We introduce a class of Liouville manifolds with boundary which we call Liouville sectors. We define the wrapped Fukaya category, symplectic cohomology, and the open-closed map for Liouville sectors, and we show that these invariants are covariantly functorial with respect to inclusions of Liouville sectors. From this foundational setup, a local-to-global principle for Abouzaid’s generation criterion follows.
@article{PMIHES_2020__131__73_0,
author = {Sheel Ganatra and John Pardon and Vivek Shende},
title = {Covariantly functorial wrapped {Floer} theory on {Liouville} sectors},
journal = {Publications Math\'ematiques de l'IH\'ES},
pages = {73--200},
year = {2020},
publisher = {Springer Berlin Heidelberg},
address = {Berlin/Heidelberg},
volume = {131},
doi = {10.1007/s10240-019-00112-x},
mrnumber = {4106794},
zbl = {1508.53091},
language = {en},
url = {https://pmihes.centre-mersenne.org/articles/10.1007/s10240-019-00112-x/}
}
TY - JOUR AU - Sheel Ganatra AU - John Pardon AU - Vivek Shende TI - Covariantly functorial wrapped Floer theory on Liouville sectors JO - Publications Mathématiques de l'IHÉS PY - 2020 SP - 73 EP - 200 VL - 131 PB - Springer Berlin Heidelberg PP - Berlin/Heidelberg UR - https://pmihes.centre-mersenne.org/articles/10.1007/s10240-019-00112-x/ DO - 10.1007/s10240-019-00112-x LA - en ID - PMIHES_2020__131__73_0 ER -
%0 Journal Article %A Sheel Ganatra %A John Pardon %A Vivek Shende %T Covariantly functorial wrapped Floer theory on Liouville sectors %J Publications Mathématiques de l'IHÉS %D 2020 %P 73-200 %V 131 %I Springer Berlin Heidelberg %C Berlin/Heidelberg %U https://pmihes.centre-mersenne.org/articles/10.1007/s10240-019-00112-x/ %R 10.1007/s10240-019-00112-x %G en %F PMIHES_2020__131__73_0
Sheel Ganatra; John Pardon; Vivek Shende. Covariantly functorial wrapped Floer theory on Liouville sectors. Publications Mathématiques de l'IHÉS, Volume 131 (2020), pp. 73-200. doi: 10.1007/s10240-019-00112-x
[1.] A geometric criterion for generating the Fukaya category, Publ. Math. Inst. Hautes Études Sci., Volume 112 (2010), pp. 191-240 MR 2737980 (2012h:53192) | MR | Zbl | DOI | Numdam
[2.] M. Abouzaid, Co-sheaves, families of Lagrangians, and the Fukaya category, unpublished manuscript, pp. 1–21, 2011
[3.] A cotangent fibre generates the Fukaya category, Adv. Math., Volume 228 (2011), pp. 894-939 MR 2822213 (2012m:53192) | MR | Zbl | DOI
[4.] A topological model for the Fukaya categories of plumbings, J. Differ. Geom., Volume 87 (2011), pp. 1-80 MR 2786590 (2012h:53193) | MR | Zbl | DOI
[5.] On the wrapped Fukaya category and based loops, J. Symplectic Geom., Volume 10 (2012), pp. 27-79 (MR 2904032) | MR | Zbl | DOI
[6.] Symplectic cohomology and Viterbo’s theorem, Free Loop Spaces in Geometry and Topology, 24, Eur. Math. Soc., Zürich, 2015, pp. 271-485 (MR 3444367) | Zbl | MR
[7.] M. Abouzaid and S. Ganatra, Generating Fukaya categories of Landau–Ginzburg models, in preparation.
[8.] M. Abouzaid and P. Seidel, Lefschetz fibration techniques in wrapped Floer cohomology, in preparation.
[9.] An open string analogue of Viterbo functoriality, Geom. Topol., Volume 14 (2010), pp. 627-718 MR 2602848 (2011g:53190) | MR | Zbl | DOI
[10.] On the cobar construction, Proc. Natl. Acad. Sci. USA, Volume 42 (1956), pp. 409-412 MR 0079266 (18, 59c) | MR | Zbl | DOI
[11.] Effect of Legendrian surgery, Geom. Topol., Volume 16 (2012), pp. 301-389 (with an appendix by Sheel Ganatra and Maksim Maydanskiy, MR 2916289) | MR | Zbl | DOI
[12.] Symplectic homology. II. A general construction, Math. Z., Volume 218 (1995), pp. 103-122 (MR 1312580) | MR | Zbl | DOI
[13.] From Stein to Weinstein and Back: Symplectic Geometry of Affine Complex Manifolds, 59, American Mathematical Society, Providence, RI, 2012 (MR 3012475) | Zbl | MR
[14.] V. Colin and K. Honda, Foliations, contact structures and their interactions in dimension three, arxiv preprint (2018), pp. 1–25, | arXiv | MR
[15.] DG quotients of DG categories, J. Algebra, Volume 272 (2004), pp. 643-691 (MR 2028075) | MR | Zbl | DOI
[16.] T. Ekholm and Y. Lekili, Duality between Lagrangian and Legendrian invariants, arxiv preprint (2017), pp. 1–104, | arXiv | MR
[17.] A complete knot invariant from contact homology, Invent. Math., Volume 211 (2018), pp. 1149-1200 (MR 3763406) | MR | Zbl | DOI
[18.] Symplectic geometry of plurisubharmonic functions, Gauge Theory and Symplectic Geometry, Volume 488 (1997), pp. 49-67 (with notes by Miguel Abreu, MR 1461569) | Zbl | DOI | MR
[19.] Weinstein manifolds revisited, Modern Geometry: A Celebration of the Work of Simon Donaldson, 99, Amer. Math. Soc., Providence, 2018, pp. 59-82 (MR 3838879) | MR | DOI
[20.] Convex symplectic manifolds, Several Complex Variables and Complex Geometry, Part 2, Volume 52 (1991), pp. 135-162 (MR 1128541) | Zbl | DOI | MR
[21.] Symplectic homology. I. Open sets in , Math. Z., Volume 215 (1994), pp. 37-88 (MR 1254813) | MR | Zbl | DOI
[22.] Witten’s complex and infinite-dimensional Morse theory, J. Differ. Geom., Volume 30 (1989), pp. 207-221 MR 1001276 (90d:58029) | MR | Zbl | DOI
[23.] Zero-loop open strings in the cotangent bundle and Morse homotopy, Asian J. Math., Volume 1 (1997), pp. 96-180 (MR 1480992) | MR | Zbl | DOI
[24.] Lagrangian intersection Floer theory: anomaly and obstruction. Part I, 46, American Mathematical Society/International Press, Providence/Somerville, 2009 (MR 2553465) | Zbl | MR
[25.] S. Ganatra, Symplectic cohomology and duality for the wrapped Fukaya category, arxiv preprint (2013), pp. 1–166, | arXiv | MR
[26.] S. Ganatra, Cyclic homology, -equivariant Floer cohomology, and Calabi–Yau structures, preprint (2019), pp. 1–70, http://sheelganatra.com/circle_action/. | MR
[27.] Y. Gao, Wrapped Floer cohomology and Lagrangian correspondences, arxiv preprint (2017), pp. 1–70, | arXiv
[28.] Y. Gao, Functors of wrapped Fukaya categories from Lagrangian correspondences, arxiv preprint (2017), pp. 1–144, | arXiv
[29.] An introduction to contact topology, 109, Cambridge University Press, Cambridge, 2008 | Zbl | DOI | MR
[30.] Convexité en topologie de contact, Comment. Math. Helv., Volume 66 (1991), pp. 637-677 | MR | Zbl | DOI
[31.] Y. Groman, Floer theory on open manifolds, arxiv preprint (2017), pp. 1–76, | arXiv
[32.] Quasi-categories and Kan complexes, J. Pure Appl. Algebra, Volume 175 (2002), pp. 207-222 (special volume celebrating the 70th birthday of Professor Max Kelly. MR 1935979) | MR | Zbl | DOI
[33.] Homological algebra of mirror symmetry, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (1995), pp. 120-139 MR 1403918 (97f:32040) | Zbl | DOI | MR
[34.] Higher topos theory, 170, Princeton University Press, Princeton, 2009 MR 2522659 (2010j:18001) | Zbl | MR | DOI
[35.] J. Lurie, Higher algebra, available for download (2017), pp. 1–1553.
[36.] -morphisms with several entries, Theory Appl. Categ., Volume 30 (2015), pp. 1501-1551 (MR 3421458) | MR | Zbl
[37.] Quotients of unital -categories, Theory Appl. Categ., Volume 20 (2008), pp. 405-496 (MR 2425553) | MR | Zbl
[38.] A construction of quotient -categories, Homol. Homotopy Appl., Volume 8 (2006), pp. 157-203 (MR 2259271) | MR | Zbl | DOI
[39.] Lefschetz fibrations and exotic symplectic structures on cotangent bundles of spheres, J. Topol., Volume 3 (2010), pp. 157-180 (MR 2608480) | MR | Zbl | DOI
[40.] Arboreal singularities, Geom. Topol., Volume 21 (2017), pp. 1231-1274 (MR 3626601) | MR | Zbl | DOI
[41.] A survey of Floer homology for manifolds with contact type boundary or symplectic homology, Symplectic Geometry and Floer Homology, 7, Soc. Brasil. Mat., Rio de Janeiro, 2004, pp. 51-91 (MR 2100955) | Zbl | MR
[42.] The Künneth formula in Floer homology for manifolds with restricted contact type boundary, Math. Ann., Volume 334 (2006), pp. 65-89 (MR 2208949) | MR | Zbl | DOI
[43.] An algebraic approach to virtual fundamental cycles on moduli spaces of pseudo-holomorphic curves, Geom. Topol., Volume 20 (2016), pp. 779-1034 (MR 3493097) | MR | Zbl | DOI
[44.] Topological quantum field theory structure on symplectic cohomology, J. Topol., Volume 6 (2013), pp. 391-489 (MR 3065181) | MR | Zbl | DOI
[45.] Morse theory for periodic solutions of Hamiltonian systems and the Maslov index, Commun. Pure Appl. Math., Volume 45 (1992), pp. 1303-1360 MR 1181727 (93g:58028) | MR | Zbl | DOI
[46.] Graded Lagrangian submanifolds, Bull. Soc. Math. Fr., Volume 128 (2000), pp. 103-149 MR 1765826 (2001c:53114) | MR | Zbl | DOI | Numdam
[47.] Fukaya categories and deformations, Proceedings of the International Congress of Mathematicians, Vol. II (2002), pp. 351-360 (MR 1957046) | MR
[48.] -subalgebras and natural transformations, Homol. Homotopy Appl., Volume 10 (2008), pp. 83-114 MR 2426130 (2010k:53154) | MR | Zbl | DOI
[49.] A biased view of symplectic cohomology, Current Developments in Mathematics (2008), pp. 211-253 (MR 2459307) | MR
[50.] Fukaya Categories and Picard-Lefschetz Theory, European Mathematical Society (EMS), Zürich, 2008 MR 2441780 (2009f:53143) | Zbl | DOI
[51.] Fukaya -structures associated to Lefschetz fibrations. I, J. Symplectic Geom., Volume 10 (2012), pp. 325-388 (MR 2983434) | MR | Zbl | DOI
[52.] V. Shende, Arboreal singularities from Lefschetz fibrations, arxiv preprint (2018), pp. 1–15, | arXiv | MR
[53.] N. Sheridan, Formulae in noncommutative Hodge theory, arxiv preprint (2015), pp. 1–54, | arXiv
[54.] Some properties of holomorphic curves in almost complex manifolds, Holomorphic Curves in Symplectic Geometry, 117, Birkhäuser, Basel, 1994, pp. 165-189 | MR | DOI
[55.] Resolutions of unbounded complexes, Compos. Math., Volume 65 (1988), pp. 121-154 (MR 932640) | MR | Zbl | Numdam
[56.] On partially wrapped Fukaya categories, J. Topol., Volume 12 (2019), pp. 372-441 (MR 3911570) | MR | Zbl | DOI
[57.] The Seiberg-Witten equations and the Weinstein conjecture, Geom. Topol., Volume 11 (2007), pp. 2117-2202 (MR 2350473) | MR | Zbl | DOI
[58.] Infinity-inner-products on -infinity-algebras, J. Homotopy Relat. Struct., Volume 3 (2008), pp. 245-271 (MR 2426181) | MR | Zbl
[59.] J.-L. Verdier, Des catégories dérivées des catégories abéliennes, Astérisque, 239 (1996), xii+253 pp., with a preface by Luc Illusie, edited and with a note by Georges Maltsiniotis, MR 1453167. | MR | Numdam
[60.] Functors and computations in Floer homology with applications. I, Geom. Funct. Anal., Volume 9 (1999), pp. 985-1033 (MR 1726235) | MR | Zbl | DOI
[61.] On the hypotheses of Rabinowitz’ periodic orbit theorems, J. Differ. Equ., Volume 33 (1979), pp. 353-358 (MR 543704) | MR | Zbl | DOI
[62.] On the dunce hat, Topology, Volume 2 (1964), pp. 341-358 (MR 0156351) | MR | Zbl | DOI
Cited by Sources: