The hyperbolic Ax-Lindemann-Weierstraß conjecture
Publications Mathématiques de l'IHÉS, Volume 123 (2016), pp. 333-360
Received:
Accepted:
Online First:
Published online:
DOI: 10.1007/s10240-015-0078-9
Keywords: Irreducible Component, Symmetric Domain, Zariski Closure, Shimura Variety, Modular Curf

B. Klingler 1; E. Ullmo 2; A. Yafaev 3

1 Université Paris-Diderot (Institut de Mathématiques de Jussieu-PRG) and IUF Paris France
2 IHES, Laboratoire Alexander Grothendieck CNRS, Université Paris-Saclay Paris France
3 Department of Mathematics, University College London London UK
@article{PMIHES_2016__123__333_0,
     author = {B. Klingler and E. Ullmo and A. Yafaev},
     title = {The hyperbolic {Ax-Lindemann-Weierstra{\ss}} conjecture},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {333--360},
     year = {2016},
     publisher = {Springer Berlin Heidelberg},
     address = {Berlin/Heidelberg},
     volume = {123},
     doi = {10.1007/s10240-015-0078-9},
     zbl = {1372.14016},
     mrnumber = {3502100},
     language = {en},
     url = {https://pmihes.centre-mersenne.org/articles/10.1007/s10240-015-0078-9/}
}
TY  - JOUR
AU  - B. Klingler
AU  - E. Ullmo
AU  - A. Yafaev
TI  - The hyperbolic Ax-Lindemann-Weierstraß conjecture
JO  - Publications Mathématiques de l'IHÉS
PY  - 2016
SP  - 333
EP  - 360
VL  - 123
PB  - Springer Berlin Heidelberg
PP  - Berlin/Heidelberg
UR  - https://pmihes.centre-mersenne.org/articles/10.1007/s10240-015-0078-9/
DO  - 10.1007/s10240-015-0078-9
LA  - en
ID  - PMIHES_2016__123__333_0
ER  - 
%0 Journal Article
%A B. Klingler
%A E. Ullmo
%A A. Yafaev
%T The hyperbolic Ax-Lindemann-Weierstraß conjecture
%J Publications Mathématiques de l'IHÉS
%D 2016
%P 333-360
%V 123
%I Springer Berlin Heidelberg
%C Berlin/Heidelberg
%U https://pmihes.centre-mersenne.org/articles/10.1007/s10240-015-0078-9/
%R 10.1007/s10240-015-0078-9
%G en
%F PMIHES_2016__123__333_0
B. Klingler; E. Ullmo; A. Yafaev. The hyperbolic Ax-Lindemann-Weierstraß conjecture. Publications Mathématiques de l'IHÉS, Volume 123 (2016), pp. 333-360. doi: 10.1007/s10240-015-0078-9

[1.] A. Ash; D. Mumford; M. Rapoport; Y. Tai Smooth Compactification of Locally Symmetric Varieties (1975) | Zbl

[2.] J. Ax On Schanuel’s conjecture, Ann. Math., Volume 93 (1971), pp. 1-24 | MR | DOI | Zbl

[3.] W. L. Baily; A. Borel Compactification of arithmetic quotients of bounded symmetric domains, Ann. Math., Volume 84 (1966), pp. 442-528 | MR | DOI | Zbl

[4.] A. Borel Introduction aux Groupes Arithmétiques (1969) | Zbl

[5.] C. Daw and M. Orr, Heights of pre-special points of Shimura varieties, Math. Ann., to appear, | arXiv

[6.] P. Deligne Variétés de Shimura: interprétation modulaire et techniques de construction de modèles canoniques, Automorphic Forms, Representations, and L -Functions, Part. 2 (1979), pp. 247-290 | Zbl | DOI

[7.] L. van den Dries Tame Topology and o-Minimal Structures (1998) | Zbl | MR | DOI

[8.] L. van den Dries; C. Miller On the real exponential field with restricted analytic functions, Isr. J. Math., Volume 85 (1994), pp. 19-56 | MR | DOI | Zbl

[9.] B. Edixhoven; A. Yafaev Subvarieties of Shimura varieties, Ann. Math., Volume 157 (2003), pp. 621-645 | MR | DOI | Zbl

[10.] E. Fortuna; S. Lojasiewicz Sur l’algébricité des ensembles analytiques complexes, J. Reine Angew. Math., Volume 329 (1981), pp. 215-220 | MR | Zbl

[11.] J. M. Hwang; W. K. To Volumes of complex analytic subvarieties of Hermitian symmetric spaces, Am. J. Math., Volume 124 (2002), pp. 1221-1246 | MR | DOI | Zbl

[12.] B. Klingler; A. Yafaev The André-Oort conjecture, Ann. Math., Volume 180 (2014), pp. 867-925 | MR | DOI | Zbl

[13.] F. Lindemann Über die Zahl π, Math. Ann., Volume 20 (1882), pp. 213-225 | MR | JFM | DOI

[14.] G. A. Margulis Discrete Subgroups of Semisimple Lie Groups (1991) | Zbl | MR | DOI

[15.] N. Mok Metric Rigidity Theorems on Hermitian Locally Symmetric Manifolds (1989) | Zbl | MR | DOI

[16.] N. Mok On the Zariski closure of a germ of totally geodesic complex submanifold on a subvariety of a complex hyperbolic space form of finite volume, Complex Analysis (2010) | MR | Zbl | DOI

[17.] N. Mok Extension of germs of holomorphic isometries up to normalizing constants with respect to the Bergman metric, J. Eur. Math. Soc., Volume 14 (2012), pp. 1617-1656 | MR | DOI | Zbl

[18.] B. Moonen Linearity properties of Shimura varieties. I, J. Algeb. Geom., Volume 7 (1998), pp. 539-567 | MR | Zbl

[19.] D. Mumford Hirzebruch’s proportionality theorem in the non-cocompact case, Invent. Math., Volume 42 (1979), pp. 239-272 | MR | DOI | Zbl

[20.] Y. Peterzil; S. Starchenko Definability of restricted theta functions and families of Abelian varieties, Duke Math. J., Volume 162 (2013), pp. 731-765 | MR | DOI | Zbl

[21.] Y. Peterzil; S. Starchenko Tame complex analysis and o-minimality, Proceedings of the ICM (2010) (Available on first author’s web-page) | MR | Zbl

[22.] I. I. Pyateskii-Shapiro Automorphic Functions and the Geometry of Classical Domains (1969) (translated from the Russian) | MR | Zbl

[23.] J. Pila O-minimality and the Andre-Oort conjecture for Cn, Ann. Math., Volume 173 (2011), pp. 1779-1840 | MR | DOI | Zbl

[24.] J. Pila; A. Wilkie The rational points on a definable set, Duke Math. J., Volume 133 (2006), pp. 591-616 | MR | DOI | Zbl

[25.] J. Pila; J. Tsimerman The André-Oort conjecture for the moduli space of abelian surfaces, Compos. Math., Volume 149 (2013), pp. 204-216 | MR | DOI | Zbl

[26.] J. Pila; J. Tsimerman Ax-Lindemann for Ag, Ann. Math., Volume 179 (2014), pp. 659-681 | MR | DOI | Zbl

[27.] J. Pila; U. Zannier Rational points in periodic analytic sets and the Manin-Mumford conjecture, Atti Accad. Naz. Lincei, Rend. Lincei, Mat. Appl., Volume 19 (2008), pp. 149-162 | MR | DOI | Zbl

[28.] I. Satake Algebraic Structures of Symmetric Domains (1980) | Zbl | MR

[29.] T. Scanlon, O-minimality as an approach to the André-Oort conjecture, preprint (2012). Available on author’s web-page. | MR

[30.] E. Ullmo Applications du théorème d’Ax-Lindemann hyperbolique, Compos. Math., Volume 150 (2014), pp. 175-190 | MR | DOI | Zbl

[31.] E. Ullmo; A. Yafaev Galois orbits and equidistribution of special subvarieties: towards the André-Oort conjecture, Ann. Math., Volume 180 (2014), pp. 823-865 | MR | DOI | Zbl

[32.] E. Ullmo; A. Yafaev A characterisation of special subvarieties, Mathematika, Volume 57 (2011), pp. 263-273 | MR | DOI | Zbl

[33.] E. Ullmo; A. Yafaev Nombre de classes des tores de multiplication complexe et bornes inférieures pour orbites Galoisiennes de points spéciaux, Bull. Soc. Math. Fr., Volume 143 (2015), pp. 197-228 | MR | Zbl | DOI

[34.] E. Ullmo; A. Yafaev Hyperbolic Ax-Lindemann theorem in the cocompact case, Duke Math. J., Volume 163 (2014), pp. 433-463 | MR | DOI | Zbl

[35.] J. Tsimermann Brauer-Siegel theorem for tori and lower bounds for Galois orbits of special points, J. Am. Math. Soc., Volume 25 (2012), pp. 1091-1117 | MR | Zbl | DOI

[36.] K. Weierstraß, Zu Lindemanns Abhandlung: “Über die Ludolph’sche Zahl”, Berl. Ber. (1885), 1067–1086. | JFM

[37.] J. A. Wolf; A. Korányi Generalized Cailey transformations of bounded symmetric domains, Am. J. Math., Volume 87 (1965), pp. 899-939 | Zbl | MR | DOI

Cited by Sources: