Article
Stable homotopy groups of spheres: from dimension 0 to 90
Publications Mathématiques de l'IHÉS, Volume 137 (2023), pp. 107-243

Using techniques in motivic homotopy theory, especially the theorem of Gheorghe, the second and the third author on the isomorphism between motivic Adams spectral sequence for Cτ and the algebraic Novikov spectral sequence for BP * , we compute the classical and motivic stable homotopy groups of spheres from dimension 0 to 90, except for some carefully enumerated uncertainties.

Received:
Accepted:
Online First:
Published online:
DOI: 10.1007/s10240-023-00139-1

Daniel C. Isaksen 1; Guozhen Wang 1; Zhouli Xu 1

1
@article{PMIHES_2023__137__107_0,
     author = {Daniel C. Isaksen and Guozhen Wang and Zhouli Xu},
     title = {Stable homotopy groups of spheres: from dimension 0 to 90},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {107--243},
     year = {2023},
     publisher = {Springer International Publishing},
     address = {Cham},
     volume = {137},
     doi = {10.1007/s10240-023-00139-1},
     zbl = {1528.55010},
     language = {en},
     url = {https://pmihes.centre-mersenne.org/articles/10.1007/s10240-023-00139-1/}
}
TY  - JOUR
AU  - Daniel C. Isaksen
AU  - Guozhen Wang
AU  - Zhouli Xu
TI  - Stable homotopy groups of spheres: from dimension 0 to 90
JO  - Publications Mathématiques de l'IHÉS
PY  - 2023
SP  - 107
EP  - 243
VL  - 137
PB  - Springer International Publishing
PP  - Cham
UR  - https://pmihes.centre-mersenne.org/articles/10.1007/s10240-023-00139-1/
DO  - 10.1007/s10240-023-00139-1
LA  - en
ID  - PMIHES_2023__137__107_0
ER  - 
%0 Journal Article
%A Daniel C. Isaksen
%A Guozhen Wang
%A Zhouli Xu
%T Stable homotopy groups of spheres: from dimension 0 to 90
%J Publications Mathématiques de l'IHÉS
%D 2023
%P 107-243
%V 137
%I Springer International Publishing
%C Cham
%U https://pmihes.centre-mersenne.org/articles/10.1007/s10240-023-00139-1/
%R 10.1007/s10240-023-00139-1
%G en
%F PMIHES_2023__137__107_0
Daniel C. Isaksen; Guozhen Wang; Zhouli Xu. Stable homotopy groups of spheres: from dimension 0 to 90. Publications Mathématiques de l'IHÉS, Volume 137 (2023), pp. 107-243. doi: 10.1007/s10240-023-00139-1

[1.] J. F. Adams On the non-existence of elements of Hopf invariant one, Ann. Math. (2), Volume 72 (1960), pp. 20-104 MR0141119 (25 #4530) | MR | DOI | Zbl

[2.] M. G. Barratt; J. D. S. Jones; M. E. Mahowald Relations amongst Toda brackets and the Kervaire invariant in dimension 62, J. Lond. Math. Soc. (2), Volume 30 (1984), pp. 533-550 MR810962 (87g:55025) | MR | DOI | Zbl

[3.] M. G. Barratt; M. E. Mahowald; M. C. Tangora Some differentials in the Adams spectral sequence. II, Topology, Volume 9 (1970), pp. 309-316 MR0266215 (42 #1122) | MR | DOI | Zbl

[4.] J. Beauvais-Feisthauer, Automated differential computation in the Adams spectral sequence, preprint, available at | arXiv

[5.] A. Beaudry; M. Behrens; P. Bhattacharya; D. Culver; Z. Xu The telescope conjecture at height 2 and the tmf resolution, J. Topol., Volume 14 (2021), pp. 1243-1320 (MR4332490) | MR | DOI | Zbl

[6.] J. Beauvais-Feisthauer; H. Chatham; D. Chua The E 2 page of the 2-primary Adams spectral sequence in a large range, Zenodo (2023) | DOI

[7.] M. Behrens; M. Hill; M. J. Hopkins; M. Mahowald Detecting exotic spheres in low dimensions using coker J, J. Lond. Math. Soc. (2), Volume 101 (2020), pp. 1173-1218 (MR4111938) | MR | DOI | Zbl

[8.] M. Behrens, M. Mahowald and J. D. Quigley, The 2-primary Hurewicz image of tmf, Geom. Topol., to appear, available at | arXiv

[9.] E. Belmont and H. J. Kong, A Toda bracket convergence theorem for multiplicative spectral sequences, preprint, available at | arXiv

[10.] R. Bruner A new differential in the Adams spectral sequence, Topology, Volume 23 (1984), pp. 271-276 MR770563 (86c:55016) | MR | DOI | Zbl

[11.] R. R. Bruner, The cohomology of the mod 2 Steenrod algebra: a computer calculation, Wayne State University Research Report 37 (1997).

[12.] R. R. Bruner, Squaring operations in Ext 𝒜 (F 2 ,F 2 ), preprint (2004).

[13.] R. R. Bruner; J. Rognes The cohomology of the mod 2 Steenrod algebra [data set], Norstore (2021) | DOI | Zbl

[14.] R. R. Bruner; J. Rognes The Adams Spectral Sequence for Topological Modular Forms, 253, Am. Math. Soc., Providence, 2021 (MR4284897) | Zbl | DOI

[15.] R. Burklund An extension in the Adams spectral sequence in dimension 54, Bull. Lond. Math. Soc., Volume 53 (2021), pp. 404-407 (MR4239183) | MR | DOI | Zbl

[16.] R. Burklund, D. C. Isaksen and Z. Xu, Classical stable homotopy groups of spheres via 𝐅 2 -synthetic methods, in preparation.

[17.] D. Chua, Adams differentials via the secondary Steenrod algebra, preprint, available at | arXiv

[18.] Topological Modular Forms (C. L. Douglas; J. Francis; A. G. Henriques; M. A. Hill, eds.), 201, Am. Math. Soc., Providence, 2014 (MR3223024)

[19.] B. Gheorghe The motivic cofiber of τ, Doc. Math., Volume 23 (2018), pp. 1077-1127 (MR3874951) | MR | DOI | Zbl

[20.] B. Gheorghe; D. C. Isaksen; A. Krause; N. Ricka 𝐂-Motivic modular forms, J. Eur. Math. Soc., Volume 24 (2022), pp. 3597-3628 (MR4432907) | MR | DOI | Zbl

[21.] B. Gheorghe; G. Wang; Z. Xu The special fiber of the motivic deformation of the stable homotopy category is algebraic, Acta Math., Volume 226 (2021), pp. 319-407 (MR4281382) | MR | DOI | Zbl

[22.] B. J. Guillou; D. C. Isaksen The η-local motivic sphere, J. Pure Appl. Algebra, Volume 219 (2015), pp. 4728-4756 (MR3346515) | MR | DOI | Zbl

[23.] A. Hatcher, Pictures of stable homotopy groups of spheres, available at pi.math.cornell.edu/~hatcher/stemfigs/stems.pdf.

[24.] M. A. Hill; M. J. Hopkins; D. C. Ravenel On the nonexistence of elements of Kervaire invariant one, Ann. Math. (2), Volume 184 (2016), pp. 1-262 (MR3505179) | MR | DOI | Zbl

[25.] G. Hirsch Quelques propriétés des produits de Steenrod, C. R. Acad. Sci. Paris, Volume 241 (1955), pp. 923-925 (French), MR73182 | MR | Zbl

[26.] M. Hovey Homotopy theory of comodules over a Hopf algebroid, Homotopy Theory: Relations with Algebraic Geometry, Group Cohomology, and Algebraic $K$ K -Theory, 346, Am. Math. Soc., Providence, 2004, pp. 261-304 (MR2066503) | DOI | Zbl

[27.] P. Hu; I. Kriz; K. Ormsby Remarks on motivic homotopy theory over algebraically closed fields, J. K-Theory, Volume 7 (2011), pp. 55-89 (MR2774158) | MR | DOI | Zbl

[28.] D. C. Isaksen The cohomology of motivic A(2), Homol. Homotopy Appl., Volume 11 (2009), pp. 251-274 MR2591921 (2011c:55034) | MR | DOI | Zbl

[29.] D. C. Isaksen When is a fourfold Massey product defined?, Proc. Am. Math. Soc., Volume 143 (2015), pp. 2235-2239 (MR3314129) | MR | DOI | Zbl

[30.] D. C. Isaksen Stable stems, Mem. Am. Math. Soc., Volume 262 (2019), p. viii+159 (MR4046815) | MR | DOI | Zbl

[31.] D. C. Isaksen, The homotopy of 𝐂-motivic modular forms, Zenodo, . | DOI

[32.] D. C. Isaksen, The Mahowald operator in the cohomology of the Steenrod algebra, Tbil. Math. J. Special Issue (HomotopyTheorySpectra – 2020), 183–190. https://tcms.org.ge/Journals/ASETMJ/Special%20issue/6/PDF/tmj_HomotTheory-2020_8.pdf.

[33.] D. C. Isaksen, G. Wang and Z. Xu, Classical and 𝐂-motivic Adams charts (2022), . | DOI

[34.] D. C. Isaksen, G. Wang and Z. Xu, Classical algebraic Novikov charts and 𝐂-motivic Adams charts for the cofiber of τ (2022), . | DOI

[35.] D. C. Isaksen; Z. Xu Motivic stable homotopy and the stable 51 and 52 stems, Topol. Appl., Volume 190 (2015), pp. 31-34 (MR3349503) | MR | DOI | Zbl

[36.] M. A. Kervaire; J. W. Milnor Groups of homotopy spheres. I, Ann. Math. (2), Volume 77 (1963), pp. 504-537 (MR148075) | MR | DOI | Zbl

[37.] S. O. Kochman A chain functor for bordism, Trans. Am. Math. Soc., Volume 239 (1978), pp. 167-196 (MR488031) | MR | DOI | Zbl

[38.] S. O. Kochman Stable Homotopy Groups of Spheres, 1423, Springer, Berlin, 1990 a computer-assisted approach, MR1052407 (91j:55016) | DOI | Zbl

[39.] S. O. Kochman Bordism, Stable Homotopy and Adams Spectral Sequences, 7, Am. Math. Soc., Providence, 1996 (MR1407034) | Zbl

[40.] S. O. Kochman; M. E. Mahowald On the computation of stable stems, The Čech Centennial, Volume 181 (1995), pp. 299-316 MR1320997 (96j:55018) | DOI | Zbl

[41.] A. Krause, Periodicity in motivic homotopy theory and over BP * BP, Ph.D. thesis, Universität Bonn, 2018.

[42.] W. Lin, Noncommutative Gröbner bases and Ext groups; Application to the Steenrod algebra, preprint (2023), available at | arXiv

[43.] W. Lin Cohomology of the mod 2 Steenrod algebra, Zenodo (2023) | DOI

[44.] W.-H. Lin A proof of the strong Kervaire invariant in dimension 62, First International Congress of Chinese Mathematicians, Volume 20 (2001), pp. 351-358 (MR1830191) | Zbl | MR | DOI

[45.] M. Mahowald; M. Tangora Some differentials in the Adams spectral sequence, Topology, Volume 6 (1967), pp. 349-369 MR0214072 (35 #4924) | MR | DOI | Zbl

[46.] J. P. May Matric Massey products, J. Algebra, Volume 12 (1969), pp. 533-568 MR0238929 (39 #289) | MR | DOI | Zbl

[47.] J. P. May A general algebraic approach to Steenrod operations, The Steenrod Algebra and Its Applications (Proc. Conf. to Celebrate N. E. Steenrod’s Sixtieth Birthday, Battelle Memorial Inst., Columbus, Ohio, 1970), 168, Springer, Berlin, 1970, pp. 153-231 (MR0281196) | Zbl | DOI

[48.] H. R. Miller, Some algebraic aspects of the Adams-Novikov spectral sequence, ProQuest LLC, Ann Arbor, MI, 1975, thesis (Ph.D.)—Princeton University, MR2625232.

[49.] J. Milnor Differential topology forty-six years later, Not. Am. Math. Soc., Volume 58 (2011), pp. 804-809 (MR2839925) | MR | Zbl

[50.] R. M. F. Moss Secondary compositions and the Adams spectral sequence, Math. Z., Volume 115 (1970), pp. 283-310 MR0266216 (42 #1123) | MR | DOI | Zbl

[51.] S. P. Novikov Methods of algebraic topology from the point of view of cobordism theory, Izv. Akad. Nauk SSSR, Ser. Mat., Volume 31 (1967), pp. 855-951 (Russian), MR0221509 | MR | Zbl

[52.] P. Pstragowski, Synthetic spectra and the cellular motivic category, preprint (2018), available at | arXiv

[53.] D. C. Ravenel Complex Cobordism and Stable Homotopy Groups of Spheres, 121, Academic Press, Orlando, 1986 MR860042 (87j:55003) | Zbl

[54.] M. C. Tangora On the cohomology of the Steenrod algebra, Math. Z., Volume 116 (1970), pp. 18-64 MR0266205 (42 #1112) | MR | DOI | Zbl

[55.] H. Toda Composition Methods in Homotopy Groups of Spheres, 49, Princeton University Press, Princeton, 1962 MR0143217 (26 #777) | Zbl

[56.] V. Voevodsky Motivic cohomology with 𝐙/2-coefficients, Publ. Math. Inst. Hautes Études Sci., Volume 98 (2003), pp. 59-104 MR2031199 (2005b:14038b) | MR | DOI | Zbl | Numdam

[57.] V. Voevodsky Motivic Eilenberg-Maclane spaces, Publ. Math. Inst. Hautes Études Sci., Volume 112 (2010), pp. 1-99 MR2737977 (2012f:14041) | MR | DOI | Zbl | Numdam

[58.] G. Wang, github.com/pouiyter/morestablestems.

[59.] G. Wang Computations of the Adams-Novikov E 2 -term, Chin. Ann. Math., Ser. B, Volume 42 (2021), pp. 551-560 (MR4289191) | DOI | Zbl

[60.] G. Wang; Z. Xu The triviality of the 61-stem in the stable homotopy groups of spheres, Ann. Math. (2), Volume 186 (2017), pp. 501-580 (MR3702672) | MR | DOI | Zbl

[61.] G. Wang; Z. Xu Some extensions in the Adams spectral sequence and the 51-stem, Algebraic Geom. Topol., Volume 18 (2018), pp. 3887-3906 (MR3892234) | MR | DOI | Zbl

[62.] Z. Xu The strong Kervaire invariant problem in dimension 62, Geom. Topol., Volume 20 (2016), pp. 1611-1624 (MR3523064) | MR | DOI | Zbl

Cited by Sources: