Article
Complexity of parabolic systems
Publications Mathématiques de l'IHÉS, Volume 132 (2020), pp. 83-135

We first bound the codimension of an ancient mean curvature flow by the entropy. As a consequence, all blowups lie in a Euclidean subspace whose dimension is bounded by the entropy and dimension of the evolving submanifolds. This drastically reduces the complexity of the system. We use this in a major application of our new methods to give the first general bounds on generic singularities of surfaces in arbitrary codimension.

We also show sharp bounds for codimension in arguably some of the most important situations of general ancient flows. Namely, we prove that in any dimension and codimension any ancient flow that is cylindrical at - must be a flow of hypersurfaces in a Euclidean subspace. This extends well-known classification results to higher codimension.

The bound on the codimension in terms of the entropy is a special case of sharp bounds for spectral counting functions for shrinkers and, more generally, ancient flows. Shrinkers are solutions that evolve by scaling and are the singularity models for the flow.

We show rigidity of cylinders as shrinkers in all dimension and all codimension in a very strong sense: Any shrinker, even in a large dimensional space, that is sufficiently close to a cylinder on a large enough, but compact, set is itself a cylinder. This is an important tool in the theory and is key for regularity; cf. (Colding and Minicozzi II in preprint, 2020).

Received:
Accepted:
Online First:
Published online:
DOI: 10.1007/s10240-020-00117-x
@article{PMIHES_2020__132__83_0,
     author = {Tobias Holck Colding and William P. Minicozzi},
     title = {Complexity of parabolic systems},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {83--135},
     year = {2020},
     publisher = {Springer Berlin Heidelberg},
     address = {Berlin/Heidelberg},
     volume = {132},
     doi = {10.1007/s10240-020-00117-x},
     mrnumber = {4179832},
     zbl = {1458.53095},
     language = {en},
     url = {https://pmihes.centre-mersenne.org/articles/10.1007/s10240-020-00117-x/}
}
TY  - JOUR
AU  - Tobias Holck Colding
AU  - William P. Minicozzi
TI  - Complexity of parabolic systems
JO  - Publications Mathématiques de l'IHÉS
PY  - 2020
SP  - 83
EP  - 135
VL  - 132
PB  - Springer Berlin Heidelberg
PP  - Berlin/Heidelberg
UR  - https://pmihes.centre-mersenne.org/articles/10.1007/s10240-020-00117-x/
DO  - 10.1007/s10240-020-00117-x
LA  - en
ID  - PMIHES_2020__132__83_0
ER  - 
%0 Journal Article
%A Tobias Holck Colding
%A William P. Minicozzi
%T Complexity of parabolic systems
%J Publications Mathématiques de l'IHÉS
%D 2020
%P 83-135
%V 132
%I Springer Berlin Heidelberg
%C Berlin/Heidelberg
%U https://pmihes.centre-mersenne.org/articles/10.1007/s10240-020-00117-x/
%R 10.1007/s10240-020-00117-x
%G en
%F PMIHES_2020__132__83_0
Tobias Holck Colding; William P. Minicozzi. Complexity of parabolic systems. Publications Mathématiques de l'IHÉS, Volume 132 (2020), pp. 83-135. doi: 10.1007/s10240-020-00117-x

[AL] U. Abresch; J. Langer The normalized curve shortening flow and homothetic solutions, J. Differ. Geom., Volume 23 (1986), pp. 175-196 | MR | Zbl | DOI

[AHW] B. Andrews; H. Li; Y. Wei ℱ-stability for self-shrinking solutions to mean curvature flow, Asian J. Math., Volume 18 (2014), pp. 757-777 | MR | Zbl | DOI

[ADS] S. B. Angenent, P. Daskalopoulos and N. Sesum, Uniqueness of two-convex closed ancient solutions to the mean curvature flow, preprint. | MR

[AS] C. Arezzo; J. Sun Self-shrinkers for the mean curvature flow in arbitrary codimension, Math. Z., Volume 274 (2013), pp. 993-1027 | MR | Zbl | DOI

[BW1] J. Bernstein; L. Wang A sharp lower bound for the entropy of closed hypersurfaces up to dimension six, Invent. Math., Volume 206 (2016), pp. 601-627 | MR | Zbl | DOI

[BW2] J. Bernstein; L. Wang Topology of closed hypersurfaces of small entropy, Geom. Topol., Volume 22 (2018), pp. 1109-1141 | MR | Zbl | DOI

[BW3] J. Bernstein; L. Wang A topological property of asymptotically conical self-shrinkers of small entropy, Duke Math. J., Volume 166 (2017), pp. 403-435 | MR | Zbl | DOI

[B] S. Brendle Embedded self-similar shrinkers of genus 0, Ann. Math. (2), Volume 183 (2016), pp. 715-728 | MR | Zbl | DOI

[BCh] S. Brendle; K. Choi Uniqueness of convex ancient solutions to mean curvature flow in 𝐑 3 , Invent. Math., Volume 217 (2019), pp. 35-76 | MR | Zbl | DOI

[Ca] E. Calabi Minimal immersions of surfaces in Euclidean spheres, J. Differ. Geom., Volume 1 (1967), pp. 111-125 | MR | Zbl | DOI

[Ca1] M. Calle Bounding dimension of ambient space by density for mean curvature flow, Math. Z., Volume 252 (2006), pp. 655-668 | MR | Zbl | DOI

[Ca2] M. Calle, Mean curvature flow and minimal surfaces, Thesis (Ph.D.), New York University, 2007. | MR

[Cg] S. Y. Cheng Eigenfunctions and nodal sets, Comment. Math. Helv., Volume 51 (1976), pp. 43-55 | MR | Zbl | DOI

[CgLYa] S. Y. Cheng; P. Li; S. T. Yau Heat equations on minimal submanifolds and their applications, Am. J. Math., Volume 106 (1984), pp. 1033-1065 | MR | Zbl | DOI

[CxZh] X. Cheng; D. Zhou Eigenvalues of the drifted Laplacian on complete metric measure spaces, Commun. Contemp. Math., Volume 19 (2017) | MR | Zbl | DOI

[ChHH] K. Choi, R. Haslhofer and O. Hershkovits, Ancient low entropy flows, mean convex neighborhoods, and uniqueness, preprint. | MR

[ChHHW] K. Choi, R. Haslhofer, O. Hershkovits and B. White, Ancient asymptotically cylindrical flows and applications, preprint. | MR

[ChY] D. Christodoulou; S. T. Yau Some remarks on the quasi-local mass, Mathematics and General Relativity, Volume 71 (1988), pp. 9-14 | MR | Zbl | DOI

[CIM] T. H. Colding; T. Ilmanen; W. P. Minicozzi Rigidity of generic singularities of mean curvature flow, Publ. Math. IHÉS, Volume 121 (2015), pp. 363-382 | MR | Zbl | DOI

[CIMW] T. H. Colding; T. Ilmanen; W. P. Minicozzi; B. White The round sphere minimizes entropy among closed self-shrinkers, J. Differ. Geom., Volume 95 (2013), pp. 53-69 | MR | Zbl | DOI

[CM1] T. H. Colding; W. P. Minicozzi Harmonic functions with polynomial growth, J. Differ. Geom., Volume 46 (1997), pp. 1-77 | MR | Zbl | DOI

[CM2] T. H. Colding; W. P. Minicozzi Harmonic functions on manifolds, Ann. Math. (2), Volume 146 (1997), pp. 725-747 | MR | Zbl | DOI

[CM3] T. H. Colding; W. P. Minicozzi Weyl type bounds for harmonic functions, Invent. Math., Volume 131 (1998), pp. 257-298 | MR | Zbl | DOI

[CM4] T. H. Colding; W. P. Minicozzi Liouville theorems for harmonic sections and applications, Commun. Pure Appl. Math., Volume 52 (1998), pp. 113-138 | MR | Zbl | DOI

[CM5] T. H. Colding; W. P. Minicozzi Minimal Surfaces, 4, New York University, Courant Institute of Mathematical Sciences, New York, 1999 | Zbl | MR

[CM6] T. H. Colding; W. P. Minicozzi Estimates for the extinction time for the Ricci flow on certain 3-manifolds and a question of Perelman, J. Am. Math. Soc., Volume 18 (2005), pp. 561-569 | MR | Zbl | DOI

[CM7] T. H. Colding; W. P. Minicozzi A Course in Minimal Surfaces, 121, AMS, Providence, 2011 | Zbl | MR

[CM8] T. H. Colding; W. P. Minicozzi Generic mean curvature flow I; generic singularities, Ann. Math., Volume 175 (2012), pp. 755-833 | MR | Zbl | DOI

[CM9] T. H. Colding; W. P. Minicozzi Uniqueness of blowups and Lojasiewicz inequalities, Ann. Math., Volume 182 (2015), pp. 221-285 | MR | Zbl | DOI

[CM10] T. H. Colding; W. P. Minicozzi In search of stable geometric structures, Not. Am. Math. Soc., Volume 66 (2019), pp. 1785-1791 | MR | Zbl

[CM11] T. H. Colding and W. P. Minicozzi II, Regularity of elliptic and parabolic systems, preprint (2019). | MR

[CM12] T. H. Colding and W. P. Minicozzi II, Optimal bounds for ancient caloric functions, preprint. | MR

[CM13] T. H. Colding; W. P. Minicozzi Liouville properties, ICCM Not., Volume 7 (2019), pp. 16-26 | MR | Zbl | DOI

[CM14] T. H. Colding and W. P. Minicozzi II, Rigidity of singularities for Ricci flow, preprint.

[CM15] T. H. Colding and W. P. Minicozzi II, Uniqueness of blowups for Ricci flow, in preparation.

[dCW] M. do Carmo; N. Wallach Minimal immersions of spheres into spheres, Ann. Math. (2), Volume 93 (1971), pp. 43-62 | MR | Zbl | DOI

[CtHi] R. Courant; D. Hilbert Methods of Mathematical Physics I, Interscience, New York, 1955 | Zbl | MR

[E1] K. Ecker Regularity Theory for Mean Curvature Flow, 57, Birkhäuser Boston, Boston, 2004 | Zbl | MR | DOI

[E2] K. Ecker Partial regularity at the first singular time for hypersurfaces evolving by mean curvature, Math. Ann., Volume 356 (2013), pp. 217-240 | MR | Zbl | DOI

[E3] K. Ecker Logarithmic Sobolev inequalities on submanifolds of Euclidean space, J. Reine Angew. Math., Volume 522 (2000), pp. 105-118 | MR | Zbl

[EI] A. El Soufi; S. Ilias Immersions minimales, premiére valeur propre du laplacien et volume conforme, Math. Ann., Volume 275 (1986), pp. 257-267 | MR | Zbl | DOI

[GKS] Z. Gang; D. Knopf; I. M. Sigal Neckpinch Dynamics for Asymmetric Surfaces Evolving by Mean Curvature Flow, 253 (1210), 2018 | Zbl | MR

[GNY] A. Grigor’yan; Y. Netrusov; S. T. Yau Eigenvalues of elliptic operators and geometric applications, Surveys in Differential Geometry, vol. IX, 9, IP, Somerville, 2004, pp. 147-217 | MR | Zbl | DOI

[Ham] R. Hamilton Formation of singularities in the Ricci flow, Surveys in Differential Geometry, vol. II (1993), pp. 7-136 | MR | Zbl

[Ha] J. Harris Algebraic Geometry. A First Course, 133, Springer, New York, 1992 | Zbl | MR | DOI

[He] J. Hersch Quatre properiétés isopérimétriques de membranes sphériques homogénes, C. R. Acad. Sci. Paris, Volume 270 (1970), pp. 1645-1648 | MR | Zbl

[Has] R. Haslhofer Uniqueness of the bowl soliton, Geom. Topol., Volume 19 (2015), pp. 2393-2406 | MR | Zbl | DOI

[HH] R. Haslhofer; O. Hershkovits Ancient solutions of the mean curvature flow, Commun. Anal. Geom., Volume 24 (2016), pp. 593-604 | MR | Zbl | DOI

[H] O. Hershkovits, Translators asymptotic to cylinders, Crelle, to appear. | MR

[HW] O. Hershkovits; B. White Sharp entropy bounds for self-shrinkers in mean curvature flow, Geom. Topol., Volume 23 (2019), pp. 1611-1619 | MR | Zbl | DOI

[Hu] G. Huisken Asymptotic behavior for singularities of the mean curvature flow, J. Differ. Geom., Volume 31 (1990), pp. 285-299 | MR | Zbl | DOI

[I] T. Ilmanen, Singularities of mean curvature flow of surfaces, preprint (1995).

[Ka] M. Karpukhin On the Yang-Yau inequality for the first Laplace eigenvalue, Geom. Funct. Anal., Volume 29 (2019), pp. 1864-1885 | MR | Zbl | DOI

[KZ] D. Ketover; X. Zhou Entropy of closed surfaces and min-max theory, J. Differ. Geom., Volume 110 (2018), pp. 31-71 | MR | Zbl | DOI

[K] N. Korevaar Upper bounds for eigenvalues of conformal metrics, J. Differ. Geom., Volume 37 (1993), pp. 73-93 | MR | Zbl | DOI

[LL] Y.-I. Lee; Y.-K. Lue The stability of self-shrinkers of mean curvature flow in higher co-dimension, Trans. Am. Math. Soc., Volume 367 (2015), pp. 2411-2435 | MR | Zbl | DOI

[LZ] F. H. Lin; Q. S. Zhang On ancient solutions of the heat equation, Commun. Pure Appl. Math., Volume LXXII (2019), pp. 2006-2028 | MR | Zbl | DOI

[Wa] M.-T. Wang Lectures on mean curvature flows in higher codimensions, Handbook of Geometric Analysis. No. 1, 7, Int. Press, Somerville, 2008, pp. 525-543 | MR | Zbl

[Mi] M. Micallef Stable minimal surfaces in Euclidean space, J. Differ. Geom., Volume 19 (1984), pp. 57-84 | MR | Zbl | DOI

[Mu] J. Munkres Topology, Prentice Hall, Upper Saddle River, 2000 | Zbl | MR

[W1] B. White A local regularity theorem for mean curvature flow, Ann. Math. (2), Volume 161 (2005), pp. 1487-1519 | MR | Zbl | DOI

[W2] B. White The size of the singular set in mean curvature flow of mean-convex sets, J. Am. Math. Soc., Volume 13 (2000), pp. 665-695 | MR | Zbl | DOI

[W3] B. White Partial regularity of mean-convex hypersurfaces flowing by mean curvature, Int. Math. Res. Not., Volume 4 (1994), pp. 185-192 | Zbl | MR | DOI

[YY] P. C. Yang; S. T. Yau Eigenvalues of the Laplacian of compact Riemann surfaces and minimal submanifolds, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (4), Volume 7 (1980), pp. 55-63 | MR | Zbl | Numdam

[Z] J. Zhu On the entropy of closed hypersurfaces and singular self-shrinkers, J. Differ. Geom., Volume 114 (2020), pp. 551-593 | MR | Zbl

Cited by Sources: