We define functors on the derived category of the moduli space ℳ of stable sheaves on a smooth projective surface (under Assumptions A and S below), and prove that these functors satisfy certain commutation relations. These relations allow us to prove that the given functors induce an action of the elliptic Hall algebra on the -theory of the moduli space ℳ, thus generalizing the action studied by Nakajima, Grojnowski and Baranovsky in cohomology.
Accepted:
Online First:
Published online:
DOI: 10.1007/s10240-022-00131-1
Andrei Neguţ 1
@article{PMIHES_2022__135__337_0,
author = {Andrei Negu\c{t}},
title = {Hecke correspondences for smooth moduli spaces of sheaves},
journal = {Publications Math\'ematiques de l'IH\'ES},
pages = {337--418},
year = {2022},
publisher = {Springer International Publishing},
address = {Cham},
volume = {135},
doi = {10.1007/s10240-022-00131-1},
zbl = {1506.14029},
language = {en},
url = {https://pmihes.centre-mersenne.org/articles/10.1007/s10240-022-00131-1/}
}
TY - JOUR AU - Andrei Neguţ TI - Hecke correspondences for smooth moduli spaces of sheaves JO - Publications Mathématiques de l'IHÉS PY - 2022 SP - 337 EP - 418 VL - 135 PB - Springer International Publishing PP - Cham UR - https://pmihes.centre-mersenne.org/articles/10.1007/s10240-022-00131-1/ DO - 10.1007/s10240-022-00131-1 LA - en ID - PMIHES_2022__135__337_0 ER -
%0 Journal Article %A Andrei Neguţ %T Hecke correspondences for smooth moduli spaces of sheaves %J Publications Mathématiques de l'IHÉS %D 2022 %P 337-418 %V 135 %I Springer International Publishing %C Cham %U https://pmihes.centre-mersenne.org/articles/10.1007/s10240-022-00131-1/ %R 10.1007/s10240-022-00131-1 %G en %F PMIHES_2022__135__337_0
Andrei Neguţ. Hecke correspondences for smooth moduli spaces of sheaves. Publications Mathématiques de l'IHÉS, Volume 135 (2022), pp. 337-418. doi: 10.1007/s10240-022-00131-1
[1.] Formality of derived intersections and the orbifold HKR isomorphism, J. Algebra, Volume 540 (2019), pp. 100-120 | MR | Zbl | DOI
[2.] Moduli of sheaves on surfaces and action of the oscillator algebra, J. Differ. Geom., Volume 55 (2000), pp. 193-227 | MR | Zbl | DOI
[3.] On commuting varieties of upper triangular matrices, Commun. Algebra, Volume 45 (2017), pp. 1533-1541 | MR | DOI | Zbl
[4.] On the Hall algebra of an elliptic curve I, Duke Math. J., Volume 161 (2012), pp. 1171-1231 | MR | Zbl | DOI
[5.] The algebra and parabolic flag Hilbert schemes, Math. Ann., Volume 376 (2020), pp. 1303-1336 | MR | Zbl | DOI
[6.] Heisenberg categorification and Hilbert schemes, Duke Math. J., Volume 161 (2012), pp. 2469-2547 | MR | DOI | Zbl
[7.] Double Affine Hecke Algebras, Cambridge University Press, Cambridge, 2005 (xii+434 pp.) (ISBN: 0-521-60918-6) | DOI | Zbl
[8.] Generalization of Drinfeld quantum affine algebras, Lett. Math. Phys., Volume 41 (1997), pp. 181-193 | MR | Zbl | DOI
[9.] Irreducibility of the punctual quotient scheme of a surface, Ark. Mat., Volume 37 (1999), pp. 245-254 | MR | Zbl | DOI
[10.] On the homology of the Hilbert schemes on points in the plane, Invent. Math., Volume 87 (1987), pp. 343-352 | MR | DOI | Zbl
[11.] Heisenberg action in the equivariant -theory of Hilbert schemes via Shuffle Algebra, Kyoto J. Math., Volume 51 (2011), pp. 831-854 | MR | Zbl
[12.] A commutative algebra on degenerate and MacDonald polynomials, J. Math. Phys., Volume 50 (2009) | MR | DOI | Zbl
[13.] Orbifold products for higher K-theory and motivic cohomology, Doc. Math., Volume 24 (2019), pp. 1769-1810 | MR | Zbl | DOI
[14.] E. Gorsky and A. Neguţ, The trace of the affine Hecke category, | arXiv
[15.] Flag Hilbert schemes, colored projectors and Khovanov-Rozansky homology, Adv. Math., Volume 378 (2021) (115 pp.) | MR | Zbl | DOI
[16.] The Betti numbers of the Hilbert scheme of points on a smooth projective surface, Math. Ann., Volume 286 (1990), pp. 193-207 | MR | Zbl | DOI
[17.] Instantons and affine algebras I. The Hilbert scheme and vertex operators, Math. Res. Lett., Volume 3 (1996), pp. 275-291 | MR | DOI | Zbl
[18.] The Geometry of Moduli Spaces of Sheaves, Cambridge University Press, Cambridge, 2010 (ISBN: 978-0-521-13420-0) | DOI | Zbl
[19.] Symmetric quotient stacks and Heisenberg actions, Math. Z., Volume 288 (2018), pp. 11-22 | MR | Zbl | DOI
[20.] Lehn’s formula in Chow and conjectures of Beauville and Voisin, J. Inst. Math. Jussieu, Volume 21 (2022), pp. 933-971 | MR | Zbl | DOI
[21.] Quantum Groups and Quantum Cohomology, 408, 2019 (ix+209 pp.) (ISBN: 978-2-85629-900-5) | Zbl
[22.] A analog of the algebra, J. Math. Phys., Volume 48 (2007) | MR | DOI | Zbl
[23.] Heisenberg algebra and Hilbert schemes of points on projective surfaces, Ann. Math., Volume 145 (1997), pp. 379-388 | MR | DOI | Zbl
[24.] The shuffle algebra revisited, Int. Math. Res. Not., Volume 22 (2014), pp. 6242-6275 | MR | Zbl | DOI
[25.] Moduli of flags of sheaves and their -theory, Algebr. Geom., Volume 2 (2015), pp. 19-43 | MR | Zbl | DOI
[26.] The -AGT-W relations via shuffle algebras, Commun. Math. Phys., Volume 358 (2018), pp. 101-170 | MR | Zbl | DOI
[27.] Shuffle algebras associated to surfaces, Sel. Math. (N.S.), Volume 25 (2019) (57 pp.) | MR | Zbl | DOI
[28.] -algebras associated to surfaces, Proc. Lond. Math. Soc. (2022) | DOI | Zbl
[29.] A. Neguţ, AGT relations for sheaves on surfaces, | arXiv
[30.] Drinfeld realization of the elliptic Hall algebra, J. Algebraic Comb., Volume 35 (2012), pp. 237-262 | MR | DOI | Zbl
[31.] The elliptic Hall algebra and the equivariant -theory of the Hilbert scheme of , Duke Math. J., Volume 162 (2013), pp. 279-366 | MR | DOI | Zbl
[32.] Cherednik algebras, -algebras and the equivariant cohomology of the moduli space of instantons on , Publ. Math. Inst. Hautes Études Sci., Volume 118 (2013), pp. 213-342 | MR | Zbl | Numdam | DOI
[33.] B. Toën, Proper local complete intersection morphisms preserve perfect complexes, | arXiv
[34.] On the Chow ring of certain algebraic hyper-Kahler manifolds, Pure Appl. Math. Q., Volume 4 (2008), pp. 613-649 | MR | DOI | Zbl
Cited by Sources: