C*-simplicity and the unique trace property for discrete groups
Publications Mathématiques de l'IHÉS, Volume 126 (2017), pp. 35-71

A discrete group is said to be C*-simple if its reduced C*-algebra is simple, and is said to have the unique trace property if its reduced C*-algebra has a unique tracial state. A dynamical characterization of C*-simplicity was recently obtained by the second and third named authors. In this paper, we introduce new methods for working with group and crossed product C*-algebras that allow us to take the study of C*-simplicity a step further, and in addition to settle the longstanding open problem of characterizing groups with the unique trace property. We give a new and self-contained proof of the aforementioned characterization of C*-simplicity. This yields a new characterization of C*-simplicity in terms of the weak containment of quasi-regular representations. We introduce a convenient algebraic condition that implies C*-simplicity, and show that this condition is satisfied by a vast class of groups, encompassing virtually all previously known examples as well as many new ones. We also settle a question of Skandalis and de la Harpe on the simplicity of reduced crossed products. Finally, we introduce a new property for discrete groups that is closely related to C*-simplicity, and use it to prove a broad generalization of a theorem of Zimmer, originally conjectured by Connes and Sullivan, about amenable actions.

Received:
Accepted:
Online First:
Published online:
DOI: 10.1007/s10240-017-0091-2

Emmanuel Breuillard 1; Mehrdad Kalantar 2; Matthew Kennedy 3; Narutaka Ozawa 4

1 Mathematisches Institut, Universität Münster 48149 Münster Germany
2 Department of Mathematics, University of Houston 77204-3008 Houston TX United States
3 Department of Pure Mathematics, University of Waterloo N2L 3G1 Waterloo ON Canada
4 Research Institute for Mathematical Sciences, Kyoto University 606-8502 Kyoto Japan
@article{PMIHES_2017__126__35_0,
     author = {Emmanuel Breuillard and Mehrdad Kalantar and Matthew Kennedy and Narutaka Ozawa},
     title = {C*-simplicity and the unique trace property for discrete groups},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {35--71},
     year = {2017},
     publisher = {Springer Berlin Heidelberg},
     address = {Berlin/Heidelberg},
     volume = {126},
     doi = {10.1007/s10240-017-0091-2},
     mrnumber = {3735864},
     zbl = {1391.46071},
     language = {en},
     url = {https://pmihes.centre-mersenne.org/articles/10.1007/s10240-017-0091-2/}
}
TY  - JOUR
AU  - Emmanuel Breuillard
AU  - Mehrdad Kalantar
AU  - Matthew Kennedy
AU  - Narutaka Ozawa
TI  - C*-simplicity and the unique trace property for discrete groups
JO  - Publications Mathématiques de l'IHÉS
PY  - 2017
SP  - 35
EP  - 71
VL  - 126
PB  - Springer Berlin Heidelberg
PP  - Berlin/Heidelberg
UR  - https://pmihes.centre-mersenne.org/articles/10.1007/s10240-017-0091-2/
DO  - 10.1007/s10240-017-0091-2
LA  - en
ID  - PMIHES_2017__126__35_0
ER  - 
%0 Journal Article
%A Emmanuel Breuillard
%A Mehrdad Kalantar
%A Matthew Kennedy
%A Narutaka Ozawa
%T C*-simplicity and the unique trace property for discrete groups
%J Publications Mathématiques de l'IHÉS
%D 2017
%P 35-71
%V 126
%I Springer Berlin Heidelberg
%C Berlin/Heidelberg
%U https://pmihes.centre-mersenne.org/articles/10.1007/s10240-017-0091-2/
%R 10.1007/s10240-017-0091-2
%G en
%F PMIHES_2017__126__35_0
Emmanuel Breuillard; Mehrdad Kalantar; Matthew Kennedy; Narutaka Ozawa. C*-simplicity and the unique trace property for discrete groups. Publications Mathématiques de l'IHÉS, Volume 126 (2017), pp. 35-71. doi: 10.1007/s10240-017-0091-2

[1.] M. Abért; Y. Glasner; B. Virág Kesten’s theorem for invariant random subgroups, Duke Math. J., Volume 163 (2014), pp. 465-488 | MR | DOI | Zbl

[2.] S. I. Adyan Random walks on free periodic groups, Izv. Math., Volume 21 (1983), pp. 425-434 | DOI | Zbl

[3.] R. J. Archbold; J. S. Spielberg Topologically free actions and ideals in discrete C*-dynamical systems, Proc. Edinb. Math. Soc., Volume 37 (1994), pp. 119-124 | MR | DOI | Zbl

[4.] C. Anantharaman-Delaroche On spectral characterizations of amenability, Isr. J. Math., Volume 137 (2003), pp. 1-33 | MR | DOI | Zbl

[5.] U. Bader; B. Duchesne; J. Lecureux Amenable invariant random subgroups, Isr. J. Math., Volume 213 (2016), pp. 399-422 | MR | DOI | Zbl

[6.] U. Bader; A. Furman; R. Sauer Weak notions of normality and vanishing up to rank in L2-cohomology, Int. Math. Res. Not., Volume 12 (2014), pp. 3177-3189 | MR | DOI | Zbl

[7.] M. Bekka; M. Cowling; P. de la Harpe Some groups whose reduced C*-algebra is simple, Publ. Math. Inst. Hautes Études Sci., Volume 80 (1994), pp. 117-134 | DOI | MR | Zbl | Numdam

[8.] E. Breuillard, A strong Tits alternative, | arXiv

[9.] E. Breuillard; T. Gelander A topological Tits alternative, Ann. Math., Volume 166 (2007), pp. 427-474 | MR | DOI | Zbl

[10.] E. Breuillard; T. Gelander Uniform independence in linear groups, Invent. Math., Volume 173 (2008), pp. 225-263 | MR | DOI | Zbl

[11.] N. Brown; N. Ozawa C*-Algebras and Finite-Dimensional Approximations (2008) | Zbl

[12.] Y. Carrière; É. Ghys Uniform independence in linear groups, C. R. Acad. Sci., Volume 300 (1985), pp. 677-680 | Zbl

[13.] M. D. Choi; E. G. Effros Injectivity and operator spaces, J. Funct. Anal., Volume 24 (1977), pp. 156-209 | MR | DOI | Zbl

[14.] F. Dahmani; V. Guirardel; D. Osin Hyperbolically embedded subgroups and rotating families in groups acting on hyperbolic spaces, Mem. Am. Math. Soc., Volume 245 (2017) | MR | Zbl

[15.] M. Day Amenable semigroups, Ill. J. Math., Volume 1 (1957), pp. 459-606 | MR | Zbl

[16.] P. de la Harpe On simplicity of reduced C*-algebras of groups, Bull. Lond. Math. Soc., Volume 39 (2007), pp. 1-26 | MR | DOI | Zbl

[17.] P. de la Harpe; J. P. Préaux C*-simple groups: amalgamated free products, HNN extensions, and fundamental groups of 3-manifolds, J. Topol. Anal., Volume 3 (2011), pp. 451-489 | MR | DOI | Zbl

[18.] P. de La Harpe; G. Skandalis Powers’ property and simple C*-algebras, Math. Ann., Volume 273 (1986), pp. 241-250 | MR | DOI | Zbl

[19.] J. Dixmier C*-Algebras (1977) | Zbl

[20.] Z. Frolík Maps of extremally disconnected spaces, theory of types, and applications, General Topology and Its Relations to Modern Analysis and Algebra (1971), pp. 131-142

[21.] A. Furman On minimal strongly proximal actions of locally compact groups, Isr. J. Math., Volume 136 (2003), pp. 173-187 | MR | DOI | Zbl

[22.] H. Furstenberg Boundary Theory and Stochastic Processes on Homogeneous Spaces (1973) | Zbl

[23.] D. Gaboriau Coût des relations d’équivalence et des groupes, Invent. Math., Volume 139 (2000), pp. 41-98 | MR | DOI | Zbl

[24.] S. Glasner Topological dynamics and group theory, Trans. Am. Math. Soc., Volume 187 (1974), pp. 327-334 | MR | DOI | Zbl

[25.] S. Glasner Proximal Flows (1976) | Zbl

[26.] A. M. Gleason Projective topological spaces, Ill. J. Math., Volume 2 (1958), pp. 482-489 | MR | Zbl

[27.] U. Haagerup, A new look at C*-simplicity and the unique trace property of a group, | arXiv

[28.] U. Haagerup and K. K. Olesen, Non-inner amenability of the Thompson groups T and V, | arXiv

[29.] M. Hamana Injective envelopes of C*-dynamical systems, Tohoku Math. J., Volume 37 (1985), pp. 463-487 | MR | DOI | Zbl

[30.] R. Howe; E-C. Tan Nonabelian Harmonic Analysis (1992)

[31.] M. Hull; D. Osin Induced quasicocycles on groups with hyperbolically embedded subgroups, Algebraic Geom. Topol., Volume 13 (2013), pp. 2635-2665 | MR | DOI | Zbl

[32.] S. V. Ivanov The free Burnside groups of sufficiently large exponents, Int. J. Algebra Comput., Volume 4 (1994), pp. 1-308 | MR | DOI | Zbl

[33.] S. Kawamura; J. Tomiyama Properties of topological dynamical systems and corresponding C*-algebras, Tokyo J. Math., Volume 13 (1990), pp. 215-257 | MR | DOI | Zbl

[34.] M. Kennedy, An intrinsic characterization of C*-simplicity, | arXiv

[35.] M. Kalantar; M. Kennedy Boundaries of reduced C*-algebras of discrete groups, J. Reine Angew. Math., Volume 727 (2017), pp. 247-267 | MR | Zbl

[36.] M. G. Kuhn Amenable actions and weak containment of certain representations of discrete groups, Proc. Am. Math. Soc., Volume 122 (1994), pp. 751-757 | MR | DOI | Zbl

[37.] A. Le Boudec, C*-simplicity and the amenable radical, | arXiv

[38.] A. Le Boudec and N. Matte Bon, Subgroup dynamics and C*-simplicity of groups of homeomorphisms, | arXiv

[39.] W. Lück Dimension theory of arbitrary modules over finite von Neumann algebras and L2-Betti numbers, I: foundations, J. Reine Angew. Math., Volume 495 (1998), pp. 135-162 | MR | Zbl

[40.] N. Monod Continuous Bounded Cohomology of Locally Compact Groups (2001) | DOI | Zbl

[41.] N. Monod and Y. Shalom, Orbit equivalence rigidity and bounded cohomology, Ann. Math. (2006), 825–878.

[42.] A. Y. Olshanskii On the question of the existence of an invariant mean on a group, Usp. Mat. Nauk, Volume 35 (1980), pp. 199-200 | MR

[43.] A. Y. Olshanskii Geometry of Defining Relations in Groups (1991) | DOI

[44.] A. Y. Olshanskii; D. V. Osin C*-simple groups without free subgroups, Groups Geom. Dyn., Volume 8 (2014), pp. 93-983 | MR | DOI | Zbl

[45.] D. V. Osin Acylindrically hyperbolic groups, Trans. Am. Math. Soc., Volume 368 (2016), pp. 851-888 | MR | DOI | Zbl

[46.] V. Paulsen Completely Bounded Maps and Operator Algebras (2002) | Zbl

[47.] D. Pitts, Structure for regular inclusions, | arXiv

[48.] R. Powers Simplicity of the C*-algebra associated with the free group on two generators, Duke Math. J., Volume 42 (1975), pp. 151-156 | MR | DOI | Zbl

[49.] T. Poznansky, Characterization of linear groups whose reduced C*-algebras are simple, | arXiv

[50.] A. Thom Low degree bounded cohomology and L2-invariants for negatively curved groups, Groups Geom. Dyn., Volume 3 (2009), pp. 343-358 | MR | DOI | Zbl

[51.] J. Tits Free subgroups in linear groups, J. Algebra, Volume 20 (1972), pp. 250-270 | MR | DOI | Zbl

[52.] R. D. Tucker-Drob, Shift-minimal groups, fixed price 1, and the unique trace property, | arXiv

[53.] R. J. Zimmer Amenable actions and dense subgroups of Lie groups, J. Funct. Anal., Volume 72 (1987), pp. 58-64 | MR | DOI | Zbl

Cited by Sources: