Article
Stability conditions in families
Publications Mathématiques de l'IHÉS, Volume 133 (2021), pp. 157-325

We develop a theory of Bridgeland stability conditions and moduli spaces of semistable objects for a family of varieties. Our approach is based on and generalizes previous work by Abramovich–Polishchuk, Kuznetsov, Lieblich, and Piyaratne–Toda. Our notion includes openness of stability, semistable reduction, a support property uniformly across the family, and boundedness of semistable objects. We show that such a structure exists whenever stability conditions are known to exist on the fibers.

Our main application is the generalization of Mukai’s theory for moduli spaces of semistable sheaves on K3 surfaces to moduli spaces of Bridgeland semistable objects in the Kuznetsov component associated to a cubic fourfold. This leads to the extension of theorems by Addington–Thomas and Huybrechts on the derived category of special cubic fourfolds, to a new proof of the integral Hodge conjecture, and to the construction of an infinite series of unirational locally complete families of polarized hyperkähler manifolds of K3 type.

Other applications include the deformation-invariance of Donaldson–Thomas invariants counting Bridgeland stable objects on Calabi–Yau threefolds, and a method for constructing stability conditions on threefolds via degeneration.

Received:
Accepted:
Online First:
Published online:
DOI: 10.1007/s10240-021-00124-6

Arend Bayer 1; Martí Lahoz 1; Emanuele Macrì 1; Howard Nuer 1; Alexander Perry 1; Paolo Stellari 1

1
@article{PMIHES_2021__133__157_0,
     author = {Arend Bayer and Mart{\'\i} Lahoz and Emanuele Macr{\`\i} and Howard Nuer and Alexander Perry and Paolo Stellari},
     title = {Stability conditions in families},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {157--325},
     year = {2021},
     publisher = {Springer International Publishing},
     address = {Cham},
     volume = {133},
     doi = {10.1007/s10240-021-00124-6},
     mrnumber = {4292740},
     language = {en},
     url = {https://pmihes.centre-mersenne.org/articles/10.1007/s10240-021-00124-6/}
}
TY  - JOUR
AU  - Arend Bayer
AU  - Martí Lahoz
AU  - Emanuele Macrì
AU  - Howard Nuer
AU  - Alexander Perry
AU  - Paolo Stellari
TI  - Stability conditions in families
JO  - Publications Mathématiques de l'IHÉS
PY  - 2021
SP  - 157
EP  - 325
VL  - 133
PB  - Springer International Publishing
PP  - Cham
UR  - https://pmihes.centre-mersenne.org/articles/10.1007/s10240-021-00124-6/
DO  - 10.1007/s10240-021-00124-6
LA  - en
ID  - PMIHES_2021__133__157_0
ER  - 
%0 Journal Article
%A Arend Bayer
%A Martí Lahoz
%A Emanuele Macrì
%A Howard Nuer
%A Alexander Perry
%A Paolo Stellari
%T Stability conditions in families
%J Publications Mathématiques de l'IHÉS
%D 2021
%P 157-325
%V 133
%I Springer International Publishing
%C Cham
%U https://pmihes.centre-mersenne.org/articles/10.1007/s10240-021-00124-6/
%R 10.1007/s10240-021-00124-6
%G en
%F PMIHES_2021__133__157_0
Arend Bayer; Martí Lahoz; Emanuele Macrì; Howard Nuer; Alexander Perry; Paolo Stellari. Stability conditions in families. Publications Mathématiques de l'IHÉS, Volume 133 (2021), pp. 157-325. doi: 10.1007/s10240-021-00124-6

[Add16.] N. Addington On two rationality conjectures for cubic fourfolds, Math. Res. Lett., Volume 23 (2016), pp. 1-13 | MR | Zbl | DOI | arXiv

[AE21.] B. Antieau; E. Elmanto Descent for semiorthogonal decompositions, Adv. Math., Volume 380 (2021) | MR | Zbl | DOI

[AH61.] M. F. Atiyah; F. Hirzebruch Vector Bundles and Homogeneous Spaces, Am. Math. Soc., Providence, 1961 | Zbl | MR | DOI

[AHLH18.] J. Alper, D. Halpern-Leistner and J. Heinloth, Existence of moduli spaces for algebraic stacks, 2018, | arXiv

[Alp13.] J. Alper Good moduli spaces for Artin stacks, Ann. Inst. Fourier (Grenoble), Volume 63 (2013), pp. 2349-2402 | MR | Zbl | DOI | arXiv | Numdam

[Anc87.] V. Ancona Vanishing and nonvanishing theorems for numerically effective line bundles on complex spaces, Ann. Mat. Pura Appl. (4), Volume 149 (1987), pp. 153-164 | MR | Zbl | DOI

[AP06.] D. Abramovich; A. Polishchuk Sheaves of t-structures and valuative criteria for stable complexes, J. Reine Angew. Math., Volume 590 (2006), pp. 89-130 | MR | Zbl | arXiv

[AT14.] N. Addington; R. Thomas Hodge theory and derived categories of cubic fourfolds, Duke Math. J., Volume 163 (2014), pp. 1885-1927 | MR | Zbl | DOI | arXiv

[Bay19.] A. Bayer A short proof of the deformation property of Bridgeland stability conditions, Math. Ann., Volume 375 (2019), pp. 1597-1613 | MR | Zbl | DOI | arXiv

[BBD82.] A. A. Beĭlinson; J. Bernstein; P. Deligne Faisceaux pervers, Analysis and Topology on Singular Spaces, I, Volume 100 (1982), pp. 5-171 | MR

[BCZ17.] A. Bayer; A. Craw; Z. Zhang Nef divisors for moduli spaces of complexes with compact support, Sel. Math. New Ser., Volume 23 (2017), pp. 1507-1561 | MR | Zbl | DOI | arXiv

[BD85.] A. Beauville; R. Donagi La variété des droites d’une hypersurface cubique de dimension 4, C. R. Acad. Sci., Sér. 1 Math., Volume 301 (1985), pp. 703-706 | Zbl | MR

[Bea83.] A. Beauville Variétés Kähleriennes dont la première classe de Chern est nulle, J. Differ. Geom., Volume 18 (1984), pp. 755-782 (1983) | Zbl | MR

[Beh09.] K. Behrend Donaldson-Thomas type invariants via microlocal geometry, Ann. Math. (2), Volume 170 (2009), pp. 1307-1338 | MR | Zbl | DOI | arXiv

[BF97.] K. Behrend; B. Fantechi The intrinsic normal cone, Invent. Math., Volume 128 (1997), pp. 45-88 | MR | Zbl | DOI | arXiv

[BHT15.] A. Bayer; B. Hassett; Y. Tschinkel Mori cones of holomorphic symplectic varieties of K3 type, Ann. Sci. Éc. Norm. Supér., Volume 48 (2015), pp. 941-950 | arXiv | MR | Zbl | Numdam | DOI

[BLMS17.] A. Bayer, M. Lahoz, E. Macrì and P. Stellari, Stability conditions on Kuznetsov components, 2017, Appendix about the Torelli theorem for cubic fourfolds by A. Bayer, M. Lahoz, E. Macrì, P. Stellari, and X. Zhao, | arXiv | MR

[BM11.] A. Bayer; E. Macrì The space of stability conditions on the local projective plane, Duke Math. J., Volume 160 (2011), pp. 263-322 | MR | Zbl | DOI | arXiv

[BM14a.] A. Bayer; E. Macrì MMP for moduli of sheaves on K3s via wall-crossing: nef and movable cones, Lagrangian fibrations, Invent. Math., Volume 198 (2014), pp. 505-590 | MR | Zbl | DOI | arXiv

[BM14b.] A. Bayer; E. Macrì Projectivity and birational geometry of Bridgeland moduli spaces, J. Am. Math. Soc., Volume 27 (2014), pp. 707-752 | MR | Zbl | DOI | arXiv

[BMS16.] A. Bayer; E. Macrì; P. Stellari The space of stability conditions on abelian threefolds, and on some Calabi-Yau threefolds, Invent. Math., Volume 206 (2016), pp. 869-933 | MR | Zbl | DOI | arXiv

[BMSZ17.] M. Bernardara; E. Macrì; B. Schmidt; X. Zhao Bridgeland stability conditions on Fano threefolds, Épij. Geom. Algébr., Volume 1 (2017) | MR | Zbl | arXiv

[BMT14.] A. Bayer; E. Macrì; Y. Toda Bridgeland stability conditions on threefolds I: Bogomolov-Gieseker type inequalities, J. Algebraic Geom., Volume 23 (2014), pp. 117-163 | MR | Zbl | DOI | arXiv

[Bog78.] F. A. Bogomolov Holomorphic tensors and vector bundles on projective manifolds, Izv. Akad. Nauk SSSR, Ser. Mat., Volume 42 (1978), pp. 1227-1287 (1439) | MR | Zbl

[BOR20.] P. Belmans, S. Okawa and A. T. Ricolfi, Moduli spaces of semiorthogonal decompositions in families, 2020, | arXiv

[Bri99.] T. Bridgeland Equivalences of triangulated categories and Fourier-Mukai transforms, Bull. Lond. Math. Soc., Volume 31 (1999), pp. 25-34 | MR | Zbl | DOI | arXiv

[Bri07.] T. Bridgeland Stability conditions on triangulated categories, Ann. Math. (2), Volume 166 (2007), pp. 317-345 | MR | Zbl | DOI | arXiv

[Bri08.] T. Bridgeland Stability conditions on K3 surfaces, Duke Math. J., Volume 141 (2008), pp. 241-291 | MR | Zbl | DOI | arXiv

[BZFN10.] D. Ben-Zvi; J. Francis; D. Nadler Integral transforms and Drinfeld centers in derived algebraic geometry, J. Am. Math. Soc., Volume 23 (2010), pp. 909-966 | MR | Zbl | DOI | arXiv

[CDK95.] E. Cattani; P. Deligne; A. Kaplan On the locus of Hodge classes, J. Am. Math. Soc., Volume 8 (1995), pp. 483-506 | MR | Zbl | DOI

[CM78.] A. Conte; J. P. Murre The Hodge conjecture for fourfolds admitting a covering by rational curves, Math. Ann., Volume 238 (1978), pp. 79-88 | MR | Zbl | DOI

[DIM15.] O. Debarre; A. Iliev; L. Manivel Special prime Fano fourfolds of degree 10 and index 2, Recent Advances in Algebraic Geometry, 417, Cambridge University Press, Cambridge, 2015, pp. 123-155 | arXiv | MR | Zbl | DOI

[dJ96.] A. J. de Jong Smoothness, semi-stability and alterations, Publ. Math. Inst. Hautes Études Sci., Volume 83 (1996), pp. 51-93 | MR | Zbl | Numdam | DOI

[DK18.] O. Debarre; A. Kuznetsov Gushel-Mukai varieties: classification and birationalities, Algebr. Geom., Volume 5 (2018), pp. 15-76 | MR | Zbl | arXiv

[DK19.] O. Debarre; A. Kuznetsov Gushel-Mukai varieties: linear spaces and periods, Kyoto J. Math., Volume 59 (2019), pp. 897-953 | MR | Zbl | DOI | arXiv

[DM19.] O. Debarre; E. Macrì On the period map for polarized hyperkähler fourfolds, Int. Math. Res. Not., Volume 22 (2019), pp. 6887-6923 | arXiv | Zbl | MR | DOI

[Dou02.] M. R. Douglas Dirichlet branes, homological mirror symmetry, and stability, Proceedings of the International Congress of Mathematicians, Vol. III (2002), pp. 395-408 | arXiv | MR | Zbl

[DV10.] O. Debarre; C. Voisin Hyper-Kähler fourfolds and Grassmann geometry, J. Reine Angew. Math., Volume 649 (2010), pp. 63-87 | MR | Zbl | arXiv

[FM99.] B. Fantechi; M. Manetti On the T 1 -lifting theorem, J. Algebraic Geom., Volume 8 (1999), pp. 31-39 | MR | Zbl

[Ful98.] W. Fulton Intersection Theory, 2, Springer, Berlin, 1998 | Zbl | DOI | MR

[Gie79.] D. Gieseker On a theorem of Bogomolov on Chern classes of stable bundles, Am. J. Math., Volume 101 (1979), pp. 77-85 | MR | Zbl | DOI

[GR17.] D. Gaitsgory; N. Rozenblyum A Study in Derived Algebraic Geometry. Vol. I. Correspondences and Duality, 221, Am. Math. Soc., Providence, 2017 | Zbl | MR | DOI

[Gro66.] A. Grothendieck Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. III, Publ. Math. Inst. Hautes Études Sci., Volume 28 (1966), p. 255 | Zbl | MR | Numdam

[Has00.] B. Hassett Special cubic fourfolds, Compos. Math., Volume 120 (2000), pp. 1-23 | MR | Zbl | DOI

[HL10.] D. Huybrechts; M. Lehn The Geometry of Moduli Spaces of Sheaves, Cambridge University Press, Cambridge, 2010 | Zbl | DOI | MR

[HL14.] D. Halpern-Leistner, On the structure of instability in moduli theory, 2014, | arXiv

[HMS09.] D. Huybrechts; E. Macrì; P. Stellari Derived equivalences of K3 surfaces and orientation, Duke Math. J., Volume 149 (2009), pp. 461-507 | MR | Zbl | DOI | arXiv

[HRS96.] D. Happel, I. Reiten and S. O. Smalø, Tilting in abelian categories and quasitilted algebras, Mem. Am. Math. Soc., 120 (1996), viii+88 | MR

[HS06.] D. Huybrechts; P. Stellari Proof of Căldăraru’s conjecture. Appendix to: “Moduli spaces of twisted sheaves on a projective variety” by K. Yoshioka, Moduli Spaces and Arithmetic Geometry, 45, Math. Soc. Japan, Tokyo, 2006, pp. 31-42 | DOI | arXiv | MR | Zbl

[HT10.] D. Huybrechts; R. P. Thomas Deformation-obstruction theory for complexes via Atiyah and Kodaira-Spencer classes, Math. Ann., Volume 346 (2010), pp. 545-569 | MR | Zbl | DOI | arXiv

[Huy97.] D. Huybrechts Birational symplectic manifolds and their deformations, J. Differ. Geom., Volume 45 (1997), pp. 488-513 | MR | Zbl | DOI | arXiv

[Huy06.] D. Huybrechts Fourier-Mukai Transforms in Algebraic Geometry, The Clarendon Press Oxford University Press, Oxford, 2006 | Zbl | MR | DOI

[Huy17.] D. Huybrechts The K3 category of a cubic fourfold, Compos. Math., Volume 153 (2017), pp. 586-620 | MR | Zbl | DOI | arXiv

[Huy19.] D. Huybrechts Hodge theory of cubic fourfolds, their Fano varieties, and associated K3 categories, Birational Geometry of Hypersurfaces, Springer, Berlin, 2019, pp. 165-198 | arXiv | Zbl | MR | DOI

[IM11.] A. Iliev; L. Manivel Fano manifolds of degree ten and EPW sextics, Ann. Sci. Éc. Norm. Supér. (4), Volume 44 (2011), pp. 393-426 | arXiv | MR | Zbl | Numdam | DOI

[Ina11.] M. Inaba Smoothness of the moduli space of complexes of coherent sheaves on an abelian or a projective K3 surface, Adv. Math., Volume 227 (2011), pp. 1399-1412 | MR | Zbl | DOI | arXiv

[JS12.] J. Dominic and Y. Song, A theory of generalized Donaldson-Thomas invariants, Mem. Am. Math. Soc., 217 (2012), iv+199, | arXiv | MR

[Kaw92.] Y. Kawamata Unobstructed deformations. A remark on a paper of Z. Ran: “Deformations of manifolds with torsion or negative canonical bundle” [J. Algebraic Geom. 1 (1992), no. 2, 279–291; MR1144440 (93e:14015)], J. Algebraic Geom., Volume 1 (1992), pp. 183-190 | MR | Zbl

[KLS06.] D. Kaledin; M. Lehn; C. Sorger Singular symplectic moduli spaces, Invent. Math., Volume 164 (2006), pp. 591-614 | MR | Zbl | DOI | arXiv

[KM98.] J. Kollár; S. Mori Birational Geometry of Algebraic Varieties, 134, Cambridge University Press, Cambridge, 1998 (With the collaboration of, Clemens, C. H. and Corti, A., Translated from the 1998 Japanese original) | Zbl | MR | DOI

[KM09.] A. Kuznetsov; D. Markushevich Symplectic structures on moduli spaces of sheaves via the Atiyah class, J. Geom. Phys., Volume 59 (2009), pp. 843-860 | MR | Zbl | DOI | arXiv

[Kos18.] N. Koseki Stability conditions on product threefolds of projective spaces and Abelian varieties, Bull. Lond. Math. Soc., Volume 50 (2018), pp. 229-244 | MR | Zbl | DOI | arXiv

[Kos20.] N. Koseki Stability conditions on threefolds with nef tangent bundles, Adv. Math., Volume 372 (2020), p. 28 (Id/No 107316, arXiv:1811.03267) | MR | Zbl | DOI

[KP18.] A. Kuznetsov; A. Perry Derived categories of Gushel-Mukai varieties, Compos. Math., Volume 154 (2018), pp. 1362-1406 | MR | Zbl | DOI | arXiv

[KP21.] A. Kuznetsov; A. Perry Categorical joins, J. Am. Math. Soc., Volume 34 (2021), pp. 505-564 | MR | DOI | arXiv | Zbl

[KS08.] M. Kontsevich and Y. Soibelman, Stability structures, motivic Donaldson-Thomas invariants and cluster transformations, 2008, | arXiv

[Kuz08.] A. Kuznetsov Derived categories of quadric fibrations and intersections of quadrics, Adv. Math., Volume 218 (2008), pp. 1340-1369 | MR | Zbl | DOI | arXiv

[Kuz09.] A. Kuznetsov Derived categories of Fano threefolds, Proc. Steklov Inst. Math., Volume 264 (2009), pp. 110-122 | MR | Zbl | DOI | arXiv

[Kuz10.] A. Kuznetsov Derived categories of cubic fourfolds, Cohomological and Geometric Approaches to Rationality Problems, 282, Birkhäuser, Boston, 2010, pp. 219-243 | arXiv | MR | Zbl | DOI

[Kuz11.] A. Kuznetsov Base change for semiorthogonal decompositions, Compos. Math., Volume 147 (2011), pp. 852-876 | MR | Zbl | DOI | arXiv

[Kuz19.] A. Kuznetsov Calabi-Yau and fractional Calabi-Yau categories, J. Reine Angew. Math., Volume 753 (2019), pp. 239-267 | MR | Zbl | DOI | arXiv

[Lan04.] A. Langer Semistable sheaves in positive characteristic, Ann. Math. (2), Volume 159 (2004), pp. 251-276 | MR | Zbl | DOI

[Lan15.] A. Langer Bogomolov’s inequality for Higgs sheaves in positive characteristic, Invent. Math., Volume 199 (2015), pp. 889-920 | MR | Zbl | DOI

[Laz10.] R. Laza The moduli space of cubic fourfolds via the period map, Ann. Math. (2), Volume 172 (2010), pp. 673-711 | MR | Zbl | DOI

[Li19a.] C. Li On stability conditions for the quintic threefold, Invent. Math., Volume 218 (2019), pp. 301-340 | MR | Zbl | DOI | arXiv

[Li19b.] C. Li Stability conditions on Fano threefolds of Picard number 1, J. Eur. Math. Soc., Volume 21 (2019), pp. 709-726 | MR | Zbl | DOI | arXiv

[Lie06a.] M. Lieblich Moduli of complexes on a proper morphism, J. Algebraic Geom., Volume 15 (2006), pp. 175-206 | MR | Zbl | DOI | arXiv

[Lie06b.] M. Lieblich Remarks on the stack of coherent algebras, Int. Math. Res. Not., Volume 2006 (2006) | MR | Zbl | arXiv

[LLMS18.] M. Lahoz; M. Lehn; E. Macrì; P. Stellari Generalized twisted cubics on a cubic fourfold as a moduli space of stable objects, J. Math. Pures Appl., Volume 9 (2018), pp. 85-117 | MR | Zbl | DOI | arXiv

[LLSvS17.] C. Lehn; M. Lehn; C. Sorger; D. van Straten Twisted cubics on cubic fourfolds, J. Reine Angew. Math., Volume 731 (2017), pp. 87-128 | MR | Zbl | arXiv | DOI

[Loo09.] E. Looijenga The period map for cubic fourfolds, Invent. Math., Volume 177 (2009), pp. 213-233 | MR | Zbl | DOI | arXiv

[LPZ18.] C. Li, L. Pertusi and X. Zhao, Twisted cubics on cubic fourfolds and stability conditions, 2018, | arXiv

[LPZ20.] C. Li, L. Pertusi and X. Zhao, Elliptic quintics on cubic fourfolds, O’Grady 10, and Lagrangian fibrations, 2020, | arXiv

[Lur09.] J. Lurie Higher Topos Theory, 170, Princeton University Press, Princeton, 2009 | Zbl | DOI

[Lur17.] J. Lurie, Higher algebra. 2017, http://www.math.harvard.edu/~lurie/.

[Lur18.] J. Lurie Spectral Algebraic Geometry, 2018 (http://www.math.harvard.edu/~lurie/)

[Mac14.] E. Macrì A generalized Bogomolov-Gieseker inequality for the three-dimensional projective space, Algebra Number Theory, Volume 8 (2014), pp. 173-190 | MR | Zbl | DOI | arXiv

[Mar11.] E. Markman A survey of Torelli and monodromy results for holomorphic-symplectic varieties, Complex and Differential Geometry, 8, Springer, Heidelberg, 2011, pp. 257-322 | Zbl | DOI | arXiv

[MO20.] G. Mongardi; J. C. Ottem Curve classes on irreducible holomorphic symplectic varieties, Commun. Contemp. Math., Volume 22 (2020) | MR | Zbl | DOI | arXiv

[Mon15.] G. Mongardi A note on the Kähler and Mori cones of hyperkähler manifolds, Asian J. Math., Volume 19 (2015), pp. 583-591 | MR | Zbl | DOI | arXiv

[Mos18.] R. Moschetti The derived category of a non generic cubic fourfold containing a plane, Math. Res. Lett., Volume 25 (2018), pp. 1525-1545 | MR | Zbl | DOI | arXiv

[MP16.] A. Maciocia; D. Piyaratne Fourier-Mukai transforms and Bridgeland stability conditions on Abelian threefolds II, Int. J. Math., Volume 27 (2016) | MR | Zbl | DOI | arXiv

[MS19a.] E. Macrì; P. Stellari Lectures on non-commutative K3 surfaces, Bridgeland stability, and moduli spaces, Birational Geometry of Hypersurfaces, Springer, Berlin, 2019, pp. 199-265 | DOI | arXiv | Zbl

[MS19b.] C. Martinez; B. Schmidt Bridgeland stability on blow ups and counterexamples, Math. Z., Volume 292 (2019), pp. 1495-1510 | MR | Zbl | DOI | arXiv

[Muk84.] S. Mukai Symplectic structure of the moduli space of sheaves on an abelian or K3 surface, Invent. Math., Volume 77 (1984), pp. 101-116 | MR | Zbl | DOI

[Muk87.] S. Mukai On the moduli space of bundles on K3 surfaces. I, Vector Bundles on Algebraic Varieties, Volume 11 (1987), pp. 341-413 | Zbl

[Nee96.] A. Neeman The Grothendieck duality theorem via Bousfield’s techniques and Brown representability, J. Am. Math. Soc., Volume 9 (1996), pp. 205-236 | MR | Zbl | DOI | arXiv

[O’G97.] K. G. O’Grady The weight-two Hodge structure of moduli spaces of sheaves on a K3 surface, J. Algebraic Geom., Volume 6 (1997), pp. 599-644 | MR | Zbl | arXiv

[OPT18.] G. Oberdieck, D. Piyaratne and Y. Toda, Donaldson-Thomas invariants of abelian threefolds and Bridgeland stability conditions, 2018, | arXiv

[Orl97.] D. Orlov Equivalences of derived categories and K3 surfaces, J. Math. Sci. (N.Y.), Volume 84 (1997), pp. 1361-1381 (Algebraic geometry, 7, arXiv:alg-geom/9606006) | MR | Zbl | DOI

[Orl06.] D. Orlov Triangulated categories of singularities, and equivalences between Landau-Ginzburg models, Mat. Sb., Volume 197 (2006), pp. 117-132 | MR | Zbl | arXiv

[Ouc17.] G. Ouchi Lagrangian embeddings of cubic fourfolds containing a plane, Compos. Math., Volume 153 (2017), pp. 947-972 | MR | Zbl | DOI | arXiv

[Per19.] A. Perry Noncommutative homological projective duality, Adv. Math., Volume 350 (2019), pp. 877-972 | MR | Zbl | DOI | arXiv

[Per20.] A. Perry, The integral Hodge conjecture for two-dimensional Calabi-Yau categories, 2020, | arXiv

[Piy17.] D. Piyaratne, Stability conditions, Bogomolov-Gieseker type inequalities and Fano 3-folds, 2017, | arXiv

[Pol07.] A. Polishchuk Constant families of t-structures on derived categories of coherent sheaves, Mosc. Math. J., Volume 7 (2007), pp. 109-134 (167, arXiv:math/0606013) | MR | Zbl | DOI

[PPZ19.] A. Perry, L. Pertusi and X. Zhao, Stability conditions and moduli spaces for Kuznetsov components of Gushel-Mukai varieties, 2019, | arXiv

[PT19.] D. Piyaratne; Y. Toda Moduli of Bridgeland semistable objects on 3-folds and Donaldson–Thomas invariants, J. Reine Angew. Math., Volume 747 (2019), pp. 175-219 | MR | Zbl | DOI | arXiv

[Rei78.] M. Reid Bogomolov’s theorem c 1 2 4c 2 , Proceedings of the International Symposium on Algebraic Geometry (1978), pp. 623-642

[Sch14.] B. Schmidt A generalized Bogomolov-Gieseker inequality for the smooth quadric threefold, Bull. Lond. Math. Soc., Volume 46 (2014), pp. 915-923 | MR | Zbl | DOI | arXiv

[Sch17.] B. Schmidt Counterexample to the generalized Bogomolov-Gieseker inequality for threefolds, Int. Math. Res. Not., Volume 8 (2017), pp. 2562-2566 | MR | Zbl | arXiv

[Sim94.] C. T. Simpson Moduli of representations of the fundamental group of a smooth projective variety. I, Publ. Math. Inst. Hautes Études Sci., Volume 79 (1994), pp. 47-129 | MR | Zbl | DOI | Numdam

[Sos12.] P. Sosna Stability conditions under change of base field, Math. Nachr., Volume 285 (2012), pp. 364-376 | MR | Zbl | DOI | arXiv

[Sta21.] The Stacks Project Authors. Stacks project, 2021, Available at http://stacks.math.columbia.edu.

[Tho00.] R. Thomas A holomorphic Casson invariant for Calabi-Yau 3-folds, and bundles on K3 fibrations, J. Differ. Geom., Volume 54 (2000), pp. 367-438 | MR | Zbl | DOI | arXiv

[Tod08.] Y. Toda Moduli stacks and invariants of semistable objects on K3 surfaces, Adv. Math., Volume 217 (2008), pp. 2736-2781 | MR | Zbl | DOI | arXiv

[TT90.] R. W. Thomason; T. Trobaugh Higher algebraic K-theory of schemes and of derived categories, The Grothendieck Festschrift, Vol. III, 88, Birkhäuser, Boston, 1990, pp. 247-435 | DOI

[Voi07.] C. Voisin Some aspects of the Hodge conjecture, Jpn. J. Math., Volume 2 (2007), pp. 261-296 | MR | Zbl | DOI

[Voi13.] C. Voisin Hodge loci, Handbook of Moduli. Vol. III, 26, Int. Press, Somerville, 2013, pp. 507-546 | Zbl

[Voi18.] C. Voisin Hyper-Kähler compactification of the intermediate Jacobian fibration of a cubic fourfold: The twisted case, Local and Global Methods in Algebraic Geometry, 712, Am. Math. Soc., Providence, 2018, pp. 341-355 | arXiv | Zbl | DOI

[Yos99.] K. Yoshioka Some notes on the moduli of stable sheaves on elliptic surfaces, Nagoya Math. J., Volume 154 (1999), pp. 73-102 | MR | Zbl | DOI | arXiv

[Yos01.] K. Yoshioka Moduli spaces of stable sheaves on abelian surfaces, Math. Ann., Volume 321 (2001), pp. 817-884 | MR | Zbl | DOI | arXiv

[Zuc77.] S. Zucker The Hodge conjecture for cubic fourfolds, Compos. Math., Volume 34 (1977), pp. 199-209 | MR | Zbl | Numdam

Cited by Sources: