Article
On the divergence of Birkhoff Normal Forms
Publications Mathématiques de l'IHÉS, Volume 135 (2022), pp. 1-181

It is well known that a real analytic symplectic diffeomorphism of the 2d-dimensional disk (d1) admitting the origin as a non-resonant elliptic fixed point can be formally conjugated to its Birkhoff Normal Form, a formal power series defining a formal integrable symplectic diffeomorphism at the origin. We prove in this paper that this Birkhoff Normal Form is in general divergent. This solves, in any dimension, the question of determining which of the two alternatives of Pérez-Marco’s theorem (Ann. Math. (2) 157:557–574, 2003) is true and answers a question by H. Eliasson. Our result is a consequence of the fact that when d=1 the convergence of the formal object that is the BNF has strong dynamical consequences on the Lebesgue measure of the set of invariant circles in arbitrarily small neighborhoods of the origin. Our proof, as well as our results, extend to the case of real analytic diffeomorphisms of the annulus admitting a Diophantine invariant torus.

Received:
Accepted:
Online First:
Published online:
DOI: 10.1007/s10240-022-00130-2

Raphaël Krikorian 1

1
@article{PMIHES_2022__135__1_0,
     author = {Rapha\"el Krikorian},
     title = {On the divergence of {Birkhoff} {Normal} {Forms}},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {1--181},
     year = {2022},
     publisher = {Springer International Publishing},
     address = {Cham},
     volume = {135},
     doi = {10.1007/s10240-022-00130-2},
     mrnumber = {4426740},
     language = {en},
     url = {https://pmihes.centre-mersenne.org/articles/10.1007/s10240-022-00130-2/}
}
TY  - JOUR
AU  - Raphaël Krikorian
TI  - On the divergence of Birkhoff Normal Forms
JO  - Publications Mathématiques de l'IHÉS
PY  - 2022
SP  - 1
EP  - 181
VL  - 135
PB  - Springer International Publishing
PP  - Cham
UR  - https://pmihes.centre-mersenne.org/articles/10.1007/s10240-022-00130-2/
DO  - 10.1007/s10240-022-00130-2
LA  - en
ID  - PMIHES_2022__135__1_0
ER  - 
%0 Journal Article
%A Raphaël Krikorian
%T On the divergence of Birkhoff Normal Forms
%J Publications Mathématiques de l'IHÉS
%D 2022
%P 1-181
%V 135
%I Springer International Publishing
%C Cham
%U https://pmihes.centre-mersenne.org/articles/10.1007/s10240-022-00130-2/
%R 10.1007/s10240-022-00130-2
%G en
%F PMIHES_2022__135__1_0
Raphaël Krikorian. On the divergence of Birkhoff Normal Forms. Publications Mathématiques de l'IHÉS, Volume 135 (2022), pp. 1-181. doi: 10.1007/s10240-022-00130-2

[1.] V. I. Arnold Proof of a theorem of A. N. Kolmogorov on the preservation of conditionally periodic motions under a small perturbation of the Hamiltonian, Usp. Mat. Nauk, Volume 18 (1963), pp. 13-40 | MR

[2.] V. I. Arnold; V. V. Kozlov; A. I. Neishtadt Mathematical Aspects of Classical and Celestial Mechanics, Springer, Berlin, 1997 (291 pp.) | Zbl | MR

[3.] A. Avila; J. De Simoi; V. Kaloshin An integrable deformation of an ellipse of small eccentricity is an ellipse, Ann. Math. (2), Volume 184 (2016), pp. 527-558 | MR | Zbl | DOI

[4.] G. D. Birkhoff Surface transformations and their dynamical applications, Acta Math., Volume 43 (1922), pp. 1-119 | MR | Zbl | DOI

[5.] G. D. Birkhoff Dynamical Systems, AMS, Providence, 1927 | Zbl | MR

[6.] A. Bounemoura Non-degenerate Liouville tori are KAM stable, Adv. Math., Volume 292 (2016), pp. 42-51 | MR | Zbl | DOI

[7.] A. D. Brjuno Analytical form of differential equations I, II, Trans. Mosc. Math. Soc., Volume 25 (1971), pp. 119-262 26 (1972), 199–239 | MR

[8.] C. Carminati; S. Marmi; D. Sauzin There is only one KAM curve, Nonlinearity, Volume 27 (2014), pp. 2035-2062 | MR | Zbl | DOI

[9.] J. Ecalle; B. Vallet Correction and linearization of resonant vector fields and diffeomorphisms, Math. Z., Volume 229 (1998), pp. 249-318 | MR | Zbl | DOI

[10.] L. H. Eliasson Hamiltonian systems with linear form near an invariant torus, Non-linear Dynamics (1989), pp. 11-29 | Zbl | MR

[11.] L. H. Eliasson Normal forms for Hamiltonian systems with Poisson commuting integrals-elliptic case, Comment. Math. Helv., Volume 65 (1990), pp. 4-35 | MR | Zbl | DOI

[12.] L. H. Eliasson; B. Fayad; R. Krikorian KAM-tori near an analytic elliptic fixed point, Regul. Chaotic Dyn., Volume 18 (2013), pp. 806-836 | MR | Zbl | DOI

[13.] L. H. Eliasson; B. Fayad; R. Krikorian Around the stability of KAM tori, Duke Math. J., Volume 164 (2015), pp. 1733-1775 | MR | Zbl | DOI

[14.] G. Farré and B. Fayad, Instabilities for analytic quasi-periodic invariant tori, | arXiv

[15.] B. Fayad, Lyapunov unstable elliptic equilibria, | arXiv | MR

[16.] B. Fayad; R. Krikorian Some questions around quasi-periodic dynamics, Proc. Internat. Congress of Math.–Rio de Janeiro (2018). Vol. III, World Sci. Publ., Hackensack, 2018, pp. 1909-1932 | MR

[17.] X. Gong Existence of divergent Birkhoff normal forms of Hamiltonian functions, Ill. J. Math., Volume 56 (2012), pp. 85-94 | MR | Zbl

[18.] X. Gong; L. Stolovitch Real submanifolds of maximum complex tangent space at a CR singular point, I, Invent. Math., Volume 206 (2016), pp. 293-377 | MR | Zbl | DOI

[19.] X. Gong; L. Stolovitch Real submanifolds of maximum complex tangent space at a CR singular point, II, J. Differ. Geom., Volume 112 (2019), pp. 121-198 | MR | Zbl

[20.] M. Herman Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations, IHÉS Publ. Math., Volume 49 (1979), pp. 5-233 | Zbl | DOI | MR | Numdam

[21.] M. R. Herman Sur les courbes invariantes par les difféomorphismes de l’anneau, 1, Société Mathématique de France, Paris, 1983, pp. 103-104 (i+221 pp.) | MR | Numdam

[22.] B. Hunt; T. Sauer; J. Yorke Prevalence: a translation-invariant “almost every” on infinite-dimensional spaces, Bull. Am. Math. Soc. (N.S.), Volume 27 (1992), pp. 217-238 | MR | Zbl | DOI

[23.] Yu. S. Ilyashenkoko Divergence of series that reduce an analytic differential equation to linear normal form at a singular point, Funkc. Anal. Prilozh., Volume 13 (1979), pp. 87-88 (Russian) | MR

[24.] G. Iooss; E. Lombardi Polynomial normal forms with exponentially small remainder for analytic vector fields, J. Differ. Equ., Volume 212 (2005), pp. 1-61 | MR | Zbl | DOI

[25.] H. Ito Convergence of Birkhoff normal forms for integrable systems, Comment. Math. Helv., Volume 64 (1989), pp. 412-461 | MR | Zbl | DOI

[26.] A. Jorba; J. Villanueva On the normal behaviour of partially elliptic lower-dimensional tori of Hamiltonian systems, Nonlinearity, Volume 10 (1997), pp. 783-822 | MR | Zbl | DOI

[27.] V. Kaloshin; A. Sorrentino On the local Birkhoff conjecture for convex billiards, Ann. Math. (2), Volume 188 (2018), pp. 315-380 | MR | Zbl | DOI

[28.] T. Kappeler; Y. Kodama; A. Némethi On the Birkhoff normal form of a completely integrable Hamiltonian system near a fixed point with resonance, Ann. Sc. Norm. Super. Pisa, Volume 26 (1998), pp. 623-661 | MR | Zbl | Numdam

[29.] A. N. Kolmogorov On the persistence of conditionally periodic motions under a small change of the Hamilton function (G. Casati; J. Ford, eds.), Stochastic Behavior in Classical and Quantum Hamiltonian Systems, 93, Springer, Berlin, 1979, pp. 51-56 | DOI | MR

[30.] J. N. Mather Differentiability of the minimal average action as a function of the rotation number, Bol. Soc. Bras. Mat., Nova Ser., Volume 21 (1990), pp. 59-70 | MR | Zbl | DOI

[31.] J. N. Mather; G. Forni Action minimizing orbits in Hamiltonian systems (Graffi, ed.), Transition to Chaos in Classical and Quantum Mechanics, 1589, Springer, Berlin, 1992, pp. 92-186 | MR | DOI

[32.] J. K. Moser On invariant curves of area-preserving mappings of an annulus, Nachr. Akad. Wiss. Gött. Math.-Phys., Volume 1962 (1962), pp. 1-20 | MR | Zbl

[33.] J. Moser; S. M. Webster Normal forms for real surfaces in 𝐂 2 near complex tangents and hyperbolic surface transformations, Acta Math., Volume 150 (1983), pp. 255-296 | MR | Zbl | DOI

[34.] N. N. Nekhoroshev The behavior of Hamiltonian systems that are close to integrable ones, Funct. Anal. Appl., Volume 5 (1971), pp. 82-83 | MR

[35.] R. Pérez-Marco Total convergence or general divergence in small divisors, Commun. Math. Phys., Volume 223 (2001), pp. 451-464 | MR | Zbl | DOI

[36.] R. Pérez-Marco Convergence or generic divergence of the Birkhoff normal form, Ann. Math. (2), Volume 157 (2003), pp. 557-574 | MR | Zbl | DOI

[37.] H. Poincaré Les Méthodes Nouvelles de la Mécanique Céleste, Tome I, Chap. 5, Paris, 1892 | JFM

[38.] J. Pöschel Integrability of Hamiltonian systems on Cantor sets, Commun. Pure Appl. Math., Volume 35 (1982), pp. 653-696 | MR | Zbl | DOI

[39.] T. Ransford Potential Theory in the Complex Plane, 28, Cambridge University Press, Cambridge, 1995 | Zbl | DOI | MR

[40.] J. Rauch; M. Taylor Potential and scattering theory on wildly perturbed domains, J. Funct. Anal., Volume 18 (1975), pp. 27-59 | MR | Zbl | DOI

[41.] J. Rauch; M. Taylor Electrostatic screening, J. Math. Phys., Volume 16 (1975), pp. 284-288 | MR | DOI

[42.] H. Rüssmann Über die Normalform analytischer Hamiltonscher Differentialgleichungen in der Nähe einer Gleichgewichtslösung, Math. Ann., Volume 169 (1967), pp. 55-72 | MR | Zbl | DOI

[43.] H. Rüssmann Kleine Nenner I: Über invariante Kurven differenzierbarer Abbildungen eines Kreisringes, Nachr. Akad. Wiss. Gött., 2, Volume 5 (1970), pp. 67-105 | Zbl | MR

[44.] H. Rüssmann On optimal estimates for the solutions of linear partial differential equations of first order with constant coefficients on the torus, Dynamical Systems, Theory and Applications, Volume 38 (1975), pp. 598-624 | MR | Zbl | DOI

[45.] H. Rüssmann On optimal estimates for the solutions of linear difference equations on the circle, Celest. Mech., Volume 14 (1976), pp. 33-37 | MR | Zbl | DOI

[46.] K. F. Siburg Symplectic invariants of elliptic fixed points, Comment. Math. Helv., Volume 75 (2000), pp. 681-700 | MR | Zbl | DOI

[47.] C. L. Siegel On the integrals of canonical systems, Ann. Math., Volume 42 (1941), pp. 806-822 | MR | Zbl | DOI

[48.] C. L. Siegel Uber die Existenz einer Normalform analytischer Hamiltonscher Differentialgleichungen in der Nähe einer Gleichgewichtlösung, Math. Ann., Volume 128 (1954), pp. 144-170 | MR | Zbl | DOI

[49.] C. L. Siegel; J. Moser Lectures on Celestial Mechanics, 187, Springer, New York, 1971 | Zbl | MR | DOI

[50.] E. M. Stein Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, 1970 | Zbl | MR

[51.] L. Stolovitch Singular complete integrability, IHÉS Publ. Math., Volume 91 (2001), pp. 133-210 | Zbl | MR | Numdam | DOI

[52.] J. Vey Orbites périodiques d’un système hamiltonien du voisinage d’un point d’équilibre, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (4), Volume 5 (1978), pp. 757-787 | MR | Zbl | Numdam

[53.] J. Vey Sur certains systèmes dynamiques séparables, Am. J. Math., Volume 100 (1978), pp. 591-614 | MR | Zbl | DOI

[54.] W. Yin Divergent Birkhoff normal forms of real analytic area preserving maps, Math. Z., Volume 280 (2015), pp. 1005-1014 | MR | Zbl | DOI

[55.] H. Whitney Analytic extensions of differentiable functions defined in closed sets, Trans. Am. Math. Soc., Volume 36 (1934), pp. 63-89 | MR | Zbl | DOI

[56.] N. T. Zung Convergence versus integrability in Birkhoff normal form, Ann. Math., Volume 161 (2005), pp. 141-156 | MR | Zbl | DOI

Cited by Sources: