It is well known that a real analytic symplectic diffeomorphism of the -dimensional disk () admitting the origin as a non-resonant elliptic fixed point can be formally conjugated to its Birkhoff Normal Form, a formal power series defining a formal integrable symplectic diffeomorphism at the origin. We prove in this paper that this Birkhoff Normal Form is in general divergent. This solves, in any dimension, the question of determining which of the two alternatives of Pérez-Marco’s theorem (Ann. Math. (2) 157:557–574, 2003) is true and answers a question by H. Eliasson. Our result is a consequence of the fact that when the convergence of the formal object that is the BNF has strong dynamical consequences on the Lebesgue measure of the set of invariant circles in arbitrarily small neighborhoods of the origin. Our proof, as well as our results, extend to the case of real analytic diffeomorphisms of the annulus admitting a Diophantine invariant torus.
Accepted:
Online First:
Published online:
DOI: 10.1007/s10240-022-00130-2
Raphaël Krikorian 1
@article{PMIHES_2022__135__1_0,
author = {Rapha\"el Krikorian},
title = {On the divergence of {Birkhoff} {Normal} {Forms}},
journal = {Publications Math\'ematiques de l'IH\'ES},
pages = {1--181},
year = {2022},
publisher = {Springer International Publishing},
address = {Cham},
volume = {135},
doi = {10.1007/s10240-022-00130-2},
mrnumber = {4426740},
language = {en},
url = {https://pmihes.centre-mersenne.org/articles/10.1007/s10240-022-00130-2/}
}
TY - JOUR AU - Raphaël Krikorian TI - On the divergence of Birkhoff Normal Forms JO - Publications Mathématiques de l'IHÉS PY - 2022 SP - 1 EP - 181 VL - 135 PB - Springer International Publishing PP - Cham UR - https://pmihes.centre-mersenne.org/articles/10.1007/s10240-022-00130-2/ DO - 10.1007/s10240-022-00130-2 LA - en ID - PMIHES_2022__135__1_0 ER -
%0 Journal Article %A Raphaël Krikorian %T On the divergence of Birkhoff Normal Forms %J Publications Mathématiques de l'IHÉS %D 2022 %P 1-181 %V 135 %I Springer International Publishing %C Cham %U https://pmihes.centre-mersenne.org/articles/10.1007/s10240-022-00130-2/ %R 10.1007/s10240-022-00130-2 %G en %F PMIHES_2022__135__1_0
Raphaël Krikorian. On the divergence of Birkhoff Normal Forms. Publications Mathématiques de l'IHÉS, Volume 135 (2022), pp. 1-181. doi: 10.1007/s10240-022-00130-2
[1.] Proof of a theorem of A. N. Kolmogorov on the preservation of conditionally periodic motions under a small perturbation of the Hamiltonian, Usp. Mat. Nauk, Volume 18 (1963), pp. 13-40 | MR
[2.] Mathematical Aspects of Classical and Celestial Mechanics, Springer, Berlin, 1997 (291 pp.) | Zbl | MR
[3.] An integrable deformation of an ellipse of small eccentricity is an ellipse, Ann. Math. (2), Volume 184 (2016), pp. 527-558 | MR | Zbl | DOI
[4.] Surface transformations and their dynamical applications, Acta Math., Volume 43 (1922), pp. 1-119 | MR | Zbl | DOI
[5.] Dynamical Systems, AMS, Providence, 1927 | Zbl | MR
[6.] Non-degenerate Liouville tori are KAM stable, Adv. Math., Volume 292 (2016), pp. 42-51 | MR | Zbl | DOI
[7.] Analytical form of differential equations I, II, Trans. Mosc. Math. Soc., Volume 25 (1971), pp. 119-262 26 (1972), 199–239 | MR
[8.] There is only one KAM curve, Nonlinearity, Volume 27 (2014), pp. 2035-2062 | MR | Zbl | DOI
[9.] Correction and linearization of resonant vector fields and diffeomorphisms, Math. Z., Volume 229 (1998), pp. 249-318 | MR | Zbl | DOI
[10.] Hamiltonian systems with linear form near an invariant torus, Non-linear Dynamics (1989), pp. 11-29 | Zbl | MR
[11.] Normal forms for Hamiltonian systems with Poisson commuting integrals-elliptic case, Comment. Math. Helv., Volume 65 (1990), pp. 4-35 | MR | Zbl | DOI
[12.] KAM-tori near an analytic elliptic fixed point, Regul. Chaotic Dyn., Volume 18 (2013), pp. 806-836 | MR | Zbl | DOI
[13.] Around the stability of KAM tori, Duke Math. J., Volume 164 (2015), pp. 1733-1775 | MR | Zbl | DOI
[14.] G. Farré and B. Fayad, Instabilities for analytic quasi-periodic invariant tori, | arXiv
[15.] B. Fayad, Lyapunov unstable elliptic equilibria, | arXiv | MR
[16.] Some questions around quasi-periodic dynamics, Proc. Internat. Congress of Math.–Rio de Janeiro (2018). Vol. III, World Sci. Publ., Hackensack, 2018, pp. 1909-1932 | MR
[17.] Existence of divergent Birkhoff normal forms of Hamiltonian functions, Ill. J. Math., Volume 56 (2012), pp. 85-94 | MR | Zbl
[18.] Real submanifolds of maximum complex tangent space at a CR singular point, I, Invent. Math., Volume 206 (2016), pp. 293-377 | MR | Zbl | DOI
[19.] Real submanifolds of maximum complex tangent space at a CR singular point, II, J. Differ. Geom., Volume 112 (2019), pp. 121-198 | MR | Zbl
[20.] Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations, IHÉS Publ. Math., Volume 49 (1979), pp. 5-233 | Zbl | DOI | MR | Numdam
[21.] Sur les courbes invariantes par les difféomorphismes de l’anneau, 1, Société Mathématique de France, Paris, 1983, pp. 103-104 (i+221 pp.) | MR | Numdam
[22.] Prevalence: a translation-invariant “almost every” on infinite-dimensional spaces, Bull. Am. Math. Soc. (N.S.), Volume 27 (1992), pp. 217-238 | MR | Zbl | DOI
[23.] Divergence of series that reduce an analytic differential equation to linear normal form at a singular point, Funkc. Anal. Prilozh., Volume 13 (1979), pp. 87-88 (Russian) | MR
[24.] Polynomial normal forms with exponentially small remainder for analytic vector fields, J. Differ. Equ., Volume 212 (2005), pp. 1-61 | MR | Zbl | DOI
[25.] Convergence of Birkhoff normal forms for integrable systems, Comment. Math. Helv., Volume 64 (1989), pp. 412-461 | MR | Zbl | DOI
[26.] On the normal behaviour of partially elliptic lower-dimensional tori of Hamiltonian systems, Nonlinearity, Volume 10 (1997), pp. 783-822 | MR | Zbl | DOI
[27.] On the local Birkhoff conjecture for convex billiards, Ann. Math. (2), Volume 188 (2018), pp. 315-380 | MR | Zbl | DOI
[28.] On the Birkhoff normal form of a completely integrable Hamiltonian system near a fixed point with resonance, Ann. Sc. Norm. Super. Pisa, Volume 26 (1998), pp. 623-661 | MR | Zbl | Numdam
[29.] On the persistence of conditionally periodic motions under a small change of the Hamilton function (G. Casati; J. Ford, eds.), Stochastic Behavior in Classical and Quantum Hamiltonian Systems, 93, Springer, Berlin, 1979, pp. 51-56 | DOI | MR
[30.] Differentiability of the minimal average action as a function of the rotation number, Bol. Soc. Bras. Mat., Nova Ser., Volume 21 (1990), pp. 59-70 | MR | Zbl | DOI
[31.] Action minimizing orbits in Hamiltonian systems (Graffi, ed.), Transition to Chaos in Classical and Quantum Mechanics, 1589, Springer, Berlin, 1992, pp. 92-186 | MR | DOI
[32.] On invariant curves of area-preserving mappings of an annulus, Nachr. Akad. Wiss. Gött. Math.-Phys., Volume 1962 (1962), pp. 1-20 | MR | Zbl
[33.] Normal forms for real surfaces in near complex tangents and hyperbolic surface transformations, Acta Math., Volume 150 (1983), pp. 255-296 | MR | Zbl | DOI
[34.] The behavior of Hamiltonian systems that are close to integrable ones, Funct. Anal. Appl., Volume 5 (1971), pp. 82-83 | MR
[35.] Total convergence or general divergence in small divisors, Commun. Math. Phys., Volume 223 (2001), pp. 451-464 | MR | Zbl | DOI
[36.] Convergence or generic divergence of the Birkhoff normal form, Ann. Math. (2), Volume 157 (2003), pp. 557-574 | MR | Zbl | DOI
[37.] Les Méthodes Nouvelles de la Mécanique Céleste, Tome I, Chap. 5, Paris, 1892 | JFM
[38.] Integrability of Hamiltonian systems on Cantor sets, Commun. Pure Appl. Math., Volume 35 (1982), pp. 653-696 | MR | Zbl | DOI
[39.] Potential Theory in the Complex Plane, 28, Cambridge University Press, Cambridge, 1995 | Zbl | DOI | MR
[40.] Potential and scattering theory on wildly perturbed domains, J. Funct. Anal., Volume 18 (1975), pp. 27-59 | MR | Zbl | DOI
[41.] Electrostatic screening, J. Math. Phys., Volume 16 (1975), pp. 284-288 | MR | DOI
[42.] Über die Normalform analytischer Hamiltonscher Differentialgleichungen in der Nähe einer Gleichgewichtslösung, Math. Ann., Volume 169 (1967), pp. 55-72 | MR | Zbl | DOI
[43.] Kleine Nenner I: Über invariante Kurven differenzierbarer Abbildungen eines Kreisringes, Nachr. Akad. Wiss. Gött., 2, Volume 5 (1970), pp. 67-105 | Zbl | MR
[44.] On optimal estimates for the solutions of linear partial differential equations of first order with constant coefficients on the torus, Dynamical Systems, Theory and Applications, Volume 38 (1975), pp. 598-624 | MR | Zbl | DOI
[45.] On optimal estimates for the solutions of linear difference equations on the circle, Celest. Mech., Volume 14 (1976), pp. 33-37 | MR | Zbl | DOI
[46.] Symplectic invariants of elliptic fixed points, Comment. Math. Helv., Volume 75 (2000), pp. 681-700 | MR | Zbl | DOI
[47.] On the integrals of canonical systems, Ann. Math., Volume 42 (1941), pp. 806-822 | MR | Zbl | DOI
[48.] Uber die Existenz einer Normalform analytischer Hamiltonscher Differentialgleichungen in der Nähe einer Gleichgewichtlösung, Math. Ann., Volume 128 (1954), pp. 144-170 | MR | Zbl | DOI
[49.] Lectures on Celestial Mechanics, 187, Springer, New York, 1971 | Zbl | MR | DOI
[50.] Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, 1970 | Zbl | MR
[51.] Singular complete integrability, IHÉS Publ. Math., Volume 91 (2001), pp. 133-210 | Zbl | MR | Numdam | DOI
[52.] Orbites périodiques d’un système hamiltonien du voisinage d’un point d’équilibre, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (4), Volume 5 (1978), pp. 757-787 | MR | Zbl | Numdam
[53.] Sur certains systèmes dynamiques séparables, Am. J. Math., Volume 100 (1978), pp. 591-614 | MR | Zbl | DOI
[54.] Divergent Birkhoff normal forms of real analytic area preserving maps, Math. Z., Volume 280 (2015), pp. 1005-1014 | MR | Zbl | DOI
[55.] Analytic extensions of differentiable functions defined in closed sets, Trans. Am. Math. Soc., Volume 36 (1934), pp. 63-89 | MR | Zbl | DOI
[56.] Convergence versus integrability in Birkhoff normal form, Ann. Math., Volume 161 (2005), pp. 141-156 | MR | Zbl | DOI
Cited by Sources: