Article
Geometry of polarised varieties
Publications Mathématiques de l'IHÉS, Volume 137 (2023), pp. 47-105

In this paper, we investigate the geometry of projective varieties polarised by ample and more generally nef and big Weil divisors. First we study birational boundedness of linear systems. We show that if X is a projective variety of dimension d with ϵ-lc singularities for ϵ>0, and if N is a nef and big Weil divisor on X such that N-K X is pseudo-effective, then the linear system |mN| defines a birational map for some natural number m depending only on d,ϵ. This is key to proving various other results. For example, it implies that if N is a big Weil divisor (not necessarily nef) on a klt Calabi-Yau variety of dimension d, then the linear system |mN| defines a birational map for some natural number m depending only on d. It also gives new proofs of some known results, for example, if X is an ϵ-lc Fano variety of dimension d then taking N=-K X we recover birationality of |-mK X | for bounded m.

We prove similar birational boundedness results for nef and big Weil divisors N on projective klt varieties X when both K X and N-K X are pseudo-effective (here X is not assumed ϵ-lc).

Using the above, we show boundedness of polarised varieties under some natural conditions. We extend these to boundedness of semi-log canonical Calabi-Yau pairs polarised by effective ample Weil divisors not containing lc centres. We will briefly discuss applications to existence of projective coarse moduli spaces of such polarised Calabi-Yau pairs.

Received:
Accepted:
Online First:
Published online:
DOI: 10.1007/s10240-022-00136-w

Caucher Birkar 1

1
@article{PMIHES_2023__137__47_0,
     author = {Caucher Birkar},
     title = {Geometry of polarised varieties},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {47--105},
     year = {2023},
     publisher = {Springer International Publishing},
     address = {Cham},
     volume = {137},
     doi = {10.1007/s10240-022-00136-w},
     mrnumber = {4588595},
     zbl = {1531.14048},
     language = {en},
     url = {https://pmihes.centre-mersenne.org/articles/10.1007/s10240-022-00136-w/}
}
TY  - JOUR
AU  - Caucher Birkar
TI  - Geometry of polarised varieties
JO  - Publications Mathématiques de l'IHÉS
PY  - 2023
SP  - 47
EP  - 105
VL  - 137
PB  - Springer International Publishing
PP  - Cham
UR  - https://pmihes.centre-mersenne.org/articles/10.1007/s10240-022-00136-w/
DO  - 10.1007/s10240-022-00136-w
LA  - en
ID  - PMIHES_2023__137__47_0
ER  - 
%0 Journal Article
%A Caucher Birkar
%T Geometry of polarised varieties
%J Publications Mathématiques de l'IHÉS
%D 2023
%P 47-105
%V 137
%I Springer International Publishing
%C Cham
%U https://pmihes.centre-mersenne.org/articles/10.1007/s10240-022-00136-w/
%R 10.1007/s10240-022-00136-w
%G en
%F PMIHES_2023__137__47_0
Caucher Birkar. Geometry of polarised varieties. Publications Mathématiques de l'IHÉS, Volume 137 (2023), pp. 47-105. doi: 10.1007/s10240-022-00136-w

[1.] F. Ambro, The Adjunction Conjecture and its applications, | arXiv | MR

[2.] C. Birkar, Boundedness of Fano type fibrations, Ann. Sci. ENS, in press, | arXiv | MR

[3.] C. Birkar Singularities of linear systems and boundedness of Fano varieties, Ann. Math., Volume 193 (2021), pp. 347-405 | MR | DOI | Zbl

[4.] C. Birkar Anti-pluricanonical systems on Fano varieties, Ann. Math., Volume 190 (2019), pp. 345-463 | MR | DOI | Zbl

[5.] C. Birkar Singularities on the base of a Fano type fibration, J. Reine Angew. Math., Volume 715 (2016), pp. 125-142 | MR | DOI | Zbl

[6.] C. Birkar Existence of log canonical flips and a special LMMP, Publ. Math. IHES, Volume 115 (2012), pp. 325-368 | MR | Zbl | Numdam | DOI

[7.] C. Birkar; P. Cascini; C. Hacon; J. McKernan Existence of minimal models for varieties of log general type, J. Am. Math. Soc., Volume 23 (2010), pp. 405-468 | MR | DOI | Zbl

[8.] C. Birkar; D-Q. Zhang Effectivity of Iitaka fibrations and pluricanonical systems of polarized pairs, Publ. Math. IHES, Volume 123 (2016), pp. 283-331 | MR | Zbl | Numdam | DOI

[9.] S. Fukuda A note on Ando’s paper “Pluricanonical systems of algebraic varieties of general type of dimension 5, Tokyo J. Math., Volume 14 (1991), pp. 479-487 | MR | DOI | Zbl

[10.] C. Hacon; J. McKernan Boundedness of pluricanonical maps of varieties of general type, Invent. Math., Volume 166 (2006), pp. 1-25 | MR | DOI | Zbl

[11.] C. D. Hacon; J. McKernan; C. Xu Boundedness of moduli of varieties of general type, J. Eur. Math. Soc., Volume 20 (2018), pp. 865-901 | MR | DOI | Zbl

[12.] C. D. Hacon; J. McKernan; C. Xu ACC for log canonical thresholds, Ann. Math. (2), Volume 180 (2014), pp. 523-571 | MR | DOI | Zbl

[13.] C. D. Hacon; J. McKernan; C. Xu On the birational automorphisms of varieties of general type, Ann. Math. (2), Volume 177 (2013), pp. 1077-1111 | MR | DOI | Zbl

[14.] C. Jiang On birational geometry of minimal threefolds with numerically trivial canonical divisors, Math. Ann., Volume 365 (2016), pp. 49-76 | MR | DOI | Zbl

[15.] M. Kapustka, G. Mongardi, G. Pacienza and P. Pokora, On the Boucksom-Zariski decomposition for irreducible symplectic varieties and bounded negativity, | arXiv

[16.] Y. Kawamata Subadjunction of log canonical divisors, II, Am. J. Math., Volume 120 (1998), pp. 893-899 | MR | DOI | Zbl

[17.] J. Kollár Families of Varieties of General Type, Cambridge University Press, Cambridge, 2023 | DOI | Zbl

[18.] J. Kollár Singularities of the Minimal Model Program, Cambridge University Press, Cambridge, 2013 | DOI | Zbl

[19.] J. Kollár Singularities of Pairs, in Algebraic Geometry, 62 (1997), pp. 221-286 | Zbl

[20.] R. Lazarsfeld Positivity in Algebraic Geometry I, Springer, Berlin, 2004 | DOI | Zbl

[21.] D. Martinelli; S. Schreieder; L. Tasin On the number and boundedness of log minimal models of general type, Ann. Sci. Éc. Norm. Supér., Volume 53 (2020), pp. 1183-1210 | MR | DOI | Zbl

[22.] Y. Odaka, On log minimality of weak K-moduli compactifications of Calabi-Yau varieties, | arXiv

[23.] Y. Odaka, Degenerated Calabi-Yau varieties with infinite components, Moduli compactifications, and limit toroidal structures, | arXiv

[24.] K. Oguiso; T. Peternell On polarized canonical Calabi–Yau threefolds, Math. Ann., Volume 301 (1995), pp. 237-248 | MR | DOI | Zbl

[25.] I. Reider Vector bundles of rank 2 and linear systems on algebraic surfaces, Ann. Math. (2), Volume 127 (1988), pp. 309-316 | MR | DOI | Zbl

[26.] V. V. Shokurov 3-Fold log flips, with an appendix by Yujiro Kawamata, Russ. Acad. Sci. Izv. Math., Volume 40 (1993), pp. 95-202 | Zbl

[27.] S. Takayama Pluricanonical systems on algebraic varieties of general type, Invent. Math., Volume 165 (2006), pp. 551-587 | MR | DOI | Zbl

[28.] H. Tsuji Pluricanonical systems of projective varieties of general type I, Osaka J. Math., Volume 43 (2006), pp. 967-995 | MR | Zbl

Cited by Sources: