Riemann-Hilbert correspondence for holonomic D-modules
Publications Mathématiques de l'IHÉS, Volume 123 (2016), pp. 69-197

The classical Riemann-Hilbert correspondence establishes an equivalence between the triangulated category of regular holonomic D-modules and that of constructible sheaves.

In this paper, we prove a Riemann-Hilbert correspondence for holonomic D-modules which are not necessarily regular. The construction of our target category is based on the theory of ind-sheaves by Kashiwara-Schapira and influenced by Tamarkin’s work. Among the main ingredients of our proof is the description of the structure of flat meromorphic connections due to Mochizuki and Kedlaya.

Received:
Accepted:
Online First:
Published online:
DOI: 10.1007/s10240-015-0076-y
Keywords: Complex Manifold, Full Subcategory, Tensor Category, Natural Morphism, Distinguished Triangle

Andrea D’Agnolo 1; Masaki Kashiwara 2

1 Dipartimento di Matematica, Università di Padova via Trieste 63 35121 Padova Italy
2 Research Institute for Mathematical Sciences, Kyoto University 606-8502 Kyoto Japan
@article{PMIHES_2016__123__69_0,
     author = {Andrea D{\textquoteright}Agnolo and Masaki Kashiwara},
     title = {Riemann-Hilbert correspondence for holonomic {D-modules}},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {69--197},
     year = {2016},
     publisher = {Springer Berlin Heidelberg},
     address = {Berlin/Heidelberg},
     volume = {123},
     doi = {10.1007/s10240-015-0076-y},
     mrnumber = {3502097},
     zbl = {1351.32017},
     language = {en},
     url = {https://pmihes.centre-mersenne.org/articles/10.1007/s10240-015-0076-y/}
}
TY  - JOUR
AU  - Andrea D’Agnolo
AU  - Masaki Kashiwara
TI  - Riemann-Hilbert correspondence for holonomic D-modules
JO  - Publications Mathématiques de l'IHÉS
PY  - 2016
SP  - 69
EP  - 197
VL  - 123
PB  - Springer Berlin Heidelberg
PP  - Berlin/Heidelberg
UR  - https://pmihes.centre-mersenne.org/articles/10.1007/s10240-015-0076-y/
DO  - 10.1007/s10240-015-0076-y
LA  - en
ID  - PMIHES_2016__123__69_0
ER  - 
%0 Journal Article
%A Andrea D’Agnolo
%A Masaki Kashiwara
%T Riemann-Hilbert correspondence for holonomic D-modules
%J Publications Mathématiques de l'IHÉS
%D 2016
%P 69-197
%V 123
%I Springer Berlin Heidelberg
%C Berlin/Heidelberg
%U https://pmihes.centre-mersenne.org/articles/10.1007/s10240-015-0076-y/
%R 10.1007/s10240-015-0076-y
%G en
%F PMIHES_2016__123__69_0
Andrea D’Agnolo; Masaki Kashiwara. Riemann-Hilbert correspondence for holonomic D-modules. Publications Mathématiques de l'IHÉS, Volume 123 (2016), pp. 69-197. doi: 10.1007/s10240-015-0076-y

[1.] D. G. Babbitt and V. S. Varadarajan, Local moduli for meromorphic differential equations, Astérisque, 169–170 (1989), 217 pp. | MR | Zbl | Numdam

[2.] A. D’Agnolo On the Laplace transform for tempered holomorphic functions, Int. Math. Res. Not., Volume 16 (2014), pp. 4587-4623 | MR | Zbl | DOI

[3.] A. D’Agnolo; M. Kashiwara On a reconstruction theorem for holonomic systems, Proc. Jpn. Acad., Ser. A, Math. Sci., Volume 88 (2012), pp. 178-183 | MR | DOI | Zbl

[4.] A. D’Agnolo; P. Schapira Leray’s quantization of projective duality, Duke Math. J., Volume 84 (1996), pp. 453-496 | MR | DOI | Zbl

[5.] P. Deligne Équations Différentielles à Points Singuliers Réguliers (1970) (iii + 133 pp.) | Zbl | MR | DOI

[6.] P. Deligne; B. Malgrange; J.-P. Ramis Singularités Irrégulières, Correspondance et documents (2007) (xii + 188 pp.) | Zbl | MR

[7.] S. Guillermou; P. Schapira Microlocal theory of sheaves and Tamarkin’s non displaceability theorem, Homological Mirror Symmetry and Tropical Geometry (2014), pp. 43-85 | MR | Zbl | DOI

[8.] E. Hille Ordinary Differential Equations in the Complex Domain (1976) (xi + 484 pp.) | Zbl | MR

[9.] M. Kashiwara The Riemann-Hilbert problem for holonomic systems, Publ. Res. Inst. Math. Sci., Volume 20 (1984), pp. 319-365 | MR | DOI | Zbl

[10.] M. Kashiwara D -modules and Microlocal Calculus (2003) (xvi + 254 pp.) | Zbl | MR

[11.] M. Kashiwara; P. Schapira Sheaves on Manifolds (1990) (x + 512 pp.) | Zbl | MR | DOI

[12.] M. Kashiwara and P. Schapira, Moderate and formal cohomology associated with constructible sheaves, Mém. Soc. Math. France, 64 (1996), iv + 76 pp. | Zbl | Numdam | MR

[13.] M. Kashiwara and P. Schapira, Ind-sheaves, Astérisque, 271 (2001), 136 pp. | Zbl | Numdam | MR

[14.] M. Kashiwara; P. Schapira Microlocal study of ind-sheaves. I. Micro-support and regularity, Astérisque, Volume 284 (2003), pp. 143-164 | MR | Zbl | Numdam

[15.] M. Kashiwara; P. Schapira Categories and Sheaves (2006) (x + 497 pp.) | Zbl | DOI

[16.] K. S. Kedlaya Good formal structures for flat meromorphic connections, I: surfaces, Duke Math. J., Volume 154 (2010), pp. 343-418 | MR | DOI | Zbl

[17.] K. S. Kedlaya Good formal structures for flat meromorphic connections, II: excellent schemes, J. Am. Math. Soc., Volume 24 (2011), pp. 183-229 | MR | DOI | Zbl

[18.] H. Majima Asymptotic Analysis for Integrable Connections with Irregular Singular Points (1984) (xiv + 249 pp.) | Zbl | DOI

[19.] T. Mochizuki Good formal structure for meromorphic flat connections on smooth projective surfaces, Algebraic Analysis and Around (2009), pp. 223-253 | Zbl

[20.] T. Mochizuki, Wild harmonic bundles and wild pure twistor D-modules, Astérisque, 340, (2011), x + 607 pp. | Zbl | Numdam

[21.] G. Morando An existence theorem for tempered solutions of D-modules on complex curves, Publ. Res. Inst. Math. Sci., Volume 43 (2007), pp. 625-659 | MR | DOI | Zbl

[22.] G. Morando Preconstructibility of tempered solutions of holonomic D-modules, Int. Math. Res. Not., Volume 4 (2014), pp. 1125-1151 | MR | Zbl | DOI

[23.] C. Sabbah, Équations différentielles à points singuliers irréguliers et phénomène de Stokes en dimension 2, Astérisque, 263, (2000), viii + 190 pp. | Numdam | Zbl

[24.] C. Sabbah Introduction to Stokes Structures (2013) (xiv + 249 pp.) | Zbl | DOI

[25.] D. Tamarkin, Microlocal condition for non-displaceability, 2008, 93 pp., | arXiv

[26.] W. Wasow Asymptotic Expansions for Ordinary Differential Equations (1965) (ix + 362 pp.) | Zbl

Cited by Sources: