Article
Stationary characters on lattices of semisimple Lie groups
Publications Mathématiques de l'IHÉS, Volume 133 (2021), pp. 1-46

We show that stationary characters on irreducible lattices Γ<G of higher-rank connected semisimple Lie groups are conjugation invariant, that is, they are genuine characters. This result has several applications in representation theory, operator algebras, ergodic theory and topological dynamics. In particular, we show that for any such irreducible lattice Γ<G, the left regular representation λ Γ is weakly contained in any weakly mixing representation π. We prove that for any such irreducible lattice Γ<G, any Uniformly Recurrent Subgroup (URS) of Γ is finite, answering a question of Glasner–Weiss. We also obtain a new proof of Peterson’s character rigidity result for irreducible lattices Γ<G. The main novelty of our paper is a structure theorem for stationary actions of lattices on von Neumann algebras.

Received:
Accepted:
Online First:
Published online:
DOI: 10.1007/s10240-021-00122-8

Rémi Boutonnet 1; Cyril Houdayer 1

1
@article{PMIHES_2021__133__1_0,
     author = {R\'emi Boutonnet and Cyril Houdayer},
     title = {Stationary characters on lattices of semisimple {Lie} groups},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {1--46},
     year = {2021},
     publisher = {Springer International Publishing},
     address = {Cham},
     volume = {133},
     doi = {10.1007/s10240-021-00122-8},
     zbl = {1504.22009},
     language = {en},
     url = {https://pmihes.centre-mersenne.org/articles/10.1007/s10240-021-00122-8/}
}
TY  - JOUR
AU  - Rémi Boutonnet
AU  - Cyril Houdayer
TI  - Stationary characters on lattices of semisimple Lie groups
JO  - Publications Mathématiques de l'IHÉS
PY  - 2021
SP  - 1
EP  - 46
VL  - 133
PB  - Springer International Publishing
PP  - Cham
UR  - https://pmihes.centre-mersenne.org/articles/10.1007/s10240-021-00122-8/
DO  - 10.1007/s10240-021-00122-8
LA  - en
ID  - PMIHES_2021__133__1_0
ER  - 
%0 Journal Article
%A Rémi Boutonnet
%A Cyril Houdayer
%T Stationary characters on lattices of semisimple Lie groups
%J Publications Mathématiques de l'IHÉS
%D 2021
%P 1-46
%V 133
%I Springer International Publishing
%C Cham
%U https://pmihes.centre-mersenne.org/articles/10.1007/s10240-021-00122-8/
%R 10.1007/s10240-021-00122-8
%G en
%F PMIHES_2021__133__1_0
Rémi Boutonnet; Cyril Houdayer. Stationary characters on lattices of semisimple Lie groups. Publications Mathématiques de l'IHÉS, Volume 133 (2021), pp. 1-46. doi: 10.1007/s10240-021-00122-8

[7s12.] M. Abert; N. Bergeron; I. Biringer; T. Gelander; N. Nikolov; J. Raimbault; I. Samet On the growth of L 2 -invariants for sequences of lattices in Lie groups, Ann. Math., Volume 185 (2017), pp. 711-790 | MR | Zbl | DOI

[AGV12.] M. Abert; Y. Glasner; B. Virag Kesten’s theorem for invariant random subgroups, Duke Math. J., Volume 163 (2014), pp. 465-488 | MR | Zbl | DOI

[AB18.] V. Alekseev and R. Brugger, On invariant random positive definite functions, | arXiv

[BBHP20.] U. Bader, R. Boutonnet, C. Houdayer and J. Peterson, Charmenability of arithmetic groups of product type, | arXiv

[BF14.] U. Bader; A. Furman Boundaries, rigidity of representations, and Lyapunov exponents, Proceedings of the International Congress of Mathematicians–Seoul 2014, Vol. III, Kyung Moon Sa, Seoul, 2014, pp. 71-96 | Zbl

[BS04.] U. Bader; Y. Shalom Factor and normal subgroup theorems for lattices in products of groups, Invent. Math., Volume 163 (2006), pp. 415-454 | MR | Zbl | DOI

[Be95.] B. Bekka Restrictions of unitary representations to lattices and associated C * -algebras, J. Funct. Anal., Volume 143 (1997), pp. 33-41 | MR | Zbl | DOI

[Be06.] B. Bekka Operator-algebraic superridigity for SL n (𝐙), n3, Invent. Math., Volume 169 (2007), pp. 401-425 | MR | Zbl | DOI

[Be19.] B. Bekka Character rigidity of simple algebraic groups, Math. Ann., Volume 378 (2020), pp. 1223-1243 | MR | Zbl | DOI

[BCH94.] B. Bekka; M. Cowling; P. de la Harpe Some groups whose reduced C * -algebra is simple, Publ. Math. Inst. Hautes Études Sci., Volume 80 (1994), pp. 117-134 | MR | Zbl | DOI | Numdam

[BF20.] B. Bekka and C. Francini, Characters of algebraic groups over number fields, | arXiv

[BK19.] B. Bekka; M. Kalantar Quasi-regular representations of discrete groups and associated C * -algebras, Trans. Am. Math. Soc., Volume 373 (2020), pp. 2105-2133 | MR | Zbl | DOI

[BKKO14.] É. Breuillard; M. Kalantar; M. Kennedy; N. Ozawa C * -simplicity and the unique trace property for discrete groups, Publ. Math. Inst. Hautes Études Sci., Volume 126 (2017), pp. 35-71 | MR | Zbl | Numdam | DOI

[BO08.] N. P. Brown; N. Ozawa C * -Algebras and Finite-Dimensional Approximations, 88, Am. Math. Soc., Providence, 2008 | Zbl

[CJ83.] A. Connes; V. F. R. Jones Property T for von Neumann algebras, Bull. Lond. Math. Soc., Volume 17 (1985), pp. 57-62 | MR | Zbl | DOI

[CP12.] D. Creutz; J. Peterson Stabilizers of ergodic actions of lattices and commensurators, Trans. Am. Math. Soc., Volume 369 (2017), pp. 4119-4166 | MR | Zbl | DOI

[CP13.] D. Creutz and J. Peterson, Character rigidity for lattices and commensurators, | arXiv

[DM12.] A. Dudko; K. Medynets Finite factor representations of Higman-Thompson groups, Groups Geom. Dyn., Volume 8 (2014), pp. 375-389 | MR | Zbl | DOI

[Fu00.] A. Furman Random Walks on Groups and Random Transformations. Handbook of Dynamical Systems, 1A, North-Holland, Amsterdam, 2002, pp. 931-1014 | Zbl

[Fu62a.] H. Furstenberg A Poisson formula for semi-simple Lie groups, Ann. Math., Volume 77 (1963), pp. 335-386 | MR | Zbl | DOI

[Fu62b.] H. Furstenberg Non commuting random products, Trans. Am. Math. Soc., Volume 108 (1963), pp. 377-428 | Zbl | DOI

[Fu67.] H. Furstenberg Poisson boundaries and envelopes of discrete groups, Bull. Am. Math. Soc., Volume 73 (1967), pp. 350-356 | MR | Zbl | DOI

[Fu73.] H. Furstenberg Boundary Theory and Stochastic Processes on Homogeneous Spaces, Harmonic Analysis on Homogeneous Spaces, Volume XXVI (1973), pp. 193-229 | Zbl | DOI

[GK95.] L. Ge; R. Kadison On tensor products for von Neumann algebras, Invent. Math., Volume 123 (1996), pp. 453-466 | MR | Zbl | DOI

[Ge14.] T. Gelander A Lecture on Invariant Random Subgroups. New Directions in Locally Compact Groups, 447, Cambridge University Press, Cambridge, 2018, pp. 186-204 | Zbl | DOI

[GW14.] E. Glasner; B. Weiss Uniformly Recurrent Subgroups. Recent Trends in Ergodic Theory and Dynamical Systems, 631, Am. Math. Soc., Providence, 2015, pp. 63-75 | Zbl

[GM89.] I. Ya. Goldsheid; G. A. Margulis Lyapunov indices of a product of random matrices, Russ. Math. Surv., Volume 44 (1989), pp. 11-71 | DOI | Zbl

[Ha15.] U. Haagerup A new look at C * -simplicity and the unique trace property of a group, Operator Algebras and Applications–the Abel Symposium 2015, 12, Springer, Berlin, 2017, pp. 167-176

[HK17.] Y. Hartman and M. Kalantar, Stationary C * -dynamical systems, J. Eur. Math. Soc. (JEMS), in press. | arXiv

[Jo00.] V. F. R. Jones Ten Problems. Mathematics: Frontiers and Perspectives, Am. Math. Soc., Providence, 2000, pp. 79-91 | Zbl

[KK14.] M. Kalantar; M. Kennedy Boundaries of reduced C * -algebras of discrete groups, J. Reine Angew. Math., Volume 727 (2017), pp. 247-267 | MR | Zbl | DOI

[Ke15.] M. Kennedy An intrinsic characterization of C * -simplicity, Ann. Sci. Éc. Norm. Supér., Volume 53 (2020), pp. 1105-1119 | MR | Zbl | DOI

[LL20.] Omer Lavi and A. Levit, Characters of the group EL d (R) for a commutative Noetherian ring R, | arXiv

[LBMB16.] A. Le Boudec; N. Matte Bon Subgroup dynamics and C * -simplicity of groups of homeomorphisms, Ann. Sci. Éc. Norm. Supér., Volume 51 (2018), pp. 557-602 | MR | Zbl | DOI | Numdam

[Ma91.] G. A. Margulis Discrete Subgroups of Semisimple Lie Groups, 17, Springer, Berlin, 1991 (x+388 pp.) | Zbl | DOI

[NZ97.] A. Nevo; R. J. Zimmer Homogenous projective factors for actions of semi-simple Lie groups, Invent. Math., Volume 138 (1999), pp. 229-252 | MR | Zbl | DOI

[NZ00.] A. Nevo; R. J. Zimmer A structure theorem for actions of semisimple Lie groups, Ann. Math., Volume 156 (2002), pp. 565-594 | MR | Zbl | DOI

[NZ02.] A. Nevo; R. J. Zimmer Actions of semisimple Lie groups with stationary measure, Rigidity in Dynamics and Geometry (2002), pp. 321-343 | Zbl | Numdam | DOI

[Oz16.] N. Ozawa A remark on fullness of some group measure space von Neumann algebras, Compos. Math., Volume 152 (2016), pp. 2493-2502 | MR | Zbl | DOI

[Pe14.] J. Peterson, Character rigidity for lattices in higher-rank groups, 2014, preprint.

[PT13.] J. Peterson; A. Thom Character rigidity for special linear groups, J. Reine Angew. Math., Volume 716 (2016), pp. 207-228 | MR | Zbl | DOI

[SZ98.] Ş. Strătilă; L. Zsidó The commutation theorem for tensor products over von Neumann algebras, J. Funct. Anal., Volume 165 (1999), pp. 293-346 | MR | Zbl | DOI

[SZ92.] G. Stuck; R. J. Zimmer Stabilizers for ergodic actions of higher rank semisimple groups, Ann. Math., Volume 139 (1994), pp. 723-747 | MR | Zbl | DOI

[Ta02.] M. Takesaki Theory of operator algebras. I. Reprint of the first (1979) edition, Operator Algebras and Non-commutative Geometry, 5, 124, Springer, Berlin, 2002 (xx+415 pp.) | Zbl

[Ta03a.] M. Takesaki Theory of Operator Algebras. II, Operator Algebras and Non-commutative Geometry, 6, 125, Springer, Berlin, 2003 (xxii+518 pp.) | Zbl

[Ta03b.] M. Takesaki Theory of Operator Algebras. III, Operator Algebras and Non-commutative Geometry, 8, 127, Springer, Berlin, 2003 (xxii+548 pp.) | Zbl

[Wa74.] P. S. Wang On isolated points in the dual spaces of locally compact groups, Math. Ann., Volume 218 (1975), pp. 19-34 | MR | Zbl | DOI

[Zi84.] R. J. Zimmer Ergodic Theory and Semisimple Groups, 81, Birkhäuser, Basel, 1984 (x+209 pp.) | Zbl | DOI

Cited by Sources: