We establish the Minimal Model Program for arithmetic threefolds whose residue characteristics are greater than five. In doing this, we generalize the theory of global -regularity to mixed characteristic and identify certain stable sections of adjoint line bundles. Finally, by passing to graded rings, we generalize a special case of Fujita’s conjecture to mixed characteristic.
Accepted:
Online First:
Published online:
DOI: 10.1007/s10240-023-00140-8
Bhargav Bhatt 1; Linquan Ma 1; Zsolt Patakfalvi 1; Karl Schwede 1; Kevin Tucker 1; Joe Waldron 1; Jakub Witaszek 1
@article{PMIHES_2023__138__69_0,
author = {Bhargav Bhatt and Linquan Ma and Zsolt Patakfalvi and Karl Schwede and Kevin Tucker and Joe Waldron and Jakub Witaszek},
title = {Globally $+$-regular varieties and the minimal model program for threefolds in mixed characteristic},
journal = {Publications Math\'ematiques de l'IH\'ES},
pages = {69--227},
year = {2023},
publisher = {Springer International Publishing},
address = {Cham},
volume = {138},
doi = {10.1007/s10240-023-00140-8},
mrnumber = {4666931},
zbl = {1533.14009},
language = {en},
url = {https://pmihes.centre-mersenne.org/articles/10.1007/s10240-023-00140-8/}
}
TY - JOUR AU - Bhargav Bhatt AU - Linquan Ma AU - Zsolt Patakfalvi AU - Karl Schwede AU - Kevin Tucker AU - Joe Waldron AU - Jakub Witaszek TI - Globally $+$-regular varieties and the minimal model program for threefolds in mixed characteristic JO - Publications Mathématiques de l'IHÉS PY - 2023 SP - 69 EP - 227 VL - 138 PB - Springer International Publishing PP - Cham UR - https://pmihes.centre-mersenne.org/articles/10.1007/s10240-023-00140-8/ DO - 10.1007/s10240-023-00140-8 LA - en ID - PMIHES_2023__138__69_0 ER -
%0 Journal Article %A Bhargav Bhatt %A Linquan Ma %A Zsolt Patakfalvi %A Karl Schwede %A Kevin Tucker %A Joe Waldron %A Jakub Witaszek %T Globally $+$-regular varieties and the minimal model program for threefolds in mixed characteristic %J Publications Mathématiques de l'IHÉS %D 2023 %P 69-227 %V 138 %I Springer International Publishing %C Cham %U https://pmihes.centre-mersenne.org/articles/10.1007/s10240-023-00140-8/ %R 10.1007/s10240-023-00140-8 %G en %F PMIHES_2023__138__69_0
Bhargav Bhatt; Linquan Ma; Zsolt Patakfalvi; Karl Schwede; Kevin Tucker; Joe Waldron; Jakub Witaszek. Globally $+$-regular varieties and the minimal model program for threefolds in mixed characteristic. Publications Mathématiques de l'IHÉS, Volume 138 (2023), pp. 69-227. doi: 10.1007/s10240-023-00140-8
[AP22.] Local cohomology bounds and the weak implies strong conjecture in dimension 4, J. Algebra, Volume 605 (2022), pp. 37-57 (4418959) | MR | Zbl | DOI
[Ale94.] Boundedness and for log surfaces, Int. J. Math., Volume 5 (1994), pp. 779-810 1298994 (95k:14048) | Zbl | MR | DOI
[AHK07.] Termination of (many) 4-dimensional log flips, Invent. Math., Volume 168 (2007), pp. 433-448 | MR | Zbl | DOI
[And18.] La conjecture du facteur direct, Publ. Math. Inst. Hautes Études Sci., Volume 127 (2018), pp. 71-93 (3814651) | MR | Zbl | DOI
[And20.] Weak functoriality of Cohen-Macaulay algebras, J. Am. Math. Soc., Volume 33 (2020), pp. 363-380 (4073864) | MR | Zbl | DOI
[Art70.] Algebraization of formal moduli. II. Existence of modifications, Ann. Math. (2), Volume 91 (1970), pp. 88-135 MR0260747 (41 #5370) | MR | Zbl | DOI
[Art71.] On the joins of Hensel rings, Adv. Math., Volume 7 (1971), pp. 282-296 (289501) | MR | Zbl | DOI
[Ber21.] On the base point free theorem for klt threefolds in large characteristic, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5), Volume 22 (2021), pp. 583-600 (4288666) | MR | Zbl
[BK21.] Vanishing theorems for three-folds in characteristic , Int. Math. Res. Not., Volume 2023 (2023), pp. 2846-2866 | MR | Zbl | DOI
[Bha12.] Derived splinters in positive characteristic, Compos. Math., Volume 148 (2012), pp. 1757-1786 (2999303) | MR | Zbl | DOI
[Bha18.] On the direct summand conjecture and its derived variant, Invent. Math., Volume 212 (2018), pp. 297-317 (3787829) | MR | Zbl | DOI
[Bha20.] B. Bhatt, Cohen-Macaulayness of absolute integral closures, | arXiv
[BL.] B. Bhatt and J. Lurie, A -adic Riemann-Hilbert functor: -coefficients, in preparation.
[Bir16.] Existence of flips and minimal models for 3-folds in char , Ann. Sci. Éc. Norm. Supér. (4), Volume 49 (2016), pp. 169-212 | MR | Zbl | Numdam | DOI
[BW17.] Existence of Mori fibre spaces for 3-folds in , Adv. Math., Volume 313 (2017), pp. 62-101 | MR | Zbl | DOI
[BCHM10.] Existence of minimal models for varieties of log general type, J. Am. Math. Soc., Volume 23 (2010), pp. 405-468 2601039 (2011f:14023) | MR | Zbl | DOI
[BST15.] -singularities via alterations, Am. J. Math., Volume 137 (2015), pp. 61-109 (3318087) | MR | Zbl | DOI
[Bou98a.] Commutative Algebra. Chapters 1–7, Springer, Berlin, 1998 Translated from the French, Reprint of the 1989 English translation. MR1727221 (2001g:13001) | Zbl | MR
[Bou98b.] General Topology. Chapters 5–10, Springer, Berlin, 1998 (Translated from the French, Reprint of the 1989 English translation) | Zbl | MR
[BS98.] Local Cohomology: An Algebraic Introduction with Geometric Applications, 60, Cambridge University Press, Cambridge, 1998 MR1613627 (99h:13020) | Zbl | MR | DOI
[BH93.] Cohen-Macaulay Rings, 39, Cambridge University Press, Cambridge, 1993 MR1251956 (95h:13020) | Zbl | MR
[CRST18.] Fundamental groups of -regular singularities via -signature, Ann. Sci. Éc. Norm. Supér. (4), Volume 51 (2018), pp. 993-1016 | MR | Zbl | Numdam | DOI
[CRMP+21.] Covers of rational double points in mixed characteristic, J. Singul., Volume 23 (2021), pp. 127-150 (4292622) | MR | Zbl
[CT20.] Relative semiampleness in positive characteristic, Proc. Lond. Math. Soc. (3), Volume 121 (2020), pp. 617-655 | MR | Zbl | DOI
[CHMS14.] On the numerical dimension of pseudo-effective divisors in positive characteristic, Am. J. Math., Volume 136 (2014), pp. 1609-1628 (3282982) | MR | Zbl | DOI
[CTX15.] On base point freeness in positive characteristic, Ann. Sci. Éc. Norm. Supér. (4), Volume 48 (2015), pp. 1239-1272 | MR | Zbl | Numdam | DOI
[CTW17.] On log del Pezzo surfaces in large characteristic, Compos. Math., Volume 153 (2017), pp. 820-850 (3621617) | MR | Zbl | DOI
[CEMS18.] Test ideals in rings with finitely generated anti-canonical algebras, J. Inst. Math. Jussieu, Volume 17 (2018), pp. 171-206 (3742559) | MR | Zbl | DOI
[Con00.] Grothendieck Duality and Base Change, 1750, Springer, Berlin, 2000 MR1804902 (2002d:14025) | Zbl | MR | DOI
[Con05.] B. Conrad, The Keel-Mori theorem via stacks, 2005, http://math.stanford.edu/~conrad/papers/coarsespace.pdf.
[Cor07.] Flips for 3-Folds and 4-Folds, 35, Oxford University Press, Oxford, 2007 2352762 (2008j:14031) | Zbl | MR | DOI
[CP19.] Resolution of singularities of arithmetical threefolds, J. Algebra, Volume 529 (2019), pp. 268-535 (3942183) | MR | Zbl | DOI
[CJS20.] Desingularization: Invariants and Strategy, 2270, Springer, Berlin, 2020 | Zbl | MR | DOI
[Das15.] On strongly -regular inversion of adjunction, J. Algebra, Volume 434 (2015), pp. 207-226 | MR | Zbl | DOI
[DW22.] On the log minimal model program for threefolds over imperfect fields of characteristic , J. Lond. Math. Soc. (2022) | MR | DOI | Zbl
[DM20.] R. Datta and T. Murayama, Tate algebras and Frobenius non-splitting of excellent regular rings, J. Eur. Math. Soc. (2020), in press. | arXiv | MR
[DT21.] R. Datta and K. Tucker, Openness of splinter loci in prime characteristic, | arXiv | MR
[SGA73.] Groupes de monodromie en géométrie algébrique. II. Séminaire de Géométrie Algébrique du Bois-Marie 1967–1969 (SGA 7 II) (P. Deligne; N. Katz, eds.), 340, Springer, Berlin, 1973 0354657 (50 #7135) | Zbl | MR
[Dem93.] A numerical criterion for very ample line bundles, J. Differ. Geom., Volume 37 (1993), pp. 323-374 1205448 (94d:14007) | MR | Zbl
[Eis95.] Commutative Algebra, 150, Springer, New York, 1995 With a view toward algebraic geometry, 1322960 (97a:13001) | Zbl | MR | DOI
[Eji19.] When is the Albanese morphism an algebraic fiber space in positive characteristic?, Manuscr. Math., Volume 160 (2019), pp. 239-264 (3983395) | MR | Zbl | DOI
[Eke88.] Canonical models of surfaces of general type in positive characteristic, Publ. Math. Inst. Hautes Études Sci., Volume 67 (1988), pp. 97-144 972344 (89k:14069) | MR | Zbl | Numdam | DOI
[Fle77.] Die Sätze von Bertini für lokale Ringe, Math. Ann., Volume 229 (1977), pp. 97-111 (0460317) | MR | Zbl | DOI
[FOV99.] Joins and Intersections, Springer, Berlin, 1999 (1724388) | Zbl | MR | DOI
[FI03.] Depth and amplitude for unbounded complexes, Commutative Algebra, Volume 331 (2003), pp. 119-137 (2013162) | MR | Zbl | DOI
[Fuj07.] Special termination and reduction to pl flips, Flips for 3-Folds and 4-Folds, 35, Oxford Univ. Press, Oxford, 2007, pp. 63-75 | MR | Zbl | DOI
[Fuj11.] Fundamental theorems for the log minimal model program, Publ. Res. Inst. Math. Sci., Volume 47 (2011), pp. 727-789 (2832805) | MR | Zbl | DOI
[Fuj12.] Minimal model theory for log surfaces, Publ. Res. Inst. Math. Sci., Volume 48 (2012), pp. 339-371 | MR | Zbl | DOI
[FM21.] Nakai–Moishezon ampleness criterion for real line bundles, Math. Ann., Volume 385 (2022), pp. 1-12 | MR | DOI | Zbl | arXiv
[Gab04.] Notes on some -structures, Geometric Aspects of Dwork Theory. Vol. I, II, de Gruyter, Berlin, 2004, pp. 711-734 | MR | Zbl
[GK19.] M. Ghosh and A. Krishna, Bertini theorems revisited, | arXiv
[GLP+15.] On rational connectedness of globally -regular threefolds, Adv. Math., Volume 280 (2015), pp. 47-78 | MR | Zbl | DOI
[GNT19.] Rational points on log Fano threefolds over a finite field, J. Eur. Math. Soc., Volume 21 (2019), pp. 3759-3795 | MR | Zbl | DOI
[Gro61.] Éléments de géométrie algébrique. II. Étude globale élémentaire de quelques classes de morphismes, Publ. Math. Inst. Hautes Études Sci., Volume 8 (1961), p. 222 MR0217084 (36 #177b) | MR | Zbl | Numdam
[Hac15.] Singularities of pluri-theta divisors in Char , Algebraic Geometry in East Asia—Taipei 2011, 65, Math. Soc. Japan, Tokyo, 2015, pp. 117-122 (3380778) | MR | Zbl | DOI
[HK19.] On the boundedness of slc surfaces of general type, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5), Volume 19 (2019), pp. 191-215 (3923845) | MR | Zbl
[HP16.] Generic vanishing in characteristic and the characterization of ordinary abelian varieties, Am. J. Math., Volume 138 (2016), pp. 963-998 (3538148) | MR | Zbl | DOI
[.] The minimal model program for threefolds in characteristic 5, Duke Math. J., Volume 171 (2022), pp. 2193-2231 (4484207) | MR | Zbl | DOI
[HW22b.] On the relative minimal model program for threefolds in low characteristics, Peking Math. J., Volume 5 (2022), pp. 365-382 (4492657) | MR | Zbl | DOI
[HW23.] On the relative minimal model program for fourfolds in positive and mixed characteristic, Forum Math. Pi, Volume 11 (2023) (4565409) | MR | Zbl | DOI
[HX15.] On the three dimensional minimal model program in positive characteristic, J. Am. Math. Soc., Volume 28 (2015), pp. 711-744 | MR | Zbl | DOI
[HPZ19.] Birational characterization of abelian varieties and ordinary abelian varieties in characteristic , Duke Math. J., Volume 168 (2019), pp. 1723-1736 | MR | Zbl | DOI
[Har98.] A characterization of rational singularities in terms of injectivity of Frobenius maps, Am. J. Math., Volume 120 (1998), pp. 981-996 MR1646049 (99h:13005) | MR | Zbl | DOI
[HW02.] F-regular and F-pure rings vs. log terminal and log canonical singularities, J. Algebraic Geom., Volume 11 (2002), pp. 363-392 MR1874118 (2002k:13009) | MR | Zbl | DOI
[HY03.] A generalization of tight closure and multiplier ideals, Trans. Am. Math. Soc., Volume 355 (2003), pp. 3143-3174 (electronic). MR1974679 (2004i:13003) | MR | Zbl | DOI
[Har66.] Residues and Duality. Lecture Notes of a Seminar on the Work of A. Grothendieck, Given at Harvard 1963/64, 20, Springer, Berlin, 1966 With an Appendix by P. Deligne, MR0222093 (36 #5145) | Zbl
[Har67.] Local Cohomology. A Seminar Given by A. Grothendieck, Harvard University, Fall, Springer, Berlin, 1967 MR0224620 (37 #219)
[Har77.] Algebraic Geometry, 52, Springer, New York, 1977 MR0463157 (57 #3116) | Zbl | DOI
[Har94.] Generalized divisors on Gorenstein schemes, Proceedings of Conference on Algebraic Geometry and Ring Theory in Honor of Michael Artin, Part III, Volume 8 (1994), pp. 287-339 MR1291023 (95k:14008)
[HS77.] Local cohomological dimension in characteristic , Ann. Math. (2), Volume 105 (1977), pp. 45-79 MR0441962 (56 #353) | MR | Zbl | DOI
[HNT20.] Minimal model program for log canonical threefolds in positive characteristic, Math. Res. Lett., Volume 27 (2020), pp. 1003-1054 | MR | Zbl | DOI
[Hoc73.] Contracted ideals from integral extensions of regular rings, Nagoya Math. J., Volume 51 (1973), pp. 25-43 0349656 (50 #2149) | MR | Zbl | DOI
[Hoc75.] Topics in the homological theory of modules over commutative rings, Conference Board of the Mathematical Sciences, Am. Math. Soc., Providence, 1975 Expository lectures from the CBMS Regional Conference held at the University of Nebraska, Lincoln, Neb., June 24–28, 1974, Conference Board of the Mathematical Sciences Regional Conference Series in Mathematics, No. 24. 0371879 (51 #8096)
[Hoc94.] Solid Closure, Commutative Algebra: Syzygies, Multiplicities, and Birational Algebra, 159 (1994), pp. 103-172 (1266182)
[HH90.] Tight closure, invariant theory, and the Briançon-Skoda theorem, J. Am. Math. Soc., Volume 3 (1990), pp. 31-116 MR1017784 (91g:13010) | Zbl
[HH92.] Infinite integral extensions and big Cohen-Macaulay algebras, Ann. Math. (2), Volume 135 (1992), pp. 53-89 1147957 (92m:13023) | MR | Zbl | DOI
[HH95.] Applications of the existence of big Cohen-Macaulay algebras, Adv. Math., Volume 113 (1995), pp. 45-117 (1332808) | MR | Zbl | DOI
[HL07.] Absolute integral closure in positive characteristic, Adv. Math., Volume 210 (2007), pp. 498-504 2303230 (2008d:13005) | MR | Zbl | DOI
[HS03.] On a non-vanishing conjecture of Kawamata and the core of an ideal, Am. J. Math., Volume 125 (2003), pp. 1349-1410 MR2018664 (2006c:13036) | MR | Zbl | DOI
[JW.] L. Ji and J. Waldron, Structure of geometrically non-reduced varieties, Trans. Am. Math. Soc., in press. | DOI
[Kaw85.] Pluricanonical systems on minimal algebraic varieties, Invent. Math., Volume 79 (1985), pp. 567-588 | MR | Zbl | DOI
[Kaw94.] Semistable minimal models of threefolds in positive or mixed characteristic, J. Algebraic Geom., Volume 3 (1994), pp. 463-491 | MR | Zbl
[KMM87.] Introduction to the minimal model problem, Algebraic Geometry, Volume 10 (1987), pp. 283-360 MR946243 (89e:14015) | DOI
[Kee99.] Basepoint freeness for nef and big line bundles in positive characteristic, Ann. Math. (2), Volume 149 (1999), pp. 253-286 1680559 (2000j:14011) | MR | Zbl | DOI
[KM97.] Quotients by groupoids, Ann. Math. (2), Volume 145 (1997), pp. 193-213 1432041 (97m:14014) | MR | Zbl | DOI
[Kee08.] Fujita’s conjecture and Frobenius amplitude, Am. J. Math., Volume 130 (2008), pp. 1327-1336 2450210 (2009i:14006) | MR | Zbl | DOI
[Kle66.] Toward a numerical theory of ampleness, Ann. Math., Volume 84 (1966), pp. 293-344 | MR | Zbl | DOI
[Kol90.] Projectivity of complete moduli, J. Differ. Geom., Volume 32 (1990), pp. 235-268 1064874 (92e:14008) | MR | Zbl | DOI
[Kol13.] Singularities of the Minimal Model Program, 200, Cambridge University Press, Cambridge, 2013 (With the collaboration of Sándor Kovács, 3057950) | Zbl | DOI
[Kol21.] Relative MMP without -factoriality, Electron. Res. Arch., Volume 29 (2021), pp. 3193-3203 | MR | Zbl | DOI
[Kol08.] J. Kollár, Exercises in the birational geometry of algebraic varieties, | arXiv
[Kol11.] J. Kollár, Hulls and husks, | arXiv
[KM98.] Birational Geometry of Algebraic Varieties, 134, Cambridge University Press, Cambridge, 1998 With the collaboration of C. H. Clemens and A. Corti, Translated from the 1998 Japanese original, MR1658959 (2000b:14018) | Zbl | DOI
[KW21.] J. Kollár and J. Witaszek, Resolution and alteration with ample exceptional, | arXiv
[Kc92.] et al. Flips and abundance for algebraic threefolds, Second Summer Seminar on Algebraic Geometry, Volume 211 (1992) MR1225842 (94f:14013)
[Kov17.] S. Kovács, Rational singularities, | arXiv
[Laz04.] Positivity in algebraic geometry. I: classical setting: line bundles and linear series, Ergebnisse der Mathematik und Ihrer Grenzgebiete. 3. Folge [Results in Mathematics and Related Areas. 3rd Series], 48, Springer, Berlin, 2004 MR2095471 (2005k:14001a)
[Lic68.] Curves over discrete valuation rings, Am. J. Math., Volume 90 (1968), pp. 380-405 (230724) | MR | Zbl | DOI
[Lie08.] Algebraic surfaces of general type with small in positive characteristic, Nagoya Math. J., Volume 191 (2008), pp. 111-134 2451222 (2009i:14052) | MR | Zbl | DOI
[Lip69.] Rational singularities, with applications to algebraic surfaces and unique factorization, Publ. Math. Inst. Hautes Études Sci., Volume 36 (1969), pp. 195-279 MR0276239 (43 #1986) | MR | Zbl | Numdam | DOI
[Lip78.] Desingularization of two-dimensional schemes, Ann. Math. (2), Volume 107 (1978), pp. 151-207 0491722 (58 #10924) | MR | Zbl | DOI
[Liu02.] Algebraic Geometry and Arithmetic Curves, 6, Oxford University Press, Oxford, 2002 1917232 (2003g:14001) | Zbl | DOI
[Lyu06.] On the vanishing of local cohomology in characteristic , Compos. Math., Volume 142 (2006), pp. 207-221 | MR | Zbl | DOI
[MS18.] Perfectoid multiplier/test ideals in regular rings and bounds on symbolic powers, Invent. Math., Volume 214 (2018), pp. 913-955 (3867632) | MR | Zbl | DOI
[MS21.] Singularities in mixed characteristic via perfectoid big Cohen-Macaulay algebras, Duke Math. J., Volume 170 (2021), pp. 2815-2890 (4312190) | MR | Zbl
[MST+22.] An analogue of adjoint ideals and PLT singularities in mixed characteristic, J. Algebraic Geom., Volume 31 (2022), pp. 497-559 (4484548) | MR | Zbl | DOI
[Mat89.] Commutative Ring Theory, 8, Cambridge University Press, Cambridge, 1989 Translated from the Japanese by M. Reid, MR1011461 (90i:13001) | Zbl
[MR85.] Frobenius splitting and cohomology vanishing for Schubert varieties, Ann. Math. (2), Volume 122 (1985), pp. 27-40 MR799251 (86k:14038) | MR | Zbl | DOI
[MS97.] A characterization of rational singularities, Asian J. Math., Volume 1 (1997), pp. 249-271 MR1491985 (99e:13009) | MR | Zbl | DOI
[Mur21.] T. Murayama, Relative vanishing theorems for -schemes, | arXiv
[MS14.] A Frobenius variant of Seshadri constants, Math. Ann., Volume 358 (2014), pp. 861-878 | MR | Zbl | DOI
[Pat14.] Semi-positivity in positive characteristics, Ann. Sci. Éc. Norm. Supér. (4), Volume 47 (2014), pp. 991-1025 (3294622) | MR | Zbl | Numdam | DOI
[Pat18.] Zs. Patakfalvi, On the projectivity of the moduli space of stable surfaces in characteristic , | arXiv
[PW22.] Singularities of general fibers and the LMMP, Am. J. Math., Volume 144 (2022), pp. 505-540 | MR | Zbl | DOI
[RR85.] Projective normality of flag varieties and Schubert varieties, Invent. Math., Volume 79 (1985), pp. 217-224 MR778124 (86j:14051) | MR | Zbl | DOI
[Ray78.] Contre-exemple au “Vanishing Theorem” en caractéristique , Tata Inst. Fund. Res. Studies in Math., 8, Springer, Berlin, 1978, pp. 273-278 C. P. Ramanujam—a tribute, 541027 (81b:14011) | Zbl
[RG71.] Critères de platitude et de projectivité. Techniques de “platification” d’un module, Invent. Math., Volume 13 (1971), pp. 1-89 | MR | Zbl | DOI
[Sai04.] Log smooth extension of a family of curves and semi-stable reduction, J. Algebraic Geom., Volume 13 (2004), pp. 287-321 2047700 (2005a:14034) | MR | Zbl | DOI
[Sch12.] Perfectoid spaces, Publ. Math. Inst. Hautes Études Sci., Volume 116 (2012), pp. 245-313 | MR | Zbl | Numdam | DOI
[Sch14.] A canonical linear system associated to adjoint divisors in characteristic , J. Reine Angew. Math., Volume 696 (2014), pp. 69-87 | MR | Zbl | DOI
[SS10.] Globally -regular and log Fano varieties, Adv. Math., Volume 224 (2010), pp. 863-894 2628797 (2011e:14076) | MR | Zbl | DOI
[ST08.] Rational singularities associated to pairs, Mich. Math. J., Volume 57 (2008), pp. 625-658 | MR | Zbl | DOI
[ST14.] Test ideals of non-principal ideals: computations, jumping numbers, alterations and division theorems, J. Math. Pures Appl. (9), Volume 102 (2014), pp. 891-929 (3271293) | MR | Zbl | DOI
[STZ12.] Test ideals via a single alteration and discreteness and rationality of -jumping numbers, Math. Res. Lett., Volume 19 (2012), pp. 191-197 (2923185) | MR | Zbl | DOI
[Sha66.] Lectures on minimal models and birational transformations of two dimensional schemes, Notes by C. P. Ramanujam, 37, Tata Institute of Fundamental Research, Bombay, 1966 (0217068) | Zbl
[ST21.] K. Shimomoto and E. Tavanfar, On local rings without small Cohen-Macaulay algebras in mixed characteristic, | arXiv
[Sho92.] Three-dimensional log perestroikas, Izv. Akad. Nauk SSSR, Ser. Mat., Volume 56 (1992), pp. 105-203 MR1162635 (93j:14012)
[Sin99.] -Gorenstein splinter rings of characteristic are F-regular, Math. Proc. Camb. Philos. Soc., Volume 127 (1999), pp. 201-205 1735920 (2000j:13006) | MR | Zbl | DOI
[Smi97a.] -rational rings have rational singularities, Am. J. Math., Volume 119 (1997), pp. 159-180 MR1428062 (97k:13004) | MR | Zbl | DOI
[Smi97b.] Fujita’s freeness conjecture in terms of local cohomology, J. Algebraic Geom., Volume 6 (1997), pp. 417-429 MR1487221 (98m:14002) | MR | Zbl
[Smi00.] Globally F-regular varieties: applications to vanishing theorems for quotients of Fano varieties, Mich. Math. J., Volume 48 (2000), pp. 553-572 Dedicated to William Fulton on the occasion of his 60th birthday, MR1786505 (2001k:13007) | MR | Zbl | DOI
[Sta13.] J. Starr, Bounding the number of critical points in a Lefschetz pencil, 2013, https://mathoverflow.net/q/165674 (Version: 2014-05-09).
[Tak04a.] F-singularities of pairs and inversion of adjunction of arbitrary codimension, Invent. Math., Volume 157 (2004), pp. 123-146 (MR2135186) | MR | Zbl | DOI
[Tak04b.] An interpretation of multiplier ideals via tight closure, J. Algebraic Geom., Volume 13 (2004), pp. 393-415 MR2047704 (2005c:13002) | MR | Zbl | DOI
[TY20.] T. Takamatsu and S. Yoshikawa, Minimal model program for semi-stable threefolds in mixed characteristic, J. Algebr. Geom., in press. | DOI | arXiv
[Tan18a.] Behavior of canonical divisors under purely inseparable base changes, J. Reine Angew. Math., Volume 744 (2018), pp. 237-264 | MR | Zbl | DOI
[Tan18b.] Minimal model program for excellent surfaces, Ann. Inst. Fourier (Grenoble), Volume 68 (2018), pp. 345-376 (3795482) | MR | Zbl | DOI
[Tan20a.] Abundance theorem for surfaces over imperfect fields, Math. Z., Volume 295 (2020), pp. 595-622 | MR | Zbl | DOI
[Tan20b.] Pathologies on Mori fibre spaces in positive characteristic, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5), Volume 20 (2020), pp. 1113-1134 | MR | Zbl
[Tan20c.] Private Communication, 2020
[Tem11.] Absolute desingularization in characteristic zero, Motivic Integration and Its Interactions with Model Theory and Non-Archimedean Geometry, Vol. II, 384, Cambridge University Press, Cambridge, 2011, pp. 213-250 (2905858) | Zbl
[Sta.] The Stacks Project Authors, Stacks Project.
[TW89.] Filtered rings, filtered blowing-ups and normal two-dimensional singularities with “star-shaped” resolution, Publ. Res. Inst. Math. Sci., Volume 25 (1989), pp. 681-740 (1031224) | MR | Zbl | DOI
[Tot19.] The failure of Kodaira vanishing for Fano varieties, and terminal singularities that are not Cohen-Macaulay, J. Algebraic Geom., Volume 28 (2019), pp. 751-771 (3994312) | MR | Zbl | DOI
[Tot21.] Private Communication, 2021
[Tri97.] Erratum: “a local Bertini theorem in mixed characteristic” [Comm. Algebra 22 (1994), no. 3, 823–827; MR1261007 (94m:13002)], Commun. Algebra, Volume 25 (1997), pp. 1685-1686 (1444028) | MR | Zbl
[Vij94.] A local Bertini theorem in mixed characteristic, Commun. Algebra, Volume 22 (1994), pp. 823-827 (1261007) | MR | Zbl | DOI
[Wal18.] The LMMP for log canonical 3-folds in char , Nagoya Math. J., Volume 230 (2018), pp. 48-71 | MR | Zbl | DOI
[Wat91.] -regular and -pure normal graded rings, J. Pure Appl. Algebra, Volume 71 (1991), pp. 341-350 | MR | Zbl | DOI
[Wit22.] Keel’s base point free theorem and quotients in mixed characteristic, Ann. Math. (2), Volume 195 (2022), pp. 655-705 (4387235) | MR | Zbl | DOI
[Wit21.] J. Witaszek, Relative semiampleness in mixed characteristic, | arXiv
[Wri56.] Semigroups in compact groups, Proc. Am. Math. Soc., Volume 7 (1956), pp. 309-311 | MR | Zbl | DOI
[XX21.] L. Xie and Q. Xue, On the termination of the mmp for semi-stable fourfolds in mixed characteristic, | arXiv
[Xu15.] On the base-point-free theorem of 3-folds in positive characteristic, J. Inst. Math. Jussieu, Volume 14 (2015), pp. 577-588 | MR | Zbl | DOI
[XZ19.] Nonvanishing for 3-folds in characteristic , Duke Math. J., Volume 168 (2019), pp. 1269-1301 | MR | Zbl
[Zha14.] Pluri-canonical maps of varieties of maximal Albanese dimension in positive characteristic, J. Algebra, Volume 409 (2014), pp. 11-25 (3198833) | MR | Zbl | DOI
Cited by Sources: