In this paper, we prove the Gan-Gross-Prasad conjecture and the Ichino-Ikeda conjecture for unitary groups in all the endoscopic cases. Our main technical innovation is the computation of the contributions of certain cuspidal data, called ∗-regular, to the Jacquet-Rallis trace formula for linear groups. We offer two different computations of these contributions: one, based on truncation, is expressed in terms of regularized Rankin-Selberg periods of Eisenstein series and Flicker-Rallis intertwining periods introduced by Jacquet-Lapid-Rogawski. The other, built upon Zeta integrals, is expressed in terms of functionals on the Whittaker model. A direct proof of the equality between the two expressions is also given. Finally several useful auxiliary results about the spectral expansion of the Jacquet-Rallis trace formula are provided.
Accepted:
Online First:
Published online:
DOI: 10.1007/s10240-021-00129-1
Raphaël Beuzart-Plessis 1; Pierre-Henri Chaudouard 1; Michał Zydor 1
@article{PMIHES_2022__135__183_0,
author = {Rapha\"el Beuzart-Plessis and Pierre-Henri Chaudouard and Micha{\l} Zydor},
title = {The global {Gan-Gross-Prasad} conjecture for unitary groups: the endoscopic case},
journal = {Publications Math\'ematiques de l'IH\'ES},
pages = {183--336},
year = {2022},
publisher = {Springer International Publishing},
address = {Cham},
volume = {135},
doi = {10.1007/s10240-021-00129-1},
mrnumber = {4426741},
zbl = {1537.11072},
language = {en},
url = {https://pmihes.centre-mersenne.org/articles/10.1007/s10240-021-00129-1/}
}
TY - JOUR AU - Raphaël Beuzart-Plessis AU - Pierre-Henri Chaudouard AU - Michał Zydor TI - The global Gan-Gross-Prasad conjecture for unitary groups: the endoscopic case JO - Publications Mathématiques de l'IHÉS PY - 2022 SP - 183 EP - 336 VL - 135 PB - Springer International Publishing PP - Cham UR - https://pmihes.centre-mersenne.org/articles/10.1007/s10240-021-00129-1/ DO - 10.1007/s10240-021-00129-1 LA - en ID - PMIHES_2022__135__183_0 ER -
%0 Journal Article %A Raphaël Beuzart-Plessis %A Pierre-Henri Chaudouard %A Michał Zydor %T The global Gan-Gross-Prasad conjecture for unitary groups: the endoscopic case %J Publications Mathématiques de l'IHÉS %D 2022 %P 183-336 %V 135 %I Springer International Publishing %C Cham %U https://pmihes.centre-mersenne.org/articles/10.1007/s10240-021-00129-1/ %R 10.1007/s10240-021-00129-1 %G en %F PMIHES_2022__135__183_0
Raphaël Beuzart-Plessis; Pierre-Henri Chaudouard; Michał Zydor. The global Gan-Gross-Prasad conjecture for unitary groups: the endoscopic case. Publications Mathématiques de l'IHÉS, Volume 135 (2022), pp. 183-336. doi: 10.1007/s10240-021-00129-1
[AG09.] Generalized Harish-Chandra descent, Gelfand pairs, and an Archimedean analog of Jacquet-Rallis’s theorem, Duke Math. J., Volume 149 (2009), pp. 509-567 (with an appendix by the authors and Eitan Sayag) | MR | Zbl | DOI
[Art78.] A trace formula for reductive groups I. Terms associated to classes in , Duke Math. J., Volume 45 (1978), pp. 911-952 | MR | Zbl | DOI
[Art80.] A trace formula for reductive groups II, Compos. Math., Volume 40 (1980), pp. 87-121 | Zbl | MR | Numdam
[Art81.] The trace formula in invariant form, Ann. Math. (2), Volume 114 (1981), pp. 1-74 | MR | Zbl | DOI
[Art82.] On the inner product of truncated Eisenstein series, Duke Math. J., Volume 49 (1982), pp. 35-70 | MR | Zbl | DOI
[Art85.] A measure on the unipotent variety, Can. J. Math., Volume 37 (1985), pp. 1237-1274 | MR | Zbl | DOI
[Bar03.] A proof of Kirillov’s conjecture, Ann. Math. (2), Volume 158 (2003), pp. 207-252 | MR | Zbl | DOI
[Ber84.] -invariant distributions on and the classification of unitary representations of (non-Archimedean case), Lie Group Representations, II, Volume 1041 (1984), pp. 50-102 | DOI | MR | Zbl
[Ber88.] On the support of Plancherel measure, J. Geom. Phys., Volume 5 (1989), pp. 663-710 | MR | Zbl | DOI
[BK14.] Smooth Fréchet globalizations of Harish-Chandra modules, Isr. J. Math., Volume 199 (2014), pp. 45-111 | Zbl | MR | DOI
[BL19.] J. Bernstein and E. Lapid, On the meromorphic continuation of Eisenstein series, | arXiv
[Bou67.] Éléments de mathématique. Fasc. XXXIII. Variétés différentielles et analytiques. Fascicule de résultats (Paragraphes 1 à 7), 1333, Hermann, Paris, 1967 | Zbl | MR
[BP.] A new proof of Jacquet-Rallis’s fundamental lemma, Duke Math. J., Volume 170 (2021), pp. 2805-2814 | MR | Zbl | DOI
[BP20.] A local trace formula for the Gan-Gross-Prasad conjecture for unitary groups: the Archimedean case, Astérisque, Volume 418 (2020), pp. viii-299 (ISBN: 978-2-85629-919-7) | MR | Zbl
[BP21a.] Comparison of local spherical characters and the Ichino-Ikeda conjecture for unitary groups, J. Inst. Math. Jussieu, Volume 20 (2021), pp. 1803-1854 | MR | Zbl | DOI
[BP21b.] Archimedean theory and -factors for the Asai Rankin-Selberg integrals, Relative Trace Formulas, Simons Symposia, Springer, Cham, 2021 | Zbl | MR | DOI
[BP21c.] Plancherel formula for and applications to the Ichino-Ikeda and formal degree conjectures for unitary groups, Invent. Math., Volume 225 (2021), pp. 159-297 | MR | Zbl | DOI
[BPLZZ21.] Isolation of cuspidal spectrum, with application to the Gan–Gross–Prasad conjecture, Ann. Math. (2), Volume 194 (2021), pp. 519-584 | MR | Zbl | DOI
[Cas89a.] Canonical extensions of Harish-Chandra modules to representations of , Can. J. Math., Volume 41 (1989), pp. 385-438 | MR | Zbl | DOI
[Cas89b.] Introduction to the Schwartz space of , Can. J. Math., Volume 41 (1989), pp. 285-320 | MR | Zbl | DOI
[Cog08.] Notes on -functions for , School on Automorphic Forms on $\mathrm{GL}(n)$ GL ( n ) , 21, Abdus Salam Int. Cent. Theoret. Phys., Trieste, 2008, pp. 75-158 | MR | Zbl
[CZ21.] Le transfert singulier pour la formule des traces de Jacquet-Rallis, Compos. Math., Volume 157 (2021), pp. 303-434 | MR | Zbl | DOI
[DM78.] Factorisations de fonctions et de vecteurs indéfiniment différentiables, Bull. Sci. Math. (2), Volume 102 (1978), pp. 307-330 | MR | Zbl
[FL17.] On the analytic properties of intertwining operators I: global normalizing factors, Bull. Iranian Math. Soc., Volume 43 (2017), pp. 235-277 | MR | Zbl
[Fli88.] Twisted tensors and Euler products, Bull. Soc. Math. Fr., Volume 116 (1988), pp. 295-313 | MR | Zbl | DOI | Numdam
[FLO12.] On representations distinguished by unitary groups, Publ. Math. Inst. Hautes Études Sci., Volume 115 (2012), pp. 185-323 | MR | Zbl | DOI | Numdam
[Fra98.] Harmonic analysis in weighted -spaces, Ann. Sci. Éc. Norm. Supér. (4), Volume 31 (1998), pp. 181-279 | Zbl | DOI | MR | Numdam
[FS98.] A decomposition of spaces of automorphic forms, and the Eisenstein cohomology of arithmetic groups, Math. Ann., Volume 311 (1998), pp. 765-790 | MR | Zbl | DOI
[GGP12.] Symplectic local root numbers, central critical values, and restriction problems in the representation theory of classical groups, Astérisque, Volume 346 (2012), pp. 1-109 (Sur les conjectures de Gross et Prasad. I) | MR | Zbl | Numdam
[GJR01.] Generic representations for the unitary group in three variables, Isr. J. Math., Volume 126 (2001), pp. 173-237 | MR | Zbl | DOI
[GJR09.] Models for certain residual representations of unitary groups, Automorphic Forms and $L$ L -Functions I. Global Aspects, 488, Am. Math. Soc., Providence, 2009, pp. 125-146 | Zbl
[GK72.] Representations of the group where is a local field, Funkc. Anal. Prilozh., Volume 6 (1972), pp. 73-74 | MR | Zbl
[GL.] Special values of -functions and the refined Gan-Gross-Prasad conjecture, Am. J. Math., Volume 143 (2021), pp. 1-79 | MR | Zbl | DOI
[Gol94.] Some results on reducibility for unitary groups and local Asai -functions, J. Reine Angew. Math., Volume 448 (1994), pp. 65-95 | MR | Zbl
[Gro53.] Sur certains espaces de fonctions holomorphes. I, J. Reine Angew. Math., Volume 192 (1953), pp. 35-64 | MR | Zbl | DOI
[Gro55.] Produits tensoriels topologiques et espaces nucléaires, 16, 1955 (Chap. 1: 196 pp.; Chap. 2: 140 pp.) | Zbl
[Gro73.] Topological Vector Spaces, Gordon and Breach, New York, 1973 (translated from the French by Orlando Chaljub) | Zbl
[Gro97.] On the motive of a reductive group, Invent. Math., Volume 130 (1997), pp. 287-313 | MR | Zbl | DOI
[GRS11.] The Descent Map from Automorphic Representations of to Classical Groups, World Scientific Publishing Co. Pte. Ltd., Hackensack, 2011 | Zbl | DOI
[Har14.] The refined Gross-Prasad conjecture for unitary groups, Int. Math. Res. Not., Volume 2014 (2014), pp. 303-389 | MR | Zbl | DOI
[IY15.] Periods of automorphic forms: the case of , Compos. Math., Volume 151 (2015), pp. 665-712 | MR | Zbl | DOI
[IY19.] Periods of automorphic forms: the case of , J. Reine Angew. Math., Volume 746 (2019), pp. 1-38 | MR | Zbl | DOI
[Jac04.] Integral representation of Whittaker functions, Contributions to Automorphic Forms, Geometry, and Number Theory, Johns Hopkins Univ. Press, Baltimore, 2004, pp. 373-419 | Zbl
[Jac09.] Archimedean Rankin-Selberg integrals. In automorphic forms and -functions II. Local aspects, Contemp. Math., 489, Am. Math. Soc., Providence, 2009, pp. 57-172 | Zbl | DOI
[Jac10.] Distinction by the quasi-split unitary group, Isr. J. Math., Volume 178 (2010), pp. 269-324 | MR | Zbl | DOI
[JLR99.] Periods of automorphic forms, J. Am. Math. Soc., Volume 12 (1999), pp. 173-240 | MR | Zbl | DOI
[JPSS83.] Rankin-Selberg convolutions, Am. J. Math., Volume 105 (1983), pp. 367-464 | MR | Zbl | DOI
[JR11.] On the Gross-Prasad conjecture for unitary groups, On Certain $L$ L -Functions, 13, Am. Math. Soc., Providence, 2011, pp. 205-264 | Zbl
[JS81a.] On Euler products and the classification of automorphic forms. II, Am. J. Math., Volume 103 (1981), pp. 777-815 | MR | Zbl | DOI
[JS81b.] On Euler products and the classification of automorphic representations. I, Am. J. Math., Volume 103 (1981), pp. 499-558 | MR | Zbl | DOI
[JZ20.] Arthur parameters and cuspidal automorphic modules of classical groups, Ann. Math. (2), Volume 191 (2020), pp. 739-827 | MR | Zbl | DOI
[Kem15.] A note on the Kirillov model for representations of , C. R. Math. Acad. Sci. Paris, Volume 353 (2015), pp. 579-582 | MR | Zbl | DOI
[KMSW.] T. Kaletha, A. Minguez, S.-W. Shin and P.-J. White, Endoscopic classification of representations: inner forms of unitary groups, | arXiv
[KS88.] Artin -functions and normalization of intertwining operators, Ann. Sci. Éc. Norm. Supér. (4), Volume 21 (1988), pp. 67-89 | MR | Zbl | Numdam | DOI
[Lan76.] On the Functional Equations Satisfied by Eisenstein Series, 544, Springer, Berlin, 1976 | Zbl | DOI
[Lap06.] On the fine spectral expansion of Jacquet’s relative trace formula, J. Inst. Math. Jussieu, Volume 5 (2006), pp. 263-308 | MR | Zbl | DOI
[Lap08.] A remark on Eisenstein series, Eisenstein Series and Applications, 258, Birkhäuser, Boston, 2008, pp. 239-249 | Zbl | DOI
[Lap11.] On Arthur’s asymptotic inner product formula of truncated Eisenstein series, On Certain $L$ L -Functions, 13, Am. Math. Soc., Providence, 2011, pp. 309-331 | Zbl
[Lap13.] On the Harish-Chandra Schwartz space of , Automorphic Representations and $L$ L -Functions, 22, Tata Inst. Fund. Res., Mumbai, 2013, pp. 335-377 (with an appendix by Farrell Brumley) | Zbl
[LR03.] Periods of Eisenstein series: the Galois case, Duke Math. J., Volume 120 (2003), pp. 153-226 | MR | Zbl | DOI
[LW13.] La formule des traces tordue d’après le Friday Morning Seminar, 31, Am. Math. Soc., Providence, 2013 (with a foreword by Robert Langlands [dual English/French text]) | Zbl | DOI
[Mok15.] Endoscopic Classification of Representations of Quasi-Split Unitary Groups, 235(1108), 2015 (vi+248) | Zbl
[MS04.] Absolute convergence of the spectral side of the Arthur trace formula for , Geom. Funct. Anal., Volume 14 (2004), pp. 58-93 (with an appendix by E. M. Lapid) | MR | Zbl | DOI
[MW89.] Le spectre résiduel de , Ann. Sci. Éc. Norm. Supér. (4), Volume 22 (1989), pp. 605-674 | Zbl | DOI | Numdam
[MW94.] Décomposition spectrale et séries d’Eisenstein, 113, Birkhäuser, Basel, 1994 (Une paraphrase de l’Écriture. [A paraphrase of Scripture]) | Zbl
[Mül00.] On the singularities of residual intertwining operators, Geom. Funct. Anal., Volume 10 (2000), pp. 1118-1170 | MR | Zbl | DOI
[Ram18.] D. Ramakrishnan, A Theorem on GL(n) à la Tchebotarev, arXiv e-prints, | arXiv
[Sha81.] On certain -functions, Am. J. Math., Volume 103 (1981), pp. 297-355 | Zbl | DOI
[Sha90.] A proof of Langlands’ conjecture on Plancherel measures; complementary series for -adic groups, Ann. Math. (2), Volume 132 (1990), pp. 273-330 | MR | Zbl | DOI
[Trè67.] Topological Vector Spaces, Distributions and Kernels, Academic Press, New York, 1967 | Zbl
[Wal92.] Real Reductive Groups. II, 132, Academic Press, Boston, 1992 | Zbl
[Wei82.] Adeles and Algebraic Groups, 23, Birkhäuser, Boston, 1982 (with appendices by M. Demazure and Takashi Ono) | Zbl | DOI
[Xue19.] On the global Gan-Gross-Prasad conjecture for unitary groups: approximating smooth transfer of Jacquet-Rallis, J. Reine Angew. Math., Volume 756 (2019), pp. 65-100 | MR | Zbl | DOI
[Yun11.] The fundamental lemma of Jacquet and Rallis, Duke Math. J., Volume 156 (2011), pp. 167-227 (with an appendix by Julia Gordon) | MR | Zbl
[Zha14a.] Automorphic period and the central value of Rankin-Selberg -function, J. Am. Math. Soc., Volume 27 (2014), pp. 541-612 | MR | Zbl | DOI
[Zha14b.] Fourier transform and the global Gan-Gross-Prasad conjecture for unitary groups, Ann. Math. (2), Volume 180 (2014), pp. 971-1049 | MR | Zbl | DOI
[Zyd16.] La variante infinitésimale de la formule des traces de Jacquet-Rallis pour les groupes unitaires, Can. J. Math., Volume 68 (2016), pp. 1382-1435 | MR | Zbl | DOI
[Zyd18.] La variante infinitésimale de la formule des traces de Jacquet-Rallis pour les groupes linéaires, J. Inst. Math. Jussieu, Volume 17 (2018), pp. 735-783 | MR | Zbl | DOI
[Zyd20.] Les formules des traces relatives de Jacquet–Rallis grossières, J. Reine Angew. Math., Volume 762 (2020), pp. 195-259 | MR | Zbl | DOI
Cited by Sources: