Gaussian asymptotics of discrete β-ensembles
Publications Mathématiques de l'IHÉS, Volume 125 (2017), pp. 1-78

We introduce and study stochastic N-particle ensembles which are discretizations for general-β log-gases of random matrix theory. The examples include random tilings, families of non-intersecting paths, (z,w)-measures, etc. We prove that under technical assumptions on general analytic potential, the global fluctuations for such ensembles are asymptotically Gaussian as N. The covariance is universal and coincides with its counterpart in random matrix theory.

Our main tool is an appropriate discrete version of the Schwinger-Dyson (or loop) equations, which originates in the work of Nekrasov and his collaborators.

Received:
Accepted:
Online First:
Published online:
DOI: 10.1007/s10240-016-0085-5

Alexei Borodin 1; Vadim Gorin 1, 2; Alice Guionnet 1

1 Department of Mathematics, Massachusetts Institute of Technology Cambridge MA USA
2 Institute for Information Transmission Problems of Russian Academy of Sciences Moscow Russia
@article{PMIHES_2017__125__1_0,
     author = {Alexei Borodin and Vadim Gorin and Alice Guionnet},
     title = {Gaussian asymptotics of discrete $\beta $-ensembles},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {1--78},
     year = {2017},
     publisher = {Springer Berlin Heidelberg},
     address = {Berlin/Heidelberg},
     volume = {125},
     doi = {10.1007/s10240-016-0085-5},
     mrnumber = {3668648},
     zbl = {1406.60008},
     language = {en},
     url = {https://pmihes.centre-mersenne.org/articles/10.1007/s10240-016-0085-5/}
}
TY  - JOUR
AU  - Alexei Borodin
AU  - Vadim Gorin
AU  - Alice Guionnet
TI  - Gaussian asymptotics of discrete $\beta $-ensembles
JO  - Publications Mathématiques de l'IHÉS
PY  - 2017
SP  - 1
EP  - 78
VL  - 125
PB  - Springer Berlin Heidelberg
PP  - Berlin/Heidelberg
UR  - https://pmihes.centre-mersenne.org/articles/10.1007/s10240-016-0085-5/
DO  - 10.1007/s10240-016-0085-5
LA  - en
ID  - PMIHES_2017__125__1_0
ER  - 
%0 Journal Article
%A Alexei Borodin
%A Vadim Gorin
%A Alice Guionnet
%T Gaussian asymptotics of discrete $\beta $-ensembles
%J Publications Mathématiques de l'IHÉS
%D 2017
%P 1-78
%V 125
%I Springer Berlin Heidelberg
%C Berlin/Heidelberg
%U https://pmihes.centre-mersenne.org/articles/10.1007/s10240-016-0085-5/
%R 10.1007/s10240-016-0085-5
%G en
%F PMIHES_2017__125__1_0
Alexei Borodin; Vadim Gorin; Alice Guionnet. Gaussian asymptotics of discrete $\beta $-ensembles. Publications Mathématiques de l'IHÉS, Volume 125 (2017), pp. 1-78. doi: 10.1007/s10240-016-0085-5

[AM] J. Ambjørn; Yu. Makeenko Properties of loop equations for the Hermitian matrix model and for two-dimensional gravity, Mod. Phys. Lett. A, Volume 5 (1990), pp. 1753-1763 | MR | DOI | Zbl

[AGZ] G. Anderson; A. Guionnet; O. Zeitouni Introduction to Random Matrices (2009) | DOI | Zbl

[BBDT] J. Baik; A. Borodin; P. Deift; T. Suidan A model for the bus system in Cuernevaca (Mexico), J. Phys. A, Math. Gen., Volume 39 (2006), p. 8965 | DOI | Zbl | arXiv

[BKMM] J. Baik, T. Kriecherbauer, K. T.-R. McLaughlin and P. D. Miller, Uniform asymptotics for polynomials orthogonal with respect to a general class of discrete weights and universality results for associated ensembles, | arXiv

[BFG] F. Bekerman; A. Figalli; A. Guionnet Transport maps for Beta-matrix models and universality, Commun. Math. Phys., Volume 338 (2015), pp. 589-619 | DOI | Zbl | arXiv

[BeGu] G. Ben Arous; A. Guionnet Large deviations for Wigner’s law and Voiculescu’s non-commutative entropy, Probab. Theory Relat. Fields, Volume 108 (1997), pp. 517-542 | MR | DOI | Zbl

[BDE] G. Bonnet; F. David; B. Eynard Breakdown of universality in multi-cut matrix models, J. Phys. A, Math. Gen., Volume 33 (2000), p. 6739 | MR | DOI | Zbl | arXiv

[B1] A. Borodin Schur dynamics of the Schur processes, Adv. Math., Volume 228 (2011), pp. 2268-2291 | MR | DOI | Zbl | arXiv

[B2] A. Borodin CLT for spectra of submatrices of Wigner random matrices, Mosc. Math. J., Volume 14 (2014), pp. 29-38 | MR | Zbl | arXiv

[BF] A. Borodin; P. Ferrari Anisotropic growth of random surfaces in 2+1 dimensions, Commun. Math. Phys., Volume 325 (2014), pp. 603-684 | MR | DOI | Zbl | arXiv

[BoGo] A. Borodin; V. Gorin Shuffling algorithm for boxed plane partitions, Adv. Math., Volume 220 (2009), pp. 1739-1770 | MR | DOI | Zbl | arXiv

[BoGo2] A. Borodin; V. Gorin General beta Jacobi corners process and the Gaussian Free Field, Commun. Pure Appl. Math., Volume 68 (2015), pp. 1683-1884 | DOI | Zbl | arXiv

[BO1] A. Borodin; G. Olshanski Harmonic analysis on the infinite-dimensional unitary group and determinantal point processes, Ann. Math., Volume 161 (2005), pp. 1319-1422 | MR | DOI | Zbl | arXiv

[BO2] A. Borodin; G. Olshanski Asymptotics of Plancherel-type random partitions, J. Algebra, Volume 313 (2007), pp. 40-60 | MR | DOI | Zbl | arXiv

[BP] A. Borodin; L. Petrov Integrable probability: from representation theory to Macdonald processes, Probab. Surv., Volume 11 (2014), pp. 1-58 | MR | DOI | Zbl | arXiv

[BoGu1] G. Borot; A. Guionnet Asymptotic expansion of beta matrix models in the one-cut regime, Commun. Math. Phys., Volume 317 (2013), pp. 447-483 | DOI | Zbl | arXiv

[BoGu2] G. Borot; A. Guionnet Asymptotic expansion of beta matrix models in the multi-cut regime, Commun. Math. Phys., Volume 317 (2013), pp. 447-483 | DOI | Zbl | arXiv

[BEY] P. Bourgade; L. Erdos; H.-T. Yau Edge universality of beta ensembles, Commun. Math. Phys., Volume 332 (2014), pp. 261-353 | MR | DOI | Zbl | arXiv

[BPS] A. Boutet de Monvel; L. Pastur; M. Shcherbina On the statistical mechanics approach in the random matrix theory: integrated density of states, J. Stat. Phys., Volume 79 (1995), pp. 585-611 | MR | DOI | Zbl

[BD] J. Breuer and M. Duits, Central limit theorems for biorthogonal ensembles and asymptotics of recurrence coefficients, J. Amer. Math. Soc. | arXiv

[BIPZ] E. Brézin; C. Itzykson; G. Parisi; J. B. Zuber Planar diagrams, Commun. Math. Phys., Volume 59 (1978), pp. 35-51 | MR | DOI | Zbl

[BuGo] A. Bufetov; V. Gorin Representations of classical Lie groups and quantized free convolution, Geom. Funct. Anal., Volume 25 (2015), pp. 763-814 | MR | DOI | Zbl | arXiv

[BuGo2] A. Bufetov and V. Gorin, Fluctuations of particle systems determined by Schur generating functions, | arXiv

[Cha] S. Chatterjee, Rigorous solution of strongly coupled SO(N) lattice gauge theory in the large N limit, | arXiv

[CE] L. O. Chekhov; B. Eynard Matrix eigenvalue model: Feynman graph technique for all genera, J. High Energy Phys., Volume 0612 (2006) | MR | DOI | Zbl | arXiv

[CJY] S. Chhita; K. Johansson; B. Young Asymptotic domino statistics in the Aztec diamond, Ann. Appl. Probab., Volume 25 (2015), pp. 1232-1278 | MR | DOI | Zbl | arXiv

[CLP] H. Cohn Larsen; J. Propp The shape of a typical boxed plane partition, N.Y. J. Math., Volume 4 (1998), pp. 137-165 | MR | Zbl | arXiv

[CGM] B. Collins; A. Guionnet; E. Maurel-Segala Asymptotics of unitary and orthogonal matrix integrals, Adv. Math., Volume 222 (2009), pp. 172-215 | MR | DOI | Zbl | arXiv

[DF] M. Dolega; V. Feray Gaussian fluctuations of Young diagrams and structure constants of Jack characters, Duke Math. J., Volume 7 (2016), pp. 1193-1282 | MR | Zbl | arXiv

[DS] P. D. Dragnev; E. B. Saff Constrained energy problems with applications to orthogonal polynomials of a discrete variable, J. Anal. Math., Volume 72 (1997), pp. 223-259 | MR | DOI | Zbl

[Du] B. A. Dubrovin Theta functions and non-linear equations, Russ. Math. Surv., Volume 36 (1981), pp. 11-92 | DOI | Zbl

[Ey1] B. Eynard All genus correlation functions for the hermitian 1-matrix model, J. High Energy Phys., Volume 0411 (2004) | DOI | arXiv

[Ey2] B. Eynard All order asymptotic expansion of large partitions, J. Stat. Mech. Theory Exp., Volume 2008 (2008) | MR | DOI

[Ey3] B. Eynard A matrix model for plane partitions, J. Stat. Mech. Theory Exp., Volume 0910 (2009) | MR | DOI

[EO] B. Eynard; N. Orantin Topological recursion in enumerative geometry and random matrices, J. Phys. A, Volume 42 (2009) | MR | DOI | Zbl

[Fe] D. Feral On large deviations for the spectral measure of discrete Coulomb gas, Seminaire de Probabilites XLI Lecture Notes in Mathematics (2008), pp. 19-49

[Fo] P. J. Forrester Log-Gases and Random Matrices (2010) | Zbl

[G] V. Gorin Non-intersecting paths and Hahn orthogonal ensemble, Funct. Anal. Appl., Volume 42 (2008), pp. 180-197 | MR | DOI | Zbl | arXiv

[GS] V. Gorin; M. Shkolnikov Multilevel Dyson Brownian motions via Jack polynomials, Probab. Theory Relat. Fields, Volume 163 (2015), p. 413 | MR | DOI | Zbl | arXiv

[GN] A. Guionnet; J. Novak Asymptotics of unitary multimatrix models: the Schwinger–Dyson lattice and topological recursion, J. Funct. Anal., Volume 268 (2015), pp. 2851-2905 | MR | DOI | Zbl

[HO] A. Hora; N. Obata Quantum Probability and Spectral Analysis of Graphs (2007) | Zbl

[J1] K. Johansson On fluctuations of eigenvalues of random Hermitian matrices, Duke Math. J., Volume 91 (1998), pp. 151-204 | MR | DOI | Zbl

[J2] K. Johansson Discrete orthogonal polynomial ensembles and the Plancherel measure, Ann. Math. (2), Volume 153 (2001), pp. 259-296 (math.CO/9906120) | MR | DOI | Zbl

[J3] K. Johansson Shape fluctuations and random matrices, Commun. Math. Phys., Volume 209 (2000), pp. 437-476 | MR | DOI | Zbl | arXiv

[J4] K. Johansson Non-intersecting paths, random tilings and random matrices, Probab. Theory Relat. Fields, Volume 123 (2002), pp. 225-280 | MR | DOI | Zbl | arXiv

[JN] K. Johansson; E. Nordenstam Eigenvalues of GUE minors, Electron. J. Probab., Volume 11 (2006), p. 50 | MR | DOI | Zbl | arXiv

[K] R. Kenyon Height fluctuations in the honeycomb dimer model, Commun. Math. Phys., Volume 281 (2008), pp. 675-709 | MR | DOI | Zbl | arXiv

[KO] R. Kenyon; A. Okounkov Limit shapes and the complex burgers equation, Acta Math., Volume 199 (2007), pp. 263-302 | MR | DOI | Zbl | arXiv

[KOR] W. Konig; N. O’Connel; S. Roch Non-colliding random walks, tandem queues, and discrete orthogonal polynomial ensembles, Electron. J. Probab., Volume 7 (2002), pp. 1-24 | MR | DOI

[KS] T. Kriecherbauer and M. Shcherbina, Fluctuations of eigenvalues of matrix models and their applications, | arXiv

[Ma] I. G. Macdonald Symmetric Functions and Hall Polynomials (1999) | Zbl

[1] M. Maida; E. Maurel-Segala Free transport-entropy inequalities for non-convex potentials and application to concentration for random matrices, Probab. Theory Relat. Fields, Volume 159 (2014), pp. 329-356 | MR | DOI | Zbl | arXiv

[Me] M. L. Mehta Random Matrices (2004) | Zbl

[Mo] A. Moll, in preparation.

[Mi] A. A. Migdal Loop equations and 1/N expansion, Phys. Rep., Volume 102 (1983), pp. 199-290 | DOI

[NS] N. Nekrasov, V. Pestun and S. Shatashvili, Quantum geometry and quiver gauge theories, High Energy Physics - Theory, (2013), 1–83, | arXiv

[NP] N. Nekrasov and V. Pestun, Seiberg-Witten geometry of four dimensional N=2 quiver gauge theories, | arXiv

[N] N. Nekrasov, Non-perturbative Dyson–Schwinger equations and BPS/CFT correspondence, in preparation.

[O] G. Olshanski The problem of harmonic analysis on the infinite-dimensional unitary group, J. Funct. Anal., Volume 205 (2003), pp. 464-524 | MR | DOI | Zbl | arXiv

[O2] G. Olshanksi Probability measures on dual objects to compact symmetric spaces and hypergeometric identities, Funct. Anal. Appl., Volume 37 (2001), pp. 281-301 | MR | DOI

[Ox] The Oxford Handbook of Random Matrix Theory (2011) | Zbl

[PS] L. Pastur; M. Shcherbina Eigenvalue Distribution of Large Random Matrices (2011) | DOI | Zbl

[P1] L. Petrov Asymptotics of random lozenge tilings via Gelfand-Tsetlin schemes, Probab. Theory Relat. Fields, Volume 160 (2014), pp. 429-487 | MR | DOI | Zbl | arXiv

[P2] L. Petrov Asymptotics of uniformly random lozenge tilings of polygons. Gaussian free field, Ann. Probab., Volume 43 (2015), pp. 1-43 | MR | DOI | Zbl | arXiv

[ST] E. B. Saff; V. Totik Logarithmic Potentials with External Fields (1997) | DOI | Zbl

[Shch] M. Shcherbina Fluctuations of linear eigenvalue statistics of β matrix models in the multi-cut regime, J. Stat. Phys., Volume 151 (2013), pp. 1004-1034 | MR | DOI | Zbl | arXiv

[Wi] E. P. Wigner On the distribution of the roots of certain symmetric matrices, Ann. Math., Volume 67 (1958), pp. 325-327 | MR | DOI | Zbl

Cited by Sources: