
[14.] Renewal approach for the energy-momentum relation of the Fröhlich polaron, Lett. Math. Phys., Volume 113 (2023), p. 90 | MR | Zbl | DOI
Cited by Sources: