Article
The period-index problem for real surfaces
Publications Mathématiques de l'IHÉS, Volume 130 (2019), pp. 63-110

We study when the period and the index of a class in the Brauer group of the function field of a real algebraic surface coincide. We prove that it is always the case if the surface has no real points (more generally, if the class vanishes in restriction to the real points of the locus where it is well-defined), and give a necessary and sufficient condition for unramified classes. As an application, we show that the u-invariant of the function field of a real algebraic surface is equal to 4, answering questions of Lang and Pfister. Our strategy relies on a new Hodge-theoretic approach to de Jong’s period-index theorem on complex surfaces.

Received:
Accepted:
Online First:
Published online:
DOI: 10.1007/s10240-019-00108-7

Olivier Benoist 1

1
@article{PMIHES_2019__130__63_0,
     author = {Olivier Benoist},
     title = {The period-index problem for real surfaces},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {63--110},
     year = {2019},
     publisher = {Springer Berlin Heidelberg},
     address = {Berlin/Heidelberg},
     volume = {130},
     doi = {10.1007/s10240-019-00108-7},
     mrnumber = {4028514},
     zbl = {1442.14073},
     language = {en},
     url = {https://pmihes.centre-mersenne.org/articles/10.1007/s10240-019-00108-7/}
}
TY  - JOUR
AU  - Olivier Benoist
TI  - The period-index problem for real surfaces
JO  - Publications Mathématiques de l'IHÉS
PY  - 2019
SP  - 63
EP  - 110
VL  - 130
PB  - Springer Berlin Heidelberg
PP  - Berlin/Heidelberg
UR  - https://pmihes.centre-mersenne.org/articles/10.1007/s10240-019-00108-7/
DO  - 10.1007/s10240-019-00108-7
LA  - en
ID  - PMIHES_2019__130__63_0
ER  - 
%0 Journal Article
%A Olivier Benoist
%T The period-index problem for real surfaces
%J Publications Mathématiques de l'IHÉS
%D 2019
%P 63-110
%V 130
%I Springer Berlin Heidelberg
%C Berlin/Heidelberg
%U https://pmihes.centre-mersenne.org/articles/10.1007/s10240-019-00108-7/
%R 10.1007/s10240-019-00108-7
%G en
%F PMIHES_2019__130__63_0
Olivier Benoist. The period-index problem for real surfaces. Publications Mathématiques de l'IHÉS, Volume 130 (2019), pp. 63-110. doi: 10.1007/s10240-019-00108-7

[1.] A. A. Albert A construction of non-cyclic normal division algebras, Bull. Am. Math. Soc., Volume 38 (1932), pp. 449-456 | MR | Zbl | DOI

[2.] A. Andreotti; T. Frankel The Lefschetz theorem on hyperplane sections, Ann. of Math. (2), Volume 69 (1959), pp. 713-717 | MR | Zbl | DOI

[3.] B. Antieau, A. Auel, C. Ingalls, D. Krashen and M. Lieblich, Period-index bounds for arithmetic threefolds, Invent. Math. (2017), to appear, | arXiv | MR

[4.] J. K. Arason Primideale im graduierten Wittring und im mod 2 Cohomologiering, Math. Z., Volume 145 (1975), pp. 139-143 | MR | Zbl | DOI

[5.] M. Artin Théorème de changement de base par un morphisme lisse, et applications, Exp. XVI, Théorie des topos et cohomologie étale des schémas, Séminaire de géométrie algébrique du Bois-Marie 1963–1964 (SGA 4), Tome 3, 305, Springer, Berlin, 1973 | Zbl

[6.] A. Beauville On the Brauer group of Enriques surfaces, Math. Res. Lett., Volume 16 (2009), pp. 927-934 | MR | Zbl | DOI

[7.] A. A. Beilinson; J. Bernstein; P. Deligne Faisceaux pervers, Analysis and Topology on Singular Spaces, I, Volume 100 (1982), pp. 5-171 | MR | Zbl

[8.] O. Benoist Sums of three squares and Noether-Lefschetz loci, Compos. Math., Volume 154 (2018), pp. 1048-1065 | MR | Zbl | DOI

[9.] O. Benoist and O. Wittenberg, On the integral Hodge conjecture for real varieties, I, | arXiv | MR

[10.] O. Benoist and O. Wittenberg, On the integral Hodge conjecture for real varieties, II, J. Éc. Polytech. (2018), to appear, | arXiv | MR

[11.] S. Bloch; A. Ogus Gersten’s conjecture and the homology of schemes, Ann. Sci. Éc. Norm. Supér., Volume 4 (1974), pp. 181-201 | MR | Zbl | Numdam | DOI

[12.] J. Bochnak; M. Coste; M.-F. Roy Real Algebraic Geometry, 36, Springer, Berlin, 1998 (Translated from the 1987 French original, Revised by the authors) | Zbl | MR | DOI

[13.] A. Borel; A. Haefliger La classe d’homologie fondamentale d’un espace analytique, Bull. Soc. Math. Fr., Volume 89 (1961), pp. 461-513 | MR | Zbl | Numdam | DOI

[14.] G. E. Bredon Sheaf Theory, 170, Springer, New York, 1997 | Zbl | MR

[15.] L. Bröcker Reelle Divisoren, Arch. Math. (Basel), Volume 35 (1980), pp. 140-143 | MR | Zbl | DOI

[16.] K. S. Brown Cohomology of Groups, 87, Springer, New York, 1994 | Zbl | MR

[17.] A. Brumer Remarques sur les couples de formes quadratiques, C. R. Acad. Sci. Paris Sér. A–B, Volume 286 (1978), p. A679-A681 | MR | Zbl

[18.] C. Ciliberto; J. Harris; R. Miranda General components of the Noether-Lefschetz locus and their density in the space of all surfaces, Math. Ann., Volume 282 (1988), pp. 667-680 | MR | Zbl | DOI

[19.] J.-L. Colliot-Thélène Cycles algébriques de torsion et K-théorie algébrique, Arithmetic Algebraic Geometry, Volume 1553 (1993), pp. 1-49 | Zbl | MR

[20.] J.-L. Colliot-Thélène Birational invariants, purity and the Gersten conjecture, K -theory and Algebraic Geometry: Connections with Quadratic Forms and Division Algebras, Volume 58 (1995), pp. 1-64 | Zbl | MR

[21.] J.-L. Colliot-Thélène Exposant et indice d’algèbres simples centrales non ramifiées, Enseign. Math. (2), Volume 48 (2002), pp. 127-146 (with an appendix by Ofer Gabber) | MR | Zbl

[22.] J.-L. Colliot-Thélène Algèbres simples centrales sur les corps de fonctions de deux variables (d’après A.J. de Jong), Astérisque, Volume 307 (2006), pp. 379-413 (Séminaire Bourbaki, vol. 2004/2005) | Zbl | MR | Numdam

[23.] J.-L. Colliot-Thélène; D. A. Madore Surfaces de del Pezzo sans point rationnel sur un corps de dimension cohomologique un, J. Inst. Math. Jussieu, Volume 3 (2004), pp. 1-16 | MR | Zbl | DOI

[24.] J.-L. Colliot-Thélène; R. Parimala Real components of algebraic varieties and étale cohomology, Invent. Math., Volume 101 (1990), pp. 81-99 | MR | Zbl | DOI

[25.] A. J. de Jong The period-index problem for the Brauer group of an algebraic surface, Duke Math. J., Volume 123 (2004), pp. 71-94 | MR | Zbl | DOI

[26.] A. Degtyarev; I. Itenberg; V. Kharlamov Real Enriques Surfaces, 1746, Springer, Berlin, 2000 | Zbl | MR | DOI

[27.] A. Degtyarev; V. Kharlamov Halves of a real Enriques surface, Comment. Math. Helv., Volume 71 (1996), pp. 628-663 | MR | Zbl | DOI

[28.] A. Dimca Monodromy and Betti numbers of weighted complete intersections, Topology, Volume 24 (1985), pp. 369-374 | MR | Zbl | DOI

[29.] R. Elman; T. Y. Lam Quadratic forms and the u-invariant. I, Math. Z., Volume 131 (1973), pp. 283-304 | MR | Zbl | DOI

[30.] M. Golubitsky; V. Guillemin Stable Mappings and Their Singularities, 14, Springer, New York, 1973 | Zbl | MR | DOI

[31.] R. Greenblatt The twisted Bockstein coboundary, Proc. Camb. Philos. Soc., Volume 61 (1965), pp. 295-297 | MR | Zbl | DOI

[32.] A. Grothendieck Sur quelques points d’algèbre homologique, Tohoku Math. J., Volume 2 (1957), pp. 119-221 | Zbl | MR

[33.] A. Grothendieck Le groupe de Brauer I, II, III, Dix Exposés sur la Cohomologie des Schémas, North-Holland, Amsterdam, 1968, pp. 46-188 | MR | Zbl

[34.] B. Iversen Cohomology of Sheaves, Springer, Berlin, 1986 | Zbl | MR | DOI

[35.] U. Jannsen Letter from Jannsen to Gross on higher Abel-Jacobi maps, The Arithmetic and Geometry of Algebraic Cycles, Volume 548 (2000), pp. 261-275 | MR | Zbl

[36.] B. Kahn Construction de classes de Chern équivariantes pour un fibré vectoriel réel, Commun. Algebra, Volume 15 (1987), pp. 695-711 | Zbl | MR | DOI

[37.] M. Kashiwara; P. Schapira Sheaves on Manifolds, 292, Springer, Berlin, 1994 | Zbl | MR

[38.] V. A. Krasnov Characteristic classes of vector bundles on a real algebraic variety, Izv. Akad. Nauk SSSR, Ser. Mat., Volume 55 (1991), pp. 716-746 | Zbl | MR

[39.] V. A. Krasnov On the equivariant Grothendieck cohomology of a real algebraic variety and its application, Izv. Ross. Akad. Nauk Ser. Mat., Volume 58 (1994), pp. 36-52 | MR | Zbl

[40.] A. Kresch Hodge-theoretic obstruction to the existence of quaternion algebras, Bull. Lond. Math. Soc., Volume 35 (2003), pp. 109-116 | MR | Zbl | DOI

[41.] T. Y. Lam Introduction to Quadratic Forms over Fields, 67, Am. Math. Soc., Providence, 2005 | Zbl | MR

[42.] S. Lang On quasi algebraic closure, Ann. of Math. (2), Volume 55 (1952), pp. 373-390 | MR | Zbl | DOI

[43.] S. Lang The theory of real places, Ann. of Math. (2), Volume 57 (1953), pp. 378-391 | MR | Zbl | DOI

[44.] M. Lieblich Twisted sheaves and the period-index problem, Compos. Math., Volume 144 (2008), pp. 1-31 | MR | Zbl | DOI

[45.] M. Lieblich The period-index problem for fields of transcendence degree 2, Ann. of Math. (2), Volume 182 (2015), pp. 391-427 | MR | Zbl | DOI

[46.] F. Mangolte; J. van Hamel Algebraic cycles and topology of real Enriques surfaces, Compos. Math., Volume 110 (1998), pp. 215-237 | MR | Zbl | DOI

[47.] A. S. Merkurjev Simple algebras and quadratic forms, Izv. Akad. Nauk SSSR, Ser. Mat., Volume 55 (1991), pp. 218-224 | Zbl | MR

[48.] A. Pfister On quadratic forms and abelian varieties over function fields, Ordered Fields and Real Algebraic Geometry, Volume 8 (1982), pp. 249-264 | Zbl | MR | DOI

[49.] A. Pfister Quadratic Forms with Applications to Algebraic Geometry and Topology, 217, Cambridge University Press, Cambridge, 1995 | Zbl | MR | DOI

[50.] C. Scheiderer Real and Étale Cohomology, 1588, Springer, Berlin, 1994 | Zbl | MR | DOI

[51.] E. Sernesi Deformations of Algebraic Schemes, 334, Springer, Berlin, 2006 | Zbl | MR

[52.] T. A. Springer Quadratic forms over fields with a discrete valuation. I. Equivalence classes of definite forms, Proc. K. Ned. Akad. Wet., Ser. A, Indag. Math., Volume 58 (1955), pp. 352-362 | MR | Zbl

[53.] R. Sujatha; J. van Hamel Level and Witt groups of real Enriques surfaces, Pac. J. Math., Volume 196 (2000), pp. 243-255 | MR | Zbl | DOI

[54.] J. van Hamel Algebraic Cycles and Topology of Real Algebraic Varieties, 129, Stichting Mathematisch Centrum, Centrum voor Wiskunde en Informatica, Amsterdam, 2000 (Dissertation, Vrije Universiteit Amsterdam, Amsterdam) | Zbl | MR

[55.] J. van Hamel Torsion zero-cycles and the Abel-Jacobi map over the real numbers, The Arithmetic and Geometry of Algebraic Cycles, Volume 24 (2000), pp. 329-359 | Zbl | MR | DOI

[56.] C. Voisin Théorie de Hodge et Géométrie Algébrique Complexe, 10, Soc. Math. France, Paris, 2002 | Zbl | MR

[57.] C. Voisin On integral Hodge classes on uniruled or Calabi-Yau threefolds, Moduli Spaces and Arithmetic Geometry, 45, Math. Soc. Japan, Tokyo, 2006, pp. 43-73 | MR | Zbl | DOI

[58.] E. Witt Theorie der quadratischen Formen in beliebigen Körpern, J. Reine Angew. Math., Volume 176 (1937), pp. 31-44 | MR | Zbl | DOI

Cited by Sources: