Article
E 2 -cells and mapping class groups
Publications Mathématiques de l'IHÉS, Volume 130 (2019), pp. 1-61

We prove a new kind of stabilisation result, “secondary homological stability,” for the homology of mapping class groups of orientable surfaces with one boundary component. These results are obtained by constructing CW approximations to the classifying spaces of these groups, in the category of E 2 -algebras, which have no E 2 -cells below a certain vanishing line.

Received:
Accepted:
Online First:
Published online:
DOI: 10.1007/s10240-019-00107-8

Søren Galatius 1; Alexander Kupers 1; Oscar Randal-Williams 1

1
@article{PMIHES_2019__130__1_0,
     author = {S{\o}ren Galatius and Alexander Kupers and Oscar Randal-Williams},
     title = {$E_{2}$-cells and mapping class groups},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {1--61},
     year = {2019},
     publisher = {Springer Berlin Heidelberg},
     address = {Berlin/Heidelberg},
     volume = {130},
     doi = {10.1007/s10240-019-00107-8},
     mrnumber = {4028513},
     language = {en},
     url = {https://pmihes.centre-mersenne.org/articles/10.1007/s10240-019-00107-8/}
}
TY  - JOUR
AU  - Søren Galatius
AU  - Alexander Kupers
AU  - Oscar Randal-Williams
TI  - $E_{2}$-cells and mapping class groups
JO  - Publications Mathématiques de l'IHÉS
PY  - 2019
SP  - 1
EP  - 61
VL  - 130
PB  - Springer Berlin Heidelberg
PP  - Berlin/Heidelberg
UR  - https://pmihes.centre-mersenne.org/articles/10.1007/s10240-019-00107-8/
DO  - 10.1007/s10240-019-00107-8
LA  - en
ID  - PMIHES_2019__130__1_0
ER  - 
%0 Journal Article
%A Søren Galatius
%A Alexander Kupers
%A Oscar Randal-Williams
%T $E_{2}$-cells and mapping class groups
%J Publications Mathématiques de l'IHÉS
%D 2019
%P 1-61
%V 130
%I Springer Berlin Heidelberg
%C Berlin/Heidelberg
%U https://pmihes.centre-mersenne.org/articles/10.1007/s10240-019-00107-8/
%R 10.1007/s10240-019-00107-8
%G en
%F PMIHES_2019__130__1_0
Søren Galatius; Alexander Kupers; Oscar Randal-Williams. $E_{2}$-cells and mapping class groups. Publications Mathématiques de l'IHÉS, Volume 130 (2019), pp. 1-61. doi: 10.1007/s10240-019-00107-8

[ABE08] J. Abhau; C.-F. Bödigheimer; R. Ehrenfried Homology of the mapping class group Γ 2,1 for surfaces of genus 2 with a boundary curve, The Zieschang Gedenkschrift., 14, Geom. Topol. Publ., Coventry, 2008, pp. 1-25 | Zbl | MR

[AGLV98] V. I. Arnold; V. V. Goryunov; O. V. Lyashko; V. A. Vasil’ev Singularity Theory. I, Springer, Berlin, 1998 (translated from the 1988 Russian original by A. Iacob, Reprint of the original English edition from the series Encyclopaedia of Mathematical Sciences) | Zbl | MR | DOI

[BC91] D. J. Benson; F. R. Cohen Mapping class groups of low genus and their cohomology, Mem. Am. Math. Soc., Volume 90 (1991) (iv+104) | MR | Zbl

[BH15] F. J. Boes and A. Hermann, Moduli spaces of Riemann surfaces—homology computations and homology operations, 2015, http://www.math.uni-bonn.de/people/boes/masterarbeit_boes_hermann.pdf.

[Bol12] S. K. Boldsen Improved homological stability for the mapping class group with integral or twisted coefficients, Math. Z., Volume 270 (2012), pp. 297-329 | MR | Zbl | DOI

[CGP18] M. Chan, S. Galatius and S. Payne, Tropical curves, graph homology, and top weight cohomology of M g , | arXiv

[Cha80] R. M. Charney Homology stability for GL n of a Dedekind domain, Invent. Math., Volume 56 (1980), pp. 1-17 | MR | Zbl | DOI

[CLM76] F. R. Cohen; T. J. Lada; J. P. May The Homology of Iterated Loop Spaces, 533, Springer, Berlin/New York, 1976 | Zbl | MR | DOI

[Fab90] C. Faber Chow rings of moduli spaces of curves. II. Some results on the Chow ring of ¯ 4 , Ann. Math. (2), Volume 132 (1990), pp. 421-449 | MR | Zbl | DOI

[Fab99] C. Faber A conjectural description of the tautological ring of the moduli space of curves, Moduli of Curves and Abelian Varieties, E33, Friedr. Vieweg, Braunschweig, 1999, pp. 109-129 | Zbl | MR | DOI

[FS97] Z. Fiedorowicz; Y. Song The braid structure of mapping class groups, Sci. Bul. Josai Univ., Volume 2 (1997), pp. 21-29 Surgery and geometric topology (Sakado, 1996) | MR | Zbl

[GJ94] E. Getzler and J. D. S. Jones, Operads, homotopy algebra and iterated integrals for double loop spaces, | arXiv

[GKRW18a] S. Galatius, A. Kupers and O. Randal-Williams, Cellular E k -algebras, | arXiv

[GKRW18b] S. Galatius, A. Kupers and O. Randal-Williams, E -cells and general linear groups of finite fields, | arXiv

[God07] V. Godin The unstable integral homology of the mapping class groups of a surface with boundary, Math. Ann., Volume 337 (2007), pp. 15-60 | MR | Zbl | DOI

[Gra73] A. Gramain Le type d’homotopie du groupe des difféomorphismes d’une surface compacte, Ann. Sci. Éc. Norm. Supér. (4), Volume 6 (1973), pp. 53-66 | Zbl | MR | Numdam | DOI

[Har83] J. Harer The second homology group of the mapping class group of an orientable surface, Invent. Math., Volume 72 (1983), pp. 221-239 | MR | Zbl | DOI

[Har85] J. Harer Stability of the homology of the mapping class groups of orientable surfaces, Ann. Math. (2), Volume 121 (1985), pp. 215-249 | MR | Zbl | DOI

[Har91] J. Harer The third homology group of the moduli space of curves, Duke Math. J., Volume 63 (1991), pp. 25-55 | MR | Zbl | DOI

[Har93] J. Harer, Improved stability for the homology of the mapping class groups of surfaces, preprint (1993).

[Hep16] R. Hepworth, On the edge of the stable range, | arXiv

[Iva93] N. V. Ivanov On the homology stability for Teichmüller modular groups: closed surfaces and twisted coefficients, Mapping Class Groups and Moduli Spaces of Riemann Surfaces, Volume 150 (1993), pp. 149-194 | MR | Zbl | DOI

[Kaw08] N. Kawazumi On the stable cohomology algebra of extended mapping class groups for surfaces, Groups of Diffeomorphisms, 52, Math. Soc. Japan, Tokyo, 2008, pp. 383-400 | Zbl | MR

[KM96] N. Kawazumi and S. Morita, The primary approximation to the cohomology of the moduli space of curves and cocycles for the Mumford–Morita–Miller classes, 1996, http://kyokan.ms.u-tokyo.ac.jp/users/preprint/pdf/2001-13.pdf. | MR | Zbl

[KM18] A. Kupers; J. Miller E n -cell attachments and a local-to-global principle for homological stability, Math. Ann., Volume 370 (2018), pp. 209-269 | MR | Zbl | DOI

[Kor02] M. Korkmaz Low-dimensional homology groups of mapping class groups: a survey, Turk. J. Math., Volume 26 (2002), pp. 101-114 | MR | Zbl

[Kra17] Manuel Krannich Homological stability of topological moduli spaces, Geometry & Topology, Volume 23 (2019), pp. 2397-2474 | MR | Zbl | DOI

[KS03] M. Korkmaz; A. I. Stipsicz The second homology groups of mapping class groups of orientable surfaces, Math. Proc. Camb. Philos. Soc., Volume 134 (2003), pp. 479-489 | Zbl | MR | DOI

[KU98] N. Kawazumi; T. Uemura Riemann-Hurwitz formula for Morita-Mumford classes and surface symmetries, Kodai Math. J., Volume 21 (1998), pp. 372-380 | MR | Zbl | DOI

[Lim64] E. L. Lima On the local triviality of the restriction map for embeddings, Comment. Math. Helv., Volume 38 (1964), pp. 163-164 | MR | Zbl | DOI

[Loo93] E. Looijenga Cohomology of 3 and 3 1 , Mapping Class Groups and Moduli Spaces of Riemann Surfaces, Volume 150 (1993), pp. 205-228 | Zbl | MR

[Loo95] E. Looijenga On the tautological ring of g , Invent. Math., Volume 121 (1995), pp. 411-419 | MR | Zbl | DOI

[Loo13] E. Looijenga Connectivity of complexes of separating curves, Groups Geom. Dyn., Volume 7 (2013), pp. 443-451 | MR | Zbl | DOI

[Mey73] W. Meyer Die Signatur von Flächenbündeln, Math. Ann., Volume 201 (1973), pp. 239-264 | MR | Zbl | DOI

[Mil86] E. Y. Miller The homology of the mapping class group, J. Differ. Geom., Volume 24 (1986), pp. 1-14 | MR | Zbl | DOI

[Min13] Y. N. Minsky A brief introduction to mapping class groups, Moduli Spaces of Riemann Surfaces, 20, Am. Math. Soc., Providence, 2013, pp. 5-44 | MR | Zbl | DOI

[Mor86] S. Morita On the homology groups of the mapping class groups of orientable surfaces with twisted coefficients, Proc. Jpn. Acad., Ser. A, Math. Sci., Volume 62 (1986), pp. 148-151 | MR | Zbl | DOI

[Mor87] S. Morita Characteristic classes of surface bundles, Invent. Math., Volume 90 (1987), pp. 551-577 | MR | Zbl | DOI

[Mor89] S. Morita Families of Jacobian manifolds and characteristic classes of surface bundles. I, Ann. Inst. Fourier (Grenoble), Volume 39 (1989), pp. 777-810 | MR | Zbl | Numdam | DOI

[Mor03] S. Morita Generators for the tautological algebra of the moduli space of curves, Topology, Volume 42 (2003), pp. 787-819 | MR | Zbl | DOI

[MW07] I. Madsen; M. Weiss The stable moduli space of Riemann surfaces: Mumford’s conjecture, Ann. Math. (2), Volume 165 (2007), pp. 843-941 | MR | Zbl | DOI

[MW16] J. Miller and J. C. H. Wilson, Higher order representation stability and ordered configuration spaces of manifolds, Geom. Topol. (2016), to appear, | arXiv | MR

[O’M78] O. T. O’Meara Symplectic Groups, 16, Am. Math. Soc., Providence, 1978 | Zbl | MR | DOI

[Pat17] P. Patzt, Central stability homology, | arXiv

[Pit99] W. Pitsch Un calcul élémentaire de H 2 ( g,1 ,𝐙) pour g4, C. R. Acad. Sci., Sér. 1 Math., Volume 329 (1999), pp. 667-670 | MR | Zbl

[Qui78] D. Quillen Homotopy properties of the poset of nontrivial p-subgroups of a group, Adv. Math., Volume 28 (1978), pp. 101-128 | MR | Zbl | DOI

[RW12] O. Randal-Williams Relations among tautological classes revisited, Adv. Math., Volume 231 (2012), pp. 1773-1785 | MR | Zbl | DOI

[RW16] O. Randal-Williams Resolutions of moduli spaces and homological stability, J. Eur. Math. Soc., Volume 18 (2016), pp. 1-81 | MR | Zbl | DOI

[RWW17] O. Randal-Williams; N. Wahl Homological stability for automorphism groups, Adv. Math., Volume 318 (2017), pp. 534-626 | MR | Zbl | DOI

[Sak12] T. Sakasai Lagrangian mapping class groups from a group homological point of view, Algebraic Geom. Topol., Volume 12 (2012), pp. 267-291 | MR | Zbl | DOI

[Sma59] S. Smale Diffeomorphisms of the 2 -sphere, Proc. Am. Math. Soc., Volume 10 (1959), pp. 621-626 | MR | Zbl | DOI

[Tom05] O. Tommasi Rational cohomology of the moduli space of genus 4 curves, Compos. Math., Volume 141 (2005), pp. 359-384 | MR | Zbl | DOI

[vdKL11] W. van der Kallen; E. Looijenga Spherical complexes attached to symplectic lattices, Geom. Dedic., Volume 152 (2011), pp. 197-211 | MR | Zbl | DOI

[Wah13] N. Wahl Homological stability for mapping class groups of surfaces, Handbook of Moduli. Vol. III, 26, International Press, Somerville, 2013, pp. 547-583 | Zbl | MR

[Waj99] B. Wajnryb An elementary approach to the mapping class group of a surface, Geom. Topol., Volume 3 (1999), pp. 405-466 | MR | Zbl | DOI

[Wan11] R. Wang, Homology Computations for Mapping Class Groups, in Particular forΓ 3,1 0 , PhD Thesis, Universität Bonn, 2011.

Cited by Sources: