Article
Hecke correspondences for smooth moduli spaces of sheaves
Publications Mathématiques de l'IHÉS, Volume 135 (2022), pp. 337-418

We define functors on the derived category of the moduli space ℳ of stable sheaves on a smooth projective surface (under Assumptions A and S below), and prove that these functors satisfy certain commutation relations. These relations allow us to prove that the given functors induce an action of the elliptic Hall algebra on the K-theory of the moduli space ℳ, thus generalizing the action studied by Nakajima, Grojnowski and Baranovsky in cohomology.

Received:
Accepted:
Online First:
Published online:
DOI: 10.1007/s10240-022-00131-1

Andrei Neguţ 1

1
@article{PMIHES_2022__135__337_0,
     author = {Andrei Negu\c{t}},
     title = {Hecke correspondences for smooth moduli spaces of sheaves},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {337--418},
     year = {2022},
     publisher = {Springer International Publishing},
     address = {Cham},
     volume = {135},
     doi = {10.1007/s10240-022-00131-1},
     zbl = {1506.14029},
     language = {en},
     url = {https://pmihes.centre-mersenne.org/articles/10.1007/s10240-022-00131-1/}
}
TY  - JOUR
AU  - Andrei Neguţ
TI  - Hecke correspondences for smooth moduli spaces of sheaves
JO  - Publications Mathématiques de l'IHÉS
PY  - 2022
SP  - 337
EP  - 418
VL  - 135
PB  - Springer International Publishing
PP  - Cham
UR  - https://pmihes.centre-mersenne.org/articles/10.1007/s10240-022-00131-1/
DO  - 10.1007/s10240-022-00131-1
LA  - en
ID  - PMIHES_2022__135__337_0
ER  - 
%0 Journal Article
%A Andrei Neguţ
%T Hecke correspondences for smooth moduli spaces of sheaves
%J Publications Mathématiques de l'IHÉS
%D 2022
%P 337-418
%V 135
%I Springer International Publishing
%C Cham
%U https://pmihes.centre-mersenne.org/articles/10.1007/s10240-022-00131-1/
%R 10.1007/s10240-022-00131-1
%G en
%F PMIHES_2022__135__337_0
Andrei Neguţ. Hecke correspondences for smooth moduli spaces of sheaves. Publications Mathématiques de l'IHÉS, Volume 135 (2022), pp. 337-418. doi: 10.1007/s10240-022-00131-1

[1.] D. Arinkin; A. Căldăraru; M. Hablicsek Formality of derived intersections and the orbifold HKR isomorphism, J. Algebra, Volume 540 (2019), pp. 100-120 | MR | Zbl | DOI

[2.] V. Baranovsky Moduli of sheaves on surfaces and action of the oscillator algebra, J. Differ. Geom., Volume 55 (2000), pp. 193-227 | MR | Zbl | DOI

[3.] R. Basili On commuting varieties of upper triangular matrices, Commun. Algebra, Volume 45 (2017), pp. 1533-1541 | MR | DOI | Zbl

[4.] I. Burban; O. Schiffmann On the Hall algebra of an elliptic curve I, Duke Math. J., Volume 161 (2012), pp. 1171-1231 | MR | Zbl | DOI

[5.] E. Carlsson; E. Gorsky; A. Mellit The 𝐀 q,t algebra and parabolic flag Hilbert schemes, Math. Ann., Volume 376 (2020), pp. 1303-1336 | MR | Zbl | DOI

[6.] S. Cautis; A. Licata Heisenberg categorification and Hilbert schemes, Duke Math. J., Volume 161 (2012), pp. 2469-2547 | MR | DOI | Zbl

[7.] I. Cherednik Double Affine Hecke Algebras, Cambridge University Press, Cambridge, 2005 (xii+434 pp.) (ISBN: 0-521-60918-6) | DOI | Zbl

[8.] J. Ding; K. Iohara Generalization of Drinfeld quantum affine algebras, Lett. Math. Phys., Volume 41 (1997), pp. 181-193 | MR | Zbl | DOI

[9.] G. Ellingsrud; M. Lehn Irreducibility of the punctual quotient scheme of a surface, Ark. Mat., Volume 37 (1999), pp. 245-254 | MR | Zbl | DOI

[10.] G. Ellingsrud; A. Strømme On the homology of the Hilbert schemes on points in the plane, Invent. Math., Volume 87 (1987), pp. 343-352 | MR | DOI | Zbl

[11.] B. Feigin; A. Tsymbaliuk Heisenberg action in the equivariant K-theory of Hilbert schemes via Shuffle Algebra, Kyoto J. Math., Volume 51 (2011), pp. 831-854 | MR | Zbl

[12.] B. Feigin; K. Hashizume; A. Hoshino; J. Shiraishi; S. Yanagida A commutative algebra on degenerate 𝐂𝐏 1 and MacDonald polynomials, J. Math. Phys., Volume 50 (2009) | MR | DOI | Zbl

[13.] L. Fu; M.-T. Nguyen Orbifold products for higher K-theory and motivic cohomology, Doc. Math., Volume 24 (2019), pp. 1769-1810 | MR | Zbl | DOI

[14.] E. Gorsky and A. Neguţ, The trace of the affine Hecke category, | arXiv

[15.] E. Gorsky; A. Neguţ; J. Rasmussen Flag Hilbert schemes, colored projectors and Khovanov-Rozansky homology, Adv. Math., Volume 378 (2021) (115 pp.) | MR | Zbl | DOI

[16.] L. Göttsche The Betti numbers of the Hilbert scheme of points on a smooth projective surface, Math. Ann., Volume 286 (1990), pp. 193-207 | MR | Zbl | DOI

[17.] I. Grojnowski Instantons and affine algebras I. The Hilbert scheme and vertex operators, Math. Res. Lett., Volume 3 (1996), pp. 275-291 | MR | DOI | Zbl

[18.] D. Huybrechts; M. Lehn The Geometry of Moduli Spaces of Sheaves, Cambridge University Press, Cambridge, 2010 (ISBN: 978-0-521-13420-0) | DOI | Zbl

[19.] A. Krug Symmetric quotient stacks and Heisenberg actions, Math. Z., Volume 288 (2018), pp. 11-22 | MR | Zbl | DOI

[20.] D. Maulik; A. Neguţ Lehn’s formula in Chow and conjectures of Beauville and Voisin, J. Inst. Math. Jussieu, Volume 21 (2022), pp. 933-971 | MR | Zbl | DOI

[21.] D. Maulik; A. Okounkov Quantum Groups and Quantum Cohomology, 408, 2019 (ix+209 pp.) (ISBN: 978-2-85629-900-5) | Zbl

[22.] K. Miki A (q,γ) analog of the W 1+ algebra, J. Math. Phys., Volume 48 (2007) | MR | DOI | Zbl

[23.] H. Nakajima Heisenberg algebra and Hilbert schemes of points on projective surfaces, Ann. Math., Volume 145 (1997), pp. 379-388 | MR | DOI | Zbl

[24.] A. Neguţ The shuffle algebra revisited, Int. Math. Res. Not., Volume 22 (2014), pp. 6242-6275 | MR | Zbl | DOI

[25.] A. Neguţ Moduli of flags of sheaves and their K-theory, Algebr. Geom., Volume 2 (2015), pp. 19-43 | MR | Zbl | DOI

[26.] A. Neguţ The q-AGT-W relations via shuffle algebras, Commun. Math. Phys., Volume 358 (2018), pp. 101-170 | MR | Zbl | DOI

[27.] A. Neguţ Shuffle algebras associated to surfaces, Sel. Math. (N.S.), Volume 25 (2019) (57 pp.) | MR | Zbl | DOI

[28.] A. Neguţ W-algebras associated to surfaces, Proc. Lond. Math. Soc. (2022) | DOI | Zbl

[29.] A. Neguţ, AGT relations for sheaves on surfaces, | arXiv

[30.] O. Schiffmann Drinfeld realization of the elliptic Hall algebra, J. Algebraic Comb., Volume 35 (2012), pp. 237-262 | MR | DOI | Zbl

[31.] O. Schiffmann; E. Vasserot The elliptic Hall algebra and the equivariant K-theory of the Hilbert scheme of 𝐀 2 , Duke Math. J., Volume 162 (2013), pp. 279-366 | MR | DOI | Zbl

[32.] O. Schiffmann; E. Vasserot Cherednik algebras, W-algebras and the equivariant cohomology of the moduli space of instantons on 𝐀 2 , Publ. Math. Inst. Hautes Études Sci., Volume 118 (2013), pp. 213-342 | MR | Zbl | Numdam | DOI

[33.] B. Toën, Proper local complete intersection morphisms preserve perfect complexes, | arXiv

[34.] C. Voisin On the Chow ring of certain algebraic hyper-Kahler manifolds, Pure Appl. Math. Q., Volume 4 (2008), pp. 613-649 | MR | DOI | Zbl

Cited by Sources: