We study the restrictions, the strict fixed points, and the strict quotients of the partition complex , which is the -space attached to the poset of proper nontrivial partitions of the set .
We express the space of fixed points in terms of subgroup posets for general and prove a formula for the restriction of to Young subgroups . Both results follow by applying a general method, proven with discrete Morse theory, for producing equivariant branching rules on lattices with group actions.
We uncover surprising links between strict Young quotients of , commutative monoid spaces, and the cotangent fibre in derived algebraic geometry. These connections allow us to construct a cofibre sequence relating various strict quotients and give a combinatorial proof of a splitting in derived algebraic geometry.
Combining all our results, we decompose strict Young quotients of in terms of “atoms” for odd and compute their homology. We thereby also generalise Goerss’ computation of the algebraic André-Quillen homology of trivial square-zero extensions from to for an odd prime.
Accepted:
Online First:
Published online:
DOI: 10.1007/s10240-021-00123-7
Gregory Z. Arone 1; D. Lukas B. Brantner 1
@article{PMIHES_2021__133__47_0,
author = {Gregory Z. Arone and D. Lukas B. Brantner},
title = {The action of {Young} subgroups on the partition complex},
journal = {Publications Math\'ematiques de l'IH\'ES},
pages = {47--156},
year = {2021},
publisher = {Springer International Publishing},
address = {Cham},
volume = {133},
doi = {10.1007/s10240-021-00123-7},
zbl = {1473.55007},
language = {en},
url = {https://pmihes.centre-mersenne.org/articles/10.1007/s10240-021-00123-7/}
}
TY - JOUR AU - Gregory Z. Arone AU - D. Lukas B. Brantner TI - The action of Young subgroups on the partition complex JO - Publications Mathématiques de l'IHÉS PY - 2021 SP - 47 EP - 156 VL - 133 PB - Springer International Publishing PP - Cham UR - https://pmihes.centre-mersenne.org/articles/10.1007/s10240-021-00123-7/ DO - 10.1007/s10240-021-00123-7 LA - en ID - PMIHES_2021__133__47_0 ER -
%0 Journal Article %A Gregory Z. Arone %A D. Lukas B. Brantner %T The action of Young subgroups on the partition complex %J Publications Mathématiques de l'IHÉS %D 2021 %P 47-156 %V 133 %I Springer International Publishing %C Cham %U https://pmihes.centre-mersenne.org/articles/10.1007/s10240-021-00123-7/ %R 10.1007/s10240-021-00123-7 %G en %F PMIHES_2021__133__47_0
Gregory Z. Arone; D. Lukas B. Brantner. The action of Young subgroups on the partition complex. Publications Mathématiques de l'IHÉS, Volume 133 (2021), pp. 47-156. doi: 10.1007/s10240-021-00123-7
[AC11.] Operads and chain rules for the calculus of functors, Astérisque, Volume 338 (2011), p. vi+158 | MR | Zbl | Numdam
[ADL16.] Bredon homology of partition complexes, Doc. Math., Volume 21 (2016), pp. 1227-1268 | MR | Zbl | DOI
[AK98.] The homology of certain subgroups of the symmetric group with coefficients in , J. Pure Appl. Algebra, Volume 127 (1998), pp. 1-14 | MR | Zbl | DOI
[AM99.] The Goodwillie tower of the identity functor and the unstable periodic homotopy of spheres, Invent. Math., Volume 135 (1999), pp. 743-788 | MR | Zbl | DOI
[Aro06.] A note on the homology of , the Schwartz genus, and solving polynomial equations, An Alpine Anthology of Homotopy Theory, 399, Am. Math. Soc., Providence, 2006, pp. 1-10 | Zbl | DOI
[Aro15.] G. Z. Arone, A branching rule for partition complexes, arXiv preprint, 2015. | arXiv
[Bar90.] On the action of the symmetric group on the free Lie algebra and the partition lattice, J. Comb. Theory, Ser. A, Volume 55 (1990), pp. 93-129 | MR | Zbl | DOI
[BB17.] Homotopy theory for algebras over polynomial monads, Theory Appl. Categ., Volume 32 (2017), pp. 148-253 | MR | Zbl
[Beh12.] The Goodwillie tower and the EHP sequence, Mem. Am. Math. Soc., Volume 218 (2012), p. xii+90 | MR | Zbl
[BM03.] Axiomatic homotopy theory for operads, Comment. Math. Helv., Volume 78 (2003), pp. 805-831 | MR | Zbl | DOI
[BM19.] L. Brantner and A. Mathew, Deformation theory and partition Lie algebras, arXiv preprint, 2019. | arXiv
[Bou67.] A. K. Bousfield, Operations on derived functors of non-additive functors, Manuscript, Brandeis University, 1967.
[Bra17.] D. L. B. Brantner, The Lubin-Tate Theory of Spectral Lie Algebras, PhD thesis, Harvard University, 2017. Edited Version available at https://people.maths.ox.ac.uk/brantner/brantnerthesis.pdf.
[BW83.] A homotopy complementation formula for partially ordered sets, Eur. J. Comb., Volume 4 (1983), pp. 11-19 | MR | Zbl | DOI
[BW20.] L. Brantner and J. Waldron, Purely inseparable Galois theory I: the fundamental theorem, arXiv preprint, 2020. | arXiv
[Cam20.] O. A. Camarena, The mod 2 homology of free spectral Lie algebras, Trans. Am. Math. Soc., 379 (2020).
[Cav.] G. Caviglia, A model structure for enriched coloured operads. Preprint from the author’s web page.
[CFL58.] Free differential calculus, IV. The quotient groups of the lower central series, Ann. Math., Volume 68 (1958), pp. 81-95 | MR | Zbl | DOI
[Chi05.] Bar constructions for topological operads and the Goodwillie derivatives of the identity, Geom. Topol., Volume 9 (2005), pp. 833-933 | MR | Zbl | DOI
[CLM76.] The Homology of Iterated Loop Spaces, 533, Springer, Berlin, 1976 | Zbl | DOI
[DL62.] Homology of iterated loop spaces, Am. J. Math., Volume 84 (1962), pp. 35-88 | MR | Zbl | DOI
[Dol58.] Homology of symmetric products and other functors of complexes, Ann. Math., Volume 68 (1958), pp. 54-80 | MR | Zbl | DOI
[Don.] R. Donau, Personal communication.
[Don12.] R. Donau, A nice acyclic matching on the nerve of the partition lattice, arXiv preprint, 2012. | arXiv
[Dwy98.] Sharp homology decompositions for classifying spaces of finite groups, Group Representations: Cohomology, Group Actions and Topology, Volume 63 (1998), pp. 197-220 | Zbl | DOI
[EKMM97.] Rings, Modules, and Algebras in Stable Homotopy Theory, 47, Am. Math. Soc., Providence, 1997 (With an appendix by M. Cole) | Zbl
[For98.] Morse theory for cell complexes, Adv. Math., Volume 134 (1998), pp. 90-145 | MR | Zbl | DOI
[Fre.] Koszul duality of operads and homology of partition posets, Homotopy Theory: Relations with Algebraic Geometry, Group Cohomology, and Algebraic K-Theory, 346, 2004, pp. 115-215 | Zbl
[Fre09.] Equivariant discrete Morse theory, Discrete Math., Volume 309 (2009), pp. 3821-3829 | MR | Zbl | DOI
[Goe90.] On the André-Quillen cohomology of commutative -algebras, Astérisque, Volume 186 (1990), p. 169 | Zbl | Numdam
[Gra01.] Higher fundamental functors for simplicial sets, Cah. Topol. Géom. Différ. Catég., Volume 42 (2001), pp. 101-136 | MR | Zbl | Numdam
[Her03.] Lexicographic shellability for balanced complexes, J. Algebraic Comb., Volume 17 (2003), pp. 225-254 | MR | Zbl | DOI
[HHR16.] On the nonexistence of elements of Kervaire invariant one, Ann. Math. (2), Volume 184 (2016), pp. 1-262 | MR | Zbl | DOI
[Hir15.] P. S. Hirschhorn, Overcategories and undercategories of model categories, arXiv preprint, 2015. | arXiv
[Hov98.] M. Hovey, Monoidal model categories, arXiv preprint, 1998. | arXiv
[Hov99.] Model Categories, 63, Am. Math. Soc., Providence, 1999 | Zbl
[JTTW63.] On the symmetric square of a sphere, J. Math. Mech., Volume 12 (1963), pp. 771-776 | MR | Zbl
[KA56.] Topology of -spaces and -squaring operations, Mem. Fac. Sci., Kochi Univ., Ser. A, Volume 10 (1956), pp. 85-120 | Zbl
[Kla73.] Enumeration of partition classes induced by permutation groups, Not. Am. Math. Soc., Volume 20 (1973), p. A347-A347
[Koz.] Collapsibility of and some related CW complexes, Proc. Am. Math. Soc., Volume 128 (2000), pp. 2253-2259 | Zbl | DOI
[Koz98.] Order complexes of noncomplemented lattices are nonevasive, Proc. Am. Math. Soc., Volume 126 (1998), pp. 3461-3465 | MR | Zbl | DOI
[Koz15.] Topology of the view complex, Homol. Homotopy Appl., Volume 17 (2015), pp. 307-319 | MR | Zbl | DOI
[Kuh01.] New relationships among loopspaces, symmetric products, and Eilenberg MacLane spaces, Cohomological Methods in Homotopy Theory, Springer, Berlin, 2001, pp. 185-216 | MR | DOI
[Kuh04.] The McCord model for the tensor product of a space and a commutative ring spectrum, Categorical Decomposition Techniques in Algebraic Topology, Volume 215 (2004), pp. 213-236 | MR
[Law88.] Toposes generated by codiscrete objects, in combinatorial topology and functional analysis, Notes for Colloquium Lectures Given at North Ryde, NSW, Australia, 1988
[Lüc89.] Transformation Groups and Algebraic -Theory, 1408, Springer, Berlin, 1989 (Mathematica Gottingensis) | Zbl | MR | DOI
[McC69.] Classifying spaces and infinite symmetric products, Trans. Am. Math. Soc., Volume 146 (1969), pp. 273-298 | MR | Zbl | DOI
[McC01.] A User’s Guide to Spectral Sequences, 58, Cambridge University Press, Cambridge, 2001 | Zbl | MR
[Mil69.] The homology of symmetric products, Trans. Am. Math. Soc., Volume 138 (1969), pp. 251-265 | MR | Zbl | DOI
[MS06.] Parametrized Homotopy Theory, 132, Am. Math. Soc., Providence, 2006 | Zbl | MR | DOI
[MSS07.] Operads in Algebra, Topology and Physics, 96, American Mathematical Soc., Providence, 2007 | Zbl | DOI | MR
[Mur15.] On the unit of a monoidal model category, Topol. Appl., Volume 191 (2015), pp. 37-47 | MR | Zbl | DOI
[Nak57.] Cohomology mod p of the p-fold symmetric products of spheres, J. Math. Soc. Jpn., Volume 9 (1957), pp. 417-427 | MR | Zbl | DOI
[Nak59.] Cohomology mod p of the p-fold symmetric products of spheres. II, J. Inst. Polytech. Osaka City Univ., Ser. A, Volume 10 (1959), pp. 67-89 | MR | Zbl
[Nei10.] Algebraic Methods in Unstable Homotopy Theory, 12, Cambridge University Press, Cambridge, 2010 | Zbl | DOI | MR
[Reu03.] Free Lie algebras, Handbook of Algebra, Vol. 3, 3, Elsevier/North-Holland, Amsterdam, 2003, pp. 887-903 | DOI | MR
[RT03.] Left-determined model categories and universal homotopy theories, Trans. Am. Math. Soc., Volume 355 (2003), pp. 3611-3623 | MR | Zbl | DOI
[Sal98.] P. Salvatore, Configuration operads, minimal models and rational curves, PhD thesis, University of Oxford, 1998.
[Shi58.] On free Lie rings, Mat. Sb., Volume 87 (1958), pp. 113-122 | MR
[SS00.] Algebras and modules in monoidal model categories, Proc. Lond. Math. Soc. (3), Volume 80 (2000), pp. 491-511 | MR | Zbl | DOI
[Ste57.] Prime power representations of finite linear groups II, Can. J. Math., Volume 9 (1957), pp. 347-351 | MR | Zbl | DOI
[SV91.] The categories of - and -monoids and ring spaces as closed simplicial and topological model categories, Arch. Math. (Basel), Volume 56 (1991), pp. 405-411 | MR | Zbl | DOI
[Tak99.] S. Takayasu, On stable summands of Thom spectra of associated to Steinberg module, 1999. | MR
[Wac98.] On the (co)homology of the partition lattice and the free Lie algebra, Discrete Math., Volume 193 (1998), pp. 287-319 | MR | Zbl | DOI
[Wal88.] Canonical homeomorphisms of posets, Eur. J. Comb., Volume 9 (1988), pp. 97-107 | MR | Zbl | DOI
[Web91.] A split exact sequence of Mackey functors, Comment. Math. Helv., Volume 66 (1991), pp. 34-69 | MR | Zbl | DOI
[Wel90.] V. Welker, Homotopie im Untergruppenverband einer auflösbaren Gruppe, PhD thesis, Universität Erlangen, 1990.
[Whi17.] D. White, Model structures on commutative monoids in general model categories, J. Pure Appl. Algebra (2017). | MR
[Wit37.] Treue Darstellung liescher Ringe, J. Reine Angew. Math., Volume 177 (1937), pp. 152-160 | MR | Zbl | DOI
[WW76.] Combinatorial structures and group invariant partitions, Proc. Am. Math. Soc., Volume 55 (1976), pp. 233-236 | MR | Zbl | DOI
Cited by Sources: