Article
The Fröhlich polaron at strong coupling: Part II — Energy-momentum relation and effective mass
Publications Mathématiques de l'IHÉS, Volume 140 (2024), pp. 271-309

We study the Fröhlich polaron model in 𝐑 3 , and prove a lower bound on its ground state energy as a function of the total momentum. The bound is asymptotically sharp at large coupling. In combination with a corresponding upper bound proved earlier (Mitrouskas et al. in Forum Math. Sigma 11:1–52, 2023), it shows that the energy is approximately parabolic below the continuum threshold, and that the polaron’s effective mass (defined as the semi-latus rectum of the parabola) is given by the celebrated Landau–Pekar formula. In particular, it diverges as α 4 for large coupling constant α.

Received:
Accepted:
Online First:
Published online:
DOI: 10.1007/s10240-024-00150-0

Morris Brooks 1; Robert Seiringer 1

1
@article{PMIHES_2024__140__271_0,
     author = {Morris Brooks and Robert Seiringer},
     title = {The {Fr\"ohlich} polaron at strong coupling: {Part} {II} {\textemdash} {Energy-momentum} relation and effective mass},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {271--309},
     year = {2024},
     publisher = {Springer International Publishing},
     address = {Cham},
     volume = {140},
     doi = {10.1007/s10240-024-00150-0},
     mrnumber = {4824749},
     zbl = {07962137},
     language = {en},
     url = {https://pmihes.centre-mersenne.org/articles/10.1007/s10240-024-00150-0/}
}
TY  - JOUR
AU  - Morris Brooks
AU  - Robert Seiringer
TI  - The Fröhlich polaron at strong coupling: Part II — Energy-momentum relation and effective mass
JO  - Publications Mathématiques de l'IHÉS
PY  - 2024
SP  - 271
EP  - 309
VL  - 140
PB  - Springer International Publishing
PP  - Cham
UR  - https://pmihes.centre-mersenne.org/articles/10.1007/s10240-024-00150-0/
DO  - 10.1007/s10240-024-00150-0
LA  - en
ID  - PMIHES_2024__140__271_0
ER  - 
%0 Journal Article
%A Morris Brooks
%A Robert Seiringer
%T The Fröhlich polaron at strong coupling: Part II — Energy-momentum relation and effective mass
%J Publications Mathématiques de l'IHÉS
%D 2024
%P 271-309
%V 140
%I Springer International Publishing
%C Cham
%U https://pmihes.centre-mersenne.org/articles/10.1007/s10240-024-00150-0/
%R 10.1007/s10240-024-00150-0
%G en
%F PMIHES_2024__140__271_0
Morris Brooks; Robert Seiringer. The Fröhlich polaron at strong coupling: Part II — Energy-momentum relation and effective mass. Publications Mathématiques de l'IHÉS, Volume 140 (2024), pp. 271-309. doi: 10.1007/s10240-024-00150-0

[1.] M. Brooks; R. Seiringer The Fröhlich polaron at strong coupling: Part I—The quantum correction to the classical energy, Commun. Math. Phys., Volume 404 (2023), pp. 287-337 | DOI | MR | Zbl

[2.] D. Feliciangeli; R. Seiringer The strongly coupled polaron on the torus: quantum corrections to the Pekar asymptotics, Arch. Ration. Mech. Anal., Volume 242 (2021), pp. 1835-1906 | MR | Zbl | DOI

[3.] D. Feliciangeli; S. Rademacher; R. Seiringer The effective mass problem for the Landau–Pekar equations, J. Phys. A, Math. Theor., Volume 55 (2022) | MR | DOI | Zbl

[4.] R. Frank; R. Seiringer Quantum corrections to the Pekar asymptotics of a strongly coupled polaron, Commun. Pure Appl. Math., Volume 74 (2021), pp. 544-588 | MR | DOI | Zbl

[5.] H. Fröhlich Theory of electrical breakdown in ionic crystals, Proc. R. Soc. Lond. A, Volume 160 (1937), pp. 230-241 | DOI

[6.] J. Lampart; D. Mitrouskas; K. Myśliwy On the global minimum of the energy-momentum relation for the polaron, Math. Phys. Anal. Geom., Volume 26 (2023), p. 17 | MR | DOI | Zbl

[7.] L. D. Landau; S. I. Pekar Effective mass of a polaron, Zh. Eksp. Teor. Fiz., Volume 18 (1948), pp. 419-423

[8.] M. Lewin; P. Nam; S. Serfaty; J. P. Solovej Bogoliubov spectrum of interacting Bose gases, Commun. Pure Appl. Math., Volume 68 (2015), pp. 413-471 | MR | DOI | Zbl

[9.] E. Lieb Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation, Stud. Appl. Math., Volume 57 (1977), pp. 93-105 | MR | Zbl | DOI

[10.] D. Mitrouskas; K. Myśliwy; R. Seiringer Optimal parabolic upper bound for the energy-momentum relation of a strongly coupled polaron, Forum Math. Sigma, Volume 11 (2023), pp. 1-52 | MR | Zbl | DOI

[11.] J. S. Møller The polaron revisited, Rev. Math. Phys., Volume 18 (2006), pp. 485-517 | MR | DOI | Zbl

[12.] V. Moroz; J. Schaftingen Ground states of nonlinear Choquard equations: existence, qualitative properties and decay asymptotics, J. Funct. Anal., Volume 265 (2013), pp. 153-184 | MR | Zbl | DOI

[13.] K. Myśliwy, The ground state energy of the strongly coupled polaron in free space–lower bound, revisited. PhD Thesis, IST Austria, 2022.

[14.] S. Polzer Renewal approach for the energy-momentum relation of the Fröhlich polaron, Lett. Math. Phys., Volume 113 (2023), p. 90 | MR | Zbl | DOI

Cited by Sources: