Let be a cuspidal Hecke eigenform without complex multiplication. We prove the automorphy of the symmetric power lifting for every .
@article{PMIHES_2021__134__117_0,
author = {James Newton and Jack A. Thorne},
title = {Symmetric power functoriality for holomorphic modular forms, {II}},
journal = {Publications Math\'ematiques de l'IH\'ES},
pages = {117--152},
year = {2021},
publisher = {Springer International Publishing},
address = {Cham},
volume = {134},
doi = {10.1007/s10240-021-00126-4},
mrnumber = {4349241},
zbl = {1503.11086},
language = {en},
url = {https://pmihes.centre-mersenne.org/articles/10.1007/s10240-021-00126-4/}
}
TY - JOUR AU - James Newton AU - Jack A. Thorne TI - Symmetric power functoriality for holomorphic modular forms, II JO - Publications Mathématiques de l'IHÉS PY - 2021 SP - 117 EP - 152 VL - 134 PB - Springer International Publishing PP - Cham UR - https://pmihes.centre-mersenne.org/articles/10.1007/s10240-021-00126-4/ DO - 10.1007/s10240-021-00126-4 LA - en ID - PMIHES_2021__134__117_0 ER -
%0 Journal Article %A James Newton %A Jack A. Thorne %T Symmetric power functoriality for holomorphic modular forms, II %J Publications Mathématiques de l'IHÉS %D 2021 %P 117-152 %V 134 %I Springer International Publishing %C Cham %U https://pmihes.centre-mersenne.org/articles/10.1007/s10240-021-00126-4/ %R 10.1007/s10240-021-00126-4 %G en %F PMIHES_2021__134__117_0
James Newton; Jack A. Thorne. Symmetric power functoriality for holomorphic modular forms, II. Publications Mathématiques de l'IHÉS, Volume 134 (2021), pp. 117-152. doi: 10.1007/s10240-021-00126-4
[ANT20.] Automorphy lifting for residually reducible -adic Galois representations, II, Compos. Math., Volume 156 (2020), pp. 2399-2422 | MR | Zbl | DOI
[BBM82.] Théorie de Dieudonné cristalline. II, 930, Springer, Berlin, 1982 | MR | Zbl | DOI
[BC09.] Families of Galois representations and Selmer groups, Astérisque, Volume 324 (2009), p. xii+314 | MR | Zbl | Numdam
[BCDT01.] On the modularity of elliptic curves over : wild 3-adic exercises, J. Am. Math. Soc., Volume 14 (2001), pp. 843-939 (electronic) | MR | Zbl | DOI
[BDJ10.] On Serre’s conjecture for mod Galois representations over totally real fields, Duke Math. J., Volume 155 (2010), pp. 105-161 | MR | DOI | Zbl
[BHKT19.] -local systems on smooth projective curves are potentially automorphic, Acta Math., Volume 223 (2019), pp. 1-111 | MR | DOI | Zbl
[BLGG11.] The Sato-Tate conjecture for Hilbert modular forms, J. Am. Math. Soc., Volume 24 (2011), pp. 411-469 | MR | Zbl | DOI
[BLGGT14.] Potential automorphy and change of weight, Ann. Math. (2), Volume 179 (2014), pp. 501-609 | MR | DOI | Zbl
[BLGHT11.] A family of Calabi-Yau varieties and potential automorphy II, Publ. Res. Inst. Math. Sci., Volume 47 (2011), pp. 29-98 | MR | Zbl | DOI
[BM02.] Multiplicités modulaires et représentations de et de en , Duke Math. J., Volume 115 (2002), pp. 205-310 (With an appendix by Guy Henniart) | MR | Zbl
[Car14.] Monodromy and local-global compatibility for , Algebra Number Theory, Volume 8 (2014), pp. 1597-1646 | MR | DOI | Zbl
[Che14.] The -adic analytic space of pseudocharacters of a profinite group and pseudorepresentations over arbitrary rings, Automorphic Forms and Galois Representations. Vol. 1, 414, Cambridge University Press, Cambridge, 2014, pp. 221-285 | DOI | MR | Zbl
[CPS75.] Cohomology of finite groups of Lie type. I, Inst. Hautes Études Sci. Publ. Math., Volume 45 (1975), pp. 169-191 | MR | DOI | Zbl | Numdam
[CT14.] Level-raising and symmetric power functoriality, I, Compos. Math., Volume 150 (2014), pp. 729-748 | MR | DOI | Zbl
[DDT97.] Fermat’s last theorem, Elliptic Curves, Modular Forms & Fermat’s Last Theorem (1997), pp. 2-140 | MR
[DMW09.] N. Dummigan, P. Martin and M. Watkins, Euler factors and local root numbers for symmetric powers of elliptic curves, Pure Appl. Math. Q., 5 (2009), Special Issue: in honor of John Tate. Part 1, 1311–1341. | MR
[DS74.] Formes modulaires de poids 1, Ann. Sci. Éc. Norm. Supér. (4), Volume 7 (1975), pp. 507-530 | MR | Zbl | Numdam | DOI
[GAP20.] The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.11.0, 2020.
[Gee11.] Automorphic lifts of prescribed types, Math. Ann., Volume 350 (2011), pp. 107-144 | MR | Zbl | DOI
[Gel75.] Automorphic forms on Adèle groups, 83, Princeton University Press, Princeton/University of Tokyo Press, 1975 | DOI | MR | Zbl
[Ger19.] Modularity lifting theorems for ordinary Galois representations, Math. Ann., Volume 373 (2019), pp. 1341-1427 | MR | Zbl | DOI
[GK14.] The Breuil–Mézard conjecture for potentially Barsotti–Tate representations, Forum Math. Pi, Volume 2 (2014), p. e1 (56 pages) | DOI | MR | Zbl
[Kha06.] Serre’s modularity conjecture: the level one case, Duke Math. J., Volume 134 (2006), pp. 557-589 | MR | Zbl | DOI
[Kim04.] An example of non-normal quintic automorphic induction and modularity of symmetric powers of cusp forms of icosahedral type, Invent. Math., Volume 156 (2004), pp. 495-502 | MR | DOI | Zbl
[Kis09a.] Modularity of 2-adic Barsotti-Tate representations, Invent. Math., Volume 178 (2009), pp. 587-634 | MR | DOI | Zbl
[Kis09b.] Moduli of finite flat group schemes, and modularity, Ann. Math. (2), Volume 170 (2009), pp. 1085-1180 | MR | Zbl | DOI
[KW09a.] Serre’s modularity conjecture. I, Invent. Math., Volume 178 (2009), pp. 485-504 | MR | Zbl | DOI
[KW09b.] Serre’s modularity conjecture. II, Invent. Math., Volume 178 (2009), pp. 505-586 | MR | Zbl | DOI
[Lab11.] Changement de base CM et séries discrètes, On the Stabilization of the Trace Formula, 1, Int. Press, Somerville, 2011, pp. 429-470 | MR
[NT16.] Torsion Galois representations over CM fields and Hecke algebras in the derived category, Forum Math. Sigma, Volume 4 (2016) | MR | Zbl | DOI
[NT20.] J. Newton and J. A. Thorne, Adjoint Selmer groups of automorphic Galois representations of unitary type, J. Eur. Math. Soc. (2020), in press, | arXiv | MR
[NT21.] Symmetric power functoriality for holomorphic modular forms, Publ. Math. IHES (2021) | MR | Zbl | DOI
[Sta13.] The Stacks Project Authors, Stacks Project, http://stacks.math.columbia.edu, 2013.
[Ste08.] Notes on Coxeter Transformations and the McKay Correspondence, Springer, Berlin, 2008 | Zbl | MR
[Tho16.] Automorphy of some residually dihedral Galois representations, Math. Ann., Volume 364 (2016), pp. 589-648 | MR | DOI | Zbl
Cited by Sources: