We prove a rigidity result for foliations on surfaces of genus two, which can be seen as a generalization to higher genus of Herman’s theorem on circle diffeomorphisms and, correspondingly, flows on the torus. We prove in particular that, if a smooth, orientable foliation with non-degenerate (Morse) singularities on a closed surface of genus two is minimal, then, under a full measure condition for the rotation number, it is differentiably conjugate to a linear foliation.
The corresponding result at the level of Poincaré sections is that, for a full measure set of (standard) interval exchange transformations (IETs for short) with or continuity intervals and irreducible combinatorics, any generalized interval exchange transformation (GIET for short) which is topologically conjugate to a standard IET from this set and satisfies an obstruction expressed in terms of boundary operator (which is automatically satisfied when the GIET arises as a Poincaré map of a smooth foliation) is -conjugate to it. This in particular settles a conjecture by Marmi, Moussa and Yoccoz in genus two. Our results also show that this conjecture on the rigidity of GIETs can be reduced to the study of affine IETs, or more precisely of Birkhoff sums of piecewise constant observables over standard IETs, in genus .
Our approach is via renormalization, namely we exploit a suitable acceleration of the Rauzy-Veech induction (an acceleration which makes Oseledets generic effective) on the space of GIETs. For in ly renormalizable, irrational GIETs of any number of intervals we prove a dynamical dichotomy on the behaviour of the orbits under renormalization, by proving that either an orbit is recurrent to certain bounded sets in the space of GIETs, or it diverges and it is approximated (up to lower order terms) by the orbit of an affine IET (a case that we refer to as affine shadowing). This result can in particular be used, in conjunction with previous work by Marmi-Moussa and Yoccoz on the existence of wandering intervals for affine IETs, to prove, a priori bounds in genus two and is therefore at the base of the rigidity result.
Accepted:
Online First:
Published online:
DOI: 10.1007/s10240-023-00142-6
Selim Ghazouani 1; Corinna Ulcigrai 1
@article{PMIHES_2023__138__229_0,
author = {Selim Ghazouani and Corinna Ulcigrai},
title = {A priori bounds for {GIETs,} affine shadows and rigidity of foliations in genus two},
journal = {Publications Math\'ematiques de l'IH\'ES},
pages = {229--366},
year = {2023},
publisher = {Springer International Publishing},
address = {Cham},
volume = {138},
doi = {10.1007/s10240-023-00142-6},
zbl = {1539.37049},
language = {en},
url = {https://pmihes.centre-mersenne.org/articles/10.1007/s10240-023-00142-6/}
}
TY - JOUR AU - Selim Ghazouani AU - Corinna Ulcigrai TI - A priori bounds for GIETs, affine shadows and rigidity of foliations in genus two JO - Publications Mathématiques de l'IHÉS PY - 2023 SP - 229 EP - 366 VL - 138 PB - Springer International Publishing PP - Cham UR - https://pmihes.centre-mersenne.org/articles/10.1007/s10240-023-00142-6/ DO - 10.1007/s10240-023-00142-6 LA - en ID - PMIHES_2023__138__229_0 ER -
%0 Journal Article %A Selim Ghazouani %A Corinna Ulcigrai %T A priori bounds for GIETs, affine shadows and rigidity of foliations in genus two %J Publications Mathématiques de l'IHÉS %D 2023 %P 229-366 %V 138 %I Springer International Publishing %C Cham %U https://pmihes.centre-mersenne.org/articles/10.1007/s10240-023-00142-6/ %R 10.1007/s10240-023-00142-6 %G en %F PMIHES_2023__138__229_0
Selim Ghazouani; Corinna Ulcigrai. A priori bounds for GIETs, affine shadows and rigidity of foliations in genus two. Publications Mathématiques de l'IHÉS, Volume 138 (2023), pp. 229-366. doi: 10.1007/s10240-023-00142-6
[1.] Small denominators. I. Mapping the circle onto itself, Izv. Akad. Nauk SSSR, Ser. Mat., Volume 25 (1961), pp. 21-86 | MR | Zbl
[2.] P. Arnoux, Échanges d’intervalles et flots sur les surfaces, Ergodic theory (Sem., Les Plans-sur-Bex, 1980) (French), 1981, pp. 5–38. | MR
[3.] A. Avila and A. Bufetov, Exponential decay of correlations for the Rauzy-Veech-Zorich induction map, Partially hyperbolic dynamics, laminations, and Teichmüller flow, 2007, pp. 203–211. | MR
[4.] Weak mixing for interval exchange transformations and translation flows, Ann. Math. (2), Volume 165 (2007), pp. 637-664 | MR | Zbl | DOI
[5.] The full renormalization horseshoe for unimodal maps of higher degree: exponential contraction along hybrid classes, Publ. Math. Inst. Hautes Études Sci., Volume 114 (2011), pp. 171-223 | MR | Zbl | Numdam | DOI
[6.] Simplicity of Lyapunov spectra: proof of the Zorich-Kontsevich conjecture, Acta Math., Volume 198 (2007), pp. 1-56 | MR | Zbl | DOI
[7.] Exponential mixing for the Teichmüller flow, Publ. Math. Inst. Hautes Études Sci., Volume 104 (2006), pp. 143-211 | Zbl | MR | Numdam | DOI
[8.] Persistence of wandering intervals in self-similar affine interval exchange transformations, Ergod. Theory Dyn. Syst., Volume 30 (2010), pp. 665-686 | MR | Zbl | DOI
[9.] Decay of correlations for the Rauzy-Veech-Zorich induction map on the space of interval exchange transformations and the central limit theorem for the Teichmüller flow on the moduli space of Abelian differentials, J. Am. Math. Soc., Volume 19 (2006), pp. 579-623 | Zbl | MR | DOI
[10.] E. Calabi, An intrinsic characterization of harmonic one-forms, Global Analysis (Papers in Honor of K. Kodaira), 1969, pp. 101–117. | MR
[11.] Affine interval exchange transformations with wandering intervals, Ergod. Theory Dyn. Syst., Volume 17 (1997), pp. 1315-1338 | MR | Zbl | DOI
[12.] Every ergodic transformation is disjoint from almost every interval exchange transformation, Ann. Math. (2), Volume 175 (2012), pp. 237-253 | MR | Zbl | DOI
[13.] Piece-wise affine maps conjugate to interval exchanges, Ergod. Theory Dyn. Syst., Volume 22 (2002), pp. 375-407 | MR | Zbl | DOI
[14.] Renormalization for piecewise smooth homeomorphisms on the circle, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 30 (2013), pp. 441-462 | MR | Zbl | Numdam | DOI
[15.] Rigidity for piecewise smooth homeomorphisms on the circle, Adv. Math., Volume 250 (2014), pp. 193-226 | MR | Zbl | DOI
[16.] Rigidity of critical circle mappings. I, J. Eur. Math. Soc., Volume 1 (1999), pp. 339-392 | MR | Zbl | DOI
[17.] Rigidity of critical circle mappings. II, J. Am. Math. Soc., Volume 13 (2000), pp. 343-370 | MR | Zbl | DOI
[18.] Sur les courbes definies par les équations différentielles à la surface du tore, J. Math. Pures Appl. (9), Volume 11 (1932), pp. 333-375 (French) | Zbl | Numdam
[19.] Quantitative universality for a class of nonlinear transformations, J. Stat. Phys., Volume 19 (1978), pp. 25-52 | MR | Zbl | DOI
[20.] Invariant distributions and time averages for horocycle flows, Duke Math. J., Volume 119 (2003), pp. 465-526 | MR | Zbl | DOI
[21.] On the cohomological equation for nilflows, J. Mod. Dyn., Volume 1 (2007), pp. 37-60 | MR | Zbl | DOI
[22.] Solutions of the cohomological equation for area-preserving flows on compact surfaces of higher genus, Ann. Math. (2), Volume 146 (1997), pp. 295-344 | MR | Zbl | DOI
[23.] Asymptotic behaviour of ergodic integrals of ‘renormalizable’ parabolic flows, Proceedings of the International Congress of Mathematicians, Vol. III (Beijing, 2002), 2002, pp. 317-326 | MR | Zbl
[24.] Sobolev regularity of solutions of the cohomological equation, Ergod. Theory Dyn. Syst., Volume 41 (2021), pp. 685-789 | MR | Zbl | DOI
[25.] K. Frączek and C. Ulcigrai, On the asymptotic growth of Birkhoff integrals for locally Hamiltonian flows and ergodicity of their extensions, 2021. Preprint, | arXiv | MR
[26.] K. Frączek and C. Ulcigrai, Regularity of conjugacies of linearizable generalized interval exchange transformations, 2023. Preprint, | arXiv
[27.] S. Ghazouani, Une invitation aux surfaces de dilatation, 2019. Unpublished manuscript deposited at | arXiv
[28.] Local rigidity for periodic generalised interval exchange transformations, Invent. Math., Volume 226 (2021), pp. 467-520 | MR | Zbl | DOI
[29.] Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations, Publ. Math. Inst. Hautes Études Sci., Volume 49 (1979), pp. 5-233 | Zbl | MR | Numdam | DOI
[30.] M.-R. Herman, Résultats récents sur la conjugaison différentiable, in Proceedings of the International Congress of Mathematicians (Helsinki, 1978), 1980, pp. 811–820. | MR
[31.] Ratner’s property and mild mixing for smooth flows on surfaces, Ergod. Theory Dyn. Syst., Volume 36 (2016), pp. 2512-2537 | MR | Zbl | DOI
[32.] Local rigidity of Diophantine translations in higher-dimensional tori, Regul. Chaotic Dyn., Volume 23 (2018), pp. 12-25 | MR | Zbl | DOI
[33.] Invariant measures of flows on oriented surfaces, Sov. Math. Dokl., Volume 14 (1973), pp. 1104-1108 | Zbl | MR
[34.] Renormalization and rigidity, Proceedings of the International Congress of Mathematicians—Rio de Janeiro 2018. Vol. III. Invited Lectures, 2018, pp. 1973-1993 | MR | Zbl
[35.] Renormalizations and rigidity theory for circle homeomorphisms with singularities of the break type, Commun. Math. Phys., Volume 235 (2003), pp. 69-124 | MR | Zbl | DOI
[36.] A new proof of M. Herman’s theorem, Commun. Math. Phys., Volume 112 (1987), pp. 89-101 | MR | Zbl | DOI
[37.] Herman’s theory revisited, Invent. Math., Volume 178 (2009), pp. 333-344 | MR | Zbl | DOI
[38.] Renormalization horseshoe and rigidity for circle diffeomorphisms with breaks, Commun. Math. Phys., Volume 320 (2013), pp. 347-377 | MR | Zbl | DOI
[39.] -rigidity of circle maps with breaks for almost all rotation numbers, Ann. Sci. Éc. Norm. Supér. (4), Volume 50 (2017), pp. 1163-1203 | MR | Zbl | Numdam | DOI
[40.] Connected components of the moduli spaces of Abelian differentials with prescribed singularities, Invent. Math., Volume 153 (2003), pp. 631-678 | MR | Zbl | DOI
[41.] Feuilletages des surfaces, Ann. Inst. Fourier (Grenoble), Volume 32 (1982), pp. 179-217 | MR | Zbl | Numdam | DOI
[42.] Pantalons et feuilletages des surfaces, Topology, Volume 21 (1982), pp. 9-33 | MR | Zbl | DOI
[43.] La décomposition dynamique et la différentiabilité des feuilletages des surfaces, Ann. Inst. Fourier (Grenoble), Volume 37 (1987), pp. 85-116 | MR | Zbl | Numdam | DOI
[44.] Hölder regularity of the solutions of the cohomological equation for Roth type interval exchange maps, Commun. Math. Phys., Volume 344 (2016), pp. 117-139 | Zbl | MR | DOI
[45.] The cohomological equation for Roth-type interval exchange maps, J. Am. Math. Soc., Volume 18 (2005), pp. 823-872 | MR | Zbl | DOI
[46.] Affine interval exchange maps with a wandering interval, Proc. Lond. Math. Soc. (3), Volume 100 (2010), pp. 639-669 | MR | Zbl | DOI
[47.] Linearization of generalized interval exchange maps, Ann. Math. (2), Volume 176 (2012), pp. 1583-1646 | MR | Zbl | DOI
[48.] On Roth type conditions, duality and central Birkhoff sums for I.E.M, Astérisque, Volume 416 (2020), pp. 65-132 | MR | Zbl | DOI
[49.] The periodic points of renormalization, Ann. Math. (2), Volume 147 (1998), pp. 543-584 | MR | Zbl | DOI
[50.] Invariant manifolds for non-differentiable operators, Trans. Am. Math. Soc., Volume 375 (2022), pp. 1101-1169 | MR | Zbl
[51.] On the hyperbolicity of Lorenz renormalization, Commun. Math. Phys., Volume 325 (2014), pp. 185-257 | MR | Zbl | DOI
[52.] Interval exchange transformations and measured foliations, Ann. Math., Volume 115 (1982), pp. 169-200 | MR | Zbl | DOI
[53.] Complex Dynamics and Renormalization, 135, Princeton University Press, Princeton, 1994 | Zbl | MR
[54.] Renormalization and 3-Manifolds Which Fiber over the Circle, 142, Princeton University Press, Princeton, 1996 | Zbl | MR | DOI
[55.] Feigenbaum-Coullet-Tresser universality and Milnor’s hairiness conjecture, Ann. Math. (2), Volume 149 (1999), pp. 319-420 | MR | Zbl | DOI
[56.] Sur les dynamiques holomorphes non linéarisables et une conjecture de V. I. Arnol’d, Ann. Sci. Éc. Norm. Supér. (4), Volume 26 (1993), pp. 565-644 | Zbl | MR | Numdam | DOI
[57.] Échanges d’intervalles et trasformations induites, Acta Arith., Volume XXXIV (1979), pp. 315-328 | Zbl | MR | DOI
[58.] Bounds, Quadratic Differentials, and Renormalization Conjectures, 1992, pp. 417-466 | Zbl | MR
[59.] Itérations d’endomorphismes et groupe de renormalisation, C. R. Acad. Sci. Paris Sér. A-B, Volume 287 (1978), p. A577-A580 | Zbl | MR
[60.] Mixing of asymmetric logarithmic suspension flows over interval exchange transformations, Ergod. Theory Dyn. Syst., Volume 27 (2007), pp. 991-1035 | MR | Zbl | DOI
[61.] Absence of mixing in area-preserving flows on surfaces, Ann. Math. (2), Volume 173 (2011), pp. 1743-1778 | MR | Zbl | DOI
[62.] C. Ulcigrai, Shearing and mixing in parabolic flows, European Congress of Mathematics (2013), 691–705. | MR
[63.] Dynamics and ‘Arithmetics’ of Higher Genus Surface Flows, 2022 | MR | Zbl
[64.] Gauss measures for transformations on the space of interval exchange maps, Ann. Math., Volume 115 (1982), pp. 201-242 | MR | Zbl | DOI
[65.] The metric theory of interval exchange transformations I. generic spectral properties, Am. J. Math., Volume 107 (1984), pp. 1331-1359 | MR | Zbl | DOI
[66.] The Teichmüller geodesic flow, Ann. Math. (2), Volume 124 (1986), pp. 441-530 | MR | Zbl | DOI
[67.] M. Viana, Dynamics of interval exchange transformations and Teichmüller flows, Lecture Notes, available from http://w3.impa.br/~viana.
[68.] Lectures on Lyapunov Exponents, 145, Cambridge University Press, Cambridge, 2014 | Zbl | MR | DOI
[69.] Homeomorphisms of the circle with fracture-type singularities, Usp. Mat. Nauk, Volume 45 (1990), pp. 189-190 | MR | Zbl
[70.] A renormalization fixed point for Lorenz maps, Nonlinearity, Volume 23 (2010), pp. 1291-1302 | MR | Zbl | DOI
[71.] The attractor of renormalization and rigidity of towers of critical circle maps, Commun. Math. Phys., Volume 218 (2001), pp. 537-568 | MR | Zbl | DOI
[72.] Hyperbolicity of renormalization of critical circle maps, Publ. Math. Inst. Hautes Études Sci., Volume 96 (2002), pp. 1-41 | MR | Zbl | Numdam | DOI
[73.] Conjugaison différentiable des difféomorphismes du cercle dont le nombre de rotation vérifie une condition diophantienne, Ann. Sci. Éc. Norm. Supér. (4), Volume 17 (1984), pp. 333-359 | Zbl | MR | Numdam | DOI
[74.] J.-C. Yoccoz, Théorème de Siegel, nombres de Bruno et polynômes quadratiques, 1995, pp. 3–88. In Petits diviseurs en dimension 1, Astérisque. | MR | Numdam
[75.] Analytic Linearization of Circle Diffeomorphisms, Dynamical Systems and Small Divisors (2002), pp. 125-173 | Zbl | MR
[76.] J.-C. Yoccoz, Echanges d’intervalles, Cours, Collège de France (2005), available at https://www.college-de-France.fr/site/jean-christophe-yoccoz/course-2004-2005.htm.
[77.] J.-C. Yoccoz, Continued fraction algorithms for interval exchange maps: an introduction, Frontiers in number theory, physics, and geometry. I (2006), 401–435. | MR
[78.] J.-C. Yoccoz, Échanges d’intervalles et surfaces de translation, 2009, pp. Exp. No. 996, x, 387–409 (2010). Séminaire Bourbaki, Astérisque Vol. 2007/2008. | Numdam | MR
[79.] Interval exchange maps and translation surfaces, Homogeneous Flows, Moduli Spaces and Arithmetic, Clay Mathematical Summer School Proceedings, 2010, pp. 1-69 | MR | Zbl
[80.] Finite Gauss measure on the space of interval exchange transformation. Lyapunov exponents, Ann. Inst. Fourier (Grenoble), Volume 46 (1996), pp. 325-370 | MR | Zbl | Numdam | DOI
[81.] Deviation for interval exchange transformations, Ergod. Theory Dyn. Syst., Volume 17 (1997), pp. 1477-1499 | MR | Zbl | DOI
[82.] How do the leaves of a closed 1-form wind around a surface? Pseudoperiodic topology, Transl. Am. Math. Soc. (2), Volume 197 (1999), pp. 135-178 | MR | Zbl
Cited by Sources:
