Article
Symmetric power functoriality for holomorphic modular forms, II
Publications Mathématiques de l'IHÉS, Volume 134 (2021), pp. 117-152

Let f be a cuspidal Hecke eigenform without complex multiplication. We prove the automorphy of the symmetric power lifting Sym n f for every n1.

Received:
Accepted:
Online First:
Published online:
DOI: 10.1007/s10240-021-00126-4
@article{PMIHES_2021__134__117_0,
     author = {James Newton and Jack A. Thorne},
     title = {Symmetric power functoriality for holomorphic modular forms, {II}},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {117--152},
     year = {2021},
     publisher = {Springer International Publishing},
     address = {Cham},
     volume = {134},
     doi = {10.1007/s10240-021-00126-4},
     mrnumber = {4349241},
     zbl = {1503.11086},
     language = {en},
     url = {https://pmihes.centre-mersenne.org/articles/10.1007/s10240-021-00126-4/}
}
TY  - JOUR
AU  - James Newton
AU  - Jack A. Thorne
TI  - Symmetric power functoriality for holomorphic modular forms, II
JO  - Publications Mathématiques de l'IHÉS
PY  - 2021
SP  - 117
EP  - 152
VL  - 134
PB  - Springer International Publishing
PP  - Cham
UR  - https://pmihes.centre-mersenne.org/articles/10.1007/s10240-021-00126-4/
DO  - 10.1007/s10240-021-00126-4
LA  - en
ID  - PMIHES_2021__134__117_0
ER  - 
%0 Journal Article
%A James Newton
%A Jack A. Thorne
%T Symmetric power functoriality for holomorphic modular forms, II
%J Publications Mathématiques de l'IHÉS
%D 2021
%P 117-152
%V 134
%I Springer International Publishing
%C Cham
%U https://pmihes.centre-mersenne.org/articles/10.1007/s10240-021-00126-4/
%R 10.1007/s10240-021-00126-4
%G en
%F PMIHES_2021__134__117_0
James Newton; Jack A. Thorne. Symmetric power functoriality for holomorphic modular forms, II. Publications Mathématiques de l'IHÉS, Volume 134 (2021), pp. 117-152. doi: 10.1007/s10240-021-00126-4

[ANT20.] P. B. Allen; J. Newton; J. A. Thorne Automorphy lifting for residually reducible l-adic Galois representations, II, Compos. Math., Volume 156 (2020), pp. 2399-2422 | MR | Zbl | DOI

[BBM82.] P. Berthelot; L. Breen; W. Messing Théorie de Dieudonné cristalline. II, 930, Springer, Berlin, 1982 | MR | Zbl | DOI

[BC09.] J. Bellaïche; G. Chenevier Families of Galois representations and Selmer groups, Astérisque, Volume 324 (2009), p. xii+314 | MR | Zbl | Numdam

[BCDT01.] C. Breuil; B. Conrad; F. Diamond; R. Taylor On the modularity of elliptic curves over 𝐐: wild 3-adic exercises, J. Am. Math. Soc., Volume 14 (2001), pp. 843-939 (electronic) | MR | Zbl | DOI

[BDJ10.] K. Buzzard; F. Diamond; F. Jarvis On Serre’s conjecture for mod l Galois representations over totally real fields, Duke Math. J., Volume 155 (2010), pp. 105-161 | MR | DOI | Zbl

[BHKT19.] G. Böckle; M. Harris; C. Khare; J. A. Thorne G ^-local systems on smooth projective curves are potentially automorphic, Acta Math., Volume 223 (2019), pp. 1-111 | MR | DOI | Zbl

[BLGG11.] T. Barnet-Lamb; T. Gee; D. Geraghty The Sato-Tate conjecture for Hilbert modular forms, J. Am. Math. Soc., Volume 24 (2011), pp. 411-469 | MR | Zbl | DOI

[BLGGT14.] T. Barnet-Lamb; T. Gee; D. Geraghty; R. Taylor Potential automorphy and change of weight, Ann. Math. (2), Volume 179 (2014), pp. 501-609 | MR | DOI | Zbl

[BLGHT11.] T. Barnet-Lamb; D. Geraghty; M. Harris; R. Taylor A family of Calabi-Yau varieties and potential automorphy II, Publ. Res. Inst. Math. Sci., Volume 47 (2011), pp. 29-98 | MR | Zbl | DOI

[BM02.] C. Breuil; A. Mézard Multiplicités modulaires et représentations de GL 2 (𝐙 p ) et de Gal (𝐐 ¯ p /𝐐 p ) en l=p, Duke Math. J., Volume 115 (2002), pp. 205-310 (With an appendix by Guy Henniart) | MR | Zbl

[Car14.] A. Caraiani Monodromy and local-global compatibility for l=p, Algebra Number Theory, Volume 8 (2014), pp. 1597-1646 | MR | DOI | Zbl

[Che14.] G. Chenevier The p-adic analytic space of pseudocharacters of a profinite group and pseudorepresentations over arbitrary rings, Automorphic Forms and Galois Representations. Vol. 1, 414, Cambridge University Press, Cambridge, 2014, pp. 221-285 | DOI | MR | Zbl

[CPS75.] E. Cline; B. Parshall; L. Scott Cohomology of finite groups of Lie type. I, Inst. Hautes Études Sci. Publ. Math., Volume 45 (1975), pp. 169-191 | MR | DOI | Zbl | Numdam

[CT14.] L. Clozel; J. A. Thorne Level-raising and symmetric power functoriality, I, Compos. Math., Volume 150 (2014), pp. 729-748 | MR | DOI | Zbl

[DDT97.] H. Darmon; F. Diamond; R. Taylor Fermat’s last theorem, Elliptic Curves, Modular Forms & Fermat’s Last Theorem (1997), pp. 2-140 | MR

[DMW09.] N. Dummigan, P. Martin and M. Watkins, Euler factors and local root numbers for symmetric powers of elliptic curves, Pure Appl. Math. Q., 5 (2009), Special Issue: in honor of John Tate. Part 1, 1311–1341. | MR

[DS74.] P. Deligne; J.-P. Serre Formes modulaires de poids 1, Ann. Sci. Éc. Norm. Supér. (4), Volume 7 (1975), pp. 507-530 | MR | Zbl | Numdam | DOI

[GAP20.] The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.11.0, 2020.

[Gee11.] T. Gee Automorphic lifts of prescribed types, Math. Ann., Volume 350 (2011), pp. 107-144 | MR | Zbl | DOI

[Gel75.] S. S. Gelbart Automorphic forms on Adèle groups, 83, Princeton University Press, Princeton/University of Tokyo Press, 1975 | DOI | MR | Zbl

[Ger19.] D. Geraghty Modularity lifting theorems for ordinary Galois representations, Math. Ann., Volume 373 (2019), pp. 1341-1427 | MR | Zbl | DOI

[GK14.] T. Gee; M. Kisin The Breuil–Mézard conjecture for potentially Barsotti–Tate representations, Forum Math. Pi, Volume 2 (2014), p. e1 (56 pages) | DOI | MR | Zbl

[Kha06.] C. Khare Serre’s modularity conjecture: the level one case, Duke Math. J., Volume 134 (2006), pp. 557-589 | MR | Zbl | DOI

[Kim04.] H. H. Kim An example of non-normal quintic automorphic induction and modularity of symmetric powers of cusp forms of icosahedral type, Invent. Math., Volume 156 (2004), pp. 495-502 | MR | DOI | Zbl

[Kis09a.] M. Kisin Modularity of 2-adic Barsotti-Tate representations, Invent. Math., Volume 178 (2009), pp. 587-634 | MR | DOI | Zbl

[Kis09b.] M. Kisin Moduli of finite flat group schemes, and modularity, Ann. Math. (2), Volume 170 (2009), pp. 1085-1180 | MR | Zbl | DOI

[KW09a.] C. Khare; J.-P. Wintenberger Serre’s modularity conjecture. I, Invent. Math., Volume 178 (2009), pp. 485-504 | MR | Zbl | DOI

[KW09b.] C. Khare; J.-P. Wintenberger Serre’s modularity conjecture. II, Invent. Math., Volume 178 (2009), pp. 505-586 | MR | Zbl | DOI

[Lab11.] J.-P. Labesse Changement de base CM et séries discrètes, On the Stabilization of the Trace Formula, 1, Int. Press, Somerville, 2011, pp. 429-470 | MR

[NT16.] J. Newton; J. A. Thorne Torsion Galois representations over CM fields and Hecke algebras in the derived category, Forum Math. Sigma, Volume 4 (2016) | MR | Zbl | DOI

[NT20.] J. Newton and J. A. Thorne, Adjoint Selmer groups of automorphic Galois representations of unitary type, J. Eur. Math. Soc. (2020), in press, | arXiv | MR

[NT21.] J. Newton; J. A. Thorne Symmetric power functoriality for holomorphic modular forms, Publ. Math. IHES (2021) | MR | Zbl | DOI

[Sta13.] The Stacks Project Authors, Stacks Project, http://stacks.math.columbia.edu, 2013.

[Ste08.] R. Stekolshchik Notes on Coxeter Transformations and the McKay Correspondence, Springer, Berlin, 2008 | Zbl | MR

[Tho16.] J. A. Thorne Automorphy of some residually dihedral Galois representations, Math. Ann., Volume 364 (2016), pp. 589-648 | MR | DOI | Zbl

Cited by Sources: