We show that abelian surfaces (and consequently curves of genus 2) over totally real fields are potentially modular. As a consequence, we obtain the expected meromorphic continuation and functional equations of their Hasse–Weil zeta functions. We furthermore show the modularity of infinitely many abelian surfaces over with . We also deduce modularity and potential modularity results for genus one curves over (not necessarily CM) quadratic extensions of totally real fields.
Accepted:
Online First:
Published online:
DOI: 10.1007/s10240-021-00128-2
George Boxer 1; Frank Calegari 1; Toby Gee 1; Vincent Pilloni 1
@article{PMIHES_2021__134__153_0,
author = {George Boxer and Frank Calegari and Toby Gee and Vincent Pilloni},
title = {Abelian surfaces over totally real fields are potentially modular},
journal = {Publications Math\'ematiques de l'IH\'ES},
pages = {153--501},
year = {2021},
publisher = {Springer International Publishing},
address = {Cham},
volume = {134},
doi = {10.1007/s10240-021-00128-2},
mrnumber = {4349242},
zbl = {1522.11045},
language = {en},
url = {https://pmihes.centre-mersenne.org/articles/10.1007/s10240-021-00128-2/}
}
TY - JOUR AU - George Boxer AU - Frank Calegari AU - Toby Gee AU - Vincent Pilloni TI - Abelian surfaces over totally real fields are potentially modular JO - Publications Mathématiques de l'IHÉS PY - 2021 SP - 153 EP - 501 VL - 134 PB - Springer International Publishing PP - Cham UR - https://pmihes.centre-mersenne.org/articles/10.1007/s10240-021-00128-2/ DO - 10.1007/s10240-021-00128-2 LA - en ID - PMIHES_2021__134__153_0 ER -
%0 Journal Article %A George Boxer %A Frank Calegari %A Toby Gee %A Vincent Pilloni %T Abelian surfaces over totally real fields are potentially modular %J Publications Mathématiques de l'IHÉS %D 2021 %P 153-501 %V 134 %I Springer International Publishing %C Cham %U https://pmihes.centre-mersenne.org/articles/10.1007/s10240-021-00128-2/ %R 10.1007/s10240-021-00128-2 %G en %F PMIHES_2021__134__153_0
George Boxer; Frank Calegari; Toby Gee; Vincent Pilloni. Abelian surfaces over totally real fields are potentially modular. Publications Mathématiques de l'IHÉS, Volume 134 (2021), pp. 153-501. doi: 10.1007/s10240-021-00128-2
[AC89.] Simple algebras, base change, and the advanced theory of the trace formula, 120, Princeton University Press, Princeton, 1989 | Zbl | MR
[ACC+18.] P. Allen, F. Calegari, A. Caraiani, T. Gee, D. Helm, B. Le Hung, J. Newton, P. Scholze, R. Taylor and J. Thorne, Potential automorphy over CM fields, preprint, 2018. | MR
[AGM20.] Cohomology with twisted one-dimensional coefficients for congruence subgroups of and Galois representations, J. Algebra, Volume 553 (2020), pp. 211-247 | MR | Zbl | DOI
[AIP15.] -adic families of Siegel modular cuspforms, Ann. Math. (2), Volume 181 (2015), pp. 623-697 | MR | Zbl | DOI
[All16.] Deformations of polarized automorphic Galois representations and adjoint Selmer groups, Duke Math. J., Volume 165 (2016), pp. 2407-2460 | MR | Zbl | DOI
[AMRT10.] Smooth compactifications of locally symmetric varieties, Cambridge University Press, Cambridge, 2010 (With the collaboration of Peter Scholze) | Zbl | MR | DOI
[Art04.] Automorphic representations of , Contributions to automorphic forms, geometry, and number theory, Johns Hopkins Univ. Press, Baltimore, 2004, pp. 65-81 | MR | Zbl
[Art13.] The endoscopic classification of representations, 61, Am. Math. Soc., Providence, 2013 (Orthogonal and symplectic groups) | Zbl | MR
[AS08.] A. Ash and G. Stevens, -adic deformations of arithmetic cohomology, preprint, 2008.
[AT09.] Class field theory, AMS Chelsea Publishing, Providence, 2009 (Reprinted with corrections from the 1967 original) | Zbl | MR
[B0̈0.] Demuškin groups with group actions and applications to deformations of Galois representations, Compos. Math., Volume 121 (2000), pp. 109-154 | Zbl | DOI | MR
[Bak46.] A Locus with 25920 Linear Self-Transformations, 39, Cambridge University Press/The Macmillan Company, Cambridge/New York, 1946 | Zbl | MR
[Bal12.] S. Balaji, G-valued potentially semi-stable deformation rings, ProQuest LLC, Ann Arbor, MI, 2012, Thesis (Ph.D.)–The University of Chicago. | MR
[BC11.] The sign of Galois representations attached to automorphic forms for unitary groups, Compos. Math., Volume 147 (2011), pp. 1337-1352 | MR | Zbl | DOI
[BCDT01.] On the modularity of elliptic curves over : wild -adic exercises, J. Am. Math. Soc., Volume 14 (2001), pp. 843-939 (electronic) | MR | Zbl | DOI
[BCGP21.] G. Boxer, F. Calegari, T. Gee and V. Pilloni, Auxiliary magma files, 2021, https://github.com/fcale75/abeliansurfacesmagmafiles.
[BCP97.] The Magma algebra system. I. The user language, J. Symb. Comput., Volume 24 (1997), pp. 235-265 Computational algebra and number theory (London, 1993) | MR | Zbl | DOI
[BDPcS15.] Theta lifts of Bianchi modular forms and applications to paramodularity, J. Lond. Math. Soc. (2), Volume 92 (2015), pp. 353-370 | MR | Zbl | DOI
[BG08.] Genus 2 curves with quaternionic multiplication, Can. J. Math., Volume 60 (2008), pp. 734-757 | MR | Zbl | DOI
[BG14.] The conjectural connections between automorphic representations and Galois representations, Automorphic forms and Galois representations. Vol. 1, 414, Cambridge University Press, Cambridge, 2014, pp. 135-187 | Zbl | MR | DOI
[BG19.] -valued local deformation rings and global lifts, Algebra Number Theory, Volume 13 (2019), pp. 333-378 | MR | Zbl | DOI
[BHR94.] Coherent cohomology, limits of discrete series, and Galois conjugation, Duke Math. J., Volume 73 (1994), pp. 647-685 | MR | Zbl | DOI
[BJ15.] Irreducibility of versal deformation rings in the -case for 2-dimensional representations, J. Algebra, Volume 444 (2015), pp. 81-123 | MR | Zbl | DOI
[BK14.] Paramodular abelian varieties of odd conductor, Trans. Am. Math. Soc., Volume 366 (2014), pp. 2463-2516 | MR | Zbl | DOI
[BK19.] Corrigendum to “Paramodular abelian varieties of odd conductor”, Trans. Am. Math. Soc., Volume 372 (2019), pp. 2251-2254 | MR | Zbl | DOI
[BK20.] Deformations of Saito-Kurokawa type and the paramodular conjecture, Am. J. Math., Volume 142 (2020), pp. 1821-1875 (With and appendix by Chris Poor, Jerry Shurman, and David S. Yuen) | MR | Zbl | DOI
[BL04.] Complex abelian varieties, 302, Springer, Berlin, 2004 | Zbl | MR | DOI
[Bla06.] Hilbert modular forms and the Ramanujan conjecture, Noncommutative geometry and number theory, E37, Vieweg, Wiesbaden, 2006, pp. 35-56 | Zbl | DOI | MR
[BLGG13.] Congruences between Hilbert modular forms: constructing ordinary lifts, II, Math. Res. Lett., Volume 20 (2013), pp. 67-72 | MR | Zbl | DOI
[BLGGT14a.] Local-global compatibility for , II, Ann. Sci. Éc. Norm. Supér. (4), Volume 47 (2014), pp. 165-179 | MR | Zbl | DOI | Numdam
[BLGGT14b.] Potential automorphy and change of weight, Ann. Math. (2), Volume 179 (2014), pp. 501-609 | MR | Zbl | DOI
[BLGHT11.] A family of Calabi-Yau varieties and potential automorphy II, Publ. Res. Inst. Math. Sci., Volume 47 (2011), pp. 29-98 | MR | Zbl | DOI
[BN18.] Arithmetic aspects of the Burkhardt quartic threefold, J. Lond. Math. Soc. (2), Volume 98 (2018), pp. 536-556 | MR | Zbl | DOI
[Bol07.] On Weddle surfaces and their moduli, Adv. Geom., Volume 7 (2007), pp. 113-144 | MR | Zbl | DOI
[Box15.] G. Boxer, Torsion in the coherent cohomology of Shimura varieties and Galois representations, preprint, 2015. | MR
[BPP+19.] On the paramodularity of typical abelian surfaces, Algebra Number Theory, Volume 13 (2019), pp. 1145-1195 | MR | Zbl | DOI
[BPS16.] Classicité de formes modulaires surconvergentes, Ann. Math. (2), Volume 183 (2016), pp. 975-1014 | MR | Zbl | DOI
[BPY16.] Computations of spaces of paramodular forms of general level, J. Korean Math. Soc., Volume 53 (2016), pp. 645-689 | MR | Zbl | DOI
[BR16.] R. Brasca and G. Rosso, Eigenvarieties for non-cuspidal modular forms over certain PEL Shimura varieties, 2016.
[Bra47.] On Artin’s -series with general group characters, Ann. Math. (2), Volume 48 (1947), pp. 502-514 | MR | Zbl | DOI
[BT99.] Companion forms and weight one forms, Ann. Math. (2), Volume 149 (1999), pp. 905-919 | MR | Zbl | DOI
[Bur91.] Untersuchungen aus dem Gebiete der hyperelliptischen Modulfunctionen, Math. Ann., Volume 38 (1891), pp. 161-224 | MR | Zbl | DOI
[Buz03.] Analytic continuation of overconvergent eigenforms, J. Am. Math. Soc., Volume 16 (2003), pp. 29-55 | MR | Zbl | DOI
[Cai14.] On the operator in characteristic , Math. Res. Lett., Volume 21 (2014), pp. 255-260 | MR | Zbl | DOI
[Cal12.] Even Galois Representations and the Fontaine-Mazur conjecture II, J. Am. Math. Soc., Volume 25 (2012), pp. 533-554 | MR | Zbl | DOI
[Cal18.] Non-minimal modularity lifting in weight one, J. Reine Angew. Math., Volume 740 (2018), pp. 41-62 | MR | Zbl | DOI
[Car12.] Local-global compatibility and the action of monodromy on nearby cycles, Duke Math. J., Volume 161 (2012), pp. 2311-2413 | MR | Zbl | DOI
[Car14.] Monodromy and local-global compatibility for , Algebra Number Theory, Volume 8 (2014), pp. 1597-1646 | MR | Zbl | DOI
[Cas.] W. Casselman, Introduction to admissible representations of-adic groups, Available at https://www.math.ubc.ca/~cass/research/publications.html.
[CC20.] F. Calegari and S. Chidambaram, Rationality of twists of the Siegel modular variety of genus 2 and level 3, 2020, | arXiv | MR
[CCG20.] Some modular abelian surfaces, Math. Comput., Volume 89 (2020), pp. 387-394 | MR | Zbl | DOI
[CCN+85.] Atlas of finite groups, Oxford University Press, Eynsham, 1985 (Maximal subgroups and ordinary characters for simple groups, With computational assistance from J. G. Thackray) | Zbl | MR
[CDT99.] Modularity of certain potentially Barsotti-Tate Galois representations, J. Am. Math. Soc., Volume 12 (1999), pp. 521-567 | MR | Zbl | DOI
[CG13.] Irreducibility of automorphic Galois representations of , at most 5, Ann. Inst. Fourier (Grenoble), Volume 63 (2013), pp. 1881-1912 | MR | Zbl | DOI | Numdam
[CG18.] Modularity lifting beyond the Taylor–Wiles method, Invent. Math., Volume 211 (2018), pp. 297-433 | MR | Zbl | DOI
[CG20.] Minimal modularity lifting for nonregular symplectic representations, Duke Math. J., Volume 169 (2020), pp. 801-896 (With an appendix by Calegari, Geraghty and Michael Harris) | MR | Zbl | DOI
[Che04.] Familles -adiques de formes automorphes pour , J. Reine Angew. Math., Volume 570 (2004), pp. 143-217 | MR | Zbl
[Chi90.] On the -adic representations attached to some absolutely simple abelian varieties of type , J. Fac. Sci., Univ. Tokyo, Sect. 1A, Math., Volume 37 (1990), pp. 467-484 | MR | Zbl
[Chi92.] -adic and -adic representations associated to abelian varieties defined over number fields, Am. J. Math., Volume 114 (1992), pp. 315-353 | MR | Zbl | DOI
[CHT08.] Automorphy for some -adic lifts of automorphic mod Galois representations, Publ. Math. IHES, Volume 108 (2008), pp. 1-181 | MR | Zbl | DOI | Numdam
[CL10.] Le lemme fondamental pondéré. I. Constructions géométriques, Compos. Math., Volume 146 (2010), pp. 1416-1506 | MR | Zbl | DOI
[Clo90.] Motifs et formes automorphes: applications du principe de fonctorialité, Automorphic forms, Shimura varieties and -functions, Vol. I, Volume 10 (1990), pp. 77-159 | MR
[Cob06.] An invariant condition for certain automorphic algebraic forms, Am. J. Math., Volume 28 (1906), pp. 333-366 | MR | Zbl | DOI
[Col97.] P-adic Banach spaces and families of modular forms, Invent. Math., Volume 127 (1997), pp. 417-479 | MR | Zbl | DOI
[Cre84.] Hyperbolic tessellations, modular symbols, and elliptic curves over complex quadratic fields, Compos. Math., Volume 51 (1984), pp. 275-324 | MR | Zbl | Numdam
[Cre92.] Abelian varieties with extra twist, cusp forms, and elliptic curves over imaginary quadratic fields, J. Lond. Math. Soc. (2), Volume 45 (1992), pp. 404-416 | MR | Zbl | DOI
[DDT97.] Fermat’s last theorem, Elliptic curves, modular forms & Fermat’s last theorem (1997), pp. 2-140 | MR
[Del73.] Les constantes des équations fonctionnelles des fonctions , Modular functions of one variable, II, Volume 349 (1973), pp. 501-597 | DOI | MR
[Del79.] Variétés de Shimura: interprétation modulaire, et techniques de construction de modèles canoniques, Automorphic forms, representations and -functions, Volume XXXIII (1979), pp. 247-289 | DOI | MR
[Dia97.] The Taylor–Wiles construction and multiplicity one, Invent. Math., Volume 128 (1997), pp. 379-391 | MR | Zbl | DOI
[dJ93.] The moduli spaces of principally polarized abelian varieties with -level structure, J. Algebraic Geom., Volume 2 (1993), pp. 667-688 | MR | Zbl
[DK00.] A problem of Linnik for elliptic curves and mean-value estimates for automorphic representations, Invent. Math., Volume 139 (2000), pp. 1-39 (With an appendix by Dinakar Ramakrishnan) | MR | Zbl | DOI
[DK16.] Examples of abelian surfaces with everywhere good reduction, Math. Ann., Volume 364 (2016), pp. 1365-1392 | MR | Zbl | DOI
[DK17.] Minimal weights of Hilbert modular forms in characteristic , Compos. Math., Volume 153 (2017), pp. 1769-1778 | MR | Zbl | DOI
[DL08.] On isogenous principally polarized abelian surfaces, Curves and abelian varieties, 465, Am. Math. Soc., Providence, 2008, pp. 51-69 | Zbl | MR | DOI
[DR73.] Les schémas de modules de courbes elliptiques, Modular functions of one variable, II, Volume 349 (1973), pp. 143-316 | MR | Zbl | DOI
[Edi92.] The weight in Serre’s conjectures on modular forms, Invent. Math., Volume 109 (1992), pp. 563-594 | MR | Zbl | DOI
[EG14.] A geometric perspective on the Breuil-Mézard conjecture, J. Inst. Math. Jussieu, Volume 13 (2014), pp. 183-223 | MR | Zbl | DOI
[Ell05.] Serre’s conjecture over , Ann. Math. (2), Volume 161 (2005), pp. 1111-1142 | MR | Zbl | DOI
[ERX17.] Unramifiedness of Galois representations arising from Hilbert modular surfaces, Forum Math. Sigma, Volume 5 (2017) | MR | Zbl | DOI
[Fal83.] Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent. Math., Volume 73 (1983), pp. 349-366 | MR | Zbl | DOI
[Far08.] L’isomorphisme entre les tours de Lubin-Tate et de Drinfeld et applications cohomologiques, L’isomorphisme entre les tours de Lubin-Tate et de Drinfeld, 262, Birkhäuser, Basel, 2008, pp. 1-325 | Zbl | DOI | MR
[Far10.] La filtration de Harder-Narasimhan des schémas en groupes finis et plats, J. Reine Angew. Math., Volume 645 (2010), pp. 1-39 | MR | Zbl | DOI
[Far11.] La filtration canonique des points de torsion des groupes -divisibles, Ann. Sci. Éc. Norm. Supér. (4), Volume 44 (2011), pp. 905-961 (With collaboration of Yichao Tian) | MR | Zbl | Numdam | DOI
[FC90.] Degeneration of abelian varieties, 22, Springer, Berlin, 1990 (With an appendix by David Mumford) | Zbl | MR | DOI
[FKRS12.] Sato-Tate distributions and Galois endomorphism modules in genus 2, Compos. Math., Volume 148 (2012), pp. 1390-1442 | MR | Zbl | DOI
[Fon94.] Représentations -adiques potentiellement semi-stables, Astérisque, Volume 223 (1994), pp. 321-347 Périodes -adiques (Bures-sur-Yvette, 1988) | Zbl | MR | Numdam
[FP21.] N. Fakhruddin and V. Pilloni, Hecke operators and the coherent cohomology of Shimura varieties, J. Inst. Math. Jussieu (2021), 1–69. | MR
[Fre83.] Siegelsche Modulfunktionen, 254, Springer, Berlin, 1983 | Zbl | MR | DOI
[Ger19.] Modularity lifting theorems for ordinary Galois representations, Math. Ann., Volume 373 (2019), pp. 1341-1427 | MR | Zbl | DOI
[GG12.] Companion forms for unitary and symplectic groups, Duke Math. J., Volume 161 (2012), pp. 247-303 | MR | Zbl | DOI
[GHLS17.] Potentially crystalline lifts of certain prescribed types, Doc. Math., Volume 22 (2017), pp. 397-422 | MR | Zbl | DOI
[GJ72.] Zeta functions of simple algebras, 260, Springer, Berlin, 1972 | Zbl | MR | DOI
[GK19.] Strata Hasse invariants, Hecke algebras and Galois representations, Invent. Math., Volume 217 (2019), pp. 887-984 | MR | Zbl | DOI
[GN20.] T. Gee and J. Newton, Patching and the completed homology of locally symmetric spaces, J. Inst. Math. Jussieu (2020), 1–64. | MR
[GPSR87.] Explicit constructions of automorphic -functions, 1254, Springer, Berlin, 1987 | Zbl | MR | DOI
[Gro90.] A tameness criterion for Galois representations associated to modular forms (mod ), Duke Math. J., Volume 61 (1990), pp. 445-517 | MR | Zbl | DOI
[Gro16.] On the Langlands correspondence for symplectic motives, Izv. Ross. Akad. Nauk Ser. Mat., Volume 80 (2016), pp. 49-64 | MR | Zbl
[GRR72.] Groupes de monodromie en géométrie algébrique. I, 288, Springer, Berlin, 1972 Séminaire de Géométrie Algébrique du Bois-Marie 1967–1969 (SGA 7 I), Dirigé par A. Grothendieck. Avec la collaboration de Michèle Raynaud et Dock S. Rim | Zbl
[GT05.] Systèmes de Taylor-Wiles pour , Astérisque, Volume 302 (2005), pp. 177-290 (Formes automorphes. II. Le cas du groupe ) | Zbl | MR | Numdam
[GT11a.] The local Langlands conjecture for , Ann. Math. (2), Volume 173 (2011), pp. 1841-1882 | MR | Zbl | DOI
[GT11b.] Theta correspondences for , Represent. Theory, Volume 15 (2011), pp. 670-718 | MR | Zbl | DOI
[GT19.] Arthur’s multiplicity formula for and restriction to , J. Éc. Polytech. Math., Volume 6 (2019), pp. 469-535 | MR | Zbl | DOI
[Har66.] Residues and duality, Lecture notes of a seminar on the work of A. Grothendieck, given at Harvard 1963/64, 20, Springer, Berlin, 1966 (With an appendix by Pierre Deligne) | Zbl | MR
[Har90a.] Automorphic forms and the cohomology of vector bundles on Shimura varieties, Automorphic forms, Shimura varieties, and -functions, Vol. II, Volume 11 (1990), pp. 41-91 | MR | Zbl
[Har90b.] Automorphic forms of -cohomology type as coherent cohomology classes, J. Differ. Geom., Volume 32 (1990), pp. 1-63 | MR | Zbl
[Hec20.] Eine neue Art von Zetafunktionen und ihre Beziehungen zur Verteilung der Primzahlen, Math. Z., Volume 6 (1920), pp. 11-51 | MR | Zbl | DOI
[Hen09.] Sur la fonctorialité, pour , donnée par le carré extérieur, Mosc. Math. J., Volume 9 (2009), pp. 33-45 (back matter) | MR | Zbl | DOI
[Hid04.] -adic automorphic forms on Shimura varieties, Springer, New York, 2004 | Zbl | MR | DOI
[Hid09.] Irreducibility of the Igusa tower, Acta Math. Sin. Engl. Ser., Volume 25 (2009), pp. 1-20 | MR | Zbl | DOI
[HKP10.] Iwahori-Hecke algebras, J. Ramanujan Math. Soc., Volume 25 (2010), pp. 113-145 | MR | Zbl
[HLTT16.] On the rigid cohomology of certain Shimura varieties, Res. Math. Sci., Volume 3 (2016), p. 37 | MR | Zbl | DOI
[HS02.] The geometry of Siegel modular varieties, Higher dimensional birational geometry, Volume 35 (2002), pp. 89-156 | Zbl | DOI | MR
[HT01.] The geometry and cohomology of some simple Shimura varieties, 151, Princeton University Press, Princeton, 2001 (With an appendix by Vladimir G. Berkovich) | Zbl | MR
[Hub96.] Étale cohomology of rigid analytic varieties and adic spaces, E30, Friedr. Vieweg & Sohn, Braunschweig, 1996 | Zbl | MR | DOI
[Hun96.] The geometry of some special arithmetic quotients, 1637, Springer, Berlin, 1996 | Zbl | DOI | MR
[HZ01.] M. Harris and S. Zucker, Boundary cohomology of Shimura varieties. III. Coherent cohomology on higher-rank boundary strata and applications to Hodge theory, Mém. Soc. Math. Fr. (N.S.) (2001) vi+116. | MR | Numdam
[Igu64.] On Siegel modular forms genus two. II, Am. J. Math., Volume 86 (1964), pp. 392-412 | MR | Zbl | DOI
[JLR12.] Siegel modular forms of degree two attached to Hilbert modular forms, J. Number Theory, Volume 132 (2012), pp. 543-564 | MR | Zbl | DOI
[Joc82.] Congruences between systems of eigenvalues of modular forms, Trans. Am. Math. Soc., Volume 270 (1982), pp. 269-285 | MR | Zbl | DOI
[Joh17.] On the Sato-Tate conjecture for non-generic abelian surfaces, Trans. Am. Math. Soc., Volume 369 (2017), pp. 6303-6325 (With an appendix by Francesc Fité) | MR | Zbl | DOI
[Jon11.] An analogue of the BGG resolution for locally analytic principal series, J. Number Theory, Volume 131 (2011), pp. 1616-1640 | MR | Zbl | DOI
[JS81.] On Euler products and the classification of automorphic forms. II, Am. J. Math., Volume 103 (1981), pp. 777-815 | MR | Zbl | DOI
[Kas06.] A gluing lemma and overconvergent modular forms, Duke Math. J., Volume 132 (2006), pp. 509-529 | MR | Zbl | DOI
[Kas16.] Analytic continuation of overconvergent Hilbert modular forms, Astérisque, Volume 382 (2016), pp. 1-48 | MR | Zbl
[Kem78.] The Grothendieck–Cousin complex of an induced representation, Adv. Math., Volume 29 (1978), pp. 310-396 | MR | Zbl | DOI
[Kim03.] Functoriality for the exterior square of and the symmetric fourth of , J. Am. Math. Soc., Volume 16 (2003), pp. 139-183 (With appendix 1 by Dinakar Ramakrishnan and appendix 2 by Kim and Peter Sarnak) | DOI
[Kis08.] Potentially semi-stable deformation rings, J. Am. Math. Soc., Volume 21 (2008), pp. 513-546 | MR | Zbl | DOI
[Kis09.] Moduli of finite flat group schemes, and modularity, Ann. Math. (2), Volume 170 (2009), pp. 1085-1180 | MR | Zbl | DOI
[Kle94.] The standard conjectures, Motives, Volume 55 (1994), pp. 3-20 | DOI
[Kot92.] Points on some Shimura varieties over finite fields, J. Am. Math. Soc., Volume 5 (1992), pp. 373-444 | MR | Zbl | DOI
[KR99.] Arithmetic Hirzebruch-Zagier cycles, J. Reine Angew. Math., Volume 515 (1999), pp. 155-244 | MR | Zbl | DOI
[KST14.] Modularity lifting results in parallel weight one and applications to the Artin conjecture: the tamely ramified case, Forum Math. Sigma, Volume 2 (2014) | MR | Zbl | DOI
[KT17.] Potential automorphy and the Leopoldt conjecture, Am. J. Math., Volume 139 (2017), pp. 1205-1273 | MR | Zbl | DOI
[Lan80.] Base change for , 96, Princeton University Press/University of Tokyo Press, Princeton/Tokyo, 1980
[Lan13.] Arithmetic compactifications of PEL-type Shimura varieties, 36, Princeton University Press, Princeton, 2013 | Zbl | DOI
[Lan16.] Compactifications of PEL-type Shimura varieties in ramified characteristics, Forum Math. Sigma, Volume 4 (2016) | MR | Zbl | DOI
[Lan17.] Integral models of toroidal compactifications with projective cone decompositions, Int. Math. Res. Not., Volume 11 (2017), pp. 3237-3280 | MR | Zbl
[LPS13.] Abelian fourfolds of Weil type and certain K3 double planes, Rend. Semin. Mat. Univ. Politec. Torino, Volume 71 (2013), pp. 339-383 | MR | Zbl
[Maz89.] Deforming Galois representations, Galois groups over , Volume 16 (1989), pp. 385-437 | DOI
[MB89.] Groupes de Picard et problèmes de Skolem II, Ann. Sci. Éc. Norm. Supér., Volume 22 (1989), pp. 181-194 | MR | Zbl | DOI | Numdam
[MB90.] Extensions de corps globaux à ramification et groupe de Galois donnés, C. R. Acad. Sci., Sér. 1 Math., Volume 311 (1990), pp. 273-276 | MR | Zbl
[Mes72.] The crystals associated to Barsotti-Tate groups: with applications to abelian schemes, 264, Springer, Berlin, 1972 | Zbl | DOI
[Mil79.] Points on Shimura varieties mod , Automorphic forms, representations and -functions, Volume XXXIII (1979), pp. 165-184 | DOI
[Mok14.] Galois representations attached to automorphic forms on over CM fields, Compos. Math., Volume 150 (2014), pp. 523-567 | MR | Zbl | DOI
[Mor84.] On surfaces with large Picard number, Invent. Math., Volume 75 (1984), pp. 105-121 | MR | Zbl | DOI
[Mor85.] The Kuga-Satake variety of an abelian surface, J. Algebra, Volume 92 (1985), pp. 454-476 | MR | Zbl | DOI
[MT02.] Cohomology of Siegel varieties with -adic integral coefficients and applications, Astérisque, Volume 280 (2002), pp. 1-95 (Cohomology of Siegel varieties) | MR | Zbl | Numdam
[MT15.] Overconvergent families of Siegel-Hilbert modular forms, Can. J. Math., Volume 67 (2015), pp. 893-922 | MR | Zbl | DOI
[Mum08.] Abelian varieties, 5, Hindustan Book Agency, New Delhi, 2008 With appendices by C. P. Ramanujam and Yuri Manin, Corrected reprint of the second (1974) edition | Zbl
[MW16a.] Stabilisation de la formule des traces tordue, 1, Springer, Berlin, 2016 | Zbl | DOI
[MW16b.] Stabilisation de la formule des traces tordue, 2, Springer, Berlin, 2016 | Zbl | DOI
[MZ95.] Hodge classes and Tate classes on simple abelian fourfolds, Duke Math. J., Volume 77 (1995), pp. 553-581 | MR | Zbl | DOI
[Nak84.] On Galois module structure of the cohomology groups of an algebraic variety, Invent. Math., Volume 75 (1984), pp. 1-8 | MR | Zbl | DOI
[NG02.] Alcôves et -rang des variétés abéliennes, Ann. Inst. Fourier (Grenoble), Volume 52 (2002), pp. 1665-1680 | MR | Zbl | DOI | Numdam
[Noo13.] The system of representations of the Weil-Deligne group associated to an abelian variety, Algebra Number Theory, Volume 7 (2013), pp. 243-281 | MR | Zbl | DOI
[Noo17.] The -adic representation of the Weil-Deligne group associated to an abelian variety, J. Number Theory, Volume 172 (2017), pp. 301-320 | MR | Zbl | DOI
[Pat19.] Variations on a theorem of Tate, Mem. Am. Math. Soc., Volume 258 (2019), p. viii+156 | MR | Zbl
[Pil11.] Prolongement analytique sur les variétés de Siegel, Duke Math. J., Volume 157 (2011), pp. 167-222 | MR | Zbl | DOI
[Pil12.] Modularité, formes de Siegel et surfaces abéliennes, J. Reine Angew. Math., Volume 666 (2012), pp. 35-82 | MR | Zbl
[Pil17.] Formes modulaires -adiques de Hilbert de poids 1, Invent. Math., Volume 208 (2017), pp. 633-676 | MR | Zbl | DOI
[Pil20.] Higher coherent cohomology and -adic modular forms of singular weights, Duke Math. J., Volume 169 (2020), pp. 1647-1807 | MR | Zbl | DOI
[Pin90.] Arithmetical compactification of mixed Shimura varieties, 209, Universität Bonn, Mathematisches Institut, Bonn, 1990 (Dissertation, Rheinische Friedrich-Wilhelms-Universität, Bonn, Bonn, 1989) | Zbl
[Poi08.] Un résultat de connexité pour les variétés analytiques -adiques: privilège et noethérianité, Compos. Math., Volume 144 (2008), pp. 107-133 | MR | Zbl | DOI
[PS09.] Bessel models for lowest weight representations of , Int. Math. Res. Not., Volume 7 (2009), pp. 1159-1212 | MR | Zbl
[PS16a.] Cohomologie cohérente et représentations Galoisiennes, Ann. Math. Qué., Volume 40 (2016), pp. 167-202 | MR | Zbl | DOI
[PS16b.] Surconvergence, ramification et modularité, Astérisque, Volume 382 (2016), pp. 195-266 | Zbl
[PSY17.] Siegel paramodular forms of weight 2 and squarefree level, Int. J. Number Theory, Volume 13 (2017), pp. 2627-2652 | MR | Zbl | DOI
[PT15.] Automorphy and irreducibility of some -adic representations, Compos. Math., Volume 151 (2015), pp. 207-229 | MR | Zbl | DOI
[PVZ16.] Anabelian geometry and descent obstructions on moduli spaces, Algebra Number Theory, Volume 10 (2016), pp. 1191-1219 | MR | Zbl | DOI
[PY15.] Paramodular cusp forms, Math. Comput., Volume 84 (2015), pp. 1401-1438 | MR | Zbl | DOI
[Ram00.] Modularity of the Rankin-Selberg -series, and multiplicity one for , Ann. Math. (2), Volume 152 (2000), pp. 45-111 | MR | Zbl | DOI
[Ray94.] 1-motifs et monodromie géométrique, Astérisque, Volume 223 (1994), pp. 295-319 Périodes -adiques (Bures-sur-Yvette, 1988) | Zbl | Numdam
[Rib04.] Abelian varieties over and modular forms, Modular curves and abelian varieties, 224, Birkhäuser, Basel, 2004, pp. 241-261 | Zbl | DOI
[Rie59.] B. Riemann, Über die Anzahl der Primzahlen unter einer gegebenen Grösse, Monatsberichte der Berliner Akademie (1859), 671–680.
[Rob01.] Global -packets for and theta lifts, Doc. Math., Volume 6 (2001), pp. 247-314 (electronic) | MR | Zbl | DOI
[RS07a.] Siegel modular forms of genus 2 attached to elliptic curves, Math. Res. Lett., Volume 14 (2007), pp. 315-332 | MR | Zbl | DOI
[RS07b.] Local newforms for GSp(4), 1918, Springer, Berlin, 2007 | Zbl | DOI
[RS07c.] B. Roberts and R. Schmidt, Tables for representations of GSp(4), 2007, Available at http://www2.math.ou.edu/~rschmidt/papers/tables.pdf.
[RZ96.] Period spaces for -divisible groups, 141, Princeton University Press, Princeton, 1996 | Zbl | DOI
[Sai97.] Modular forms and -adic Hodge theory, Invent. Math., Volume 129 (1997), pp. 607-620 | MR | Zbl | DOI
[Sas13.] On Artin representations and nearly ordinary Hecke algebras over totally real fields, Doc. Math., Volume 18 (2013), pp. 997-1038 | MR | Zbl | DOI
[Saw16.] Ordinary primes for Abelian surfaces, C. R. Math. Acad. Sci. Paris, Volume 354 (2016), pp. 566-568 | MR | Zbl | DOI
[SBT97.] and icosahedral representations, J. Am. Math. Soc., Volume 10 (1997), pp. 283-298 | Zbl | DOI
[Sch15.] On torsion in the cohomology of locally symmetric varieties, Ann. Math. (2), Volume 182 (2015), pp. 945-1066 | MR | Zbl | DOI
[Sch17.] Archimedean aspects of Siegel modular forms of degree 2, Rocky Mt. J. Math., Volume 47 (2017), pp. 2381-2422 | MR | Zbl | DOI
[Sch18.] Packet structure and paramodular forms, Trans. Am. Math. Soc., Volume 370 (2018), pp. 3085-3112 | MR | Zbl | DOI
[Sch19.] Examples of genuine QM abelian surfaces which are modular, Res. Number Theory, Volume 5 (2019), p. 12 | MR | Zbl | DOI
[Sch20.] Paramodular forms in CAP representations of , Acta Arith., Volume 194 (2020), pp. 319-340 | MR | Zbl | DOI
[SD73.] On -adic representations and congruences for coefficients of modular forms, Modular functions of one variable, III, Volume 350 (1973), pp. 1-55 | DOI | Zbl
[Ser68.] Abelian -adic representations and elliptic curves, W. A. Benjamin, Inc., New York-Amsterdam, 1968 | Zbl
[Ser70.] J.-P. Serre, Facteurs locaux des fonctions zêta des variétés algébriques (définitions et conjectures), Séminaire Delange-Pisot-Poitou. Théorie des nombres, 11 (1969–1970), 1–15 (fre).
[Ser73.] Formes modulaires et fonctions zêta -adiques, Modular functions of one variable, III, Volume 350 (1973), pp. 191-268 | DOI | Zbl
[Ser77.] Modular forms of weight one and Galois representations, Algebraic number fields: -functions and Galois properties (1977), pp. 193-268 | Zbl
[Ser89.] Lectures on the Mordell-Weil theorem, Aspects of Mathematics, E15, Friedr. Vieweg & Sohn, Braunschweig, 1989 (Translated from the French and edited by Martin Brown from notes by Michel Waldschmidt) | Zbl
[Ser00.] Lettre à Marie-France Vignéras du 10/02/1987. Collected papers IV, Springer, Berlin, 2000, pp. 38-55
[Sha97.] On non-vanishing of twisted symmetric and exterior square -functions for , Pac. J. Math., Volume 181 (1997), pp. 311-322 (Olga Taussky-Todd: in memoriam) | MR | DOI | Zbl
[Sho18.] The Breuil-Mézard conjecture when , Duke Math. J., Volume 167 (2018), pp. 603-678 | MR | Zbl | DOI
[Ski09.] A note on the -adic Galois representations attached to Hilbert modular forms, Doc. Math., Volume 14 (2009), pp. 241-258 | MR | Zbl | DOI
[Sno09.] A. Snowden, On two dimensional weight two odd representations of totally real fields, 2009, | arXiv
[Sor10.] Galois representations attached to Hilbert-Siegel modular forms, Doc. Math., Volume 15 (2010), pp. 623-670 | MR | Zbl | DOI
[ST93.] Induced representations and classifications for and , Mém. Soc. Math. Fr. (N.S.), Volume 52 (1993), pp. 75-133 | MR | Zbl | Numdam
[Sta13.] The Stacks Project Authors, Stacks Project, 2013, http://stacks.math.columbia.edu.
[Ste04.] Shafarevich–Tate groups of nonsquare order, Modular curves and abelian varieties, 224, Birkhäuser, Basel, 2004, pp. 277-289 | Zbl | DOI
[Str15.] Mauvaise réduction au bord, Astérisque, Volume 370 (2015), pp. 269-304 | Zbl
[Tat79.] Number theoretic background, Automorphic forms, representations and -functions, Volume XXXIII (1979), pp. 3-26 | DOI
[Tay02.] Remarks on a conjecture of Fontaine and Mazur, J. Inst. Math. Jussieu, Volume 1 (2002), pp. 125-143 | MR | Zbl | DOI
[Tay03.] On icosahedral Artin representations. II, Am. J. Math., Volume 125 (2003), pp. 549-566 | MR | Zbl | DOI
[Tay08.] Automorphy for some -adic lifts of automorphic mod Galois representations. II, Publ. Math. IHES, Volume 108 (2008), pp. 183-239 | MR | Zbl | DOI | Numdam
[Tho12.] On the automorphy of -adic Galois representations with small residual image, J. Inst. Math. Jussieu, Volume 11 (2012), pp. 855-920 (With an appendix by Robert Guralnick, Florian Herzig, Richard Taylor and Thorne) | MR | Zbl | DOI
[Tho15.] Automorphy lifting for residually reducible -adic Galois representations, J. Am. Math. Soc., Volume 28 (2015), pp. 785-870 | MR | Zbl | DOI
[Til96.] J. Tilouine, Deformations of Galois representations and Hecke algebras, Published for The Mehta Research Institute of Mathematics and Mathematical Physics, Allahabad (1996).
[Til98.] Deformations of Siegel-Hilbert Hecke eigensystems and their Galois representations, Number theory, Volume 210 (1998), pp. 195-225 | DOI | Zbl
[Til06a.] Nearly ordinary rank four Galois representations and -adic Siegel modular forms, Compos. Math., Volume 142 (2006), pp. 1122-1156 (With an appendix by Don Blasius) | MR | Zbl | DOI
[Til06b.] J. Tilouine, Siegel varieties and -adic Siegel modular forms, Doc. Math. (2006), 781–817.
[Til09.] Cohomologie des variétés de Siegel et représentations galoisiennes associées aux représentations cuspidales cohomologiques de , Algèbre et théorie des nombres. Années 2007–2009, Lab. Math. Besançon, Besançon, 2009, pp. 99-114 | Zbl
[Til12.] Formes compagnons et complexe BGG dual pour , Ann. Inst. Fourier (Grenoble), Volume 62 (2012), pp. 1383-1436 | MR | Zbl | DOI | Numdam
[TU95.] Familles -adiques à trois variables de formes de Siegel et de représentations galoisiennes, C. R. Acad. Sci. Paris, Sér. 1 Math., Volume 321 (1995), pp. 5-10 | Zbl
[TU99.] Several-variable -adic families of Siegel-Hilbert cusp eigensystems and their Galois representations, Ann. Sci. Éc. Norm. Supér. (4), Volume 32 (1999), pp. 499-574 | MR | Zbl | Numdam | DOI
[Tun81.] Artin’s conjecture for representations of octahedral type, Bull. Am. Math. Soc. (N.S.), Volume 5 (1981), pp. 173-175 | MR | Zbl | DOI
[TW95.] Ring-theoretic properties of certain Hecke algebras, Ann. Math. (2), Volume 141 (1995), pp. 553-572 | MR | Zbl | DOI
[TY07.] Compatibility of local and global Langlands correspondences, J. Am. Math. Soc., Volume 20 (2007), pp. 467-493 (electronic) | MR | Zbl | DOI
[Urb11.] Eigenvarieties for reductive groups, Ann. Math. (2), Volume 174 (2011), pp. 1685-1784 | MR | Zbl | DOI
[Vig98.] Induced r-representations of p-adic reductive groups, Sel. Math., Volume 4 (1998), pp. 549-623 | MR | Zbl | DOI
[Vig05.] Pro--Iwahori Hecke ring and supersingular -representations, Math. Ann., Volume 331 (2005), pp. 523-556 | MR | Zbl | DOI
[VW13.] Ekedahl-Oort and Newton strata for Shimura varieties of PEL type, Math. Ann., Volume 356 (2013), pp. 1493-1550 | MR | Zbl | DOI
[Wal84.] On the constant term of a square integrable automorphic form, Operator algebras and group representations, Vol. II, Volume 18 (1984), pp. 227-237 | MR
[Wei52.] Number-theory and algebraic geometry, Proceedings of the International Congress of Mathematicians, Volume 2 (1952), pp. 90-100 | MR
[Wie14.] On Galois representations of weight one, Doc. Math., Volume 19 (2014), pp. 689-707 | MR | Zbl | DOI
[Wil95.] Modular elliptic curves and Fermat’s last theorem, Ann. Math. (2), Volume 141 (1995), pp. 443-551 | MR | Zbl | DOI
[Yos80.] Siegel’s modular forms and the arithmetic of quadratic forms, Invent. Math., Volume 60 (1980), pp. 193-248 | MR | Zbl | DOI
[Yos84.] On Siegel modular forms obtained from theta series, J. Reine Angew. Math., Volume 352 (1984), pp. 184-219 | MR | Zbl
[Yu08.] Irreducibility and -adic monodromies on the Siegel moduli spaces, Adv. Math., Volume 218 (2008), pp. 1253-1285 | MR | Zbl | DOI
[Yu11.] Geometry of the Siegel modular threefold with paramodular level structure, Proc. Am. Math. Soc., Volume 139 (2011), pp. 3181-3190 | MR | Zbl | DOI
Cited by Sources: