Let be a cuspidal Hecke eigenform of level 1. We prove the automorphy of the symmetric power lifting for every .
We establish the same result for a more general class of cuspidal Hecke eigenforms, including all those associated to semistable elliptic curves over .
@article{PMIHES_2021__134__1_0,
author = {James Newton and Jack A. Thorne},
title = {Symmetric power functoriality for holomorphic modular forms},
journal = {Publications Math\'ematiques de l'IH\'ES},
pages = {1--116},
year = {2021},
publisher = {Springer International Publishing},
address = {Cham},
volume = {134},
doi = {10.1007/s10240-021-00127-3},
mrnumber = {4349240},
zbl = {1503.11085},
language = {en},
url = {https://pmihes.centre-mersenne.org/articles/10.1007/s10240-021-00127-3/}
}
TY - JOUR AU - James Newton AU - Jack A. Thorne TI - Symmetric power functoriality for holomorphic modular forms JO - Publications Mathématiques de l'IHÉS PY - 2021 SP - 1 EP - 116 VL - 134 PB - Springer International Publishing PP - Cham UR - https://pmihes.centre-mersenne.org/articles/10.1007/s10240-021-00127-3/ DO - 10.1007/s10240-021-00127-3 LA - en ID - PMIHES_2021__134__1_0 ER -
%0 Journal Article %A James Newton %A Jack A. Thorne %T Symmetric power functoriality for holomorphic modular forms %J Publications Mathématiques de l'IHÉS %D 2021 %P 1-116 %V 134 %I Springer International Publishing %C Cham %U https://pmihes.centre-mersenne.org/articles/10.1007/s10240-021-00127-3/ %R 10.1007/s10240-021-00127-3 %G en %F PMIHES_2021__134__1_0
James Newton; Jack A. Thorne. Symmetric power functoriality for holomorphic modular forms. Publications Mathématiques de l'IHÉS, Volume 134 (2021), pp. 1-116. doi: 10.1007/s10240-021-00127-3
[AC89.] Simple Algebras, Base Change, and the Advanced Theory of the Trace Formula, 120, Princeton University Press, Princeton, 1989 | Zbl | MR
[All16.] Deformations of polarized automorphic Galois representations and adjoint Selmer groups, Duke Math. J., Volume 165 (2016), pp. 2407-2460 | MR | Zbl | DOI
[ANT20.] Automorphy lifting for residually reducible -adic Galois representations, II, Compos. Math., Volume 156 (2020), pp. 2399-2422 | MR | Zbl | DOI
[AT21.] Raising the level of automorphic representations of of unitary type, J. Inst. Math. Jussieu (2021) (In press) | DOI | MR | Zbl
[BC05.] K. Buzzard and F. Calegari, The 2-adic eigencurve is proper, arXiv Mathematics e-prints (2005), | arXiv | MR
[BC09.] J. Bellaïche and G. Chenevier, Families of Galois representations and Selmer groups, Astérisque, 324 (2009), xii+314. | MR | Numdam
[BC11.] The sign of Galois representations attached to automorphic forms for unitary groups, Compos. Math., Volume 147 (2011), pp. 1337-1352 | MR | Zbl | DOI
[Ber08.] Équations différentielles -adiques et -modules filtrés, Astérisque, Volume 319 (2008), pp. 13-38 Représentations -adiques de groupes -adiques. I. Représentations galoisiennes et -modules | Zbl | MR | Numdam
[Ber17.] Paraboline variation over -adic families of -modules, Compos. Math., Volume 153 (2017), pp. 132-174 | MR | Zbl | DOI
[BG19.] -valued local deformation rings and global lifts, Algebra Number Theory, Volume 13 (2019), pp. 333-378 | MR | Zbl | DOI
[BGR84.] Non-archimedean Analysis: A Systematic Approach to Rigid Analytic Geometry, 261, Springer, Berlin, 1984 | Zbl | MR | DOI
[BHS17.] Une interprétation modulaire de la variété trianguline, Math. Ann., Volume 367 (2017), pp. 1587-1645 | MR | Zbl | DOI
[BK98.] Smooth representations of reductive -adic groups: structure theory via types, Proc. Lond. Math. Soc. (3), Volume 77 (1998), pp. 582-634 | MR | Zbl | DOI
[BK05.] The 2-adic eigencurve at the boundary of weight space, Compos. Math., Volume 141 (2005), pp. 605-619 | MR | Zbl | DOI
[BK16.] An application of the effective Sato-Tate conjecture, Frobenius distributions: Lang–Trotter and Sato–Tate conjectures, Contemp. Math., 663, Am. Math. Soc., Providence, 2016, pp. 45-56 | MR | Zbl | DOI
[BLGG11.] The Sato–Tate conjecture for Hilbert modular forms, J. Am. Math. Soc., Volume 24 (2011), pp. 411-469 | MR | Zbl | DOI
[BLGGT14.] Potential automorphy and change of weight, Ann. Math. (2), Volume 179 (2014), pp. 501-609 | MR | Zbl | DOI
[BLGHT11.] A family of Calabi–Yau varieties and potential automorphy II, Publ. Res. Inst. Math. Sci., Volume 47 (2011), pp. 29-98 | MR | Zbl | DOI
[Bre15.] Vers le socle localement analytique pour II, Math. Ann., Volume 361 (2015), pp. 741-785 | MR | Zbl | DOI
[Bre16.] Socle localement analytique I, Ann. Inst. Fourier (Grenoble), Volume 66 (2016), pp. 633-685 | MR | Zbl | DOI
[BS07.] First steps towards -adic Langlands functoriality, J. Reine Angew. Math., Volume 610 (2007), pp. 149-180 | MR | Zbl
[Buz04.] On -adic families of automorphic forms, Modular Curves and Abelian Varieties, 224, Birkhäuser, Basel, 2004, pp. 23-44 | MR | Zbl | DOI
[Buz07.] Eigenvarieties, -functions and Galois representations, London Math. Soc. Lecture Note Ser., 320, Cambridge University Press, Cambridge, 2007, pp. 59-120 | MR | Zbl
[BZ77.] Induced representations of reductive -adic groups. I, Ann. Sci. Éc. Norm. Supér. (4), Volume 10 (1977), pp. 441-472 | MR | Zbl | Numdam | DOI
[Car12.] Local-global compatibility and the action of monodromy on nearby cycles, Duke Math. J., Volume 161 (2012), pp. 2311-2413 | MR | Zbl | DOI
[Car14.] Monodromy and local-global compatibility for , Algebra Number Theory, Volume 8 (2014), pp. 1597-1646 | MR | Zbl | DOI
[CEG+16.] Patching and the -adic local Langlands correspondence, Camb. J. Math., Volume 4 (2016), pp. 197-287 | MR | Zbl | DOI
[Che51.] Deux théorèmes d’arithmétique, J. Math. Soc. Jpn., Volume 3 (1951), pp. 36-44 | Zbl | MR | DOI
[Che04.] Familles -adiques de formes automorphes pour , J. Reine Angew. Math., Volume 570 (2004), pp. 143-217 | MR | Zbl
[Che05.] Une correspondance de Jacquet-Langlands -adique, Duke Math. J., Volume 126 (2005), pp. 161-194 | MR | Zbl | DOI
[Che11.] On the infinite fern of Galois representations of unitary type, Ann. Sci. Éc. Norm. Supér. (4), Volume 44 (2011), pp. 963-1019 | MR | Zbl | Numdam | DOI
[Che14.] The -adic analytic space of pseudocharacters of a profinite group and pseudorepresentations over arbitrary rings, Automorphic Forms and Galois Representations, Vol. 1, 414, Cambridge University Press, Cambridge, 2014, pp. 221-285 | Zbl | MR | DOI
[CHT08.] Automorphy for some -adic lifts of automorphic mod Galois representations, Publ. Math. Inst. Hautes Études Sci., Volume 108 (2008), pp. 1-181 (With Appendix A, summarizing unpublished work of Russ Mann, and Appendix B by Marie-France Vignéras) | MR | Zbl | Numdam | DOI
[Clo82.] Changement de base pour les représentations tempérées des groupes réductifs réels, Ann. Sci. Éc. Norm. Supér. (4), Volume 15 (1982), pp. 45-115 | Zbl | MR | Numdam | DOI
[Clo90a.] The fundamental lemma for stable base change, Duke Math. J., Volume 61 (1990), pp. 255-302 | MR | Zbl | DOI
[Clo90b.] Motifs et formes automorphes: applications du principe de fonctorialité, automorphic forms, Shimura Varieties, and -Functions, Vol. I, Volume 10 (1990), pp. 77-159 | MR | Zbl
[Clo13.] Purity reigns supreme, Int. Math. Res. Not., Volume 2 (2013), pp. 328-346 | MR | Zbl | DOI
[Col96.] Classical and overconvergent modular forms, Invent. Math., Volume 124 (1996), pp. 215-241 | MR | Zbl | DOI
[Col97.] Classical and overconvergent modular forms of higher level, J. Théor. Nr. Bordx., Volume 9 (1997), pp. 395-403 | MR | Zbl | Numdam | DOI
[Col08.] Représentations triangulines de dimension 2, Astérisque, Volume 319 (2008), pp. 213-258 Représentations -adiques de groupes -adiques. I. Représentations galoisiennes et -modules | MR | Zbl | Numdam
[Con99.] Irreducible components of rigid spaces, Ann. Inst. Fourier (Grenoble), Volume 49 (1999), pp. 473-541 | MR | Zbl | Numdam | DOI
[Con06.] Relative ampleness in rigid geometry, Ann. Inst. Fourier (Grenoble), Volume 56 (2006), pp. 1049-1126 | MR | Zbl | Numdam | DOI
[CT14.] Level-raising and symmetric power functoriality, I, Compos. Math., Volume 150 (2014), pp. 729-748 | MR | Zbl | DOI
[CT15.] Level raising and symmetric power functoriality, II, Ann. Math. (2), Volume 181 (2015), pp. 303-359 | MR | Zbl | DOI
[CT17.] Level-raising and symmetric power functoriality, III, Duke Math. J., Volume 166 (2017), pp. 325-402 | MR | Zbl | DOI
[DI95.] Modular forms and modular curves, Seminar on Fermat’s Last Theorem, Volume 17 (1995), pp. 39-133 | MR | Zbl
[Dia89.] On congruence modules associated to -adic forms, Compos. Math., Volume 71 (1989), pp. 49-83 | MR | Zbl | Numdam
[Die15.] Automorphy of and base change, J. Math. Pures Appl. (9), Volume 104 (2015), pp. 619-656 | MR | Zbl | DOI
[DL76.] Representations of reductive groups over finite fields, Ann. Math. (2), Volume 103 (1976), pp. 103-161 | MR | Zbl | DOI
[DM18.] Modular irreducibility of cuspidal unipotent characters, Invent. Math., Volume 211 (2018), pp. 579-589 | MR | Zbl | DOI
[DMW09.] Euler factors and local root numbers for symmetric powers of elliptic curves, Pure Appl. Math. Q., Volume 5 (2009), pp. 1311-1341 (Special Issue: in honor of John Tate. Part 1) | MR | Zbl | DOI
[DT94.] Nonoptimal levels of mod modular representations, Invent. Math., Volume 115 (1994), pp. 435-462 | MR | Zbl | DOI
[Edi92.] The weight in Serre’s conjectures on modular forms, Invent. Math., Volume 109 (1992), pp. 563-594 | MR | Zbl | DOI
[Eme06a.] Jacquet modules of locally analytic representations of -adic reductive groups. I. Construction and first properties, Ann. Sci. Éc. Norm. Supér. (4), Volume 39 (2006), pp. 775-839 | MR | Zbl | DOI
[Eme06b.] On the interpolation of systems of eigenvalues attached to automorphic Hecke eigenforms, Invent. Math., Volume 164 (2006), pp. 1-84 | MR | Zbl | DOI
[FvdP04.] Rigid Analytic Geometry and Its Applications, 218, Birkhäuser Boston, Inc., Boston, 2004 | Zbl | MR | DOI
[GD71.] Éléments de géométrie algébrique. I, 166, Springer, Berlin, 1971 | Zbl | MR
[Gec90.] Irreducible Brauer characters of the 3-dimensional special unitary groups in nondefining characteristic, Commun. Algebra, Volume 18 (1990), pp. 563-584 | MR | Zbl | DOI
[Gee11.] Automorphic lifts of prescribed types, Math. Ann., Volume 350 (2011), pp. 107-144 | MR | Zbl | DOI
[Ger19.] Modularity lifting theorems for ordinary Galois representations, Math. Ann., Volume 373 (2019), pp. 1341-1427 | MR | Zbl | DOI
[GGP12.] Symplectic local root numbers, central critical values, and restriction problems in the representation theory of classical groups, Astérisque, Volume 346 (2012), pp. 1-109 (Sur les conjectures de Gross et Prasad. I) | MR | Zbl | Numdam
[GJ78.] A relation between automorphic representations of and , Ann. Sci. Éc. Norm. Supér. (4), Volume 11 (1978), pp. 471-542 | MR | Zbl | Numdam | DOI
[Hal93.] A simple definition of transfer factors for unramified groups, Representation Theory of Groups and Algebras, 145, Am. Math. Soc., Providence, 1993, pp. 109-134 | Zbl | MR | DOI
[Hen92.] Correspondance de Langlands–Kazhdan explicite dans le cas non ramifié, Math. Nachr., Volume 158 (1992), pp. 7-26 | MR | Zbl | DOI
[Hen00.] Une preuve simple des conjectures de Langlands pour sur un corps -adique, Invent. Math., Volume 139 (2000), pp. 439-455 | MR | Zbl | DOI
[Hir04.] On functoriality of Zelevinski involutions, Compos. Math., Volume 140 (2004), pp. 1625-1656 | MR | Zbl | DOI
[HS16.] Density of potentially crystalline representations of fixed weight, Compos. Math., Volume 152 (2016), pp. 1609-1647 | MR | Zbl | DOI
[HT01.] The Geometry and Cohomology of Some Simple Shimura Varieties, 151, Princeton University Press, Princeton, 2001 (With an appendix by Vladimir G. Berkovich) | Zbl | MR
[JS81.] On Euler products and the classification of automorphic forms. II, Am. J. Math., Volume 103 (1981), pp. 777-815 | MR | Zbl | DOI
[Kal11.] Endoscopic character identities for depth-zero supercuspidal -packets, Duke Math. J., Volume 158 (2011), pp. 161-224 | MR | Zbl | DOI
[Kal16.] Rigid inner forms of real and -adic groups, Ann. Math. (2), Volume 184 (2016), pp. 559-632 | MR | Zbl | DOI
[Kal18.] Global rigid inner forms and multiplicities of discrete automorphic representations, Invent. Math., Volume 213 (2018), pp. 271-369 | MR | Zbl | DOI
[Kim03.] Functoriality for the exterior square of and the symmetric fourth of , J. Am. Math. Soc., Volume 16 (2003), pp. 139-183 (With Appendix 1 by Dinakar Ramakrishnan and appendix 2 by Kim and Peter Sarnak) | MR | Zbl | DOI
[Kis03.] Overconvergent modular forms and the Fontaine–Mazur conjecture, Invent. Math., Volume 153 (2003), pp. 373-454 | MR | Zbl | DOI
[Kis08.] Potentially semi-stable deformation rings, J. Am. Math. Soc., Volume 21 (2008), pp. 513-546 | MR | Zbl | DOI
[Kis09.] Moduli of finite flat group schemes, and modularity, Ann. Math. (2), Volume 170 (2009), pp. 1085-1180 | MR | Zbl | DOI
[Köp74.] Über eigentliche Familien algebraischer Varietäten über affinoiden Räumen, 2, 1974 (Heft 7, iv+72) | Zbl | MR
[KPX14.] Cohomology of arithmetic families of -modules, J. Am. Math. Soc., Volume 27 (2014), pp. 1043-1115 | MR | Zbl | DOI
[KS99.] R. E. Kottwitz and D. Shelstad, Foundations of twisted endoscopy, Astérisque, 255 (1999), vi+190, | MR | Numdam
[KS02.] Functorial products for and the symmetric cube for , Ann. Math. (2), Volume 155 (2002), pp. 837-893 (With an appendix by Colin J. Bushnell and Guy Henniart) | MR | Zbl | DOI
[KT17.] Potential automorphy and the Leopoldt conjecture, Am. J. Math., Volume 139 (2017), pp. 1205-1273 | MR | Zbl | DOI
[KV12.] On endoscopic transfer of Deligne–Lusztig functions, Duke Math. J., Volume 161 (2012), pp. 675-732 | MR | Zbl | DOI
[KW09.] Serre’s modularity conjecture. I, Invent. Math., Volume 178 (2009), pp. 485-504 | MR | Zbl | DOI
[Lab11.] Changement de base CM et séries discrètes, On the stabilization of the trace formula, 1, Int. Press, Somerville, 2011, pp. 429-470 | MR
[Lan70.] Problems in the Theory of Automorphic Forms, Lectures in Modern Analysis and Applications, III, 170, 1970, pp. 18-61 | MR | Zbl
[Lan89.] On the classification of irreducible representations of real algebraic groups, Representation Theory and Harmonic Analysis on Semisimple Lie Groups, 31, Am. Math. Soc., Providence, 1989, pp. 101-170 | MR | Zbl | DOI
[LN08.] Le lemme fondamental pour les groupes unitaires, Ann. Math. (2), Volume 168 (2008), pp. 477-573 | MR | Zbl | DOI
[Loe11.] Overconvergent algebraic automorphic forms, Proc. Lond. Math. Soc. (3), Volume 102 (2011), pp. 193-228 | MR | Zbl | DOI
[LS87.] On the definition of transfer factors, Math. Ann., Volume 278 (1987), pp. 219-271 | MR | Zbl | DOI
[LS20.] On depth zero L-packets for classical groups, Proc. Lond. Math. Soc. (3), Volume 121 (2020), pp. 1083-1120 | MR | Zbl | DOI
[Lus76.] On the finiteness of the number of unipotent classes, Invent. Math., Volume 34 (1976), pp. 201-213 | MR | Zbl | DOI
[Lus77.] Irreducible representations of finite classical groups, Invent. Math., Volume 43 (1977), pp. 125-175 | MR | Zbl | DOI
[LWX17.] The eigencurve over the boundary of weight space, Duke Math. J., Volume 166 (2017), pp. 1739-1787 | MR | Zbl
[Mai02.] On the -rank of abelian extensions with restricted ramification, J. Number Theory, Volume 92 (2002), pp. 376-404 | MR | Zbl | DOI
[Maz97.] An “infinite fern” in the universal deformation space of Galois representations, Collect. Math., Volume 48 (1997), pp. 155-193 | MR | Zbl
[Mœg07.] Classification et changement de base pour les séries discrètes des groupes unitaires -adiques, Pac. J. Math., Volume 233 (2007), pp. 159-204 | Zbl | MR | DOI
[Mœg14.] Paquets stables des séries discrètes accessibles par endoscopie tordue; leur paramètre de Langlands, Automorphic forms and related geometry: assessing the legacy of I. I. Piatetski-Shapiro, Contemp. Math., 614, Am. Math. Soc., Providence, 2014, pp. 295-336 | MR | Zbl | DOI
[Mor99.] Level zero -types, Compos. Math., Volume 118 (1999), pp. 135-157 | MR | Zbl | DOI
[Mor10.] On the Cohomology of Certain Noncompact Shimura Varieties, 173, Princeton University Press, Princeton, 2010 with an appendix by Robert Kottwitz (English) | Zbl | MR | DOI
[MP96.] Jacquet functors and unrefined minimal -types, Comment. Math. Helv., Volume 71 (1996), pp. 98-121 | MR | Zbl | DOI
[Mur85.] Explicit formulae and the Lang–Trotter conjecture, Rocky Mt. J. Math., Volume 15 (1985), pp. 535-551 Number theory (Winnipeg, Man., 1983) | MR | Zbl
[MW89.] Le spectre résiduel de , Ann. Sci. Éc. Norm. Supér. (4), Volume 22 (1989), pp. 605-674 | Zbl | MR | Numdam | DOI
[Nak13.] Deformations of trianguline -pairs and Zariski density of two dimensional crystalline representations, J. Math. Sci. Univ. Tokyo, Volume 20 (2013), pp. 461-568 | MR | Zbl
[NT.] Symmetric power functoriality for holomorphic modular forms, II, Publ. Math. IHES (2021) | MR | Zbl | DOI
[NT20.] J. Newton and J. A. Thorne, Adjoint Selmer groups of automorphic Galois representations of unitary type, J. Eur. Math. Soc. (2020), in press, | arXiv | MR
[OS15.] On Jordan–Hölder series of some locally analytic representations, J. Am. Math. Soc., Volume 28 (2015), pp. 99-157 | Zbl | MR | DOI
[Pil13.] Overconvergent modular forms, Ann. Inst. Fourier (Grenoble), Volume 63 (2013), pp. 219-239 | MR | Zbl | Numdam | DOI
[Rib84.] Congruence relations between modular forms, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (1984), pp. 503-514 | Zbl | MR
[Rod82.] Représentations de où est un corps -adique, Bourbaki Seminar, Vol. 1981/1982, 92, Soc. Math. France, Paris, 1982, pp. 201-218 | MR | Zbl | Numdam
[Rog90.] Automorphic Representations of Unitary Groups in Three Variables, 123, Princeton University Press, Princeton, 1990 | Zbl | MR | DOI
[RT17.] The explicit Sato–Tate conjecture and densities pertaining to Lehmer-type questions, Trans. Am. Math. Soc., Volume 369 (2017), pp. 3575-3604 | MR | Zbl | DOI
[Sen73.] Lie algebras of Galois groups arising from Hodge–Tate modules, Ann. Math. (2), Volume 97 (1973), pp. 160-170 | MR | Zbl | DOI
[Shi11.] Galois representations arising from some compact Shimura varieties, Ann. Math. (2), Volume 173 (2011), pp. 1645-1741 | MR | Zbl | DOI
[Sho18.] The Breuil–Mézard conjecture when , Duke Math. J., Volume 167 (2018), pp. 603-678 | MR | Zbl | DOI
[Sor17.] A note on Jacquet functors and ordinary parts, Math. Scand., Volume 121 (2017), pp. 311-319 | MR | Zbl | DOI
[Taï16.] Eigenvarieties for classical groups and complex conjugations in Galois representations, Math. Res. Lett., Volume 23 (2016), pp. 1167-1220 | MR | Zbl | DOI
[Tay08.] Automorphy for some -adic lifts of automorphic mod Galois representations. II, Publ. Math., Volume 108 (2008), pp. 183-239 | MR | Zbl | Numdam | DOI
[Tho12.] On the automorphy of -adic Galois representations with small residual image, J. Inst. Math. Jussieu, Volume 11 (2012), pp. 855-920 (With an appendix by Robert Guralnick, Florian Herzig, Richard Taylor and Thorne) | MR | Zbl | DOI
[Tho14a.] Raising the level for , Forum Math. Sigma, Volume 2 (2014) | Zbl | MR | DOI
[Tho14b.] The error term in the Sato–Tate conjecture, Arch. Math. (Basel), Volume 103 (2014), pp. 147-156 | MR | Zbl | DOI
[Tho15.] Automorphy lifting for residually reducible -adic Galois representations, J. Am. Math. Soc., Volume 28 (2015), pp. 785-870 | MR | Zbl | DOI
[Tho16.] Automorphy of some residually dihedral Galois representations, Math. Ann., Volume 364 (2016), pp. 589-648 | MR | Zbl | DOI
[TY07.] Compatibility of local and global Langlands correspondences, J. Am. Math. Soc., Volume 20 (2007), pp. 467-493 (electronic) | MR | Zbl | DOI
[Vig98.] Induced -representations of -adic reductive groups, Sel. Math. New Ser., Volume 4 (1998), pp. 549-623 | MR | Zbl | DOI
[Vig01.] Correspondance de Langlands semi-simple pour modulo , Invent. Math., Volume 144 (2001), pp. 177-223 | MR | Zbl | DOI
[Wal03.] La formule de Plancherel pour les groupes -adiques (d’après Harish-Chandra), J. Inst. Math. Jussieu, Volume 2 (2003), pp. 235-333 | MR | Zbl | DOI
[Wes04.] Unobstructed modular deformation problems, Am. J. Math., Volume 126 (2004), pp. 1237-1252 | MR | Zbl | DOI
[Zel80.] Induced representations of reductive -adic groups, Ann. Sci. Éc. Norm. Supér. (4), Volume 13 (1980), pp. 165-210 | Zbl | MR | Numdam | DOI
Cited by Sources: