Article
Symmetric power functoriality for holomorphic modular forms
Publications Mathématiques de l'IHÉS, Volume 134 (2021), pp. 1-116

Let f be a cuspidal Hecke eigenform of level 1. We prove the automorphy of the symmetric power lifting Sym n f for every n1.

We establish the same result for a more general class of cuspidal Hecke eigenforms, including all those associated to semistable elliptic curves over 𝐐.

Received:
Accepted:
Online First:
Published online:
DOI: 10.1007/s10240-021-00127-3
@article{PMIHES_2021__134__1_0,
     author = {James Newton and Jack A. Thorne},
     title = {Symmetric power functoriality for holomorphic modular forms},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {1--116},
     year = {2021},
     publisher = {Springer International Publishing},
     address = {Cham},
     volume = {134},
     doi = {10.1007/s10240-021-00127-3},
     mrnumber = {4349240},
     zbl = {1503.11085},
     language = {en},
     url = {https://pmihes.centre-mersenne.org/articles/10.1007/s10240-021-00127-3/}
}
TY  - JOUR
AU  - James Newton
AU  - Jack A. Thorne
TI  - Symmetric power functoriality for holomorphic modular forms
JO  - Publications Mathématiques de l'IHÉS
PY  - 2021
SP  - 1
EP  - 116
VL  - 134
PB  - Springer International Publishing
PP  - Cham
UR  - https://pmihes.centre-mersenne.org/articles/10.1007/s10240-021-00127-3/
DO  - 10.1007/s10240-021-00127-3
LA  - en
ID  - PMIHES_2021__134__1_0
ER  - 
%0 Journal Article
%A James Newton
%A Jack A. Thorne
%T Symmetric power functoriality for holomorphic modular forms
%J Publications Mathématiques de l'IHÉS
%D 2021
%P 1-116
%V 134
%I Springer International Publishing
%C Cham
%U https://pmihes.centre-mersenne.org/articles/10.1007/s10240-021-00127-3/
%R 10.1007/s10240-021-00127-3
%G en
%F PMIHES_2021__134__1_0
James Newton; Jack A. Thorne. Symmetric power functoriality for holomorphic modular forms. Publications Mathématiques de l'IHÉS, Volume 134 (2021), pp. 1-116. doi: 10.1007/s10240-021-00127-3

[AC89.] J. Arthur; L. Clozel Simple Algebras, Base Change, and the Advanced Theory of the Trace Formula, 120, Princeton University Press, Princeton, 1989 | Zbl | MR

[All16.] P. B. Allen Deformations of polarized automorphic Galois representations and adjoint Selmer groups, Duke Math. J., Volume 165 (2016), pp. 2407-2460 | MR | Zbl | DOI

[ANT20.] P. B. Allen; J. Newton; J. A. Thorne Automorphy lifting for residually reducible l-adic Galois representations, II, Compos. Math., Volume 156 (2020), pp. 2399-2422 | MR | Zbl | DOI

[AT21.] C. Anastassiades; J. A. Thorne Raising the level of automorphic representations of GL 2n of unitary type, J. Inst. Math. Jussieu (2021) (In press) | DOI | MR | Zbl

[BC05.] K. Buzzard and F. Calegari, The 2-adic eigencurve is proper, arXiv Mathematics e-prints (2005), | arXiv | MR

[BC09.] J. Bellaïche and G. Chenevier, Families of Galois representations and Selmer groups, Astérisque, 324 (2009), xii+314. | MR | Numdam

[BC11.] J. Bellaïche; G. Chenevier The sign of Galois representations attached to automorphic forms for unitary groups, Compos. Math., Volume 147 (2011), pp. 1337-1352 | MR | Zbl | DOI

[Ber08.] L. Berger Équations différentielles p-adiques et (ϕ,N)-modules filtrés, Astérisque, Volume 319 (2008), pp. 13-38 Représentations p -adiques de groupes p -adiques. I. Représentations galoisiennes et ( ϕ , Γ ) -modules | Zbl | MR | Numdam

[Ber17.] J. Bergdall Paraboline variation over p-adic families of (ϕ,Γ)-modules, Compos. Math., Volume 153 (2017), pp. 132-174 | MR | Zbl | DOI

[BG19.] R. Bellovin; T. Gee G-valued local deformation rings and global lifts, Algebra Number Theory, Volume 13 (2019), pp. 333-378 | MR | Zbl | DOI

[BGR84.] S. Bosch; U. Güntzer; R. Remmert Non-archimedean Analysis: A Systematic Approach to Rigid Analytic Geometry, 261, Springer, Berlin, 1984 | Zbl | MR | DOI

[BHS17.] C. Breuil; E. Hellmann; B. Schraen Une interprétation modulaire de la variété trianguline, Math. Ann., Volume 367 (2017), pp. 1587-1645 | MR | Zbl | DOI

[BK98.] C. J. Bushnell; P. C. Kutzko Smooth representations of reductive p-adic groups: structure theory via types, Proc. Lond. Math. Soc. (3), Volume 77 (1998), pp. 582-634 | MR | Zbl | DOI

[BK05.] K. Buzzard; L. J. P. Kilford The 2-adic eigencurve at the boundary of weight space, Compos. Math., Volume 141 (2005), pp. 605-619 | MR | Zbl | DOI

[BK16.] A. Bucur; K. S. Kedlaya An application of the effective Sato-Tate conjecture, Frobenius distributions: Lang–Trotter and Sato–Tate conjectures, Contemp. Math., 663, Am. Math. Soc., Providence, 2016, pp. 45-56 | MR | Zbl | DOI

[BLGG11.] T. Barnet-Lamb; T. Gee; D. Geraghty The Sato–Tate conjecture for Hilbert modular forms, J. Am. Math. Soc., Volume 24 (2011), pp. 411-469 | MR | Zbl | DOI

[BLGGT14.] T. Barnet-Lamb; T. Gee; D. Geraghty; R. Taylor Potential automorphy and change of weight, Ann. Math. (2), Volume 179 (2014), pp. 501-609 | MR | Zbl | DOI

[BLGHT11.] T. Barnet-Lamb; D. Geraghty; M. Harris; R. Taylor A family of Calabi–Yau varieties and potential automorphy II, Publ. Res. Inst. Math. Sci., Volume 47 (2011), pp. 29-98 | MR | Zbl | DOI

[Bre15.] C. Breuil Vers le socle localement analytique pour GL n II, Math. Ann., Volume 361 (2015), pp. 741-785 | MR | Zbl | DOI

[Bre16.] C. Breuil Socle localement analytique I, Ann. Inst. Fourier (Grenoble), Volume 66 (2016), pp. 633-685 | MR | Zbl | DOI

[BS07.] C. Breuil; P. Schneider First steps towards p-adic Langlands functoriality, J. Reine Angew. Math., Volume 610 (2007), pp. 149-180 | MR | Zbl

[Buz04.] K. Buzzard On p-adic families of automorphic forms, Modular Curves and Abelian Varieties, 224, Birkhäuser, Basel, 2004, pp. 23-44 | MR | Zbl | DOI

[Buz07.] K. Buzzard Eigenvarieties, L-functions and Galois representations, London Math. Soc. Lecture Note Ser., 320, Cambridge University Press, Cambridge, 2007, pp. 59-120 | MR | Zbl

[BZ77.] I. N. Bernstein; A. V. Zelevinsky Induced representations of reductive 𝔭-adic groups. I, Ann. Sci. Éc. Norm. Supér. (4), Volume 10 (1977), pp. 441-472 | MR | Zbl | Numdam | DOI

[Car12.] A. Caraiani Local-global compatibility and the action of monodromy on nearby cycles, Duke Math. J., Volume 161 (2012), pp. 2311-2413 | MR | Zbl | DOI

[Car14.] A. Caraiani Monodromy and local-global compatibility for l=p, Algebra Number Theory, Volume 8 (2014), pp. 1597-1646 | MR | Zbl | DOI

[CEG+16.] A. Caraiani; M. Emerton; T. Gee; D. Geraghty; V. Paškūnas; S. Woo Shin Patching and the p-adic local Langlands correspondence, Camb. J. Math., Volume 4 (2016), pp. 197-287 | MR | Zbl | DOI

[Che51.] C. Chevalley Deux théorèmes d’arithmétique, J. Math. Soc. Jpn., Volume 3 (1951), pp. 36-44 | Zbl | MR | DOI

[Che04.] G. Chenevier Familles p-adiques de formes automorphes pour GL n , J. Reine Angew. Math., Volume 570 (2004), pp. 143-217 | MR | Zbl

[Che05.] G. Chenevier Une correspondance de Jacquet-Langlands p-adique, Duke Math. J., Volume 126 (2005), pp. 161-194 | MR | Zbl | DOI

[Che11.] G. Chenevier On the infinite fern of Galois representations of unitary type, Ann. Sci. Éc. Norm. Supér. (4), Volume 44 (2011), pp. 963-1019 | MR | Zbl | Numdam | DOI

[Che14.] G. Chenevier The p-adic analytic space of pseudocharacters of a profinite group and pseudorepresentations over arbitrary rings, Automorphic Forms and Galois Representations, Vol. 1, 414, Cambridge University Press, Cambridge, 2014, pp. 221-285 | Zbl | MR | DOI

[CHT08.] L. Clozel; M. Harris; R. Taylor Automorphy for some l-adic lifts of automorphic mod l Galois representations, Publ. Math. Inst. Hautes Études Sci., Volume 108 (2008), pp. 1-181 (With Appendix A, summarizing unpublished work of Russ Mann, and Appendix B by Marie-France Vignéras) | MR | Zbl | Numdam | DOI

[Clo82.] L. Clozel Changement de base pour les représentations tempérées des groupes réductifs réels, Ann. Sci. Éc. Norm. Supér. (4), Volume 15 (1982), pp. 45-115 | Zbl | MR | Numdam | DOI

[Clo90a.] L. Clozel The fundamental lemma for stable base change, Duke Math. J., Volume 61 (1990), pp. 255-302 | MR | Zbl | DOI

[Clo90b.] L. Clozel Motifs et formes automorphes: applications du principe de fonctorialité, automorphic forms, Shimura Varieties, and L -Functions, Vol. I, Volume 10 (1990), pp. 77-159 | MR | Zbl

[Clo13.] L. Clozel Purity reigns supreme, Int. Math. Res. Not., Volume 2 (2013), pp. 328-346 | MR | Zbl | DOI

[Col96.] R. F. Coleman Classical and overconvergent modular forms, Invent. Math., Volume 124 (1996), pp. 215-241 | MR | Zbl | DOI

[Col97.] R. F. Coleman Classical and overconvergent modular forms of higher level, J. Théor. Nr. Bordx., Volume 9 (1997), pp. 395-403 | MR | Zbl | Numdam | DOI

[Col08.] P. Colmez Représentations triangulines de dimension 2, Astérisque, Volume 319 (2008), pp. 213-258 Représentations p -adiques de groupes p -adiques. I. Représentations galoisiennes et ( ϕ , Γ ) -modules | MR | Zbl | Numdam

[Con99.] B. Conrad Irreducible components of rigid spaces, Ann. Inst. Fourier (Grenoble), Volume 49 (1999), pp. 473-541 | MR | Zbl | Numdam | DOI

[Con06.] B. Conrad Relative ampleness in rigid geometry, Ann. Inst. Fourier (Grenoble), Volume 56 (2006), pp. 1049-1126 | MR | Zbl | Numdam | DOI

[CT14.] L. Clozel; J. A. Thorne Level-raising and symmetric power functoriality, I, Compos. Math., Volume 150 (2014), pp. 729-748 | MR | Zbl | DOI

[CT15.] L. Clozel; J. A. Thorne Level raising and symmetric power functoriality, II, Ann. Math. (2), Volume 181 (2015), pp. 303-359 | MR | Zbl | DOI

[CT17.] L. Clozel; J. A. Thorne Level-raising and symmetric power functoriality, III, Duke Math. J., Volume 166 (2017), pp. 325-402 | MR | Zbl | DOI

[DI95.] F. Diamond; J. Im Modular forms and modular curves, Seminar on Fermat’s Last Theorem, Volume 17 (1995), pp. 39-133 | MR | Zbl

[Dia89.] F. Diamond On congruence modules associated to Λ-adic forms, Compos. Math., Volume 71 (1989), pp. 49-83 | MR | Zbl | Numdam

[Die15.] L. Dieulefait Automorphy of Symm 5 ( GL (2)) and base change, J. Math. Pures Appl. (9), Volume 104 (2015), pp. 619-656 | MR | Zbl | DOI

[DL76.] P. Deligne; G. Lusztig Representations of reductive groups over finite fields, Ann. Math. (2), Volume 103 (1976), pp. 103-161 | MR | Zbl | DOI

[DM18.] O. Dudas; G. Malle Modular irreducibility of cuspidal unipotent characters, Invent. Math., Volume 211 (2018), pp. 579-589 | MR | Zbl | DOI

[DMW09.] N. Dummigan; P. Martin; M. Watkins Euler factors and local root numbers for symmetric powers of elliptic curves, Pure Appl. Math. Q., Volume 5 (2009), pp. 1311-1341 (Special Issue: in honor of John Tate. Part 1) | MR | Zbl | DOI

[DT94.] F. Diamond; R. Taylor Nonoptimal levels of mod l modular representations, Invent. Math., Volume 115 (1994), pp. 435-462 | MR | Zbl | DOI

[Edi92.] B. Edixhoven The weight in Serre’s conjectures on modular forms, Invent. Math., Volume 109 (1992), pp. 563-594 | MR | Zbl | DOI

[Eme06a.] M. Emerton Jacquet modules of locally analytic representations of p-adic reductive groups. I. Construction and first properties, Ann. Sci. Éc. Norm. Supér. (4), Volume 39 (2006), pp. 775-839 | MR | Zbl | DOI

[Eme06b.] M. Emerton On the interpolation of systems of eigenvalues attached to automorphic Hecke eigenforms, Invent. Math., Volume 164 (2006), pp. 1-84 | MR | Zbl | DOI

[FvdP04.] J. Fresnel; M. van der Put Rigid Analytic Geometry and Its Applications, 218, Birkhäuser Boston, Inc., Boston, 2004 | Zbl | MR | DOI

[GD71.] A. Grothendieck; J. A. Dieudonné Éléments de géométrie algébrique. I, 166, Springer, Berlin, 1971 | Zbl | MR

[Gec90.] M. Geck Irreducible Brauer characters of the 3-dimensional special unitary groups in nondefining characteristic, Commun. Algebra, Volume 18 (1990), pp. 563-584 | MR | Zbl | DOI

[Gee11.] T. Gee Automorphic lifts of prescribed types, Math. Ann., Volume 350 (2011), pp. 107-144 | MR | Zbl | DOI

[Ger19.] D. Geraghty Modularity lifting theorems for ordinary Galois representations, Math. Ann., Volume 373 (2019), pp. 1341-1427 | MR | Zbl | DOI

[GGP12.] W. T. Gan; B. H. Gross; D. Prasad Symplectic local root numbers, central critical L values, and restriction problems in the representation theory of classical groups, Astérisque, Volume 346 (2012), pp. 1-109 (Sur les conjectures de Gross et Prasad. I) | MR | Zbl | Numdam

[GJ78.] S. Gelbart; H. Jacquet A relation between automorphic representations of GL (2) and GL (3), Ann. Sci. Éc. Norm. Supér. (4), Volume 11 (1978), pp. 471-542 | MR | Zbl | Numdam | DOI

[Hal93.] T. C. Hales A simple definition of transfer factors for unramified groups, Representation Theory of Groups and Algebras, 145, Am. Math. Soc., Providence, 1993, pp. 109-134 | Zbl | MR | DOI

[Hen92.] G. Henniart Correspondance de Langlands–Kazhdan explicite dans le cas non ramifié, Math. Nachr., Volume 158 (1992), pp. 7-26 | MR | Zbl | DOI

[Hen00.] G. Henniart Une preuve simple des conjectures de Langlands pour GL (n) sur un corps p-adique, Invent. Math., Volume 139 (2000), pp. 439-455 | MR | Zbl | DOI

[Hir04.] K. Hiraga On functoriality of Zelevinski involutions, Compos. Math., Volume 140 (2004), pp. 1625-1656 | MR | Zbl | DOI

[HS16.] E. Hellmann; B. Schraen Density of potentially crystalline representations of fixed weight, Compos. Math., Volume 152 (2016), pp. 1609-1647 | MR | Zbl | DOI

[HT01.] M. Harris; R. Taylor The Geometry and Cohomology of Some Simple Shimura Varieties, 151, Princeton University Press, Princeton, 2001 (With an appendix by Vladimir G. Berkovich) | Zbl | MR

[JS81.] H. Jacquet; J. A. Shalika On Euler products and the classification of automorphic forms. II, Am. J. Math., Volume 103 (1981), pp. 777-815 | MR | Zbl | DOI

[Kal11.] T. Kaletha Endoscopic character identities for depth-zero supercuspidal L-packets, Duke Math. J., Volume 158 (2011), pp. 161-224 | MR | Zbl | DOI

[Kal16.] T. Kaletha Rigid inner forms of real and p-adic groups, Ann. Math. (2), Volume 184 (2016), pp. 559-632 | MR | Zbl | DOI

[Kal18.] T. Kaletha Global rigid inner forms and multiplicities of discrete automorphic representations, Invent. Math., Volume 213 (2018), pp. 271-369 | MR | Zbl | DOI

[Kim03.] H. H. Kim Functoriality for the exterior square of GL 4 and the symmetric fourth of GL 2 , J. Am. Math. Soc., Volume 16 (2003), pp. 139-183 (With Appendix 1 by Dinakar Ramakrishnan and appendix 2 by Kim and Peter Sarnak) | MR | Zbl | DOI

[Kis03.] M. Kisin Overconvergent modular forms and the Fontaine–Mazur conjecture, Invent. Math., Volume 153 (2003), pp. 373-454 | MR | Zbl | DOI

[Kis08.] M. Kisin Potentially semi-stable deformation rings, J. Am. Math. Soc., Volume 21 (2008), pp. 513-546 | MR | Zbl | DOI

[Kis09.] M. Kisin Moduli of finite flat group schemes, and modularity, Ann. Math. (2), Volume 170 (2009), pp. 1085-1180 | MR | Zbl | DOI

[Köp74.] U. Köpf Über eigentliche Familien algebraischer Varietäten über affinoiden Räumen, 2, 1974 (Heft 7, iv+72) | Zbl | MR

[KPX14.] K. S. Kedlaya; J. Pottharst; L. Xiao Cohomology of arithmetic families of (φ,Γ)-modules, J. Am. Math. Soc., Volume 27 (2014), pp. 1043-1115 | MR | Zbl | DOI

[KS99.] R. E. Kottwitz and D. Shelstad, Foundations of twisted endoscopy, Astérisque, 255 (1999), vi+190, | MR | Numdam

[KS02.] H. H. Kim; F. Shahidi Functorial products for GL 2 × GL 3 and the symmetric cube for GL 2 , Ann. Math. (2), Volume 155 (2002), pp. 837-893 (With an appendix by Colin J. Bushnell and Guy Henniart) | MR | Zbl | DOI

[KT17.] C. B. Khare; J. A. Thorne Potential automorphy and the Leopoldt conjecture, Am. J. Math., Volume 139 (2017), pp. 1205-1273 | MR | Zbl | DOI

[KV12.] D. Kazhdan; Y. Varshavsky On endoscopic transfer of Deligne–Lusztig functions, Duke Math. J., Volume 161 (2012), pp. 675-732 | MR | Zbl | DOI

[KW09.] C. Khare; J.-P. Wintenberger Serre’s modularity conjecture. I, Invent. Math., Volume 178 (2009), pp. 485-504 | MR | Zbl | DOI

[Lab11.] J.-P. Labesse Changement de base CM et séries discrètes, On the stabilization of the trace formula, 1, Int. Press, Somerville, 2011, pp. 429-470 | MR

[Lan70.] R. P. Langlands Problems in the Theory of Automorphic Forms, Lectures in Modern Analysis and Applications, III, 170, 1970, pp. 18-61 | MR | Zbl

[Lan89.] R. Langlands On the classification of irreducible representations of real algebraic groups, Representation Theory and Harmonic Analysis on Semisimple Lie Groups, 31, Am. Math. Soc., Providence, 1989, pp. 101-170 | MR | Zbl | DOI

[LN08.] G. Laumon; B.C. Ngô Le lemme fondamental pour les groupes unitaires, Ann. Math. (2), Volume 168 (2008), pp. 477-573 | MR | Zbl | DOI

[Loe11.] D. Loeffler Overconvergent algebraic automorphic forms, Proc. Lond. Math. Soc. (3), Volume 102 (2011), pp. 193-228 | MR | Zbl | DOI

[LS87.] R. P. Langlands; D. Shelstad On the definition of transfer factors, Math. Ann., Volume 278 (1987), pp. 219-271 | MR | Zbl | DOI

[LS20.] J. Lust; S. Stevens On depth zero L-packets for classical groups, Proc. Lond. Math. Soc. (3), Volume 121 (2020), pp. 1083-1120 | MR | Zbl | DOI

[Lus76.] G. Lusztig On the finiteness of the number of unipotent classes, Invent. Math., Volume 34 (1976), pp. 201-213 | MR | Zbl | DOI

[Lus77.] G. Lusztig Irreducible representations of finite classical groups, Invent. Math., Volume 43 (1977), pp. 125-175 | MR | Zbl | DOI

[LWX17.] R. Liu; D. Wan; L. Xiao The eigencurve over the boundary of weight space, Duke Math. J., Volume 166 (2017), pp. 1739-1787 | MR | Zbl

[Mai02.] C. Maire On the 𝐙 l -rank of abelian extensions with restricted ramification, J. Number Theory, Volume 92 (2002), pp. 376-404 | MR | Zbl | DOI

[Maz97.] B. Mazur An “infinite fern” in the universal deformation space of Galois representations, Collect. Math., Volume 48 (1997), pp. 155-193 | MR | Zbl

[Mœg07.] C. Mœglin Classification et changement de base pour les séries discrètes des groupes unitaires p-adiques, Pac. J. Math., Volume 233 (2007), pp. 159-204 | Zbl | MR | DOI

[Mœg14.] C. Mœglin Paquets stables des séries discrètes accessibles par endoscopie tordue; leur paramètre de Langlands, Automorphic forms and related geometry: assessing the legacy of I. I. Piatetski-Shapiro, Contemp. Math., 614, Am. Math. Soc., Providence, 2014, pp. 295-336 | MR | Zbl | DOI

[Mor99.] L. Morris Level zero 𝐆-types, Compos. Math., Volume 118 (1999), pp. 135-157 | MR | Zbl | DOI

[Mor10.] S. Morel On the Cohomology of Certain Noncompact Shimura Varieties, 173, Princeton University Press, Princeton, 2010 with an appendix by Robert Kottwitz (English) | Zbl | MR | DOI

[MP96.] A. Moy; G. Prasad Jacquet functors and unrefined minimal K-types, Comment. Math. Helv., Volume 71 (1996), pp. 98-121 | MR | Zbl | DOI

[Mur85.] V. Kumar Murty Explicit formulae and the Lang–Trotter conjecture, Rocky Mt. J. Math., Volume 15 (1985), pp. 535-551 Number theory (Winnipeg, Man., 1983) | MR | Zbl

[MW89.] C. Mœglin; J.-L. Waldspurger Le spectre résiduel de GL (n), Ann. Sci. Éc. Norm. Supér. (4), Volume 22 (1989), pp. 605-674 | Zbl | MR | Numdam | DOI

[Nak13.] K. Nakamura Deformations of trianguline B-pairs and Zariski density of two dimensional crystalline representations, J. Math. Sci. Univ. Tokyo, Volume 20 (2013), pp. 461-568 | MR | Zbl

[NT.] J. Newton; J. A. Thorne Symmetric power functoriality for holomorphic modular forms, II, Publ. Math. IHES (2021) | MR | Zbl | DOI

[NT20.] J. Newton and J. A. Thorne, Adjoint Selmer groups of automorphic Galois representations of unitary type, J. Eur. Math. Soc. (2020), in press, | arXiv | MR

[OS15.] S. Orlik; M. Strauch On Jordan–Hölder series of some locally analytic representations, J. Am. Math. Soc., Volume 28 (2015), pp. 99-157 | Zbl | MR | DOI

[Pil13.] V. Pilloni Overconvergent modular forms, Ann. Inst. Fourier (Grenoble), Volume 63 (2013), pp. 219-239 | MR | Zbl | Numdam | DOI

[Rib84.] K. A. Ribet Congruence relations between modular forms, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (1984), pp. 503-514 | Zbl | MR

[Rod82.] F. Rodier Représentations de GL (n,k)k est un corps p-adique, Bourbaki Seminar, Vol. 1981/1982, 92, Soc. Math. France, Paris, 1982, pp. 201-218 | MR | Zbl | Numdam

[Rog90.] J. D. Rogawski Automorphic Representations of Unitary Groups in Three Variables, 123, Princeton University Press, Princeton, 1990 | Zbl | MR | DOI

[RT17.] J. Rouse; J. Thorner The explicit Sato–Tate conjecture and densities pertaining to Lehmer-type questions, Trans. Am. Math. Soc., Volume 369 (2017), pp. 3575-3604 | MR | Zbl | DOI

[Sen73.] S. Sen Lie algebras of Galois groups arising from Hodge–Tate modules, Ann. Math. (2), Volume 97 (1973), pp. 160-170 | MR | Zbl | DOI

[Shi11.] S. Woo Shin Galois representations arising from some compact Shimura varieties, Ann. Math. (2), Volume 173 (2011), pp. 1645-1741 | MR | Zbl | DOI

[Sho18.] J. Shotton The Breuil–Mézard conjecture when lp, Duke Math. J., Volume 167 (2018), pp. 603-678 | MR | Zbl | DOI

[Sor17.] C. Sorensen A note on Jacquet functors and ordinary parts, Math. Scand., Volume 121 (2017), pp. 311-319 | MR | Zbl | DOI

[Taï16.] O. Taïbi Eigenvarieties for classical groups and complex conjugations in Galois representations, Math. Res. Lett., Volume 23 (2016), pp. 1167-1220 | MR | Zbl | DOI

[Tay08.] R. Taylor Automorphy for some l-adic lifts of automorphic mod l Galois representations. II, Publ. Math., Volume 108 (2008), pp. 183-239 | MR | Zbl | Numdam | DOI

[Tho12.] J. Thorne On the automorphy of l-adic Galois representations with small residual image, J. Inst. Math. Jussieu, Volume 11 (2012), pp. 855-920 (With an appendix by Robert Guralnick, Florian Herzig, Richard Taylor and Thorne) | MR | Zbl | DOI

[Tho14a.] J. A. Thorne Raising the level for GL n , Forum Math. Sigma, Volume 2 (2014) | Zbl | MR | DOI

[Tho14b.] J. Thorner The error term in the Sato–Tate conjecture, Arch. Math. (Basel), Volume 103 (2014), pp. 147-156 | MR | Zbl | DOI

[Tho15.] J. A. Thorne Automorphy lifting for residually reducible l-adic Galois representations, J. Am. Math. Soc., Volume 28 (2015), pp. 785-870 | MR | Zbl | DOI

[Tho16.] J. A. Thorne Automorphy of some residually dihedral Galois representations, Math. Ann., Volume 364 (2016), pp. 589-648 | MR | Zbl | DOI

[TY07.] R. Taylor; T. Yoshida Compatibility of local and global Langlands correspondences, J. Am. Math. Soc., Volume 20 (2007), pp. 467-493 (electronic) | MR | Zbl | DOI

[Vig98.] M.-F. Vignéras Induced R-representations of p-adic reductive groups, Sel. Math. New Ser., Volume 4 (1998), pp. 549-623 | MR | Zbl | DOI

[Vig01.] M.-F. Vignéras Correspondance de Langlands semi-simple pour GL (n,F) modulo lp, Invent. Math., Volume 144 (2001), pp. 177-223 | MR | Zbl | DOI

[Wal03.] J.-L. Waldspurger La formule de Plancherel pour les groupes p-adiques (d’après Harish-Chandra), J. Inst. Math. Jussieu, Volume 2 (2003), pp. 235-333 | MR | Zbl | DOI

[Wes04.] T. Weston Unobstructed modular deformation problems, Am. J. Math., Volume 126 (2004), pp. 1237-1252 | MR | Zbl | DOI

[Zel80.] A. V. Zelevinsky Induced representations of reductive 𝔭-adic groups, Ann. Sci. Éc. Norm. Supér. (4), Volume 13 (1980), pp. 165-210 | Zbl | MR | Numdam | DOI

Cited by Sources: