Article
The action of Young subgroups on the partition complex
Publications Mathématiques de l'IHÉS, Volume 133 (2021), pp. 47-156

We study the restrictions, the strict fixed points, and the strict quotients of the partition complex |Π n |, which is the Σ n -space attached to the poset of proper nontrivial partitions of the set {1,...,n}.

We express the space of fixed points |Π n | G in terms of subgroup posets for general GΣ n and prove a formula for the restriction of |Π n | to Young subgroups Σ n 1 ××Σ n k . Both results follow by applying a general method, proven with discrete Morse theory, for producing equivariant branching rules on lattices with group actions.

We uncover surprising links between strict Young quotients of |Π n |, commutative monoid spaces, and the cotangent fibre in derived algebraic geometry. These connections allow us to construct a cofibre sequence relating various strict quotients | Π n | Σ n ( S ) n and give a combinatorial proof of a splitting in derived algebraic geometry.

Combining all our results, we decompose strict Young quotients of |Π n | in terms of “atoms” | Π d | Σ d ( S ) d for odd and compute their homology. We thereby also generalise Goerss’ computation of the algebraic André-Quillen homology of trivial square-zero extensions from 𝐅 2 to 𝐅 p for p an odd prime.

Received:
Accepted:
Online First:
Published online:
DOI: 10.1007/s10240-021-00123-7

Gregory Z. Arone 1; D. Lukas B. Brantner 1

1
@article{PMIHES_2021__133__47_0,
     author = {Gregory Z. Arone and D. Lukas B. Brantner},
     title = {The action of {Young} subgroups on the partition complex},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {47--156},
     year = {2021},
     publisher = {Springer International Publishing},
     address = {Cham},
     volume = {133},
     doi = {10.1007/s10240-021-00123-7},
     zbl = {1473.55007},
     language = {en},
     url = {https://pmihes.centre-mersenne.org/articles/10.1007/s10240-021-00123-7/}
}
TY  - JOUR
AU  - Gregory Z. Arone
AU  - D. Lukas B. Brantner
TI  - The action of Young subgroups on the partition complex
JO  - Publications Mathématiques de l'IHÉS
PY  - 2021
SP  - 47
EP  - 156
VL  - 133
PB  - Springer International Publishing
PP  - Cham
UR  - https://pmihes.centre-mersenne.org/articles/10.1007/s10240-021-00123-7/
DO  - 10.1007/s10240-021-00123-7
LA  - en
ID  - PMIHES_2021__133__47_0
ER  - 
%0 Journal Article
%A Gregory Z. Arone
%A D. Lukas B. Brantner
%T The action of Young subgroups on the partition complex
%J Publications Mathématiques de l'IHÉS
%D 2021
%P 47-156
%V 133
%I Springer International Publishing
%C Cham
%U https://pmihes.centre-mersenne.org/articles/10.1007/s10240-021-00123-7/
%R 10.1007/s10240-021-00123-7
%G en
%F PMIHES_2021__133__47_0
Gregory Z. Arone; D. Lukas B. Brantner. The action of Young subgroups on the partition complex. Publications Mathématiques de l'IHÉS, Volume 133 (2021), pp. 47-156. doi: 10.1007/s10240-021-00123-7

[AC11.] G. Z. Arone; M. Ching Operads and chain rules for the calculus of functors, Astérisque, Volume 338 (2011), p. vi+158 | MR | Zbl | Numdam

[ADL16.] G. Z. Arone; W. G. Dwyer; K. Lesh Bredon homology of partition complexes, Doc. Math., Volume 21 (2016), pp. 1227-1268 | MR | Zbl | DOI

[AK98.] G. Z. Arone; M. Kankaanrinta The homology of certain subgroups of the symmetric group with coefficients in Lie(n), J. Pure Appl. Algebra, Volume 127 (1998), pp. 1-14 | MR | Zbl | DOI

[AM99.] G. Z. Arone; M. Mahowald The Goodwillie tower of the identity functor and the unstable periodic homotopy of spheres, Invent. Math., Volume 135 (1999), pp. 743-788 | MR | Zbl | DOI

[Aro06.] G. Z. Arone A note on the homology of Σ n , the Schwartz genus, and solving polynomial equations, An Alpine Anthology of Homotopy Theory, 399, Am. Math. Soc., Providence, 2006, pp. 1-10 | Zbl | DOI

[Aro15.] G. Z. Arone, A branching rule for partition complexes, arXiv preprint, 2015. | arXiv

[Bar90.] H. Barcelo On the action of the symmetric group on the free Lie algebra and the partition lattice, J. Comb. Theory, Ser. A, Volume 55 (1990), pp. 93-129 | MR | Zbl | DOI

[BB17.] M. Batanin; C. Berger Homotopy theory for algebras over polynomial monads, Theory Appl. Categ., Volume 32 (2017), pp. 148-253 | MR | Zbl

[Beh12.] M. Behrens The Goodwillie tower and the EHP sequence, Mem. Am. Math. Soc., Volume 218 (2012), p. xii+90 | MR | Zbl

[BM03.] C. Berger; I. Moerdijk Axiomatic homotopy theory for operads, Comment. Math. Helv., Volume 78 (2003), pp. 805-831 | MR | Zbl | DOI

[BM19.] L. Brantner and A. Mathew, Deformation theory and partition Lie algebras, arXiv preprint, 2019. | arXiv

[Bou67.] A. K. Bousfield, Operations on derived functors of non-additive functors, Manuscript, Brandeis University, 1967.

[Bra17.] D. L. B. Brantner, The Lubin-Tate Theory of Spectral Lie Algebras, PhD thesis, Harvard University, 2017. Edited Version available at https://people.maths.ox.ac.uk/brantner/brantnerthesis.pdf.

[BW83.] A. Björner; J. W. Walker A homotopy complementation formula for partially ordered sets, Eur. J. Comb., Volume 4 (1983), pp. 11-19 | MR | Zbl | DOI

[BW20.] L. Brantner and J. Waldron, Purely inseparable Galois theory I: the fundamental theorem, arXiv preprint, 2020. | arXiv

[Cam20.] O. A. Camarena, The mod 2 homology of free spectral Lie algebras, Trans. Am. Math. Soc., 379 (2020).

[Cav.] G. Caviglia, A model structure for enriched coloured operads. Preprint from the author’s web page.

[CFL58.] K. T. Chen; R. H. Fox; R. C. Lyndon Free differential calculus, IV. The quotient groups of the lower central series, Ann. Math., Volume 68 (1958), pp. 81-95 | MR | Zbl | DOI

[Chi05.] M. Ching Bar constructions for topological operads and the Goodwillie derivatives of the identity, Geom. Topol., Volume 9 (2005), pp. 833-933 | MR | Zbl | DOI

[CLM76.] F. R. Cohen; T. J. Lada; J. P. May The Homology of Iterated Loop Spaces, 533, Springer, Berlin, 1976 | Zbl | DOI

[DL62.] E. Dyer; R. K. Lashof Homology of iterated loop spaces, Am. J. Math., Volume 84 (1962), pp. 35-88 | MR | Zbl | DOI

[Dol58.] A. Dold Homology of symmetric products and other functors of complexes, Ann. Math., Volume 68 (1958), pp. 54-80 | MR | Zbl | DOI

[Don.] R. Donau, Personal communication.

[Don12.] R. Donau, A nice acyclic matching on the nerve of the partition lattice, arXiv preprint, 2012. | arXiv

[Dwy98.] W. G. Dwyer Sharp homology decompositions for classifying spaces of finite groups, Group Representations: Cohomology, Group Actions and Topology, Volume 63 (1998), pp. 197-220 | Zbl | DOI

[EKMM97.] A. D. Elmendorf; I. Kriz; M. A. Mandell; J. P. May Rings, Modules, and Algebras in Stable Homotopy Theory, 47, Am. Math. Soc., Providence, 1997 (With an appendix by M. Cole) | Zbl

[For98.] R. Forman Morse theory for cell complexes, Adv. Math., Volume 134 (1998), pp. 90-145 | MR | Zbl | DOI

[Fre.] B. Fresse Koszul duality of operads and homology of partition posets, Homotopy Theory: Relations with Algebraic Geometry, Group Cohomology, and Algebraic K-Theory, 346, 2004, pp. 115-215 | Zbl

[Fre09.] R. Freij Equivariant discrete Morse theory, Discrete Math., Volume 309 (2009), pp. 3821-3829 | MR | Zbl | DOI

[Goe90.] P. G. Goerss On the André-Quillen cohomology of commutative 𝐅 2 -algebras, Astérisque, Volume 186 (1990), p. 169 | Zbl | Numdam

[Gra01.] M. Grandis Higher fundamental functors for simplicial sets, Cah. Topol. Géom. Différ. Catég., Volume 42 (2001), pp. 101-136 | MR | Zbl | Numdam

[Her03.] H. Patricia Lexicographic shellability for balanced complexes, J. Algebraic Comb., Volume 17 (2003), pp. 225-254 | MR | Zbl | DOI

[HHR16.] M. A. Hill; M. J. Hopkins; D. C. Ravenel On the nonexistence of elements of Kervaire invariant one, Ann. Math. (2), Volume 184 (2016), pp. 1-262 | MR | Zbl | DOI

[Hir15.] P. S. Hirschhorn, Overcategories and undercategories of model categories, arXiv preprint, 2015. | arXiv

[Hov98.] M. Hovey, Monoidal model categories, arXiv preprint, 1998. | arXiv

[Hov99.] M. Hovey Model Categories, 63, Am. Math. Soc., Providence, 1999 | Zbl

[JTTW63.] I. M. James; E. Thomas; H. Toda; G. W. Whitehead On the symmetric square of a sphere, J. Math. Mech., Volume 12 (1963), pp. 771-776 | MR | Zbl

[KA56.] T. Kudo; S. Araki Topology of H n -spaces and H-squaring operations, Mem. Fac. Sci., Kochi Univ., Ser. A, Volume 10 (1956), pp. 85-120 | Zbl

[Kla73.] M. J. Klass Enumeration of partition classes induced by permutation groups, Not. Am. Math. Soc., Volume 20 (1973), p. A347-A347

[Koz.] D. Kozlov Collapsibility of Δ(Π n )/S n and some related CW complexes, Proc. Am. Math. Soc., Volume 128 (2000), pp. 2253-2259 | Zbl | DOI

[Koz98.] D. Kozlov Order complexes of noncomplemented lattices are nonevasive, Proc. Am. Math. Soc., Volume 126 (1998), pp. 3461-3465 | MR | Zbl | DOI

[Koz15.] D. Kozlov Topology of the view complex, Homol. Homotopy Appl., Volume 17 (2015), pp. 307-319 | MR | Zbl | DOI

[Kuh01.] N. J. Kuhn New relationships among loopspaces, symmetric products, and Eilenberg MacLane spaces, Cohomological Methods in Homotopy Theory, Springer, Berlin, 2001, pp. 185-216 | MR | DOI

[Kuh04.] N. J. Kuhn The McCord model for the tensor product of a space and a commutative ring spectrum, Categorical Decomposition Techniques in Algebraic Topology, Volume 215 (2004), pp. 213-236 | MR

[Law88.] F. W. Lawvere Toposes generated by codiscrete objects, in combinatorial topology and functional analysis, Notes for Colloquium Lectures Given at North Ryde, NSW, Australia, 1988

[Lüc89.] W. Lück Transformation Groups and Algebraic K -Theory, 1408, Springer, Berlin, 1989 (Mathematica Gottingensis) | Zbl | MR | DOI

[McC69.] M. C. McCord Classifying spaces and infinite symmetric products, Trans. Am. Math. Soc., Volume 146 (1969), pp. 273-298 | MR | Zbl | DOI

[McC01.] J. McCleary A User’s Guide to Spectral Sequences, 58, Cambridge University Press, Cambridge, 2001 | Zbl | MR

[Mil69.] R. J. Milgram The homology of symmetric products, Trans. Am. Math. Soc., Volume 138 (1969), pp. 251-265 | MR | Zbl | DOI

[MS06.] J. P. May; J. Sigurdsson Parametrized Homotopy Theory, 132, Am. Math. Soc., Providence, 2006 | Zbl | MR | DOI

[MSS07.] M. Markl; S. Shnider; J. D. Stasheff Operads in Algebra, Topology and Physics, 96, American Mathematical Soc., Providence, 2007 | Zbl | DOI | MR

[Mur15.] F. Muro On the unit of a monoidal model category, Topol. Appl., Volume 191 (2015), pp. 37-47 | MR | Zbl | DOI

[Nak57.] M. Nakaoka Cohomology mod p of the p-fold symmetric products of spheres, J. Math. Soc. Jpn., Volume 9 (1957), pp. 417-427 | MR | Zbl | DOI

[Nak59.] M. Nakaoka Cohomology mod p of the p-fold symmetric products of spheres. II, J. Inst. Polytech. Osaka City Univ., Ser. A, Volume 10 (1959), pp. 67-89 | MR | Zbl

[Nei10.] J. Neisendorfer Algebraic Methods in Unstable Homotopy Theory, 12, Cambridge University Press, Cambridge, 2010 | Zbl | DOI | MR

[Reu03.] C. Reutenauer Free Lie algebras, Handbook of Algebra, Vol. 3, 3, Elsevier/North-Holland, Amsterdam, 2003, pp. 887-903 | DOI | MR

[RT03.] J. Rosický; W. Tholen Left-determined model categories and universal homotopy theories, Trans. Am. Math. Soc., Volume 355 (2003), pp. 3611-3623 | MR | Zbl | DOI

[Sal98.] P. Salvatore, Configuration operads, minimal models and rational curves, PhD thesis, University of Oxford, 1998.

[Shi58.] A. I. Shirshov On free Lie rings, Mat. Sb., Volume 87 (1958), pp. 113-122 | MR

[SS00.] S. Schwede; B. E. Shipley Algebras and modules in monoidal model categories, Proc. Lond. Math. Soc. (3), Volume 80 (2000), pp. 491-511 | MR | Zbl | DOI

[Ste57.] R. Steinberg Prime power representations of finite linear groups II, Can. J. Math., Volume 9 (1957), pp. 347-351 | MR | Zbl | DOI

[SV91.] R. Schwänzl; R. M. Vogt The categories of A - and E -monoids and ring spaces as closed simplicial and topological model categories, Arch. Math. (Basel), Volume 56 (1991), pp. 405-411 | MR | Zbl | DOI

[Tak99.] S. Takayasu, On stable summands of Thom spectra of B(𝐙/2) n associated to Steinberg module, 1999. | MR

[Wac98.] M. L. Wachs On the (co)homology of the partition lattice and the free Lie algebra, Discrete Math., Volume 193 (1998), pp. 287-319 | MR | Zbl | DOI

[Wal88.] J. W. Walker Canonical homeomorphisms of posets, Eur. J. Comb., Volume 9 (1988), pp. 97-107 | MR | Zbl | DOI

[Web91.] P. J. Webb A split exact sequence of Mackey functors, Comment. Math. Helv., Volume 66 (1991), pp. 34-69 | MR | Zbl | DOI

[Wel90.] V. Welker, Homotopie im Untergruppenverband einer auflösbaren Gruppe, PhD thesis, Universität Erlangen, 1990.

[Whi17.] D. White, Model structures on commutative monoids in general model categories, J. Pure Appl. Algebra (2017). | MR

[Wit37.] E. Witt Treue Darstellung liescher Ringe, J. Reine Angew. Math., Volume 177 (1937), pp. 152-160 | MR | Zbl | DOI

[WW76.] D. E. White; S. G. Williamson Combinatorial structures and group invariant partitions, Proc. Am. Math. Soc., Volume 55 (1976), pp. 233-236 | MR | Zbl | DOI

Cited by Sources: