Article
Smith–Treumann theory and the linkage principle
Publications Mathématiques de l'IHÉS, Volume 136 (2022), pp. 225-292

We apply Treumann’s “Smith theory for sheaves” in the context of the Iwahori–Whittaker model of the Satake category. We deduce two results in the representation theory of reductive algebraic groups over fields of positive characteristic: (a) a geometric proof of the linkage principle; (b) a character formula for tilting modules in terms of the -canonical basis, valid in all blocks and in all characteristics.

Received:
Accepted:
Online First:
Published online:
DOI: 10.1007/s10240-022-00134-y

Simon Riche 1; Geordie Williamson 1

1
@article{PMIHES_2022__136__225_0,
     author = {Simon Riche and Geordie Williamson},
     title = {Smith{\textendash}Treumann theory and the linkage principle},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {225--292},
     year = {2022},
     publisher = {Springer International Publishing},
     address = {Cham},
     volume = {136},
     doi = {10.1007/s10240-022-00134-y},
     mrnumber = {4517647},
     zbl = {1525.20040},
     language = {en},
     url = {https://pmihes.centre-mersenne.org/articles/10.1007/s10240-022-00134-y/}
}
TY  - JOUR
AU  - Simon Riche
AU  - Geordie Williamson
TI  - Smith–Treumann theory and the linkage principle
JO  - Publications Mathématiques de l'IHÉS
PY  - 2022
SP  - 225
EP  - 292
VL  - 136
PB  - Springer International Publishing
PP  - Cham
UR  - https://pmihes.centre-mersenne.org/articles/10.1007/s10240-022-00134-y/
DO  - 10.1007/s10240-022-00134-y
LA  - en
ID  - PMIHES_2022__136__225_0
ER  - 
%0 Journal Article
%A Simon Riche
%A Geordie Williamson
%T Smith–Treumann theory and the linkage principle
%J Publications Mathématiques de l'IHÉS
%D 2022
%P 225-292
%V 136
%I Springer International Publishing
%C Cham
%U https://pmihes.centre-mersenne.org/articles/10.1007/s10240-022-00134-y/
%R 10.1007/s10240-022-00134-y
%G en
%F PMIHES_2022__136__225_0
Simon Riche; Geordie Williamson. Smith–Treumann theory and the linkage principle. Publications Mathématiques de l'IHÉS, Volume 136 (2022), pp. 225-292. doi: 10.1007/s10240-022-00134-y

[ACR.] P. Achar; N. Cooney; S. Riche The parabolic exotic t-structure, Épijournal Géom. Algébr., Volume 2 (2018) | MR | Zbl

[AMRW.] P. Achar; S. Makisumi; S. Riche; G. Williamson Koszul duality for Kac-Moody groups and characters of tilting modules, J. Am. Math. Soc., Volume 32 (2019), pp. 261-310 | MR | Zbl | DOI

[AR1.] P. Achar; S. Riche Modular perverse sheaves on flag varieties I: tilting and parity sheaves (with a joint appendix with G. Williamson), Ann. Sci. Éc. Norm. Supér., Volume 49 (2016), pp. 325-370 | MR | Zbl | Numdam | DOI

[AR2.] P. Achar; S. Riche Reductive groups, the loop Grassmannian, and the Springer resolution, Invent. Math., Volume 214 (2018), pp. 289-436 | MR | Zbl | DOI

[AR3.] P. Achar; S. Riche Dualité de Koszul formelle et théorie des représentations des groupes algébriques réductifs en caractéristique positive (E. Breuillard, ed.), SMF 2018: Congrès de la Société Mathématique de France, 33, Société Mathématique de France, Paris, 2019, pp. 83-150 | MR | Zbl

[A1.] H. H. Andersen The strong linkage principle, J. Reine Angew. Math., Volume 315 (1980), pp. 53-59 | MR | Zbl

[A2.] H. H. Andersen Filtrations and tilting modules, Ann. Sci. Éc. Norm. Supér., Volume 30 (1997), pp. 353-366 | MR | Zbl | DOI | Numdam

[A3.] H. H. Andersen Tilting modules for algebraic groups, Algebraic Groups and Their Representations, Volume 517 (1998), pp. 25-42 | DOI | MR | Zbl

[BR.] P. Baumann; S. Riche Notes on the geometric Satake equivalence (V. Heiermann; D. Prasad, eds.), Relative Aspects in Representation Theory, Langlands Functoriality and Automorphic Forms, CIRM Jean-Morlet Chair, 2221, Springer, Berlin, 2018, pp. 1-134 | Zbl | MR | DOI

[BBDG.] A. Beĭlinson; J. Bernstein; P. Deligne; O. Gabber Faisceaux pervers, Analyse et topologie sur les espaces singuliers, I, Volume 100 (1982), pp. 5-171 | Zbl | MR

[BBM.] A. Beĭlinson; R. Bezrukavnikov; I. Mirković Tilting exercises, Mosc. Math. J., Volume 4 (2004), pp. 547-557 (782) | MR | Zbl | DOI

[BD.] A. Beilinson and V. Drinfeld, Quantization of Hitchin’s integrable system and Hecke eigensheaves, preprint available at http://www.math.uchicago.edu/~mitya/langlands.html.

[BGS.] A. Beĭlinson; V. Ginzburg; W. Soergel Koszul duality patterns in representation theory, J. Am. Math. Soc., Volume 9 (1996), pp. 473-527 | MR | Zbl | DOI

[BL.] J. Bernstein; V. Lunts Equivariant Sheaves and Functors, 1578, Springer, Berlin, 1994 | Zbl | MR | DOI

[BGMRR.] R. Bezrukavnikov; D. Gaitsgory; I. Mirković; S. Riche; L. Rider An Iwahori–Whittaker model for the Satake category, J. Éc. Polytech. Math., Volume 6 (2019), pp. 707-735 | MR | Zbl | DOI

[BRR.] R. Bezrukavnikov, S. Riche and L. Rider, Modular affine Hecke category and regular unipotent centralizer, I, preprint, | arXiv

[Bo.] N. Bourbaki Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines, 1337, Hermann, Paris, 1968 | Zbl | MR

[Br.] T. Braden Hyperbolic localization of intersection cohomology, Transform. Groups, Volume 8 (2003), pp. 209-216 | MR | Zbl | DOI

[CYZ.] X.-W. Chen; Y. Ye; P. Zhang Algebras of derived dimension zero, Commun. Algebra, Volume 36 (2008), pp. 1-10 | MR | Zbl | DOI

[Co.] K. Coulembier Some homological properties of ind-completions and highest weight categories, J. Algebra, Volume 562 (2020), pp. 341-367 | MR | Zbl | DOI

[dCHL.] M. A. de Cataldo; T. J. Haines; L. Li Frobenius semisimplicity for convolution morphisms, Math. Z., Volume 289 (2018), pp. 119-169 | MR | Zbl | DOI

[DL.] P. Deligne; G. Lusztig Representations of reductive groups over finite fields, Ann. Math., Volume 103 (1976), pp. 103-161 | MR | Zbl | DOI

[Do.] S. Donkin The blocks of a semisimple algebraic group, J. Algebra, Volume 67 (1980), pp. 36-53 | MR | Zbl | DOI

[Fa.] G. Faltings Algebraic loop groups and moduli spaces of bundles, J. Eur. Math. Soc., Volume 5 (2003), pp. 41-68 | MR | Zbl | DOI

[GJW.] J. Gibson, L. T. Jensen and G. Williamson, Calculating the p-canonical basis of Hecke algebras, preprint, | arXiv | MR

[Gi.] V. Ginzburg, Perverse sheaves on a loop group and Langlands’ duality, preprint (1995), | arXiv

[GG.] R. Gordon; E. Green Graded Artin algebras, J. Algebra, Volume 76 (1982), pp. 111-137 | MR | Zbl | DOI

[GW.] U. Görtz; T. Wedhorn Algebraic Geometry I. Schemes – with Examples and Exercises, Springer, Berlin, 2020 | Zbl | DOI | MR

[GK.] M. Gros; M. Kaneda Contraction par Frobenius et modules de Steinberg, Ark. Mat., Volume 56 (2018), pp. 319-332 | MR | Zbl | DOI

[H1.] J. E. Humphreys Modular representations of classical Lie algebras and semisimple groups, J. Algebra, Volume 19 (1971), pp. 51-79 | MR | Zbl | DOI

[H2.] J. E. Humphreys, Partial orderings of an affine Weyl group, unpublished note available at https://people.math.umass.edu/~jeh/pub/partial.pdf.

[J1.] J. C. Jantzen Darstellungen halbeinfacher Gruppen und kontravariante Formen, J. Reine Angew. Math., Volume 290 (1977), pp. 117-141 | MR | Zbl

[J2.] J. C. Jantzen Representations of Algebraic Groups, 107, Am. Math. Soc., Providence, 2003 | Zbl | MR

[J3.] J. C. Jantzen Nilpotent orbits in representation theory, Lie Theory, 228, Birkhäuser, Boston, 2004, pp. 1-211 | Zbl | MR | DOI

[JW.] L. T. Jensen; G. Williamson The p-canonical basis for Hecke algebras, Categorification and Higher Representation Theory, 683, Am. Math. Soc., Providence, 2017, pp. 333-361 | DOI | MR | Zbl

[JMW.] D. Juteau; C. Mautner; G. Williamson Parity sheaves, J. Am. Math. Soc., Volume 27 (2014), pp. 1169-1212 | MR | Zbl | DOI

[LC.] J. Le; X.-W. Chen Karoubianness of a triangulated category, J. Algebra, Volume 310 (2007), pp. 452-457 | MR | Zbl | DOI

[LL.] S. Leslie; G. Lonergan Parity sheaves and Smith theory, J. Reine Angew. Math., Volume 777 (2021), pp. 49-87 | MR | Zbl | DOI

[L1.] G. Lusztig Some problems in the representation theory of finite Chevalley groups, The Santa Cruz Conference on Finite Groups, 37, Am. Math. Soc., Providence, 1980, pp. 313-317 | DOI | MR | Zbl

[L2.] G. Lusztig Hecke algebras and Jantzen’s generic decomposition patterns, Adv. Math., Volume 37 (1980), pp. 121-164 | MR | Zbl | DOI

[L3.] G. Lusztig Singularities, character formulas, and a q-analog of weight multiplicities, Analysis and Topology on Singular Spaces, II, III, Volume 101–102 (1983), pp. 208-229 | MR | Zbl | Numdam

[MR.] C. Mautner; S. Riche Exotic tilting sheaves, parity sheaves on affine Grassmannians, and the Mirković–Vilonen conjecture, J. Eur. Math. Soc., Volume 20 (2018), pp. 2259-2332 | MR | Zbl | DOI

[MV1.] I. Mirković; K. Vilonen Geometric Langlands duality and representations of algebraic groups over commutative rings, Ann. Math., Volume 166 (2007), pp. 95-143 | MR | Zbl | DOI

[MV2.] I. Mirković; K. Vilonen Erratum for “Geometric Langlands duality and representations of algebraic groups over commutative rings”, Ann. Math., Volume 188 (2018), pp. 1017-1018 | MR | Zbl | DOI

[PR.] G. Pappas; M. Rapoport Twisted loop groups and their affine flag varieties, Adv. Math., Volume 219 (2008), pp. 118-198 (With an appendix by T. Haines and M. Rapoport) | MR | Zbl | DOI

[Pr.] G. Prasad A new approach to unramified descent in Bruhat–Tits theory, Am. J. Math., Volume 142 (2020), pp. 215-253 | MR | Zbl | DOI

[Rz.] T. Richarz, Basics on affine Grassmannians, notes available at https://timo-richarz.com/wp-content/uploads/2020/02/BoAG_02.pdf.

[Ri.] S. Riche, Geometric Representation Theory in Positive Characteristic, habilitation thesis, available at https://tel.archives-ouvertes.fr/tel-01431526.

[RW1.] S. Riche and G. Williamson, Tilting modules and the p-canonical basis, Astérisque, 397 (2018), ix+184 pp. | MR

[RW2.] S. Riche; G. Williamson A simple character formula, Ann. Henri Lebesgue, Volume 4 (2021), pp. 503-535 | MR | Zbl | DOI

[Se.] J. P. Serre Groupes algébriques et corps de classes, Publications de l’institut de mathématique de l’université de Nancago VII, Hermann, 1959 | Zbl | MR

[SGA1.] Revêtements étales et groupe fondamental (SGA 1), in Séminaire de géométrie algébrique du Bois Marie 1960–61, Documents Mathématiques, vol. 3, Société Mathématique de France, 2003. Directed by A. Grothendieck. With two papers by M. Raynaud. Updated and annotated reprint of the 1971 original.

[SGA4.] Théorie des topos et cohomologie étale des schémas (SGA 4), in Séminaire de Géométrie Algébrique du Bois-Marie 1963–1964, Tome 1: Théorie des topos, Lecture Notes in Mathematics, vol. 269, Springer, 1972. Tome 2, Lecture Notes in Mathematics, vol. 270, Springer, 1972. Tome 3, Lecture Notes in Mathematics, vol. 305, Springer, 1973. Directed by M. Artin, A. Grothendieck, and J. L. Verdier, with the collaboration of N. Bourbaki, P. Deligne and B. Saint-Donat.

[SGA4½.] P. Deligne Cohomologie étale (SGA 41 2), Séminaire de géométrie algébrique du Bois-Marie, 569, Springer, Berlin, 1977 | Zbl | DOI | MR

[Sob.] P. Sobaje On character formulas for simple and tilting modules, Adv. Math., Volume 369 (2020) (8 pp.) | MR | Zbl | DOI

[Soe.] W. Soergel Kazhdan–Lusztig polynomials and a combinatoric[s] for tilting modules, Represent. Theory, Volume 1 (1997), pp. 83-114 | MR | Zbl | DOI

[SP.] The Stacks project authors, The Stacks project (2019), https://stacks.math.columbia.edu.

[Tr.] D. Treumann Smith theory and geometric Hecke algebras, Math. Ann., Volume 375 (2019), pp. 595-628 | MR | Zbl | DOI

[Ve.] D. N. Verma The rôle of affine Weyl groups in the representation theory of algebraic Chevalley groups and their Lie algebras, Lie Groups and Their Representations (Proc. Summer School, Bolyai János Math. Soc., Budapest, 1971), Halsted, New York, 1975, pp. 653-705 | MR | Zbl

[W1.] G. Williamson Algebraic representations and constructible sheaves, Jpn. J. Math., Volume 12 (2017), pp. 211-259 | MR | Zbl | DOI

[W2.] G. Williamson Modular representations and reflection subgroups (D. Jerison; M. Kisin; P. Seidel; R. Stanley; H. T. Yau; S. T. Yau, eds.), Current Developments in Mathematics, International Press, Somerville, MA, 2021

Cited by Sources: