Article
Covariantly functorial wrapped Floer theory on Liouville sectors
Publications Mathématiques de l'IHÉS, Volume 131 (2020), pp. 73-200

We introduce a class of Liouville manifolds with boundary which we call Liouville sectors. We define the wrapped Fukaya category, symplectic cohomology, and the open-closed map for Liouville sectors, and we show that these invariants are covariantly functorial with respect to inclusions of Liouville sectors. From this foundational setup, a local-to-global principle for Abouzaid’s generation criterion follows.

Received:
Accepted:
Online First:
Published online:
DOI: 10.1007/s10240-019-00112-x
@article{PMIHES_2020__131__73_0,
     author = {Sheel Ganatra and John Pardon and Vivek Shende},
     title = {Covariantly functorial wrapped {Floer} theory on {Liouville} sectors},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {73--200},
     year = {2020},
     publisher = {Springer Berlin Heidelberg},
     address = {Berlin/Heidelberg},
     volume = {131},
     doi = {10.1007/s10240-019-00112-x},
     mrnumber = {4106794},
     zbl = {1508.53091},
     language = {en},
     url = {https://pmihes.centre-mersenne.org/articles/10.1007/s10240-019-00112-x/}
}
TY  - JOUR
AU  - Sheel Ganatra
AU  - John Pardon
AU  - Vivek Shende
TI  - Covariantly functorial wrapped Floer theory on Liouville sectors
JO  - Publications Mathématiques de l'IHÉS
PY  - 2020
SP  - 73
EP  - 200
VL  - 131
PB  - Springer Berlin Heidelberg
PP  - Berlin/Heidelberg
UR  - https://pmihes.centre-mersenne.org/articles/10.1007/s10240-019-00112-x/
DO  - 10.1007/s10240-019-00112-x
LA  - en
ID  - PMIHES_2020__131__73_0
ER  - 
%0 Journal Article
%A Sheel Ganatra
%A John Pardon
%A Vivek Shende
%T Covariantly functorial wrapped Floer theory on Liouville sectors
%J Publications Mathématiques de l'IHÉS
%D 2020
%P 73-200
%V 131
%I Springer Berlin Heidelberg
%C Berlin/Heidelberg
%U https://pmihes.centre-mersenne.org/articles/10.1007/s10240-019-00112-x/
%R 10.1007/s10240-019-00112-x
%G en
%F PMIHES_2020__131__73_0
Sheel Ganatra; John Pardon; Vivek Shende. Covariantly functorial wrapped Floer theory on Liouville sectors. Publications Mathématiques de l'IHÉS, Volume 131 (2020), pp. 73-200. doi: 10.1007/s10240-019-00112-x

[1.] M. Abouzaid A geometric criterion for generating the Fukaya category, Publ. Math. Inst. Hautes Études Sci., Volume 112 (2010), pp. 191-240 MR 2737980 (2012h:53192) | MR | Zbl | DOI | Numdam

[2.] M. Abouzaid, Co-sheaves, families of Lagrangians, and the Fukaya category, unpublished manuscript, pp. 1–21, 2011

[3.] M. Abouzaid A cotangent fibre generates the Fukaya category, Adv. Math., Volume 228 (2011), pp. 894-939 MR 2822213 (2012m:53192) | MR | Zbl | DOI

[4.] M. Abouzaid A topological model for the Fukaya categories of plumbings, J. Differ. Geom., Volume 87 (2011), pp. 1-80 MR 2786590 (2012h:53193) | MR | Zbl | DOI

[5.] M. Abouzaid On the wrapped Fukaya category and based loops, J. Symplectic Geom., Volume 10 (2012), pp. 27-79 (MR 2904032) | MR | Zbl | DOI

[6.] M. Abouzaid Symplectic cohomology and Viterbo’s theorem, Free Loop Spaces in Geometry and Topology, 24, Eur. Math. Soc., Zürich, 2015, pp. 271-485 (MR 3444367) | Zbl | MR

[7.] M. Abouzaid and S. Ganatra, Generating Fukaya categories of Landau–Ginzburg models, in preparation.

[8.] M. Abouzaid and P. Seidel, Lefschetz fibration techniques in wrapped Floer cohomology, in preparation.

[9.] M. Abouzaid; P. Seidel An open string analogue of Viterbo functoriality, Geom. Topol., Volume 14 (2010), pp. 627-718 MR 2602848 (2011g:53190) | MR | Zbl | DOI

[10.] J. F. Adams On the cobar construction, Proc. Natl. Acad. Sci. USA, Volume 42 (1956), pp. 409-412 MR 0079266 (18, 59c) | MR | Zbl | DOI

[11.] F. Bourgeois; T. Ekholm; Y. Eliashberg Effect of Legendrian surgery, Geom. Topol., Volume 16 (2012), pp. 301-389 (with an appendix by Sheel Ganatra and Maksim Maydanskiy, MR 2916289) | MR | Zbl | DOI

[12.] K. Cieliebak; A. Floer; H. Hofer Symplectic homology. II. A general construction, Math. Z., Volume 218 (1995), pp. 103-122 (MR 1312580) | MR | Zbl | DOI

[13.] K. Cieliebak; Y. Eliashberg From Stein to Weinstein and Back: Symplectic Geometry of Affine Complex Manifolds, 59, American Mathematical Society, Providence, RI, 2012 (MR 3012475) | Zbl | MR

[14.] V. Colin and K. Honda, Foliations, contact structures and their interactions in dimension three, arxiv preprint (2018), pp. 1–25, | arXiv | MR

[15.] V. Drinfeld DG quotients of DG categories, J. Algebra, Volume 272 (2004), pp. 643-691 (MR 2028075) | MR | Zbl | DOI

[16.] T. Ekholm and Y. Lekili, Duality between Lagrangian and Legendrian invariants, arxiv preprint (2017), pp. 1–104, | arXiv | MR

[17.] T. Ekholm; L. Ng; V. Shende A complete knot invariant from contact homology, Invent. Math., Volume 211 (2018), pp. 1149-1200 (MR 3763406) | MR | Zbl | DOI

[18.] Y. Eliashberg Symplectic geometry of plurisubharmonic functions, Gauge Theory and Symplectic Geometry, Volume 488 (1997), pp. 49-67 (with notes by Miguel Abreu, MR 1461569) | Zbl | DOI | MR

[19.] Y. Eliashberg Weinstein manifolds revisited, Modern Geometry: A Celebration of the Work of Simon Donaldson, 99, Amer. Math. Soc., Providence, 2018, pp. 59-82 (MR 3838879) | MR | DOI

[20.] Y. Eliashberg; M. Gromov Convex symplectic manifolds, Several Complex Variables and Complex Geometry, Part 2, Volume 52 (1991), pp. 135-162 (MR 1128541) | Zbl | DOI | MR

[21.] A. Floer; H. Hofer Symplectic homology. I. Open sets in 𝐂 n , Math. Z., Volume 215 (1994), pp. 37-88 (MR 1254813) | MR | Zbl | DOI

[22.] A. Floer Witten’s complex and infinite-dimensional Morse theory, J. Differ. Geom., Volume 30 (1989), pp. 207-221 MR 1001276 (90d:58029) | MR | Zbl | DOI

[23.] K. Fukaya; Y.-G. Oh Zero-loop open strings in the cotangent bundle and Morse homotopy, Asian J. Math., Volume 1 (1997), pp. 96-180 (MR 1480992) | MR | Zbl | DOI

[24.] K. Fukaya; Y.-G. Oh; H. Ohta; K. Ono Lagrangian intersection Floer theory: anomaly and obstruction. Part I, 46, American Mathematical Society/International Press, Providence/Somerville, 2009 (MR 2553465) | Zbl | MR

[25.] S. Ganatra, Symplectic cohomology and duality for the wrapped Fukaya category, arxiv preprint (2013), pp. 1–166, | arXiv | MR

[26.] S. Ganatra, Cyclic homology, S 1 -equivariant Floer cohomology, and Calabi–Yau structures, preprint (2019), pp. 1–70, http://sheelganatra.com/circle_action/. | MR

[27.] Y. Gao, Wrapped Floer cohomology and Lagrangian correspondences, arxiv preprint (2017), pp. 1–70, | arXiv

[28.] Y. Gao, Functors of wrapped Fukaya categories from Lagrangian correspondences, arxiv preprint (2017), pp. 1–144, | arXiv

[29.] H. Geiges An introduction to contact topology, 109, Cambridge University Press, Cambridge, 2008 | Zbl | DOI | MR

[30.] E. Giroux Convexité en topologie de contact, Comment. Math. Helv., Volume 66 (1991), pp. 637-677 | MR | Zbl | DOI

[31.] Y. Groman, Floer theory on open manifolds, arxiv preprint (2017), pp. 1–76, | arXiv

[32.] A. Joyal Quasi-categories and Kan complexes, J. Pure Appl. Algebra, Volume 175 (2002), pp. 207-222 (special volume celebrating the 70th birthday of Professor Max Kelly. MR 1935979) | MR | Zbl | DOI

[33.] M. Kontsevich Homological algebra of mirror symmetry, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (1995), pp. 120-139 MR 1403918 (97f:32040) | Zbl | DOI | MR

[34.] J. Lurie Higher topos theory, 170, Princeton University Press, Princeton, 2009 MR 2522659 (2010j:18001) | Zbl | MR | DOI

[35.] J. Lurie, Higher algebra, available for download (2017), pp. 1–1553.

[36.] V. Lyubashenko A -morphisms with several entries, Theory Appl. Categ., Volume 30 (2015), pp. 1501-1551 (MR 3421458) | MR | Zbl

[37.] V. Lyubashenko; O. Manzyuk Quotients of unital A -categories, Theory Appl. Categ., Volume 20 (2008), pp. 405-496 (MR 2425553) | MR | Zbl

[38.] V. Lyubashenko; S. Ovsienko A construction of quotient A -categories, Homol. Homotopy Appl., Volume 8 (2006), pp. 157-203 (MR 2259271) | MR | Zbl | DOI

[39.] M. Maydanskiy; P. Seidel Lefschetz fibrations and exotic symplectic structures on cotangent bundles of spheres, J. Topol., Volume 3 (2010), pp. 157-180 (MR 2608480) | MR | Zbl | DOI

[40.] D. Nadler Arboreal singularities, Geom. Topol., Volume 21 (2017), pp. 1231-1274 (MR 3626601) | MR | Zbl | DOI

[41.] A. Oancea A survey of Floer homology for manifolds with contact type boundary or symplectic homology, Symplectic Geometry and Floer Homology, 7, Soc. Brasil. Mat., Rio de Janeiro, 2004, pp. 51-91 (MR 2100955) | Zbl | MR

[42.] A. Oancea The Künneth formula in Floer homology for manifolds with restricted contact type boundary, Math. Ann., Volume 334 (2006), pp. 65-89 (MR 2208949) | MR | Zbl | DOI

[43.] J. Pardon An algebraic approach to virtual fundamental cycles on moduli spaces of pseudo-holomorphic curves, Geom. Topol., Volume 20 (2016), pp. 779-1034 (MR 3493097) | MR | Zbl | DOI

[44.] A. F. Ritter Topological quantum field theory structure on symplectic cohomology, J. Topol., Volume 6 (2013), pp. 391-489 (MR 3065181) | MR | Zbl | DOI

[45.] D. Salamon; E. Zehnder Morse theory for periodic solutions of Hamiltonian systems and the Maslov index, Commun. Pure Appl. Math., Volume 45 (1992), pp. 1303-1360 MR 1181727 (93g:58028) | MR | Zbl | DOI

[46.] P. Seidel Graded Lagrangian submanifolds, Bull. Soc. Math. Fr., Volume 128 (2000), pp. 103-149 MR 1765826 (2001c:53114) | MR | Zbl | DOI | Numdam

[47.] P. Seidel Fukaya categories and deformations, Proceedings of the International Congress of Mathematicians, Vol. II (2002), pp. 351-360 (MR 1957046) | MR

[48.] P. Seidel A -subalgebras and natural transformations, Homol. Homotopy Appl., Volume 10 (2008), pp. 83-114 MR 2426130 (2010k:53154) | MR | Zbl | DOI

[49.] P. Seidel A biased view of symplectic cohomology, Current Developments in Mathematics (2008), pp. 211-253 (MR 2459307) | MR

[50.] P. Seidel Fukaya Categories and Picard-Lefschetz Theory, European Mathematical Society (EMS), Zürich, 2008 MR 2441780 (2009f:53143) | Zbl | DOI

[51.] P. Seidel Fukaya A -structures associated to Lefschetz fibrations. I, J. Symplectic Geom., Volume 10 (2012), pp. 325-388 (MR 2983434) | MR | Zbl | DOI

[52.] V. Shende, Arboreal singularities from Lefschetz fibrations, arxiv preprint (2018), pp. 1–15, | arXiv | MR

[53.] N. Sheridan, Formulae in noncommutative Hodge theory, arxiv preprint (2015), pp. 1–54, | arXiv

[54.] J.-C. Sikorav Some properties of holomorphic curves in almost complex manifolds, Holomorphic Curves in Symplectic Geometry, 117, Birkhäuser, Basel, 1994, pp. 165-189 | MR | DOI

[55.] N. Spaltenstein Resolutions of unbounded complexes, Compos. Math., Volume 65 (1988), pp. 121-154 (MR 932640) | MR | Zbl | Numdam

[56.] Z. Sylvan On partially wrapped Fukaya categories, J. Topol., Volume 12 (2019), pp. 372-441 (MR 3911570) | MR | Zbl | DOI

[57.] C.H. Taubes The Seiberg-Witten equations and the Weinstein conjecture, Geom. Topol., Volume 11 (2007), pp. 2117-2202 (MR 2350473) | MR | Zbl | DOI

[58.] T. Tradler Infinity-inner-products on A-infinity-algebras, J. Homotopy Relat. Struct., Volume 3 (2008), pp. 245-271 (MR 2426181) | MR | Zbl

[59.] J.-L. Verdier, Des catégories dérivées des catégories abéliennes, Astérisque, 239 (1996), xii+253 pp., with a preface by Luc Illusie, edited and with a note by Georges Maltsiniotis, MR 1453167. | MR | Numdam

[60.] C. Viterbo Functors and computations in Floer homology with applications. I, Geom. Funct. Anal., Volume 9 (1999), pp. 985-1033 (MR 1726235) | MR | Zbl | DOI

[61.] A. Weinstein On the hypotheses of Rabinowitz’ periodic orbit theorems, J. Differ. Equ., Volume 33 (1979), pp. 353-358 (MR 543704) | MR | Zbl | DOI

[62.] E. C. Zeeman On the dunce hat, Topology, Volume 2 (1964), pp. 341-358 (MR 0156351) | MR | Zbl | DOI

Cited by Sources: