Geometric presentations of Lie groups and their Dehn functions
Publications Mathématiques de l'IHÉS, Volume 125 (2017), pp. 79-219

We study the Dehn function of connected Lie groups. We show that this function is always exponential or polynomially bounded, according to the geometry of weights and of the 2-cohomology of their Lie algebras. Our work, which also addresses algebraic groups over local fields, uses and extends Abels’ theory of multiamalgams of graded Lie algebras, in order to provide workable presentations of these groups.

Received:
Accepted:
Online First:
Published online:
DOI: 10.1007/s10240-016-0087-3

Yves Cornulier  1 ; Romain Tessera  1

1 Laboratoire de Mathématiques, Bâtiment 425, Université Paris-Sud 11 91405 Orsay France
@article{PMIHES_2017__125__79_0,
     author = {Yves Cornulier and Romain Tessera},
     title = {Geometric presentations of {Lie} groups and their {Dehn} functions},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {79--219},
     year = {2017},
     publisher = {Springer Berlin Heidelberg},
     address = {Berlin/Heidelberg},
     volume = {125},
     doi = {10.1007/s10240-016-0087-3},
     mrnumber = {3668649},
     zbl = {1428.22012},
     language = {en},
     url = {https://pmihes.centre-mersenne.org/articles/10.1007/s10240-016-0087-3/}
}
TY  - JOUR
AU  - Yves Cornulier
AU  - Romain Tessera
TI  - Geometric presentations of Lie groups and their Dehn functions
JO  - Publications Mathématiques de l'IHÉS
PY  - 2017
SP  - 79
EP  - 219
VL  - 125
PB  - Springer Berlin Heidelberg
PP  - Berlin/Heidelberg
UR  - https://pmihes.centre-mersenne.org/articles/10.1007/s10240-016-0087-3/
DO  - 10.1007/s10240-016-0087-3
LA  - en
ID  - PMIHES_2017__125__79_0
ER  - 
%0 Journal Article
%A Yves Cornulier
%A Romain Tessera
%T Geometric presentations of Lie groups and their Dehn functions
%J Publications Mathématiques de l'IHÉS
%D 2017
%P 79-219
%V 125
%I Springer Berlin Heidelberg
%C Berlin/Heidelberg
%U https://pmihes.centre-mersenne.org/articles/10.1007/s10240-016-0087-3/
%R 10.1007/s10240-016-0087-3
%G en
%F PMIHES_2017__125__79_0
Yves Cornulier; Romain Tessera. Geometric presentations of Lie groups and their Dehn functions. Publications Mathématiques de l'IHÉS, Volume 125 (2017), pp. 79-219. doi: 10.1007/s10240-016-0087-3

[Ab72] H. Abels Kompakt definierbare topologische gruppen, Math. Ann., Volume 197 (1972), pp. 221-233 | MR | DOI | Zbl

[Ab87] H. Abels Finite Presentability of S -Arithmetic Groups. Compact Presentability of Solvable Groups (1987) | DOI | Zbl

[ABDY13] A. Abrams; N. Brady; P. Dani; R. Young Homological and homotopical Dehn functions are different, Proc. Natl. Acad. Sci. USA, Volume 110 (2013), pp. 19206-19212 | MR | DOI | Zbl

[Al91] J. Alonzo Inégalités isopérimétriques et quasi-isométries, C.R. Acad. Sci. Paris. Sér., Volume 311 (1991), pp. 761-764

[Ba60] G. Baumslag Some aspects of groups with unique roots, Acta Math., Volume 104 (1960), pp. 217-303 | MR | DOI | Zbl

[BGSS92] G. Baumslag; S. M. Gersten; M. Shapiro; H. Short Automatic groups and amalgams, these proceedings, Algorithms and Classification in Combinatorial Group Theory (1992), pp. 179-194 | DOI

[BaMS93] G. Baumslag; C. Miller; H. Short Isoperimetric inequalities and the homology of groups, Invent. Math., Volume 113 (1993), pp. 531-560 | MR | DOI | Zbl

[BeBr97] M. Bestvina; N. Brady Morse theory and finiteness properties of groups, Invent. Math., Volume 129 (1997), pp. 445-470 | MR | DOI | Zbl

[BiS78] R. Bieri; R. Strebel Almost finitely presented soluble groups, Comment. Math. Helv., Volume 53 (1978), pp. 258-278 | MR | DOI | Zbl

[Bou] N. Bourbaki Groupes et Algèbres de Lie (1981) | Zbl

[Bo95] B. Bowditch A short proof that a subquadratic isoperimetric inequality implies a linear one, Mich. Math. J., Volume 42 (1995), pp. 103-107 | MR | DOI | Zbl

[BrG11] E. Breuillard; B. Green Approximate groups, I: the torsion-free nilpotent case, J. Inst. Math. Jussieu, Volume 10 (2011), pp. 37-57 | MR | DOI | Zbl

[Bri02] M. Bridson The geometry of the word problem, Invitations to Geometry and Topology (2002), pp. 29-91

[C08] Y. Cornulier Dimension of asymptotic cones of Lie groups, J. Topol., Volume 1 (2008), pp. 342-361 | MR | DOI | Zbl

[C11] Y. Cornulier Asymptotic cones of Lie groups and cone equivalences, Ill. J. Math., Volume 55 (2011), pp. 237-259 | MR | Zbl

[CCMT15] P.-E. Caprace; Y. Cornulier; N. Monod; R. Tessera Amenable hyperbolic groups, J. Eur. Math. Soc., Volume 17 (2015), pp. 2903-2947 | MR | DOI | Zbl

[CT10] Y. Cornulier; R. Tessera Metabelian groups with quadratic Dehn function and Baumslag-Solitar groups, Confluentes Math., Volume 2 (2010), pp. 431-443 | MR | DOI | Zbl

[CT13] Y. Cornulier; R. Tessera Dehn function and asymptotic cones of Abels’ group, J. Topol., Volume 6 (2013), pp. 982-1008 | MR | DOI | Zbl

[Dru98] C. Druţu Remplissage dans des réseaux de Q-rang 1 et dans des groupes résolubles, Pac. J. Math., Volume 185 (1998), pp. 269-305 | DOI | Zbl

[Dru04] C. Druţu Filling in solvable groups and in lattices in semisimple groups, Topology, Volume 43 (2004), pp. 983-1033 | MR | DOI | Zbl

[DwGS] B. Dwork; G. Gerotto; F. Sullivan An Introduction to G-Functions (1994) | Zbl

[ECHLPT92] D. Epstein; J. Cannon; D. Holt; S. Levy; M. Paterson; W. Thurston William Word Processing in Groups (1992) (xii+330 pp) | Zbl

[Fu] J. Fuchs Affine Lie Algebras and Quantum Groups (1992) | Zbl

[FuH] W. Fulton; J. Harris Representation Theory. A First Course (2004) | Zbl

[Ger92] S. M. Gersten Dehn functions and L1-norms of finite presentations, Algorithms and Classification in Combinatorial Group Theory (1992), pp. 195-224 | DOI

[Ger99] S. Gersten, Homological Dehn functions and the word problem, 1999, Unpublished manuscript (24 pages), http://www.math.utah.edu/~sg/Papers/df9.pdf.

[GH01] J. Groves; S. Hermiller Isoperimetric inequalities for soluble groups, Geom. Dedic., Volume 88 (2001), pp. 239-254 | MR | DOI | Zbl

[Gro93] M. Gromov Asymptotic invariants of infinite groups, Geometric Group Theory (1993)

[GS99] V. Guba; M. Sapir On Dehn functions of free products of groups, Proc. Am. Math. Soc., Volume 127 (1999), pp. 1885-1891 | MR | DOI | Zbl

[Gui73] Y. Guivarc’h Croissance polynomiale et périodes des fonctions harmoniques, Bull. Soc. Math. Fr., Volume 101 (1973), pp. 333-379 | DOI | Zbl | Numdam

[Gui80] Y. Guivarc’h Sur la loi des grands nombres et le rayon spectral d’une marche aléatoire, Astérisque, Volume 74 (1980), pp. 47-98 | Zbl | Numdam

[Ho77] R. E. Howe The Fourier transform for nilpotent locally compact groups. I, Pac. J. Math., Volume 73 (1977), pp. 307-327 | MR | DOI | Zbl

[La54] M. Lazard Sur les groupes nilpotents et les anneaux de Lie, Ann. Sci. Éc. Norm. Supér. (3), Volume 71 (1954), pp. 101-190 | DOI | MR | Zbl | Numdam

[LP04] E. Leuzinger; Ch. Pittet On quadratic Dehn functions, Math. Z., Volume 248 (2004), pp. 725-755 | MR | DOI | Zbl

[Kac] V. G. Kac Infinite Dimensional Lie Algebras (1990) | DOI | Zbl

[KL82] C. Kassel; J.-L. Loday Extensions centrales d’algèbres de Lie, Ann. Inst. Fourier, Volume 32 (1982), pp. 119-142 | DOI | MR | Zbl | Numdam

[Mag35] W. Magnus Beziehungen zwischen Gruppen und Idealen in einem speziellen Ring, Math. Ann., Volume 111 (1935), pp. 259-280 | MR | DOI | Zbl

[Mal49a] A. I. Malcev On a class of homogeneous spaces, Izv. Akad. Nauk SSSR, Ser. Mat., Volume 13 (1949), pp. 9-32 English translation, Amer. Math. Soc. Transl. 39 (1951) | MR

[Mal49b] A. I. Malcev Generalized nilpotent algebras and their associated groups, Mat. Sb. (N.S.), Volume 25 (1949), pp. 347-366 | MR

[NW08] K-H. Neeb; F. Wagemann The second cohomology of current algebras of general Lie algebras, Can. J. Math., Volume 60 (2008), pp. 892-922 | MR | DOI | Zbl

[Os02] D. V. Osin Exponential radical of solvable Lie groups, J. Algebra, Volume 248 (2002), pp. 790-805 | MR | DOI | Zbl

[Se] J-P. Serre Lie Algebras and Lie Groups (1992) | Zbl

[St70] I. Stewart An algebraic treatment of Malcev’s theorems concerning nilpotent Lie groups and their Lie algebras, Compos. Math., Volume 22 (1970), pp. 289-312 | MR | Zbl | Numdam

[Var00] N. Varopoulos A geometric classification of Lie groups, Rev. Mat. Iberoam., Volume 16 (2000), pp. 49-136 | MR | DOI | Zbl

[We11] S. Wenger Nilpotent groups without exactly polynomial Dehn function, J. Topol., Volume 4 (2011), pp. 141-160 | MR | DOI | Zbl

[Y13a] R. Young Filling inequalities for nilpotent groups through approximations, Groups Geom Dyn., Volume 7 (2013), pp. 977-1011 | MR | DOI | Zbl

[Y13b] R. Young The Dehn function of SL(n;Z), Ann. Math., Volume 177 (2013), pp. 969-1027 | MR | DOI

Cited by Sources: