Article
Joinings of higher rank torus actions on homogeneous spaces
Publications Mathématiques de l'IHÉS, Volume 129 (2019), pp. 83-127

We show that joinings of higher rank torus actions on S-arithmetic quotients of semi-simple or perfect algebraic groups must be algebraic.

Received:
Accepted:
Online First:
Published online:
DOI: 10.1007/s10240-019-00103-y

Manfred Einsiedler 1; Elon Lindenstrauss 1

1
@article{PMIHES_2019__129__83_0,
     author = {Manfred Einsiedler and Elon Lindenstrauss},
     title = {Joinings of higher rank torus actions on homogeneous spaces},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {83--127},
     year = {2019},
     publisher = {Springer Berlin Heidelberg},
     address = {Berlin/Heidelberg},
     volume = {129},
     doi = {10.1007/s10240-019-00103-y},
     mrnumber = {3949028},
     zbl = {1423.22014},
     language = {en},
     url = {https://pmihes.centre-mersenne.org/articles/10.1007/s10240-019-00103-y/}
}
TY  - JOUR
AU  - Manfred Einsiedler
AU  - Elon Lindenstrauss
TI  - Joinings of higher rank torus actions on homogeneous spaces
JO  - Publications Mathématiques de l'IHÉS
PY  - 2019
SP  - 83
EP  - 127
VL  - 129
PB  - Springer Berlin Heidelberg
PP  - Berlin/Heidelberg
UR  - https://pmihes.centre-mersenne.org/articles/10.1007/s10240-019-00103-y/
DO  - 10.1007/s10240-019-00103-y
LA  - en
ID  - PMIHES_2019__129__83_0
ER  - 
%0 Journal Article
%A Manfred Einsiedler
%A Elon Lindenstrauss
%T Joinings of higher rank torus actions on homogeneous spaces
%J Publications Mathématiques de l'IHÉS
%D 2019
%P 83-127
%V 129
%I Springer Berlin Heidelberg
%C Berlin/Heidelberg
%U https://pmihes.centre-mersenne.org/articles/10.1007/s10240-019-00103-y/
%R 10.1007/s10240-019-00103-y
%G en
%F PMIHES_2019__129__83_0
Manfred Einsiedler; Elon Lindenstrauss. Joinings of higher rank torus actions on homogeneous spaces. Publications Mathématiques de l'IHÉS, Volume 129 (2019), pp. 83-127. doi: 10.1007/s10240-019-00103-y

[1.] M. Aka; M. Einsiedler; U. Shapira Integer points on spheres and their orthogonal lattices, Invent. Math., Volume 206 (2016), pp. 379-396 | MR | Zbl | DOI

[2.] A. Borel Some finiteness properties of adele groups over number fields, Publ. Math. IHES., Volume 16 (1963), pp. 5-30 | MR | Zbl | Numdam | DOI

[3.] W. Duke Hyperbolic distribution problems and half-integral weight Maass forms, Invent. Math., Volume 92 (1988), pp. 73-90 | MR | DOI | Zbl

[4.] M. Einsiedler; A. Katok Invariant measures on G/Γ for split simple Lie groups G, Commun. Pure Appl. Math., Volume 56 (2003), pp. 1184-1221 (Dedicated to the memory of Jürgen K. Moser) | MR | DOI | Zbl

[5.] M. Einsiedler; A. Katok Rigidity of measures—the high entropy case, and non-commuting foliations, probability in mathematics, Isr. J. Math., Volume 148 (2005), pp. 169-238 | Zbl | MR | DOI

[6.] M. Einsiedler; E. Lindenstrauss Diagonalizable flows on locally homogeneous spaces and number theory, International Congress of Mathematicians, vol. II, Eur. Math. Soc., Zürich, 2006, pp. 1731-1759 | MR | Zbl

[7.] M. Einsiedler; E. Lindenstrauss Joinings of higher-rank diagonalizable actions on locally homogeneous spaces, Duke Math. J., Volume 138 (2007), pp. 203-232 | MR | DOI | Zbl

[8.] M. Einsiedler; E. Lindenstrauss On measures invariant under diagonalizable actions: the rank-one case and the general low-entropy method, J. Mod. Dyn., Volume 2 (2008), pp. 83-128 | MR | Zbl | DOI

[9.] M. Einsiedler; E. Lindenstrauss Diagonal actions on locally homogeneous spaces, Homogeneous Flows, Moduli Spaces and Arithmetic, 10, Am. Math. Soc., Providence, 2010, pp. 155-241 | MR | Zbl

[10.] M. Einsiedler; E. Lindenstrauss On measures invariant under tori on quotients of semisimple groups, Ann. Math. (2), Volume 181 (2015), pp. 993-1031 | MR | DOI | Zbl

[11.] M. Einsiedler; A. Mohammadi A joinings classification and a special case of Raghunathan’s conjecture in positive characteristic, J. Anal. Math., Volume 116 (2012), pp. 299-334 (with an appendix by Kevin Wortman) | MR | DOI | Zbl

[12.] M. Einsiedler; A. Katok; E. Lindenstrauss Invariant measures and the set of exceptions to Littlewood’s conjecture, Ann. Math., Volume 164 (2006), pp. 513-560 | MR | DOI | Zbl

[13.] M. Einsiedler; E. Lindenstrauss; Ph. Michel; A. Venkatesh Distribution of periodic torus orbits and Duke’s theorem for cubic fields, Ann. Math., Volume 173 (2011), pp. 815-885 | MR | DOI | Zbl

[14.] A. Eskin; S. Mozes; N. Shah Unipotent flows and counting lattice points on homogeneous varieties, Ann. Math. (2), Volume 143 (1996), pp. 253-299 | MR | DOI | Zbl

[15.] A. Eskin; S. Mozes; N. Shah Non-divergence of translates of certain algebraic measures, Geom. Funct. Anal., Volume 7 (1997), pp. 48-80 | MR | DOI | Zbl

[16.] H. Furstenberg Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation, Math. Syst. Theory, Volume 1 (1967), pp. 1-49 | MR | DOI | Zbl

[17.] G. Harcos; Ph. Michel The subconvexity problem for Rankin-Selberg L-functions and equidistribution of Heegner points. II, Invent. Math., Volume 163 (2006), pp. 581-655 | MR | DOI | Zbl

[18.] H. Y. Hu Some ergodic properties of commuting diffeomorphisms, Ergod. Theory Dyn. Syst., Volume 13 (1993), pp. 73-100 | MR | DOI | Zbl

[19.] A. Katok; R. Spatzier Invariant measures for higher-rank hyperbolic Abelian actions, Ergod. Theory Dyn. Syst., Volume 16 (1996), pp. 751-778 | MR | DOI | Zbl

[20.] E. Lindenstrauss Invariant measures and arithmetic quantum unique ergodicity, Ann. Math. (2), Volume 163 (2006), pp. 165-219 | MR | DOI | Zbl

[21.] Yu. V. Linnik Ergodic Properties of Algebraic Fields, 45, Springer New York Inc., New York, 1968 (Translated from the Russian by, Keane, M. S.) | Zbl | MR | DOI

[22.] G. A. Margulis Discrete Subgroups of Semisimple Lie Groups, 17, Springer, Berlin, 1991 (x+388 pp.) | Zbl | MR | DOI

[23.] G. A. Margulis Problems and conjectures in rigidity theory, Mathematics: Frontiers and Perspectives, Am. Math. Soc., Providence, 2000, pp. 161-174 | MR | Zbl

[24.] G. A. Margulis; G. M. Tomanov Invariant measures for actions of unipotent groups over local fields on homogeneous spaces, Invent. Math., Volume 116 (1994), pp. 347-392 | MR | DOI | Zbl

[25.] G. A. Margulis; G. M. Tomanov Measure rigidity for almost linear groups and its applications, J. Anal. Math., Volume 69 (1996), pp. 25-54 | MR | DOI | Zbl

[26.] W. Parry Topics in Ergodic Theory, 75, Cambridge University Press, Cambridge/New York, 1981 | Zbl | MR

[27.] M. Ratner Horocycle flows, joinings and rigidity of products, Ann. Math., Volume 118 (1983), pp. 277-313 | MR | DOI | Zbl

[28.] M. Ratner On measure rigidity of unipotent subgroups of semisimple groups, Acta Math., Volume 165 (1990), pp. 229-309 | MR | DOI | Zbl

[29.] M. Ratner On Raghunathan’s measure conjecture, Ann. Math., Volume 134 (1991), pp. 545-607 | MR | DOI | Zbl

[30.] M. Ratner Raghunathan’s conjectures for Cartesian products of real and p-adic Lie groups, Duke Math. J., Volume 77 (1995), pp. 275-382 | MR | DOI | Zbl

[31.] D. Rudolph ×2 and ×3 invariant measures and entropy, Ergod. Theory Dyn. Syst., Volume 10 (1990), pp. 395-406 | MR | Zbl | DOI

[32.] N. Shah Limit distributions of expanding translates of certain orbits on homogeneous spaces, Proc. Indian Acad. Sci. Math. Sci., Volume 106 (1996), pp. 105-125 | MR | DOI | Zbl

[33.] T. A. Springer Linear Algebraic Groups, Birkhäuser Boston, Boston, 1998 | Zbl | MR | DOI

[34.] J. Tits Reductive groups over local fields, Proc. Symp. Pure Math., Volume 33 (1979), pp. 29-69 | MR | DOI | Zbl

[35.] G. Tomanov Orbits on homogeneous spaces of arithmetic origin and approximations, Analysis on Homogeneous Spaces and Representation Theory of Lie Groups, Okayama–Kyoto, 26, Math. Soc. Japan, Tokyo, 1997, pp. 265-297 (2000) | MR | Zbl

[36.] D. Witte Rigidity of horospherical foliations, Ergod. Theory Dyn. Syst., Volume 9 (1989), pp. 191-205 | MR | DOI | Zbl

[37.] R. Zhang, The associated Dirichlet series1, arXiv.

Cited by Sources: