Article
A local model for the trianguline variety and applications
Publications Mathématiques de l'IHÉS, Volume 130 (2019), pp. 299-412

We describe the completed local rings of the trianguline variety at certain points of integral weights in terms of completed local rings of algebraic varieties related to Grothendieck’s simultaneous resolution of singularities. We derive several local consequences at these points for the trianguline variety: local irreducibility, description of all local companion points in the crystalline case, combinatorial description of the completed local rings of the fiber over the weight map, etc. Combined with the patched Hecke eigenvariety (under the usual Taylor-Wiles assumptions), these results in turn have several global consequences: classicality of crystalline strictly dominant points on global Hecke eigenvarieties, existence of all expected companion constituents in the completed cohomology, existence of singularities on global Hecke eigenvarieties.

Received:
Accepted:
Online First:
Published online:
DOI: 10.1007/s10240-019-00111-y

Christophe Breuil 1; Eugen Hellmann 1; Benjamin Schraen 1

1
@article{PMIHES_2019__130__299_0,
     author = {Christophe Breuil and Eugen Hellmann and Benjamin Schraen},
     title = {A local model for the trianguline variety and applications},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {299--412},
     year = {2019},
     publisher = {Springer Berlin Heidelberg},
     address = {Berlin/Heidelberg},
     volume = {130},
     doi = {10.1007/s10240-019-00111-y},
     mrnumber = {4028517},
     zbl = {1454.14120},
     language = {en},
     url = {https://pmihes.centre-mersenne.org/articles/10.1007/s10240-019-00111-y/}
}
TY  - JOUR
AU  - Christophe Breuil
AU  - Eugen Hellmann
AU  - Benjamin Schraen
TI  - A local model for the trianguline variety and applications
JO  - Publications Mathématiques de l'IHÉS
PY  - 2019
SP  - 299
EP  - 412
VL  - 130
PB  - Springer Berlin Heidelberg
PP  - Berlin/Heidelberg
UR  - https://pmihes.centre-mersenne.org/articles/10.1007/s10240-019-00111-y/
DO  - 10.1007/s10240-019-00111-y
LA  - en
ID  - PMIHES_2019__130__299_0
ER  - 
%0 Journal Article
%A Christophe Breuil
%A Eugen Hellmann
%A Benjamin Schraen
%T A local model for the trianguline variety and applications
%J Publications Mathématiques de l'IHÉS
%D 2019
%P 299-412
%V 130
%I Springer Berlin Heidelberg
%C Berlin/Heidelberg
%U https://pmihes.centre-mersenne.org/articles/10.1007/s10240-019-00111-y/
%R 10.1007/s10240-019-00111-y
%G en
%F PMIHES_2019__130__299_0
Christophe Breuil; Eugen Hellmann; Benjamin Schraen. A local model for the trianguline variety and applications. Publications Mathématiques de l'IHÉS, Volume 130 (2019), pp. 299-412. doi: 10.1007/s10240-019-00111-y

[1.] A. Beilinson; J. Bernstein Localisation de 𝔤-modules, C. R. Acad. Sci. Paris, Volume 292 (1981), pp. 15-18 | MR | Zbl

[2.] J. Bellaïche; G. Chenevier Families of Galois representations and Selmer groups, Astérisque, Volume 324 (2009), p. xii+314 | MR | Zbl | Numdam

[3.] J. Bellaïche Critical p-adic L -functions, Invent. Math., Volume 189 (2012), pp. 1-60 | MR | Zbl | DOI

[4.] J. Bergdall Ordinary modular forms and companion points on the eigencurve, J. Number Theory, Volume 134 (2014), pp. 226-239 | MR | Zbl | DOI

[5.] J. Bergdall Paraboline variation over p-adic families of (φ,Γ)-modules, Compos. Math., Volume 153 (2017), pp. 132-174 | MR | Zbl | DOI

[6.] J. Bergdall Smoothness on definite unitary eigenvarieties at critical points, J. Reine Angew. Math. (2018) | MR | Zbl | DOI

[7.] L. Berger Représentations p-adiques et équations différentielles, Invent. Math., Volume 148 (2002), pp. 219-284 | MR | Zbl

[8.] L. Berger Équation différentielles p-adiques et (φ,N)-modules filtrés, Astérisque, Volume 319 (2008), pp. 13-38 | Zbl | MR | Numdam

[9.] L. Berger Constructions de (φ,Γ)-modules: représentations p-adiques et B-paires, Algebra Number Theory, Volume 2 (2008), pp. 91-120 | MR | Zbl | DOI

[10.] I. N. Bernstein, I. M. Gelfand and S. I. Gelfand, Differential operators on the base affine space and a study of 𝔤-modules, Lie groups and their representations, 243 (1975). | Zbl

[11.] I. N. Bernstein; A. N. Zelevinsky Induced representations of reductive 𝔭-adic groups. I, Ann. Sci. Éc. Norm. Supér., Volume 10 (1977), pp. 441-472 | MR | Zbl | Numdam | DOI

[12.] R. Bezrukavnikov; S. Riche Affine braid group actions on derived categories of Springer resolutions, Ann. Sci. Éc. Norm. Supér., Volume 45 (2012), pp. 535-599 | MR | Zbl | Numdam | DOI

[13.] S. Billey; V. Lakshmibai Singular Loci of Schubert Varieties, 182, 2000 | Zbl | MR | DOI

[14.] S. Bosch; W. Lütkebohmert Formal and rigid geometry II. Flattening techniques, Math. Ann., Volume 296 (1993), pp. 403-429 | MR | Zbl | DOI

[15.] C. Breuil Vers le socle localement analytique pour GL n I, Ann. Inst. Fourier, Volume 66 (2016), pp. 633-685 | MR | Zbl | Numdam | DOI

[16.] C. Breuil Vers le socle localement analytique pour GL n II, Math. Ann., Volume 361 (2015), pp. 741-785 | MR | Zbl | DOI

[17.] C. Breuil; M. Emerton Représentations ordinaires de GL 2 (𝐐 p ) et compatibilité local-global, Astérisque, Volume 331 (2010), pp. 255-315 | Zbl | Numdam | MR

[18.] C. Breuil; A. Mézard Multiplicités modulaires et représentations de GL 2 (𝒵 p ) et de Gal (𝐐 p ¯/𝐐 p ) en =p, Duke Math. J., Volume 115 (2002), pp. 205-298 | MR | Zbl

[19.] C. Breuil; E. Hellmann; B. Schraen Une interprétation modulaire de la variété trianguline, Math. Ann., Volume 367 (2017), pp. 1587-1645 | MR | Zbl | DOI

[20.] C. Breuil; E. Hellmann; B. Schraen Smoothness and classicality on eigenvarieties, Invent. Math., Volume 209 (2017), pp. 197-274 | MR | Zbl | DOI

[21.] J. L. Brylinski; M. Kashiwara Kazhdan-Lusztig conjecture and holonomic systems, Invent. Math., Volume 64 (1981), pp. 387-410 | MR | Zbl | DOI

[22.] A. Caraiani Monodromy and local-global compatibility for =p, Algebra Number Theory, Volume 8 (2014), pp. 1597-1646 | MR | Zbl | DOI

[23.] A. Caraiani; M. Emerton; T. Gee; D. Geraghty; V. Paškūnas; S. W. Shin Patching and the p-adic local Langlands correspondence, Camb. J. Math., Volume 4 (2016), pp. 197-287 | MR | Zbl | DOI

[24.] G. Chenevier On the infinite fern of Galois representations of unitary type, Ann. Sci. Éc. Norm. Supér., Volume 44 (2011), pp. 963-1019 | MR | Zbl | Numdam | DOI

[25.] G. Chenevier Sur la densité des representations cristallines de Gal (𝐐 p ¯/𝐐 p ), Math. Ann., Volume 355 (2015), pp. 1469-1525 | MR | Zbl | DOI

[26.] G. Chenevier The p-adic analytic space of pseudocharacters of a profinite group and pseudorepresentations over arbitrary rings, Lond. Math. Soc. Lect. Note Ser., Volume 414 (2014), pp. 221-285 | MR | Zbl

[27.] N. Chriss; V. Ginzburg Representation Theory and Complex Geometry, Modern, 1997 | Zbl | MR

[28.] Y. Ding Formes modulaires p -adiques sur les courbes de Shimura unitaires et compatibilité local-global, 155, 2017 | Zbl | MR

[29.] Y. Ding, Some results on the locally analytic socle for GL n (𝐐 p ), Int. Math. Res. Not., 287 (2018). | MR

[30.] Y. Ding Companion points and locally analytic socle for GL 2 (L), Isr. J. Math., Volume 231 (2019), pp. 47-122 | MR | Zbl | DOI

[31.] D. Eisenbud Commutative Algebra with a View Toward Algebraic Geometry, 150, 1995 | Zbl | MR

[32.] M. Emerton Jacquet modules of locally analytic representations of p-adic reductive groups I. Construction and first properties, Ann. Sci. Éc. Norm. Supér., Volume 39 (2006), pp. 775-839 | MR | Zbl | DOI

[33.] M. Emerton, Jacquet modules of locally analytic representations of p-adic reductive groups II. The relation to parabolic induction, J. Inst. Math. Jussieu, to appear

[34.] M. Emerton Locally Analytic Vectors in Representations of Locally p -Adic Analytic Groups, 248, 2017 | Zbl | MR

[35.] M. Emerton; T. Gee A geometric perspective on the Breuil-Mézard conjecture, J. Inst. Math. Jussieu, Volume 13 (2014), pp. 183-223 | MR | Zbl | DOI

[36.] J.-M. Fontaine Représentations -adiques potentiellement semi-stables, Astérisque, Volume 223 (1994), pp. 321-347 | Zbl | Numdam | MR

[37.] J.-M. Fontaine Arithmétique des représentations galoisiennes p-adiques, Astérisque, Volume 295 (2004), pp. 1-115 | Zbl | MR | Numdam

[38.] T. Gee; M. Kisin The Breuil-Mézard conjecture for potentially Barsotti-Tate representations, Forum Math., Pi, Volume 2 (2014) | Zbl | MR

[39.] V. Ginsburg 𝔊-modules, Springer’s representations and bivariant Chern classes, Adv. Math., Volume 61 (1986), pp. 1-48 | MR | Zbl | DOI

[40.] A. Grothendieck; J. Dieudonné Éléments de géométrie algébrique IV Étude locale des schémas et des morphismes de schémas (première partie), Publ. Math. IHÉS, Volume 20 (1964), pp. 5-259 | MR | Numdam | Zbl | DOI

[41.] A. Grothendieck; J. Dieudonné Éléments de géométrie algébrique IV Étude locale des schémas et des morphismes de schémas (seconde partie), Publ. Math. IHÉS, Volume 24 (1965), pp. 5-231 | Zbl | MR | Numdam

[42.] A. Grothendieck; J. Dieudonné Éléments de géométrie algébrique IV Étude locale des schémas et des morphismes de schémas (troisième partie), Publ. Math. IHÉS, Volume 28 (1966), pp. 5-255 | MR | Zbl | Numdam

[43.] R. Hartshorne Algebraic Geometry, 52, 1977 | Zbl | MR | DOI

[44.] R. Hotta; K. Takeuchi; T. Tanisaki D -Modules, Perverse Sheaves, and Representation Theory, 236, 2008 | Zbl | MR | DOI

[45.] J. Humphreys Representations of Semisimple Lie Algebras in the BGG Category 𝒪 , 94, 2008 | Zbl | MR

[46.] J. C. Jantzen Representations of Algebraic Groups, 107, 2007 | Zbl | MR

[47.] M. Kashiwara; Y. Saito Geometric construction of crystal bases, Duke Math. J., Volume 89 (1997), pp. 9-36 | MR | Zbl | DOI

[48.] K. Kedlaya Slope filtrations for relative Frobenius, Astérisque, Volume 319 (2008), pp. 259-301 | MR | Zbl | Numdam

[49.] K. Kedlaya; J. Pottharst; L. Xiao Cohomology of arithmetic families of (φ,Γ)-modules, J. Am. Math. Soc., Volume 27 (2014), pp. 1043-1115 | MR | Zbl | DOI

[50.] R. Kiehl; R. Weissauer Weil Conjectures, Perverse Sheaves and -adic Fourier Transform, 42, 2001 | Zbl | MR

[51.] M. Kisin Overconvergent modular forms and the Fontaine-Mazur conjecture, Invent. Math., Volume 153 (2003), pp. 373-454 | MR | Zbl | DOI

[52.] M. Kisin Potentially semi-stable deformation rings, J. Am. Math. Soc., Volume 21 (2008), pp. 513-546 | MR | Zbl | DOI

[53.] M. Kisin Moduli of finite flat group schemes, and modularity, Ann. Math., Volume 170 (2009), pp. 1085-1180 | MR | Zbl | DOI

[54.] R. Liu, Cohomology and duality for (φ,Γ)-modules over the Robba ring, Int. Math. Res. Not., 32 (2008). | MR | Zbl

[55.] R. Liu Triangulation of refined families, Comment. Math. Helv., Volume 90 (2015), pp. 831-904 | MR | Zbl | DOI

[56.] K. Nakamura Classification of two-dimensional split trianguline representations of p-adic fields, Compos. Math., Volume 145 (2009), pp. 865-914 | MR | Zbl | DOI

[57.] K. Nakamura Deformations of trianguline B-pairs and Zariski density of two dimensional crystalline representations, J. Math. Sci. Univ. Tokyo, Volume 20 (2013), pp. 461-568 | MR | Zbl

[58.] S. Orlik; M. Strauch On Jordan-Hölder series of some locally analytic representations, J. Am. Math. Soc., Volume 28 (2015), pp. 99-157 | Zbl | MR | DOI

[59.] M. Schlessinger Functors of Artin rings, Trans. Am. Math. Soc., Volume 130 (1968), pp. 208-222 | MR | Zbl | DOI

[60.] T. Schmidt; M. Strauch Dimensions of some locally analytic representations, Represent. Theory, Volume 20 (2016), pp. 14-38 | MR | Zbl | DOI

[61.] P. Slodowy Simple Singularities and Simple Algebraic Groups, 815, 1980 | Zbl | MR | DOI

[62.] R. Steinberg On the desingularization of the unipotent variety, Invent. Math., Volume 36 (1976), pp. 209-224 | MR | Zbl | DOI

[63.] T. Tanisaki Characteristic varieties of highest weight modules and primitive quotients, Adv. Stud. Pure Math., Volume 14 (1988), pp. 1-30 | MR | Zbl

[64.] J. Tate p-divisible Groups, Proceedings of a Conference on Local Fields, 1966, pp. 158-183 | MR | Zbl

[65.] J. Thorne On the automorphy of -adic Galois representations with small residual image, J. Inst. Math. Jussieu, Volume 11 (2012), pp. 855-906 | MR | Zbl | DOI

[66.] J. Thorne A 2 -adic automorphy lifting theorem for unitary groups over C M fields, Math. Z., Volume 285 (2017), pp. 1-38 | MR | Zbl | DOI

Cited by Sources: