Article
A priori bounds for GIETs, affine shadows and rigidity of foliations in genus two
Publications Mathématiques de l'IHÉS, Volume 138 (2023), pp. 229-366

We prove a rigidity result for foliations on surfaces of genus two, which can be seen as a generalization to higher genus of Herman’s theorem on circle diffeomorphisms and, correspondingly, flows on the torus. We prove in particular that, if a smooth, orientable foliation with non-degenerate (Morse) singularities on a closed surface of genus two is minimal, then, under a full measure condition for the rotation number, it is differentiably conjugate to a linear foliation.

The corresponding result at the level of Poincaré sections is that, for a full measure set of (standard) interval exchange transformations (IETs for short) with d=4 or d=5 continuity intervals and irreducible combinatorics, any generalized interval exchange transformation (GIET for short) which is topologically conjugate to a standard IET from this set and satisfies an obstruction expressed in terms of boundary operator (which is automatically satisfied when the GIET arises as a Poincaré map of a smooth foliation) is 𝒞 1 -conjugate to it. This in particular settles a conjecture by Marmi, Moussa and Yoccoz in genus two. Our results also show that this conjecture on the rigidity of GIETs can be reduced to the study of affine IETs, or more precisely of Birkhoff sums of piecewise constant observables over standard IETs, in genus g3.

Our approach is via renormalization, namely we exploit a suitable acceleration of the Rauzy-Veech induction (an acceleration which makes Oseledets generic effective) on the space of GIETs. For in ly renormalizable, irrational GIETs of any number of intervals d2 we prove a dynamical dichotomy on the behaviour of the orbits under renormalization, by proving that either an orbit is recurrent to certain bounded sets in the space of GIETs, or it diverges and it is approximated (up to lower order terms) by the orbit of an affine IET (a case that we refer to as affine shadowing). This result can in particular be used, in conjunction with previous work by Marmi-Moussa and Yoccoz on the existence of wandering intervals for affine IETs, to prove, a priori bounds in genus two and is therefore at the base of the rigidity result.

Received:
Accepted:
Online First:
Published online:
DOI: 10.1007/s10240-023-00142-6

Selim Ghazouani 1; Corinna Ulcigrai 1

1
@article{PMIHES_2023__138__229_0,
     author = {Selim Ghazouani and Corinna Ulcigrai},
     title = {A priori bounds for {GIETs,} affine shadows and rigidity of foliations in genus two},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {229--366},
     year = {2023},
     publisher = {Springer International Publishing},
     address = {Cham},
     volume = {138},
     doi = {10.1007/s10240-023-00142-6},
     zbl = {1539.37049},
     language = {en},
     url = {https://pmihes.centre-mersenne.org/articles/10.1007/s10240-023-00142-6/}
}
TY  - JOUR
AU  - Selim Ghazouani
AU  - Corinna Ulcigrai
TI  - A priori bounds for GIETs, affine shadows and rigidity of foliations in genus two
JO  - Publications Mathématiques de l'IHÉS
PY  - 2023
SP  - 229
EP  - 366
VL  - 138
PB  - Springer International Publishing
PP  - Cham
UR  - https://pmihes.centre-mersenne.org/articles/10.1007/s10240-023-00142-6/
DO  - 10.1007/s10240-023-00142-6
LA  - en
ID  - PMIHES_2023__138__229_0
ER  - 
%0 Journal Article
%A Selim Ghazouani
%A Corinna Ulcigrai
%T A priori bounds for GIETs, affine shadows and rigidity of foliations in genus two
%J Publications Mathématiques de l'IHÉS
%D 2023
%P 229-366
%V 138
%I Springer International Publishing
%C Cham
%U https://pmihes.centre-mersenne.org/articles/10.1007/s10240-023-00142-6/
%R 10.1007/s10240-023-00142-6
%G en
%F PMIHES_2023__138__229_0
Selim Ghazouani; Corinna Ulcigrai. A priori bounds for GIETs, affine shadows and rigidity of foliations in genus two. Publications Mathématiques de l'IHÉS, Volume 138 (2023), pp. 229-366. doi: 10.1007/s10240-023-00142-6

[1.] V. I. Arnol’d Small denominators. I. Mapping the circle onto itself, Izv. Akad. Nauk SSSR, Ser. Mat., Volume 25 (1961), pp. 21-86 | MR | Zbl

[2.] P. Arnoux, Échanges d’intervalles et flots sur les surfaces, Ergodic theory (Sem., Les Plans-sur-Bex, 1980) (French), 1981, pp. 5–38. | MR

[3.] A. Avila and A. Bufetov, Exponential decay of correlations for the Rauzy-Veech-Zorich induction map, Partially hyperbolic dynamics, laminations, and Teichmüller flow, 2007, pp. 203–211. | MR

[4.] A. Avila; G. Forni Weak mixing for interval exchange transformations and translation flows, Ann. Math. (2), Volume 165 (2007), pp. 637-664 | MR | Zbl | DOI

[5.] A. Avila; M. Lyubich The full renormalization horseshoe for unimodal maps of higher degree: exponential contraction along hybrid classes, Publ. Math. Inst. Hautes Études Sci., Volume 114 (2011), pp. 171-223 | MR | Zbl | Numdam | DOI

[6.] A. Avila; M. Viana Simplicity of Lyapunov spectra: proof of the Zorich-Kontsevich conjecture, Acta Math., Volume 198 (2007), pp. 1-56 | MR | Zbl | DOI

[7.] A. Avila; S. Gouëzel; J.-C. Yoccoz Exponential mixing for the Teichmüller flow, Publ. Math. Inst. Hautes Études Sci., Volume 104 (2006), pp. 143-211 | Zbl | MR | Numdam | DOI

[8.] X. Bressaud; P. Hubert; A. Maass Persistence of wandering intervals in self-similar affine interval exchange transformations, Ergod. Theory Dyn. Syst., Volume 30 (2010), pp. 665-686 | MR | Zbl | DOI

[9.] A. I. Bufetov Decay of correlations for the Rauzy-Veech-Zorich induction map on the space of interval exchange transformations and the central limit theorem for the Teichmüller flow on the moduli space of Abelian differentials, J. Am. Math. Soc., Volume 19 (2006), pp. 579-623 | Zbl | MR | DOI

[10.] E. Calabi, An intrinsic characterization of harmonic one-forms, Global Analysis (Papers in Honor of K. Kodaira), 1969, pp. 101–117. | MR

[11.] R. Camelier; C. Gutierrez Affine interval exchange transformations with wandering intervals, Ergod. Theory Dyn. Syst., Volume 17 (1997), pp. 1315-1338 | MR | Zbl | DOI

[12.] J. Chaika Every ergodic transformation is disjoint from almost every interval exchange transformation, Ann. Math. (2), Volume 175 (2012), pp. 237-253 | MR | Zbl | DOI

[13.] M. Cobo Piece-wise affine maps conjugate to interval exchanges, Ergod. Theory Dyn. Syst., Volume 22 (2002), pp. 375-407 | MR | Zbl | DOI

[14.] K. Cunha; D. Smania Renormalization for piecewise smooth homeomorphisms on the circle, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 30 (2013), pp. 441-462 | MR | Zbl | Numdam | DOI

[15.] K. Cunha; D. Smania Rigidity for piecewise smooth homeomorphisms on the circle, Adv. Math., Volume 250 (2014), pp. 193-226 | MR | Zbl | DOI

[16.] E. de Faria; W. de Melo Rigidity of critical circle mappings. I, J. Eur. Math. Soc., Volume 1 (1999), pp. 339-392 | MR | Zbl | DOI

[17.] E. de Faria; W. de Melo Rigidity of critical circle mappings. II, J. Am. Math. Soc., Volume 13 (2000), pp. 343-370 | MR | Zbl | DOI

[18.] A. Denjoy Sur les courbes definies par les équations différentielles à la surface du tore, J. Math. Pures Appl. (9), Volume 11 (1932), pp. 333-375 (French) | Zbl | Numdam

[19.] M. J. Feigenbaum Quantitative universality for a class of nonlinear transformations, J. Stat. Phys., Volume 19 (1978), pp. 25-52 | MR | Zbl | DOI

[20.] L. Flaminio; G. Forni Invariant distributions and time averages for horocycle flows, Duke Math. J., Volume 119 (2003), pp. 465-526 | MR | Zbl | DOI

[21.] L. Flaminio; G. Forni On the cohomological equation for nilflows, J. Mod. Dyn., Volume 1 (2007), pp. 37-60 | MR | Zbl | DOI

[22.] G. Forni Solutions of the cohomological equation for area-preserving flows on compact surfaces of higher genus, Ann. Math. (2), Volume 146 (1997), pp. 295-344 | MR | Zbl | DOI

[23.] G. Forni Asymptotic behaviour of ergodic integrals of ‘renormalizable’ parabolic flows, Proceedings of the International Congress of Mathematicians, Vol. III (Beijing, 2002), 2002, pp. 317-326 | MR | Zbl

[24.] G. Forni Sobolev regularity of solutions of the cohomological equation, Ergod. Theory Dyn. Syst., Volume 41 (2021), pp. 685-789 | MR | Zbl | DOI

[25.] K. Frączek and C. Ulcigrai, On the asymptotic growth of Birkhoff integrals for locally Hamiltonian flows and ergodicity of their extensions, 2021. Preprint, | arXiv | MR

[26.] K. Frączek and C. Ulcigrai, Regularity of conjugacies of linearizable generalized interval exchange transformations, 2023. Preprint, | arXiv

[27.] S. Ghazouani, Une invitation aux surfaces de dilatation, 2019. Unpublished manuscript deposited at | arXiv

[28.] S. Ghazouani Local rigidity for periodic generalised interval exchange transformations, Invent. Math., Volume 226 (2021), pp. 467-520 | MR | Zbl | DOI

[29.] M.-R. Herman Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations, Publ. Math. Inst. Hautes Études Sci., Volume 49 (1979), pp. 5-233 | Zbl | MR | Numdam | DOI

[30.] M.-R. Herman, Résultats récents sur la conjugaison différentiable, in Proceedings of the International Congress of Mathematicians (Helsinki, 1978), 1980, pp. 811–820. | MR

[31.] A. Kanigowski; J. Kułaga-Przymus Ratner’s property and mild mixing for smooth flows on surfaces, Ergod. Theory Dyn. Syst., Volume 36 (2016), pp. 2512-2537 | MR | Zbl | DOI

[32.] N. Karaliolios Local rigidity of Diophantine translations in higher-dimensional tori, Regul. Chaotic Dyn., Volume 23 (2018), pp. 12-25 | MR | Zbl | DOI

[33.] A. B. Katok Invariant measures of flows on oriented surfaces, Sov. Math. Dokl., Volume 14 (1973), pp. 1104-1108 | Zbl | MR

[34.] K. Khanin Renormalization and rigidity, Proceedings of the International Congress of Mathematicians—Rio de Janeiro 2018. Vol. III. Invited Lectures, 2018, pp. 1973-1993 | MR | Zbl

[35.] K. Khanin; D. Khmelev Renormalizations and rigidity theory for circle homeomorphisms with singularities of the break type, Commun. Math. Phys., Volume 235 (2003), pp. 69-124 | MR | Zbl | DOI

[36.] K. M. Khanin; Ya. G. Sinaĭ A new proof of M. Herman’s theorem, Commun. Math. Phys., Volume 112 (1987), pp. 89-101 | MR | Zbl | DOI

[37.] K. Khanin; A. Teplinsky Herman’s theory revisited, Invent. Math., Volume 178 (2009), pp. 333-344 | MR | Zbl | DOI

[38.] K. Khanin; A. Teplinsky Renormalization horseshoe and rigidity for circle diffeomorphisms with breaks, Commun. Math. Phys., Volume 320 (2013), pp. 347-377 | MR | Zbl | DOI

[39.] K. Khanin; S. Kocić; E. Mazzeo C 1 -rigidity of circle maps with breaks for almost all rotation numbers, Ann. Sci. Éc. Norm. Supér. (4), Volume 50 (2017), pp. 1163-1203 | MR | Zbl | Numdam | DOI

[40.] M. Kontsevich; A. Zorich Connected components of the moduli spaces of Abelian differentials with prescribed singularities, Invent. Math., Volume 153 (2003), pp. 631-678 | MR | Zbl | DOI

[41.] G. Levitt Feuilletages des surfaces, Ann. Inst. Fourier (Grenoble), Volume 32 (1982), pp. 179-217 | MR | Zbl | Numdam | DOI

[42.] G. Levitt Pantalons et feuilletages des surfaces, Topology, Volume 21 (1982), pp. 9-33 | MR | Zbl | DOI

[43.] G. Levitt La décomposition dynamique et la différentiabilité des feuilletages des surfaces, Ann. Inst. Fourier (Grenoble), Volume 37 (1987), pp. 85-116 | MR | Zbl | Numdam | DOI

[44.] S. Marmi; J.-C. Yoccoz Hölder regularity of the solutions of the cohomological equation for Roth type interval exchange maps, Commun. Math. Phys., Volume 344 (2016), pp. 117-139 | Zbl | MR | DOI

[45.] S. Marmi; P. Moussa; J.-C. Yoccoz The cohomological equation for Roth-type interval exchange maps, J. Am. Math. Soc., Volume 18 (2005), pp. 823-872 | MR | Zbl | DOI

[46.] S. Marmi; P. Moussa; J.-C. Yoccoz Affine interval exchange maps with a wandering interval, Proc. Lond. Math. Soc. (3), Volume 100 (2010), pp. 639-669 | MR | Zbl | DOI

[47.] S. Marmi; P. Moussa; J.-C. Yoccoz Linearization of generalized interval exchange maps, Ann. Math. (2), Volume 176 (2012), pp. 1583-1646 | MR | Zbl | DOI

[48.] S. Marmi; C. Ulcigrai; J.-C. Yoccoz On Roth type conditions, duality and central Birkhoff sums for I.E.M, Astérisque, Volume 416 (2020), pp. 65-132 | MR | Zbl | DOI

[49.] M. Martens The periodic points of renormalization, Ann. Math. (2), Volume 147 (1998), pp. 543-584 | MR | Zbl | DOI

[50.] M. Martens; L. Palmisano Invariant manifolds for non-differentiable operators, Trans. Am. Math. Soc., Volume 375 (2022), pp. 1101-1169 | MR | Zbl

[51.] M. Martens; B. Winckler On the hyperbolicity of Lorenz renormalization, Commun. Math. Phys., Volume 325 (2014), pp. 185-257 | MR | Zbl | DOI

[52.] H. Masur Interval exchange transformations and measured foliations, Ann. Math., Volume 115 (1982), pp. 169-200 | MR | Zbl | DOI

[53.] C. T. McMullen Complex Dynamics and Renormalization, 135, Princeton University Press, Princeton, 1994 | Zbl | MR

[54.] C. T. McMullen Renormalization and 3-Manifolds Which Fiber over the Circle, 142, Princeton University Press, Princeton, 1996 | Zbl | MR | DOI

[55.] L. Mikhail Feigenbaum-Coullet-Tresser universality and Milnor’s hairiness conjecture, Ann. Math. (2), Volume 149 (1999), pp. 319-420 | MR | Zbl | DOI

[56.] R. Pérez Marco Sur les dynamiques holomorphes non linéarisables et une conjecture de V. I. Arnol’d, Ann. Sci. Éc. Norm. Supér. (4), Volume 26 (1993), pp. 565-644 | Zbl | MR | Numdam | DOI

[57.] G. Rauzy Échanges d’intervalles et trasformations induites, Acta Arith., Volume XXXIV (1979), pp. 315-328 | Zbl | MR | DOI

[58.] D. Sullivan Bounds, Quadratic Differentials, and Renormalization Conjectures, 1992, pp. 417-466 | Zbl | MR

[59.] C. Tresser; P. Coullet Itérations d’endomorphismes et groupe de renormalisation, C. R. Acad. Sci. Paris Sér. A-B, Volume 287 (1978), p. A577-A580 | Zbl | MR

[60.] C. Ulcigrai Mixing of asymmetric logarithmic suspension flows over interval exchange transformations, Ergod. Theory Dyn. Syst., Volume 27 (2007), pp. 991-1035 | MR | Zbl | DOI

[61.] C. Ulcigrai Absence of mixing in area-preserving flows on surfaces, Ann. Math. (2), Volume 173 (2011), pp. 1743-1778 | MR | Zbl | DOI

[62.] C. Ulcigrai, Shearing and mixing in parabolic flows, European Congress of Mathematics (2013), 691–705. | MR

[63.] C. Ulcigrai Dynamics and ‘Arithmetics’ of Higher Genus Surface Flows, 2022 | MR | Zbl

[64.] W. A. Veech Gauss measures for transformations on the space of interval exchange maps, Ann. Math., Volume 115 (1982), pp. 201-242 | MR | Zbl | DOI

[65.] W. A. Veech The metric theory of interval exchange transformations I. generic spectral properties, Am. J. Math., Volume 107 (1984), pp. 1331-1359 | MR | Zbl | DOI

[66.] W. A. Veech The Teichmüller geodesic flow, Ann. Math. (2), Volume 124 (1986), pp. 441-530 | MR | Zbl | DOI

[67.] M. Viana, Dynamics of interval exchange transformations and Teichmüller flows, Lecture Notes, available from http://w3.impa.br/~viana.

[68.] M. Viana Lectures on Lyapunov Exponents, 145, Cambridge University Press, Cambridge, 2014 | Zbl | MR | DOI

[69.] E. B. Vul; K. M. Khanin Homeomorphisms of the circle with fracture-type singularities, Usp. Mat. Nauk, Volume 45 (1990), pp. 189-190 | MR | Zbl

[70.] B. Winckler A renormalization fixed point for Lorenz maps, Nonlinearity, Volume 23 (2010), pp. 1291-1302 | MR | Zbl | DOI

[71.] M. Yampolsky The attractor of renormalization and rigidity of towers of critical circle maps, Commun. Math. Phys., Volume 218 (2001), pp. 537-568 | MR | Zbl | DOI

[72.] M. Yampolsky Hyperbolicity of renormalization of critical circle maps, Publ. Math. Inst. Hautes Études Sci., Volume 96 (2002), pp. 1-41 | MR | Zbl | Numdam | DOI

[73.] J.-C. Yoccoz Conjugaison différentiable des difféomorphismes du cercle dont le nombre de rotation vérifie une condition diophantienne, Ann. Sci. Éc. Norm. Supér. (4), Volume 17 (1984), pp. 333-359 | Zbl | MR | Numdam | DOI

[74.] J.-C. Yoccoz, Théorème de Siegel, nombres de Bruno et polynômes quadratiques, 1995, pp. 3–88. In Petits diviseurs en dimension 1, Astérisque. | MR | Numdam

[75.] J.-C. Yoccoz Analytic Linearization of Circle Diffeomorphisms, Dynamical Systems and Small Divisors (2002), pp. 125-173 | Zbl | MR

[76.] J.-C. Yoccoz, Echanges d’intervalles, Cours, Collège de France (2005), available at https://www.college-de-France.fr/site/jean-christophe-yoccoz/course-2004-2005.htm.

[77.] J.-C. Yoccoz, Continued fraction algorithms for interval exchange maps: an introduction, Frontiers in number theory, physics, and geometry. I (2006), 401–435. | MR

[78.] J.-C. Yoccoz, Échanges d’intervalles et surfaces de translation, 2009, pp. Exp. No. 996, x, 387–409 (2010). Séminaire Bourbaki, Astérisque Vol. 2007/2008. | Numdam | MR

[79.] J.-C. Yoccoz Interval exchange maps and translation surfaces, Homogeneous Flows, Moduli Spaces and Arithmetic, Clay Mathematical Summer School Proceedings, 2010, pp. 1-69 | MR | Zbl

[80.] A. Zorich Finite Gauss measure on the space of interval exchange transformation. Lyapunov exponents, Ann. Inst. Fourier (Grenoble), Volume 46 (1996), pp. 325-370 | MR | Zbl | Numdam | DOI

[81.] A. Zorich Deviation for interval exchange transformations, Ergod. Theory Dyn. Syst., Volume 17 (1997), pp. 1477-1499 | MR | Zbl | DOI

[82.] A. Zorich How do the leaves of a closed 1-form wind around a surface? Pseudoperiodic topology, Transl. Am. Math. Soc. (2), Volume 197 (1999), pp. 135-178 | MR | Zbl

Cited by Sources: